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Abstract

We study the contribution of antisymmetric tensor unparticle mediation to the charged
lepton electric dipole moments and restrict the free parameters of the model by using the
experimental upper bounds. We observe that the charged lepton electric dipole moments
are strongly sensitive to the the scaling dimension dU and the fundamental scales MU and
ΛU . The experimental current limits of electric dipole moments are reached for the small
values of the scaling dimension dU .
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The CP violation which leads to the unequal amounts of matter and antimatter in the

universe needs more accurate theoretical explanation. The electric dipole moments (EDMs) of

fermions are driven by the CP violating interaction and, therefore, their search, especially the

charged lepton EDMs1, is worthwhile in order to understand the CP violation mechanism. The

current experimental limits of the electron, muon and tau EDMs are de = (0.7±0.7)×10−27e cm

[1] dµ = (3.7 ± 3.4)× 10−19e cm [2] and Re[dτ ]= −0.22 to 0.45× 10−16e cm; Im[dτ ]= −0.25 to

0.008×10−16e cm [3], respectively. These experimental results stimulate the search of the lepton

EDMs in the framework of various theoretical models. In the standard model (SM) the source

of the CP violation and, therefore the EDM, is the complex Cabibo Kobayashi Maskawa (CKM)

matrix in the quark sector and the lepton mixing matrix in the lepton sector. However the EDM

predictions in the SM are negligible and far from their current experimental limits. Therefore

one goes beyond the SM such as multi Higgs doublet models (MHDM), supersymmetric model

(SUSY) [4], left-right symmetric model, the seesaw model, the models including the extra

dimensions and noncommutative effects,... etc., in order to get the additional CP violating

phase (see for example [5]-[9]). Another possibility for a new CP violating phase is to consider

the recent unparticle idea which is proposed by Georgi [10, 11]. Unparticles are new degrees

of freedom arising from the SM-ultraviolet sector interaction at some scale MU and, because of

the scale invariance, they are massless and have non integral scaling dimension dU , around the

scale ΛU ∼ 1.0 TeV . The effective interaction of the SM-ultraviolet (UV) sector at the scale

MU reads

Leff =
Cn

MdUV +n−4
U

OSM OUV , (1)

with the scaling dimension dUV of the UV operator [13] and, around the scale ΛU , it appears

as (see [14], [15] and references therein)

Leff =
C i

n

ΛdU+n−4
n

OSM,iOU , (2)

where

Λn =

(

MdUV +n−4
U

ΛdUV −dU
U

)
1

dU+n−4

, (3)

and n is the scaling dimension of SM operator of type i. Here the scale Λn is sensitive to the

scaling dimension n of the SM operator OSM,i [14, 15] and depends on the fundamental scales

MU , ΛU
2.

1They are clean theoretically since they are free from strong interactions.
2Λ2 < MU < Λ4 < Λ3 with the choice 1 < dU < 2 < dUV (see [14]).
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In the present work, we consider that the new CP violating phase is coming from the effec-

tive unparticle fermion interaction and we predict the charged lepton EDMs (see [16] for the

scalar unparticle contribution to the charged lepton EDM). Here we assume that the antisym-

metric tensor unparticle mediation gives the contribution to the lepton EDM3 by respecting

the following conditions:

• The scale Λn in the effective Lagrangian depends on the dimension of the SM operator

OSM,i,

• antisymmetric tensor unparticle-lepton couplings are complex,

• the scale invariance is broken at some scale µ after the electroweak symmetry breaking

due to the additional interaction ∼ λ2

Λdu−2

2

OS H
†H where H (OS) is the SM Higgs (scalar

unparticle operator which exists with the antisymmetric tensor unparticle) [17, 18].

