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The quantum centripetal force on a free particle confined to the surface of a sphere

and a cylinder
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The momentum operator for a spin-less particle when confined to a 2D surface embedded into
3D space acquires a geometrical component proportional to the mean curvature that renders it
Hermitian. As a consequence, the quantum force operator for a particle confined to spherical and
cylindrical surfaces, and free otherwise, derived by applying the Heisenberg equation of motion
is found to have an apparently no-radial component in addition to the standard classical radial
centripetal force. This component which renders the force operator Hermitian is shown to be
essential for the vanishing of the torque the force exerts on the particle and so for the conservation
of orbital angular momentum and energy. It is demonstrated that the total force is in fact radial as
should be the case for a torque-less one and so can be identified as the quantum centripetal force.

I. INTRODUCTION

There has been recently a revival in the interest in the quantum mechanics of a particle on a curved surface, mainly
due to the advance in technology that made it possible to fabricate nano-spheres, nano-tubes...etc. A major theoretical
framework to formulate quantum mechanics of a particle on a curved surface is the so called thin layer quantization
[1, 2]. The idea is to embed the 2D surface into the larger full 3D Euclidean space and achieve confinement of the
particle to the surface by introducing a squeezing potential. More specifically, one considers a curvilinear coordinate
system with coordinates q1 and q2 at the surface, and the coordinate q3 in its vicinity in the direction normal to it.
The position vector is thus written as r(q1, q2, q3) = rS(q1, q2)+ q3q̂3 , where q̂3 is a unit vector normal to the surface.
The Schrödinger equation for a spin zero particle is written in terms of these variables, and the limit q3 → 0 for a
sufficiently strong squeezing potential V (q3) is taken. The Hamiltonian then reduces to the sum of two independent
on-surface and transverse parts, with the latter containing only the transverse, i.e. the 3-dynamics. This transverse
Hamiltonian is then dropped on the ground that the transverse excitations for a sufficiently strong confining potential
have a much higher energy than those at the surface, and so can be safely neglected in comparison to the range
of energies considered.This way,one achieves decoupling of the transverse dynamics and is left with only the surface
Hamiltonian. For an otherwise free spin zero particle, this mechanism generates a geometric kinetic energy term,
optical analogue of which has recently been observed [3]. An observation of a geometrical potential has also been
reported in one-dimensional metallic C60 polymer [4]. Recently, we have introduced [5–7] a new and physics-based
approach for confining a particle to a surface that builds on the spirit of the thin-layer quantization but more easier
to apply. we will apply this approach in the next section. In recent years the thin layer quantization was applied to a
particle in an electromagnetic field [8–12], a spin one-half particle , especially a one subject to spin-orbit interaction
which became a focus of interest by the condensed matter research community [13–18]. The focus in all of these works
was mainly and naturally the construction of the Hamiltonian and the energy spectrum.
In a recent work [19] we have noted that the force operator derived using the Heisenberg equation of motion on
a particle confined to the surface of a sphere but otherwise free acquires a non-radial component in addition to the

standard centripetal force expression −r̂
(

mv2

sp

R

)

. It turned out that this result was an example of a general case noted

almost simultaneously [20]. In this last work, an expression for this force in the case of a general (N − 1)-dimensional
surface embedded in the flat N -dimensional space was derived and the emergence of a term proportional to the full
Laplacian of the mean curvature of the surface in addition to the standard centripetal force expression was reported.
The purpose of the present work is to address the consequences of this new quantum component of the force for the
two special cases of a spin-less particle confined to a the surfaces of a sphere and a cylinder. We will demonstrate that
this component, which renders the force operator Hermitian is essential to have a vanishing torque on the particle so
as to conserve angular momentum and thus energy.
In section 2 we give a derivation of the Hermitian surface momentum on a general 2D surface embedded in a flat 3D
space spanned by orthogonal curvilinear coordinates where a geometrical contribution proportional to the curvature
of the surface appears along with the usual gradient operator on the surface. Using this expression for the momentum,
we construct the surface Hamiltonian on the surface and see the natural emergence of the geometric kinetic energy.
In section 3, we apply the Heisenberg equation of motion to the Hermitian momenta of a particle on a spherical and
cylindrical surfaces to find the force operator in each case. We move then to calculate the torque of these forces and
show that they vanish. We sum up and discuss our results in the Conclusions.
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II. CONSTRUCTION OF THE HERMITIAN MOMENTUM AND HAMILTONIAN ON THE SURFACE

