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Abstract

Due to the very short life time of the ∆ baryons, a direct mea-
surement on the electromagnetic moments of these systems is almost
impossible in the experiment and can only be done indirectly. Al-
though only for the magnetic dipole moments of ∆++ and ∆+ systems
there are some experimental data, the theoretical, phenomenological
and lattice calculations could play crucial role. In present work, the
magnetic dipole (µ∆) , electric quadrupole (Q∆) and magnetic oc-
tupole (O∆) moments of these baryons are computed within the light
cone QCD sum rules. The results are compared with the predictions
of the other phenomenological approaches, lattice QCD and existing
experimental data.
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1 Introduction

Study of the electromagnetic properties of the baryons can give valuable

information on their internal structure. Some of the main static electro-

magnetic parameters of the ∆ baryons are their magnetic dipole (µ∆), elec-

tric quadrupole (Q∆) and magnetic octupole (O∆) moments. The ∆−,+,++,0

baryons are the lowest and very well-known nucleon resonances. Because of

their too short mean life time (∼ 10−23 s), there is almost no direct experi-

mental information about their form factors and electromagnetic moments.

An indirect measurement for the magnetic dipole moment of ∆++ was accu-

rately done from the radiative pion-nucleon scattering [1] (see [2] for experi-

mental values of the magnetic dipole moment of ∆++ obtained from various

experiments). The magnetic moment of the ∆+ resonance has also been

measured via γP → π0γ′P reaction in [3].

The magnetic dipole moments of these baryons have been studied in the

framework of the various theoretical approaches. The radiative pion produc-

tion on the nucleon (γN → πNγ′) with the aim of the determination of the

magnetic dipole moment of the ∆+(1232) has been studied in the frame work

of Chiral effective- field theory in [4]. The magnetic dipole moment for ∆

baryons is calculated in the framework of the static quark model (SQM) [5],

relativistic quark models (RQM) [6], QCD sum rules (QCDSR) [7, 8], Chiral

quark-soliton models (ChQSM) [9], heavy baryon Chiral perturbation theory

(HBChPT) [10, 11], a phenomenological quark model (PQM) which nonstatic

effects of pion exchange and orbital excitation are included [12], Lattice QCD

[13, 14, 15, 16] and Chiral effective-field theory [17]. The magnetic dipole,

electric quadrupole and magnetic octupole moments of these baryons is also

calculated in [18] in the spectator quark formalism based on a simple ∆ wave

function corresponding to a quark-diquark system in an S-state. In [19], the
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Quadrupole Moment of the ∆ baryons are calculated in the frame work of

the consistituent quark model. Recently, the octupole moments of the light

decuplet baryons are reported in [20] within the non-covariant quark model.

In the present work, we study the magnetic dipole, electric quadrupole

and magnetic octupole moments of the ∆ baryons in light cone QCD sum

rules (LCSR) approach. Note that, by calculating the electromagnetic form

factors, the electromagnetic dipole moments of the nucleons have been stud-

ied in [21] in the same frame work. The paper contains 3 sections. In section

2, the light cone QCD sum rules for the magnetic dipole, electric quadrupole

and magnetic octupole moments are calculated. Section 3 is devoted to the

numerical analysis of the sum rules, a comparison of our results with the

predictions of the other approaches as well as the existing experimental data

and also discussion.

2 Light cone QCD sum rules for the magnetic

dipole, electric quadrupole and magnetic

octupole moments of the ∆ baryons

To calculate the magnetic dipole, electric quadrupole and magnetic octupole

moments of the ∆ baryons, we start considering the basic object in LCSR

method (the correlation function), where hadrons are represented by the

interpolating quark currents.

Tµν = i

∫

d4xeipx〈0 | T{ηµ(x)η̄ν(0)} | 0〉γ, (1)

where ηµ is the interpolating current of the ∆ baryons and γ stands for the

electromagnetic field. In QCD sum rules approach, this correlation function

is calculated in two different languages: in the quark-gluon language (QCD

or theoretical side), it describes a hadron as quarks and gluons interacting
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in QCD vacuum. In the physical side, it is saturated by complete sets of

hadrons with the same quantum numbers as their interpolating currents.

The physical quantities, i.e., the electromagnetic form factors and multipole

moments are calculated equating these two different representations of the

correlation function.