The two point function of antisymmetric tensor unparticle reads (see Appendix for details)

∫

d4x eipx < 0|T
(

Oµν
U (x)Oαβ

U (0)
)

0 >= i
AdU

2 sin (dUπ)
Πµναβ(−p2 − iǫ)dU−2 , (4)

where the factor AdU is

AdU =
16 π5/2

(2 π)2dU
Γ(dU + 1

2
)

Γ(dU − 1) Γ(2 dU)
. (5)

Here Πµναβ is the projection operator

Πµναβ =
1

2
(gµα gνβ − gνα gµβ) , (6)

and it can be divided into the transverse and the longitudinal parts as

ΠT
µναβ =

1

2
(P T

µα P
T
νβ − P T

να P
T
µβ) , ΠL

µναβ = Πµναβ − ΠT
µναβ , (7)

with P T
µν = gµν − pµ pν/p

2 (see for example [15] and references therein). Furthermore, the

scale invariance breaking at the scale µ results in that the antisymmetric tensor unparticle

propagator is modified. The propagator is model dependent (see for example [19] for the scalar

unparticle case) and we consider the one in the simple model [17, 20]:

∫

d4x eipx < 0|T
(

Oµν
U (x)Oαβ

U (0)
)

0 >= i
AdU

2 sin (dUπ)
Πµναβ(−(p2 − µ2)− iǫ)dU−2 . (8)

3The contribution of the antisymmetric tensor unparticle mediation to the muon anomalous magnetic dipole
moment and its effects in Z invisible decays and the electroweak precision observable S has been predicted in
[15].
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Here µ is the scale where unparticle sector changes in to the particle sector.

Now we start with the effective Lagrangian responsible for the EDM of charged leptons4:

Leff =
g′ λB

ΛdU−2
2

Bµν O
µν
U +

g λW

ΛdU
4

(H† τaH)W a
µν O

µν
U

+
yl

ΛdU
4

(

λl l̄L H σµν lR + λ∗
l l̄R H† σµν lL

)

Oµν
U , (9)

with the lepton field l and the complex coupling λl = |λl| ei θl where θl is the CP violating

parameter.

The effective EDM interaction for a charged lepton l reads

LEDM = idl l̄ γ5 σ
µν l Fµν , (10)

where Fµν is the electromagnetic field tensor and ’dl’, which is a real number by hermiticity, is

the EDM of the charged lepton. Finally, the effective Lagrangian in eq.(9) leads to the EDM

of charged leptons l after electroweak breaking as (see Appendix for details):

dl = −i(λl − λ∗
l )

e µ2 (dU−2) AdU ml

2 sin (dUπ) Λ
dU
4

(

λB

ΛdU−2
2

− v2 λW

4ΛdU
4

)

, (11)

where v is the vacuum expectation value of the SM Higgs H0.

Discussion

In this section we predict the intermediate antisymmetric tensor unparticle contribution (see

Fig.1) to the charged lepton EDMs by considering that the CP violating phase is carried by the

tensor unparticle-charged lepton couplings and try to restrict the free parameters of the model

by using the experimental upper bounds of the charged lepton EDMs. The scaling dimension of

UV operator OUV (the unparticle operator OU) dUV (dU), the fundamental scales of the model,

namely the interaction scale MU of the SM-ultraviolet sector and interaction scale ΛU of the

SM-unparticle sector and the scale µ which is responsible for the flow of unparticle sector in to

the particle one are among the free parameters. In our numerical calculations we choose the

scale dimension dU in the range5 1 < dU < 2 and dUV > dU = 3 (see [14] and [15]) and we

choose µ ∼ 1.0GeV . The couplings λB, λW and λl are other free parameters which should be

4Here we used the effective Lagrangian given in [15] and choose the unparticle-lepton coupling complex in
order to switch on the CP violation. In this equation H is the Higgs doublet, g and g′ are weak couplings,
λB and λW are the unparticle-field tensor couplings, Bµν is the field strength tensor of the U(1)Y gauge boson
Bµ = cW Aµ + sW Zµ and W a

µν , a = 1, 2, 3, are the field strength tensors of the SU(2)L gauge bosons with
W 3

µ = sW Aµ − cW Zµ where Aµ and Zµ are photon and Z boson fields respectively.
5For antisymmetric tensor unparticle the scale dimension should satisfy dU > 2 not to violate the unitarity
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restricted. We take λB = λW = 1 and choose complex λl, λl = |λl| ei θl with the CP violating

parameter θl, in order to create the EDM. Here we assume that the couplings |λl| obey the

mass hierarchy of charged leptons, |λτ | > |λµ| > |λe| and we take |λτ | = 1, |λµ| = 0.1 and

|λe| = 0.005.