We need to write down the momentum operator on the surface when a particle is confined to a surface embedded in
the 3D space spanned by orthogonal curvilinear coordinates (OCC). Below, h1, h2 and h3 are the well-known [21] scale
factors of the OCC’s defined in terms of the derivatives of the position vector r as ∂r

∂qi
= hiq̂i, where q̂i’s (i = 1..3)

are the orthogonal unit vectors of the OCC system, and we use ∂i ≡
∂
∂qi

. Such a surface is defined by setting one

coordinate that has the dimensions of length; q3 say,( thus has a scale factor h3 = 1 ) to a constant,e.g. q3 = a. The
unit vector q̂3 is now the normal to this surface along the direction of increasing q3. Confining the particle to this
surface can then be achieved by introducing a deep confining potential V (q3) that exerts a normal force that squeezes
the particle into a thin layer around a and taking the limit q3 → a. We follow a new physics-based practical approach
we recently introduced [5–7] to generate the correct Hermitian momentum and Hamiltonian on the surface. First, we
find the Hermitian momentum normal to the surface which is not simply −i~q̂3∂3 as this latter is not Hermitian in
the sense [22]

〈Ψ| − i~q̂3∂3Ψ〉 = 〈−i~q̂3(∂3 +
1

h1h2
∂3(h1h2))Ψ|Ψ〉 6= 〈−i~q̂3∂3Ψ|Ψ〉

where integration is over a thin layer of thickness 2δ, i.e. q3 ∈ [a−δ, a+δ], with the measure d3qh1h2h3 and boundary
conditions allowing for the surface term to be dropped were assumed as usual. We can check that the following
operator is indeed Hermitian and thus can be taken as the Hermitian radial momentum (recall that h3 = 1):

p3 = −i~q̂3(∂3 +
1

2h1h2
∂3(h1h2)) (1)

= −i~q̂3(∂3 +M)

where

M ≡ −
1

2h1h2
∂3(h1h2)) (2)

is the mean curvature of the surface as was shown in [5]. Using this result, we can express the Hermitian momentum
operator in 3D flat space; p = −i~∇ as :

p = −i~∇ = −i~(q̂3(∂3 −M) +
q̂1

h1
∂1 +

q̂2

h2
∂2 + q̂3M) (3)

= p3 + ps

where,

ps = −i~(
q̂1

h1
∂1 +

q̂2

h2
∂2 + q̂3M) (4)

Now, upon squeezing the particle to the surface, we drop the Hermitian radial momentum p3 from Eq.(3) which
leaves us - since the whole p is Hermitian - with ps as the Hermitian surface momentum. Note that −i~∇′ =

−i~( q̂1
h1

∂1 +
q̂2
h2

∂2) is not Hermitian. One can also check explicitly that ps is Hermitian on the surface by a relatively

straightforward calculation. The above expression for the Hermitian surface momentum was derived earlier [23, 24],
using different approaches, however. The present approach is in our opinion more transparent, intuitive and simpler.
To construct the Hamiltonian we follow the approach introduced in [5]. We first express the free particle Hamiltonian

in 3D as :

−~
2

2m
∇2 =

p23
2m

+
~
2

2m
(
∂23(h1h2)

2h1h2
−

(∂3(h1h2))
2

(2h1h2)2
) +

−~
2

2m
(

1

h1h2h3
)(∂1

h2h3

h1
∂1 + ∂2

h1h3

h2
∂2) (5)

then note [5] that the second term in the above expression is nothing but the famous geometric kinetic energy :

~
2

2m
(
∂23(h1h2)

2h1h2
−

(∂3(h1h2))
2

(2h1h2)2
) = −

~
2

2m
(M2 −K) (6)
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where M is the mean curvature defined above and K is the Gaussian curvature of the surface. Again, upon confining
to the surface, we drop p3 from Eq.(5) and set q3 = a to get the surface Hamiltonian:

Hs =
−~

2

2m
∇′2 −

~
2

2m
(M2 −K) (7)

where,

−~
2

2m
∇′2 =

−~
2

2m
(

1

h1h2h3
)(∂1

h2h3

h1
∂1 + ∂2

h1h3

h2
∂2) |q3=a (8)

is the Laplacian operator on the surface.
This is the well-known [1, 2] thin-layer quantization Hamiltonian for a spin zero particle on a curved surface. The

eigenfunctions of the above Hamiltonian ψ(q1, q2) are normalized at the surface as :