The physical or phenomenological side of the correlation function can

be obtained inserting the complete sets of the hadronic states between the

interpolating currents in Eq. (1) with the same quantum numbers as the ∆

baryons, i.e.,

Tµν =
〈0 | ηµ | ∆(p2)〉

p22 −m2
∆

〈∆(p2) | ∆(p1)〉γ
〈∆(p1) | η̄ν | 0〉

p21 −m2
∆

, (2)

where p1 = p+ q, p2 = p and q is the momentum of the photon. The matrix

element of the interpolating current between the vacuum and the baryon

state is defined as

〈0 | ηµ(0) | ∆(p, s)〉 = λ∆uµ(p, s), (3)

where λ∆ is the residue and uµ(p, s) is the Rarita-Schwinger spinor. The

matrix element 〈∆(p2) | ∆(p1)〉γ entering Eq. (2) can be parameterized in

terms of some form factors as [18, 23, 24]:

〈∆(p2) | ∆(p1)〉γ = −eūµ(p2)
{

F1g
µν 6ε− 1

2m∆

[

F2g
µν + F4

qµqν

(2m∆)2

]

6ε 6q

+ F3
1

(2m∆)2
qµqν 6ε

}

uν(p1),

(4)

where ε is the polarization vector of the photon and Fi are the form factors

as functions of q2 = (p1−p2)2. In obtaining the expression for the correlation

function, summation over spins of the ∆ particles is performed using

∑

s

uµ(p, s)ūν(p, s) =
( 6p+m∆)

2m∆

{−gµν+
1

3
γµγν−

2pµpν
3m2

∆

− pµγν − pνγµ
3m∆

}. (5)
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In deriving the expression for the phenomenological side of the correlation

function appear two problems (see also [22]): 1) all Lorentz structures are

not independent, 2) not only spin 3/2, but spin 1/2 states also contribute to

the correlator, which should be eliminated. Indeed, the matrix element of the

current ηµ between vacuum and spin 1/2 states is nonzero and is determined

as

〈0 | ηµ(0) | B(p, s = 1/2)〉 = (Apµ +Bγµ)u(p, s = 1/2). (6)

Imposing the condition γµη
µ = 0, one can immediately obtain that B =

−A
4
m.

To remove the spin 1/2 contribution and obtain only independent struc-

tures in the correlation function, we order Dirac matrices in a specific form.

For this aim, we choose the ordering for Dirac matrices as γµ 6p 6ε 6qγν . With

this ordering for the correlator, we obtain

Tµν = −λ2
∆

1

(p21 −m2
∆
)(p22 −m2

∆
)

[

2m∆(ε.p)gµνF1

+
1

m∆

(ε.p)gµν 6p 6qF2 +
1

2m2
∆

(ε.p)qµqν 6pF3

+
1

4m2
∆

(ε.p)qµqν 6qF4 + other independent structures

+ structures with γµat the beginning andγν at the end

or which are proportional to p2µor p1ν

]

. (7)

The magnetic dipole (Gm(q
2)), electric quadrupole (GQ(q

2)) and magnetic

octupole (GO(q
2)) form factors are defined in terms of the form factors Fi(q

2)

in the following way [18, 23, 24, 25]:

Gm(q
2) =

[

F1(q
2) + F2(q

2)
]

(1 +
4

5
τ)− 2

5

[

F3(q
2) + F4(q

2)
]

τ (1 + τ)

GQ(q
2) =

[

F1(q
2)− τF2(q

2)
]

− 1

2

[

F3(q
2)− τF4(q

2)
]

(1 + τ)

GO(q
2) =

[

F1(q
2) + F2(q

2)
]

− 1

2

[

F3(q
2) + F4(q

2)
]

(1 + τ) , (8)
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where τ = − q2

4m2
∆

. At q2 = 0, the multipole form factors are obtained in

terms of the functions Fi(0) as:

Gm(0) = F1(0) + F2(0)

GQ(0) = F1(0)−
1

2
F3(0)

GO(0) = F1(0) + F2(0)−
1

2
[F3(0) + F4(0)]. (9)

The static magnetic dipole (µ∆), electric quadrupole (Q∆) and magnetic

octupole (O∆) moments in their natural magneton are defined in the following

way:

µ∆ =
e

2m∆
Gm(0)

Q∆ =
e

m2
∆

GQ(0)

O∆ =
e

2m3
∆

GO(0). (10)

The theoretical part of the correlation function can be calculated in light

cone QCD sum rules via the operator product expansion (OPE) in deep

Euclidean region where p2 ≪ 0 and (p + q)2 ≪ 0 in terms of the photon

distribution amplitudes (DA’s). To calculate the correlation function from

theoretical or QCD side, the explicit expressions of the interpolating currents

of the ∆ baryons are needed. The interpolating current for ∆+ is chosen as

ηµ =
1√
3
εabc

[

2(uaTCγµd
b)uc + (uaTCγµu

b)dc
]

, (11)

where C is the charge conjugation operator and a, b and c are color indices.