In the first part of the calculation we restrict the CP violating parameter θµ by assuming

that the antisymmetric unparticle tensor contribution to muon anomalous magnetic moment

reaches to the experimental upper limit aµ = 10−9 and we study its contribution to the EDM

of muon dµ. Furthermore we predict the EDMs of electron and tau lepton and estimate the

acceptable values of the free parameters by taking the intermediate numerical value of the CP

violating parameter, namely sinθe = sinθτ = 0.5. Finally we study the CP violating parameter

dependence of EDMs.

In Fig.2, we present MU dependence of the EDM dµ for aUµ = 10−9 and different values of

the scale parameter dU and the ratio rU = ΛU

MU

. Here upper-lower-the lowest solid (dashed-long

dashed; dotted) line represents the EDM for dU = 1.1, rU = 0.40 − 0.10 − 0.05 (dU = 1.3,

rU = 0.40 − 0.10; dU = 1.5, rU = 0.40). It is observed that dµ is strongly sensitive to the

ratio rU and the increasing values of rU causes the enhancement in dµ. To reach the current

experimental limit rU must be at least of the order of rU ∼ 10−1 if the scaling dimension satisfies

dU > 1.1. For larger values of dU the higher values of rU are accepted. The dependence of dµ to

the mass scale MU is also strong especially for the large values of the scaling dimension and it

decreases more than one order in the range 103GeV < MU < 104GeV for dU ∼ 1.5 and more.

Fig.3 and Fig.4 are devoted to dµ with respect to the scale parameter dU for aUµ = 10−9 and

aUµ = 10−10, respectively. Here upper-lower solid (long dashed; dashed; dotted) line represents

the EDM for rU = 0.05,MU = 103GeV -rU = 0.05,MU = 104GeV (rU = 0.1,MU = 103GeV -

rU = 0.1,MU = 104GeV ; rU = 0.4,MU = 103GeV -rU = 0.4,MU = 104GeV ; rU = 0.5,MU =

103GeV -rU = 0.5,MU = 104GeV ). For the decreasing values of the ratio rU dU becomes more

restricted and with its the increasing values the current experimental value can be reached. If

the contribution of the antisymmetric tensor unparticle to the anomalous magnetic moment of

muon is taken as aUµ = 10−10 (see Fig.4) the restriction of dU is more relaxed and for higher

values of the ratio rU it would be possible to reach the current experimental value of dµ similar

(see [21]). Here we assumed that the scale invariance is broken at some scale µ and the restriction on the values
of dU is more relaxed. We used the simple model [17, 20] to define the new propagator. Since this model
ensures a connection with the particle sector, we choose dU in the range 1 < dU < 2 and when dU tends to one
one reaches the particle sector and the connection is established. Since this choice brings a rough connection
between two sectors, unparticle and particle sectors, we believe that it is worthwhile to study even if it needs
more careful analysis whether its is consistent with the QFT.
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to the previous case.

Fig.5 (6) represents MU dependence of the EDM de (dτ ) for sinθe = 0.5 (sinθτ = 0.5) and for

different values of the scale parameter dU and the ratio rU . Here the upper most-upper-lower-

the lowest solid; dashed line represents the de (dτ ) for dU = 1.1 − 1.3 − 1.5 − 1.8, rU = 0.05;

rU = 0.10. We see that the increasing values of MU (rU) cause the decrease (increase) in

the EDM. The current experimental limit of de is reached for rU which is at the order of the

magnitude of 10−2 in the case of small values of the scaling dimension dU . rU can take the

values of the order of 10−1 for 1.3 < dU < 1.5. This can be seen also in Fig.7 which represents

dU dependence of de where upper-lower solid (long dashed; dashed; dotted) line represents the

EDM for rU = 0.05,MU = 103GeV -rU = 0.05,MU = 104GeV (rU = 0.1,MU = 103GeV -

rU = 0.1,MU = 104GeV ; rU = 0.4,MU = 103GeV -rU = 0.4,MU = 104GeV ; rU = 0.5,MU =

103GeV -rU = 0.5,MU = 104GeV ). For the large values of the ratio rU the scaling dimension dU

must be near dU ∼ 2.0 in order to get the current experimental value of de. On the other hand

Fig.6 shows that one needs the ratio rU ∼ 0.5 and the small values of the scaling dimension,

dU ∼ 1.1 in order to reach the current experimental value of dτ (see also Fig.8 which is the

same as the Fig.7 but for dτ ).