∫

h1h2dq1dq2|ψ(q1, q2)|
2 = 1 (9)

Noting the expression for the surface velocity v2s :

v2s =
1

m2
ps · ps =

−~
2

m2
∇′2 +

~
2

m2
M2 (10)

(we have used ( q̂1
h1

∂1 + q̂2
h2

∂2) · q̂3 = −2M which can be derived easily upon noting the orthonormality of the unit

vectors of the OCC) the Hamiltonian, Eq.(7), can also be cast in the form:

Hs =
1

2
mv2s −

~
2

m2
(M2 −K2). (11)

III. CENTRIPETAL FORCE AND TORQUE OPERATORS FOR SPHERICAL AND CYLINDRICAL

SURFACES

The spherical and cylindrical surfaces are characterized by constant mean and Gaussian curvatures. We will apply
the results of the previous section to each of these surfaces and obtain the expression for the quantum centripetal force

operator in each case. A sphere of radius R has a mean curvature M = − 1
R

and a Gaussian curvature K = 1
2R2 = M2

2
which gives rise to a zero geometrical kinetic energy term. The Hermitian momentum operator on the surface of the
sphere follows from Eq.(4) and reads:

psp = mvsp = −i~(∇′

sp −
r̂

R
) = −i~(

1

R
θ̂∂θ + φ̂

∂φ

R sin θ
−
r̂

R
) (12)

Note that for the sphere the velocity operator vsp defined in the above equation is at the same time the time derivative
of R = Rr̂; the position operator on the surface:

vsp =
dR

dt
=

1

i~
[R, Hsp] (13)

Similarly, the Hamiltonian that follows from Eq.(7) is:

Hsp =
−~

2

2m
((∇′

sp)
2 + 0 =

−~
2

2m
(

1

R2 sin θ
∂θ(sin θ∂θ) +

1

R2 sin2 θ
∂2φ) (14)

=
L2

2mR2

L = R ∧ psp is the conserved orbital angular momentum operator;

dL

dt
= τ =

1

i~
[L, Hsph] =

1

i~
[L,

L2

2mR2
] = 0 (15)
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Here, the torque operator τ is defined as:

τ ≡
1

2
(R ∧ Fsp − Fsp ∧R) (16)

with Fsp ≡
dpsp

dt
being the force operator. This definition of the torque follows upon noting that R∧psp = −psp ∧R

which allows us to write:

L =
1

2

(

R ∧ psp − psp ∧R
)

Differentiating with respect to time and noting Eq.(12) we immediately get the expression given in Eq.(16) for τ .
The Hamiltonian at the surface of the sphere can also be expressed as

Hsp =
1

2
mv2sp −

~
2

2mR2
(17)

where

v2sp =
p2sp

m2
=

−~
2

m2
((∇′

sp)
2 −

1

R2
) =

−~
2

m2
(

1

R2 sin θ
∂θ(sin θ∂θ) +

1

R2 sin2 θ
∂2φ −

1

R2
) (18)

Hsp given in different forms above represent a particle confined to the surface of a sphere that is ”free” apart from
the confining radial force. Classically, such a particle will be subject to a centripetal force that does no work and so
transfers no energy to or from the particle.
We now employ the Heisenberg equation of motion to find the quantum force operator on the sphere:

F sp =
dpsp

dt
=
m

i~
[vsp, Hsph] = −r̂

(

mv2sp

R

)

+
~
2

mR2
∇

′

sp (19)

= F
(1)
sp + F

(2)
sp

F
(1)
sp in the above expression for the force looks formally the same as the classical one for the centripetal force on a

sphere. The second term (∇′

sp has been defined in Eq.(12)) is a quantum one that has no classical counterpart. Note
that it is proportional to M2 = 1

R2 . The presence of this term is crucial in two ways: First, note that the standard

−r̂
(

mv2

sp

R

)

term is not Hermitian by its own, so the last term is crucial to establish the Hermicity of the force operator.