Here we should mention that in the present work, first we calculate the

correlation function for ∆+ then with the help of the relations which we will

present next, the correlators of ∆−, ∆++ and ∆0 will be obtained using the

correlation function of the ∆+. After contracting out the quark pairs in Eq.
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(1) by the help of the Wick’s theorem, we obtain the following expression for

the correlation function in terms of the quark propagators

Πµν =
i

3
ǫabcǫa′b′c′

∫

d4xeipx〈0[γ(q)] | {2Sca′

d γνS
′ab′

u γµS
bc′

u

− 2Sca′

d γνS
′bb′

u γµS
ac′

u + 2Sca′

u γνS
′ab′

u γµS
bc′

d − 2Scb′

u γνS
′aa′

u γµS
bc′

d

+ 4Scb′

u γνS
′ba′

d γµS
ac′

u + Tr(γµS
aa′

u γνS
′bb′

u )Scc′

d

− Tr(γµS
ab′

u γνS
′ba′

u )Scc′

d − 4Tr(γµS
ab′

u γνS
′ba′

d )Scc′

u } | 0〉, (12)

where S ′ = CSTC and Su,d are the full light quark propagators, which their

explicit expressions can be found in [26, 27] (see also [22, 28]). To calculate

the above correlation function, we follow the same procedure as stated in

[22, 28] and use the photon distribution amplitudes (DA’s) calculated in

[29]. For convenience, we present those DA’s in the appendix–A.

Using the expressions of the full light propagator and the photon DA’s and

separating the coefficient of the structures (ε.p)gµν , (ε.p)gµν 6p 6q, (ε.p)qµqν 6p
and (ε.p)qµqν 6 q for the F1, F2, F3 and F4, respectively, the expressions of

the correlation function from the QCD side are obtained. Separating the

coefficient of the same structures from phenomenological part and equating

these representations of the correlator, sum rules for the Fi functions are

obtained. In order to suppress the contribution of the higher states and

continuum, Borel transformation with respect to the variables p22 = p2 and

p21 = (p + q)2 is applied. The explicit expressions for Fi are given in the

appendix–B.

At the end of this section, we would like to present some relations between

the correlation functions. Our calculations show that the coefficient of any

structure in the correlation function of the ∆+ can be written in the form

Π∆+

= −1

6
(2eu + ed)H(u, d),

(13)
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where the function H(u, d) depends on the masses and condensates of the

u and d quarks and it is independent of the charge of the quarks. Our

calculations indicate that the Π∆−,0,++

can be obtained from the Π∆+

by the

following replacements:

Π∆++

= Π∆+

(d→ u) = −1

2
euH(u, u),

Π∆0

= Π∆+

(d↔ u) = −1

6
(2ed + eu)H(d, u),

Π∆−

= Π∆+

(u→ d) = −1

2
edH(d, d), (14)

We consider the massless quarks, mu = md = 0, and exact SU(2) flavor

symmetry implying 〈ūu〉 = 〈d̄d〉. Under exact SU(2) flavor symmetry,

H(u, d) = H(d, u) = H(u, u) = H(d, d) = H and the following relations

are obtained (see also [8]):

Π∆++

= −1

2
euH,

Π∆+

= −1

6
(2eu + ed)H,

Π∆0

= −1

6
(2ed + eu)H,

Π∆−

= −1

2
edH, (15)

From above equation, by substituting the charge of the u and d quarks,

the following exact relations between theoretical parts of the correlator of ∆

baryons are derived:

Π∆+

= −Π∆−

=
1

2
Π∆++

Π∆0

= 0 (16)
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3 Numerical analysis