Finally we plot the EDM de (dτ) with respect to the CP violating parameter sinθe (sinθτ )

in Fig.9 (10). For both figures upper-lower solid; long dashed; dashed; dotted line represents6

the de (dτ ) for MU = 103GeV -MU = 104GeV , rU = 0.05, dU = 1.1; rU = 0.05, dU = 1.3;

rU = 0.1, dU = 1.1; rU = 0.1, dU = 1.3. These figures show that de and dτ are enhanced at

least one order in the range of the CP violating parameter, 0.1 < sinθτ < 0.9

Now we would like to summarize our results: The charged lepton EDMs are strongly sensi-

tive to the parameters used, namely the scaling dimension dU , the ratio rU and the mass scale

MU . We observe that the experimental current limits of de and dµ are reached in the case that

the ratio rU lies in the range of 0.05 − 0.20 and the scaling dimension dU is near 1.1 − 1.2.

However for the current experimental value of dτ the ratio must reach to the values rU ∼ 0.5

for the small values of the scaling dimension, dU ∼ 1.1.

For completeness, we compare the theoretical framework and the numerical results of the

present work with the study [16] which is related to the contribution of scalar unparticle on

the charged lepton EDM. In the present case the tensor unparticle contribution is in the tree

level, however in [16] the scalar unparticle contribution is at one loop level. In addition to this,

in the present work, we assume that the scale invariance is broken at some scale µ after the

6Notice that the dotted line which represents rU = 0.1, MU = 103GeV , dU = 1.3 almost coincides with the
one which represents rU = 0.05, MU = 103GeV , dU = 1.1 and it is not observed in the figure
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electroweak symmetry breaking and, therefore, the antisymmetric tensor unparticle propagator

is modified. In [16] the scale invariance is intact and the propagator is the original one. In

both cases the charged lepton EDMs are strongly sensitive to the scaling dimension dU and the

experimental current limit of de can be reached in the range 1.6 ≤ dU ≤ 1.8 (near 1.1 − 1.2)

for scalar unparticle mediation (tensor unparticle mediation). For dµ and dτ the current limits

are reached for the small values of the scale dU , dU ≤ 1.1, for both cases.

Hopefully, with in future more accurate measurements of the lepton EDMs it would be pos-

sible to eliminate this discrepancy. These new measurements will give strong information about

the role of unparticle scenario on the CP violation mechanism and the nature of unparticles.
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Appendix

Here we would like to present the calculation of the charged lepton EDM (see eq.(11)) by using

the effective lagrangian given in eq.(9). The first (second) term in the effective lagrangian drives

the Oµν
U → Aν transition which is carried by the vertex

2 i
g′ cW λB

ΛdU−2
2

kµ ǫνO
µν
U (−i

g v2 sW λW

2ΛdU
4

kµ ǫνO
µν
U ) ,

where ǫν is the outgoing photon four polarization vector. On the other hand the third term in

the effective lagrangian results in the vertex

yl v√
2ΛdU

4

(λl − λ∗
l ) l̄ γ5 σµν l ,

which creates the EDM interaction. Finally these two vertices are connected by the tensor

unparticle propagator (see eq.(8)) and, by extracting the coefficient of i l̄ γ5 σ
µν l Fµν , one gets

the EDM of charged leptons as in eq.(11). Now we give a brief explanation how to obtain

the tensor unparticle propagator. The starting point is the scalar unparticle propagator which

is obtained by respecting the scale invariance. The two point function of scalar unparticle

operators reads

< 0|
(

OU(x)OU(0)
)

0 >=
∫

d4P

(2 π)4
e−iP.x ρ(P 2) , (12)

where ρ(P 2) is the spectral density:

ρ(P 2) = AdU θ(P 0) θ(P 2) (P 2)ξ . (13)

The scale invariance7 requires a restriction on the parameter ξ, ξ = dU − 2, and, therefore,

ρ(P 2) becomes

ρ(P 2) = AdU θ(P 0) θ(P 2) (P 2)dU−2 . (14)

Here the factor AdU reads

AdU =
16 π5/2

(2 π)2dU
Γ(dU + 1

2
)

Γ(dU − 1) Γ(2 dU)
,

in order to get the phase space of dU massless particles, i.e., unparticle stuff having the scale

dimension dU can be represented as non-integral number dU of invisible particles [10, 11, 12].