In fact, tracking how this term results from the commutator of psp with the different terms of the Hamiltonian Hsp,

Eq.(14), shows that it comes partially from the commutator [∇′

sp, (∇
′)2sp] and partially from [q̂3, (∇

′)2sp]. Dropping

the geometrical contribution i~( r̂
R
) to the momentum, therefore, not only leads to a different force operator but also

to a one that is never Hermitian. Second, lets look at the torque by this force which should be zero as required by the

conservation of orbital angular momentum and thus energy. The torque by the radial part of the force, i.e. by F (1)
sp

calculated according to the definition in Eq.(16)is not zero, yet it is delicately canceled by the torque of the second

term F
(2)
sp . Explicitly:

τ (1)
sp = −

2i~L

mR2
(20)

τ (2)
sp =

2i~L

mR2

giving rise to a zero net torque

τ sp = τ (1)
sp + τ (2)

sp = 0 (21)

where τ
(1)
sp ≡ 1

2

(

R ∧ F
(1)
sp − F

(1)
sp ∧R

)

...etc. This result is interesting since one expects, from the classical point of

view, that this ”apparently” tangential component of the force would cause acceleration, i.e. exert a torque, whereas
the ”apparently” radial centripetal force would not. Evidently, things are quite different in quantum mechanics; the
”apparently” centripetal force exerts a torque that is exactly canceled by that of the ”apparently” tangential force.
Without this, neither angular momentum nor energy would be conserved. In fact, we can reduce the reason behind
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the appearance of the non-standard F (2)
sp in the force operator, Eq.(19), to the simple argument about what is a

”radial operator” in quantum mechanics. To see this, we note that although F (1)
sp is along r̂ its torque τ (1)

sp is

not zero as is evident from Eq.(20). Clearly, it is the F (1)
sp ∧R part of τ (1)

sp that is not vanishing. This amounts

to saying that F
(1)
sp = −r̂

(

mv2

sp

R

)

though along r̂ is not purely radial from the quantum mechanical point of view

as a result of operator ordering issues. Therefore, the presence of a tangential component of the force to cancel

the torque inflicted by F (1)
sp is only natural, and this is achieved by F (2)

sp . In fact, being torque-less, the total force
F sp should be radial. We now demonstrate this by showing that it has no component along the tangential vector

dr = Rdθθ̂ +R sin θdθφ̂ = ǫθ̂ + ǫ sin θφ̂ where ǫ is infinitesimal and real. Evidently, just contracting by dr on the left
as in classical mechanics will not give zero. We need to establish the vanishing of the symmetrized expression:

1

2
(dr · Fsp + Fsp · dr) = 0 (22)

A straightforward but delicate calculation gives:

1

2

(

dr · F (1)
sp + F

(1)
sp · dr

)

=
~
2

mR

(

−
2

R
∇

′

sp · dr +
cot θ

R2

)

(23)

1

2

(

dr · F (2)
sp + F

(2)
sp · dr

)

=
~
2

mR

(

dr

R
·∇′

sp +
1

R
∇

′

sp · dr

)

Evaluating and combining the two terms leads to complete cancelation, thus Eq.(22) is satisfied. It worths mentioning
here that Eq.(22) has the physical meaning that the work done by the force, and thus the energy transferred is zero,

just as it should be. What the intermediate steps, Eq.(23), tell us is that both F
(1)
sp and F

(2)
sp have tangential

components; only their sum is radial. Note that F
(2)
sp is not purely tangential either. This is because ∇

′

sp · r̂ = 2
R
.

Similar arguments were used in [24] to demonstrate that the Hermitian surface momentum, Eq.(4), does not have a
radial component despite the presence of the q̂3M term. We can now rephrase the result, Eq.(30): The component

F
(2)
sp that renders the force operator Fsp of a particle on the surface of a sphere Hermitian is essential to have it radial,

thus torque-less, in order to conserve angular momentum and energy. Therefore, we can identify the force Fsp given
in Eq.(19) as the quantum centripetal force on a particle confined to a spherical surface. The above statement is the
main result of the present work.
We now turn to the case of a particle confined to the surface of a cylinder of radius R. Here, we have M =

− 1
2R , K = 0. The Hermitian surface momentum in this case, which also has a component proportional to the

curvature reads:

pcy = mvcy = −i~(∇′

cy
−

r̂

2R
) = −i~(

θ̂

R
∂θ + ẑ∂z −

r̂

2R
) (24)

so that:

v2cy =
p2cy

m2
=

−~
2

m2
((∇′

cy)
2 −

1

4R2
) =

−~
2

m2

(

1

R2
∂2θ + ∂2z −

~
2

4R2

)