Present section encompasses the numerical analysis for the, magnetic dipole,

electric quadrupole and magnetic octupole moments of the ∆ baryons. The

values for input parameters used in the analysis of the sum rules for the

F1, F2, F3 and F4 are : 〈ūu〉(1 GeV ) = 〈d̄d〉(1 GeV ) = −(0.243)3 GeV 3,

ß(1 GeV ) = 0.8〈ūu〉(1 GeV ), m2
0(1 GeV ) = (0.8± 0.2) GeV 2 [30] and f3γ =

−0.0039 GeV 2 [29]. The value of the magnetic susceptibility was obtained

in various papers as χ(1 GeV ) = −3.15 ± 0.3 GeV −2 [29], χ(1 GeV ) =

−(2.85 ± 0.5) GeV −2 [31] and χ(1 GeV ) = −4.4 GeV −2[32]. The residue

λ∆ determined from mass sum rules and is taken to be λ∆ = 0.038 GeV 3

[7, 33, 34]. From sum rules for the F1, F2, F3 and F4, it follows that the

photon DA’s are also needed [29]. Their explicit expressions are also given

in the appendix–A.

The sum rules for the magnetic dipole, electric quadrupole and magnetic

octupole moments also contain two auxiliary parameters: Borel mass pa-

rameter M2 and continuum threshold s0. The physical quantities, i.e., mag-

netic dipole, electric quadrupole and magnetic octupole moments, should

be independent of these parameters. The working region for M2 is de-

termined requiring that the contributions of the higher states and contin-

uum are effectively suppressed. This condition is satisfied in the region

1 GeV 2 ≤M2 ≤ 1.5 GeV 2.

The dependency of the magnetic dipole moment µ∆, electric quadrupole

Q∆ and magnetic octupole O∆ moments on Borel parameter M2 are pre-

sented in Figs. 1-3 at fixed value of the continuum threshold s0 = 4 GeV 2.

The magnetic dipole moment is presented in its natural magneton (eℏ/2m∆c)

while the electric quadrupole (Q∆) and magnetic octupole (O∆) moments are

shown in fm2 and fm3, respectively. The conversion coefficient from the nat-
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µ ∆

∆−

∆+

∆++

∆0

Figure 1: The dependence of the magnetic dipole moment µ∆ in its natu-
ral magneton on the Borel parameter M2 at fixed value of the continuum
threshold s0 = 4 GeV 2.
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M
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(GeV

2
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-0.1

-0.05
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0.05

0.1

Q
∆

∆−

∆+

∆++

∆0

Figure 2: The dependence of the electric quadrupole Q∆ in fm2 on the Borel
parameter M2 at fixed value of the continuum threshold s0 = 4 GeV 2.
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1
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∆
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Figure 3: The same as Fig. 4, but for the magnetic octupole O∆ in fm3.

ural magneton unit to the nucleon magneton is mN

m∆
. Note that, our results

are practically the same in the interval s0 = (3.8− 4.2) GeV 2 for continuum

threshold. These figures present a good stability with respect to the Borel

mass parameter. We should also mention that our results practically don’t

change considering three values of the χ as presented at the beginning of this

section.

Our final results on the magnetic dipole moment µ∆ for ∆ baryons are

presented in Table 1. The quoted errors for the values are due to the uncer-

tainties in the determination of the input parameters, the variation of M2 as

well as the systematic errors in QCD sum rules approach. For comparison,

the predictions of other theoretical approaches, lattice QCD as well as the

experiment are also presented. From this Table, we see a good consistency

among the various approaches especially when we consider the errors except

the lattice QCD prediction [15] for magnetic moment of ∆+.

We also depict the results of the electric quadrupole Q∆ and magnetic
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∆− ∆+ ∆++ ∆0

present work −3.17± 0.85 3.17± 0.85 6.34± 1.70 0
Exp.[3] − 3.54+1.3

−1.7 ± 1.96± 3.93 - −
Exp.[2] - - 7.34± 2.49 -
SQM[5] -3.65 3.65 7.31 0
RQM[6] -3.12 3.12 6.24 0

QCDSR[7] −2.88± 0.52 2.88± 0.52 5.76± 1.05 0
QCDSR[8] −2.71± 0.85 2.71± 0.85 5.41± 1.70 0
ChQSM[9] -3.69 3.48 7.06 -0.10

HBChPT[10] −2.95± 0.33 2.75± 0.26 6.24± 0.52 −0.22± 0.05
PQM[12] - 3.72 8.10 -
Lattice[13] −3.22± 0.41 3.22± 0.41 6.43± 0.80 0
Lattice[14] −3.22± 0.35 3.26± 0.35 6.54± 0.73 0.079
Lattice[15] −3.90± 0.25 1.27± 0.10 6.86± 0.24 −0.046± 0.003
Lattice[16] - 3.04± 0.21 - -