Finally, by using spectral formula, the scalar unparticle propagator is obtained as [11, 12]

∫

d4x eiP.x < 0|T
(

OU(x)OU(0)
)

0 >= i
AdU

2 π

∫ ∞

0
ds

sdU−2

P 2 − s+ iǫ
= i

AdU

2 sin (dUπ)
(−P 2 − iǫ)dU−2.(15)

7The spectral density is invariant under the scale transformation x → s x and OU (s x) → s−dU OU (x).
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Notice that for P 2 > 0, the function 1
(−P 2−iǫ)2−dU

in eq. (15) reads

1

(−P 2 − iǫ)2−dU
→ e−i dU π

(P 2)2−dU
, (16)

which shows that there exists a non-trivial phase due to the non-integral scaling dimension. In

the case of tensor unparticle one needs a projection operator Πµναβ = 1
2
(gµα gνβ−gνα gµβ) which

contains the transverse and longitudinal parts and one gets the propagator of antisymmetric

tensor unparticle as

∫

d4x eipx < 0|T
(

Oµν
U (x)Oαβ

U (0)
)

0 >= i
AdU

2 sin (dUπ)
Πµναβ(−p2 − iǫ)dU−2 .
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Figure 1: Tree level diagram contributing to the EDM of charged lepton due to tensor unparti-
cle. Wavy (solid) line represents the electromagnetic field (lepton field) and double dashed line
the tensor unparticle field.
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Figure 2: dµ with respect to MU for aUµ = 10−9. Upper-lower-the lowest solid (dashed-long
dashed; dotted) line represents the EDM for dU = 1.1, rU = 0.40 − 0.10 − 0.05 (dU = 1.3,
rU = 0.40− 0.10; dU = 1.5, rU = 0.40).
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Figure 3: dµ with respect to the scale parameter dU for aUµ = 10−9. Here upper-lower solid
(long dashed; dashed; dotted) line represents the EDM for rU = 0.05,MU = 103GeV -rU =
0.05,MU = 104GeV (rU = 0.1,MU = 103GeV -rU = 0.1,MU = 104GeV ; rU = 0.4,MU =
103GeV -rU = 0.4,MU = 104GeV ; rU = 0.5,MU = 103GeV -rU = 0.5,MU = 104GeV ).
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Figure 4: The same as Fig. 3 but for aUµ = 10−10.
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Figure 5: de with respect to MU for sinθe = 0.5. Here the upper most-upper-lower-the lowest
solid; dashed line represents de for dU = 1.1− 1.3− 1.5− 1.8, rU = 0.05; rU = 0.10.
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Figure 6: The same as Fig. 5 but for dτ and sinθτ = 0.5.
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Figure 7: de with respect to the scale parameter dU . Here upper-lower solid (long dashed;
dashed; dotted) line represents de for rU = 0.05,MU = 103GeV -rU = 0.05,MU = 104GeV
(rU = 0.1,MU = 103GeV -rU = 0.1,MU = 104GeV ; rU = 0.4,MU = 103GeV -rU = 0.4,MU =
104GeV ; rU = 0.5,MU = 103GeV -rU = 0.5,MU = 104GeV ).
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Figure 8: The same as the Fig.7 but for dτ .
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Figure 9: de with respect to sinθe. Here upper-lower solid; long dashed; dashed; dotted line
represents de for MU = 103GeV -MU = 104GeV , rU = 0.05, dU = 1.1; rU = 0.05, dU = 1.3;
rU = 0.1, dU = 1.1; rU = 0.1, dU = 1.3. .
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Figure 10: The same as Fig. 9 but for dτ and with respect to sinθτ .
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