(25)

and the Hamiltonian is:

Hcy =
−~

2

2m
(∇′

cy)
2 −

~
2

2m
(M2 −K) =

−~
2

2m

(

1

R2
∂2θ + ∂2z

)

−
~
2

8mR2
(26)

=
L2
z

2mR2
+

p2z
2m

−
~
2

8mR2
=

−~
2

2m

(

1

R2
∂2θ + ∂2z +

~
2

4R2

)

=
1

2
mv2cy −

~
2

4mR2

where Lz ≡ −i~∂θ is the component of the angular momentum operator parallel to the axis of the cylinder, which is
evidently conserved.
Evidently, we can write down the corresponding Hermitian velocity pR on a ring of radius R by dropping the

z-dependance in Eqs.(24) and (25), viz.

pR = mvR = −i~(∇′

R −
r̂

2R
) = −i~(

θ̂

R
∂θ −

r̂

2R
) (27)
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v2R =
p2R
m2

=
−~

2

m2

(

1

R2
∂2θ −

1

4R2

)

(28)

The force operator can be found by applying the Heisenberg equation of motion to the momentum pcy, Eq.(24),
giving:

F cy =
dpcy

dt
=
m

i~
[vcy, Hcy] = −r̂

(

mv2R
R

)

+
~
2

mR2
θ̂
1

R
∂θ = −r̂

(

mv2R
R

)

++
~
2

mR2
∇

′

cy
(29)

= F (1)
cy + F (2)

cy

Note the appearance of v2R, i.e. the velocity of the ring squared given by Eq.(28), not v2cy in the above expression
for the force. This makes sense, since the momentum along the axis of the cylinder, i.e. the z-direction is conserved.

Again, F (2)
cy is crucial for the Hermicity of the force operator in this case as well. In this case,too, the radial component

F (1)
cy of the force exerts a torque that is delicately canceled by the torque of the tangential component F (2)

cy :

τ cy = τ (1)
cy + τ (2)

cy = −
i~Lz

mR2
+
i~Lz

mR2
= 0 (30)

In this case, too, the counterpart of Eq.(22) reads:

1

2
(dr · F cy + F cy · dr) = 0 (31)

where dr = Rdθθ̂ + dzẑ = ǫθ̂ + ǫẑ.

IV. CONCLUSION

The Hamiltonian of a spin-less particle confined to the surface of a sphere or cylinder but otherwise free consists of
kinetic energy and a constant geometrical potential (for the cylinder). This kinetic energy is proportional to the square
of the conserved orbital angular momentum in the case of a sphere and the square of the conserved z-component of
orbital angular momentum in the case of a cylinder, and so is conserved, too. Classically, the particle in both cases
is subject to a radial centripetal force which is by default torque-less and so does not transfer energy. In quantum
mechanics, on the other hand, we have shown in this work that the force operator, as a result of the geometric
component in the Hermitian momentum operator on the surface, has an additional apparently non-radial component
proportional to the gradient operator on the surface times the square of the mean curvature. This component, that
renders the force operator Hermitian, warrants that the torque by the force is zero as it should be in order to conserve
angular momentum and thus the energy of the particle. Since a torque-less force suggests a radial force, we have
demonstrated that the force operator is radial despite the apparently non-radial new component. We therefore suggest
that the total force operator is to be identified with the quantum centripetal force on a particle confined to the surface
of a sphere or a cylinder.
The discussion of the force was limited to the case of a particle on spherical and cylindrical surfaces, which are surfaces
of constant curvature. The geometrical potential induced upon confinement to the surface is constant in both cases
and so no force that depends on the surface variables is present; in other words the particle is ”free” on the surface.
As was shown in [20], however, a particle confined to a general 2D surface embedded in 3D flat space acquires a
contribution to the force operator - proportional to the Laplacian of the curvature- other than the standard classical-
like centripetal force. The expression for the force in the case of a general surface will be quite different than that
of the special cases discussed here. This is because in the general case, the curvature is not constant, consequently,
both the momentum operator and the geometric potential will have functions that depend on the surface variables.
Therefore, the different components of the resulting force operator need to be analyzed carefully to isolate the relevant
components that have no classical counterparts. This is not easy, Investigation in this direction is under progress.
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