Spectator[18] -3.54 3.29 6.71 -0.12

Table 1: Comparison of the magnetic dipole moment µ∆ in units of its nat-
ural magneton for different approaches like static quark model (SQM) [5],
relativistic quark models (RQM) [6], QCD sum rules (QCDSR) [7, 8], Chiral
quark-soliton models (ChQSM) [9], heavy baryon Chiral perturbation theory
(HBChPT) [10], a phenomenological quark model (PQM) which nonstatic ef-
fects of pion exchange and orbital excitation are included [12], Lattice QCD
[13, 14, 15, 16] and experiment [2, 3]. The presented experimental value for
∆++ is the average of sum data from [2].

octupole O∆ moments in Table 2. In comparison, the results of the other

approaches are also presented. From this Table, we see that the values

for the electric quadrupole and magnetic octupole moments are very small

in comparison with the magnetic dipole moment. Our results on electric

quadrupole moments are consistent with the predictions of the constituent

quark model with configuration mixing but no exchange currents (impulse

approximation)[19] in order of magnitude, but about one order of magni-
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∆− ∆+ ∆++ ∆0

Q∆(present work) 0.014± 0.004 −0.014± 0.004 −0.028± 0.008 0
Q∆[18] 0 0 0 0

Qimp
∆ [19] 0.032 -0.032 -0.064 0

Qexc
∆ [19] 0.119 -0.119 -0.238 0

O∆(present work) 0.003± 0.001 −0.003± 0.001 −0.006± 0.002 0
O∆[18] 0 0 0 0
O∆[20] 0.012 -0.012 -0.024 0

Table 2: Results for the electric quadrupole Q∆ in fm2 and magnetic oc-
tupole O∆ moments in fm3 in different approaches: LCSR(present work),
spectator quark model([18]), constituent quark model with configuration
mixing but no exchange currents (impulse approximation), constituent quark
model with exchange currents but no configuration mixing [19] and non-
covariant quark model [20].

tude smaller than the predictions of constituent quark model with exchange

currents but no configuration mixing [19]. The [18] predicts no electric

quadrupole and magnetic octupole moments for ∆ baryons. Our results

on the magnetic octupole moments for these baryons are about four times

smaller than the predictions of the non-covariant quark model [20]. The neg-

ative sign in the value of the quadrupole and octupole moments of ∆+ shows

that the quadrupole and octupole distributions are oblate and have the same

geometric shape as the charge distribution.

In conclusion, due to the very short life time, a direct measurement on

the electromagnetic moments of ∆ systems is almost not possible in the ex-

periment and can only be done indirectly in a three-step process, where they

are created, emit a low-energy photon and then decay. Although only for

∆+ and ∆++ systems there are some data, the theoretical, phenomenological

and lattice calculations could play very important role. In present work, we
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computed the magnetic dipole, electric quadrupole and magnetic octupole

moments of these baryons in the framework of the light cone QCD sum rules

and compared their results with the predictions of the other phenomenologi-

cal models, lattice QCD as well as the existing experimental data. The results

depict that the electric quadrupole and magnetic octupole moments are very

small in comparison with the magnetic dipole moment of these baryons.
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Appendix A

The matrix elements used in the calculations are given in terms of the photon

distribution amplitudes (DA’s) as follows [29]:

〈γ(q)|q̄(x)σµνq(0)|0〉 = −ieq q̄q(εµqν − ενqµ)

∫ 1

0

dueiūqx
(

χϕγ(u) +
x2

16
A(u)

)

− i

2(qx)
eq〈q̄q〉

[

xν

(

εµ − qµ
εx

qx

)

− xµ

(

εν − qν
εx

qx

)]
∫ 1

0

dueiūqxhγ(u)

〈γ(q)|q̄(x)γµq(0)|0〉 = eqf3γ

(

εµ − qµ
εx

qx

)
∫ 1

0

dueiūqxψv(u)

〈γ(q)|q̄(x)γµγ5q(0)|0〉 = −1

4
eqf3γǫµναβε

νqαxβ
∫ 1

0

dueiūqxψa(u)

〈γ(q)|q̄(x)gsGµν(vx)q(0)|0〉 = −ieq〈q̄q〉 (εµqν − ενqµ)

∫

Dαie
i(αq̄+vαg)qxS(αi)

〈γ(q)|q̄(x)gsG̃µνiγ5(vx)q(0)|0〉 = −ieq〈q̄q〉 (εµqν − ενqµ)

∫

Dαie
i(αq̄+vαg)qxS̃(αi)

〈γ(q)|q̄(x)gsG̃µν(vx)γαγ5q(0)|0〉 = eqf3γqα(εµqν − ενqµ)

∫

Dαie
i(αq̄+vαg)qxA(αi)

〈γ(q)|q̄(x)gsGµν(vx)iγαq(0)|0〉 = eqf3γqα(εµqν − ενqµ)

∫

Dαie
i(αq̄+vαg)qxV(αi)

〈γ(q)|q̄(x)σαβgsGµν(vx)q(0)|0〉 = eq〈q̄q〉
{[(

εµ − qµ
εx

qx

)(

gαν −
1

qx
(qαxν + qνxα)

)

qβ

−
(

εµ − qµ
εx

qx

)(

gβν −
1

qx
(qβxν + qνxβ)

)

qα

−
(

εν − qν
εx

qx

)(

gαµ −
1

qx
(qαxµ + qµxα)

)

qβ

+

(

εν − qν
εx

q.x

)(

gβµ −
1

qx
(qβxµ + qµxβ)

)

qα

]
∫

Dαie
i(αq̄+vαg)qxT1(αi)

+

[(

εα − qα
εx

qx

)(

gµβ −
1

qx
(qµxβ + qβxµ)

)

qν

−
(

εα − qα
εx

qx

)(

gνβ −
1

qx
(qνxβ + qβxν)

)

qµ
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−
(

εβ − qβ
εx

qx

)(

gµα − 1

qx
(qµxα + qαxµ)

)

qν

+

(

εβ − qβ
εx

qx

)(

gνα − 1

qx
(qνxα + qαxν)

)

qµ

]
∫

Dαie
i(αq̄+vαg)qxT2(αi)

+
1

qx
(qµxν − qνxµ)(εαqβ − εβqα)

∫

Dαie
i(αq̄+vαg)qxT3(αi)

+
1

qx
(qαxβ − qβxα)(εµqν − ενqµ)

∫

Dαie
i(αq̄+vαg)qxT4(αi)

}

, (A.1)

where, χ is the magnetic susceptibility of the quarks, ϕγ(u) is the leading

twist 2, ψv(u), ψa(u), A and V are the twist 3 and hγ(u), A, Ti (i = 1, 2, 3, 4)

are the twist 4 photon DA’s, respectively. The measure Dαi is defined as

∫

Dαi =

∫ 1

0

dαq̄

∫ 1

0

dαq

∫ 1

0

dαgδ(1− αq̄ − αq − αg). (A.2)

The explicit expressions of the photon distribution amplitudes (DA’s)

with different twists are [29]:

ϕγ(u) = 6uū
(

1 + ϕ2(µ)C
3
2

2 (u− ū)
)

,

ψv(u) = 3
(

3(2u− 1)2 − 1
)

+
3

64

(

15wV
γ − 5wA

γ

) (

3− 30(2u− 1)2 + 35(2u− 1)4
)

,

ψa(u) =
(

1− (2u− 1)2
) (

5(2u− 1)2 − 1
) 5

2

(

1 +
9

16
wV

γ − 3

16
wA

γ

)

,

A(αi) = 360αqαq̄α
2
g

(

1 + wA
γ

1

2
(7αg − 3)

)

,

V(αi) = 540wV
γ (αq − αq̄)αqαq̄α

2
g,

hγ(u) = −10
(

1 + 2κ+
)

C
1
2

2 (u− ū),

A(u) = 40u2ū2
(

3κ− κ+ + 1
)

+8(ζ+2 − 3ζ2) [uū(2 + 13uū)

+ 2u3(10− 15u+ 6u2) ln(u) + 2ū3(10− 15ū+ 6ū2) ln(ū)
]

,

T1(αi) = −120(3ζ2 + ζ+2 )(αq̄ − αq)αq̄αqαg,

T2(αi) = 30α2
g(αq̄ − αq)

(

(κ− κ+) + (ζ1 − ζ+1 )(1− 2αg) + ζ2(3− 4αg)
)

,
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T3(αi) = −120(3ζ2 − ζ+2 )(αq̄ − αq)αq̄αqαg,

T4(αi) = 30α2
g(αq̄ − αq)

(

(κ + κ+) + (ζ1 + ζ+1 )(1− 2αg) + ζ2(3− 4αg)
)

,

S(αi) = 30α2
g{(κ+ κ+)(1− αg) + (ζ1 + ζ+1 )(1− αg)(1− 2αg)

+ ζ2[3(αq̄ − αq)
2 − αg(1− αg)]},

S̃(αi) = −30α2
g{(κ− κ+)(1− αg) + (ζ1 − ζ+1 )(1− αg)(1− 2αg)

+ ζ2[3(αq̄ − αq)
2 − αg(1− αg)]}. (A.3)

The constants appearing in the above wave functions are given as [29]:

ϕ2(1 GeV ) = 0, wV
γ = 3.8 ± 1.8, wA

γ = −2.1 ± 1.0, κ = 0.2, κ+ = 0,

ζ1 = 0.4, ζ2 = 0.3, ζ+1 = 0 and ζ+2 = 0.

Appendix B

In this appendix, we present the explicit expressions for the functions, F1(0),

F2(0), F3(0) and F4(0).

F1(q
2 = 0) = − 1

2m∆λ
2
∆

e
m2

∆

M2

(

eu

{

〈d̄d〉
[

M2[12E1(x)M
2 − 5E0(x)m

2
0]

27π2

− 2

81
f3γ{54E0(x)M

2 − 15m2
0}ψv(u0)

]

+ 〈ūu〉
[

M2[3E1(x)M
2(8− 15ζ1)− 10E0(x)m

2
0]

27π2

− 2

81
f3γ{54E0(x)M

2 − 15m2
0}ψv(u0)

] }

+ ed

{

〈d̄d〉
[

− 5E1(x)M
4ζ1

12π2

]

+ 〈ūu〉
[

M2[12E1(x)M
2 − 5E0(x)m

2
0]

27π2

− 2

81
f3γ{54E0(x)M

2 − 15m2
0}ψv(u0)

] } )

, (B.1)

F2(q
2 = 0) = −m∆

λ2∆
e

m2
∆

M2

(

eu

{

〈d̄d〉
[

5m2
0 − 10E0(x)M

2

216π2
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+
f3γ

324M2
{11m2

0 − 36M2}ψa(u0)

]

+ 〈ūu〉
[

1

216π2
[5m2

0 + 6E0(x)M
2(−3 + 2η3 + 6η4 − 8η5 + 2η6 − 4η7 − 8η8

− 2η9 + 4η10 + 24ζ3)− 9E0(x)M
2
A(u0 + 12E1(x)M

4χϕγ(u0)]

+
f3γ

324M2
{11m2

0 − 36M2}ψa(u0)

] }

+ ed

{

〈ūu〉
[

5m2
0 − 18E0(x)M

2

216π2

+
f3γ

324M2
{11m2

0 − 36M2}ψa(u0)

]

+ 〈d̄d〉
[

M2

144π2
[4E0(x)(η3 + 3η4 − 4η5 + η6 − 2η7 − 4η8

− η9 + 2η10 + 12ζ3)− 3E0(x)M
2
A(u0 + 4E1(x)M

4χϕγ(u0)] +

] } )

, (B.2)

F3(q
2 = 0) = −2m∆2

λ2∆
e

m2
∆

M2

(

eu

{ −E1(x)M
4(u0 − 1)u0

12π4

+
f3γE0(x)M

2

18π2

[

10η1 − 8η11 − 8η2 + 4ζ2(1− 2u0)− ψa(u0)

]

− 4

81M4
〈ūu〉(〈ūu〉+ 〈d̄d〉)

[

− 10m2
0ζ3 + 6M2(6ζ3 + 3ξ1 + 4ξ2 − ξ3)

] }

+ ed

{ −E1(x)M
4(u0 − 1)u0

24π4

+
f3γE0(x)M

2

36π2

[

10η1 − 8η11 − 8η2 + 4ζ2(1− 2u0)− ψa(u0)

]

− 4

81M4
〈ūu〉〈d̄d〉

[

− 10m2
0ζ3 + 6M2(6ζ3 + 3ξ1 + 4ξ2 − ξ6)

] } )

, (B.3)

F4(q
2 = 0) = −4m∆2

λ2∆
e

m2
∆

M2

(

eu

{ −E1(x)M
4(u0 − 1)u20
8π4

+
f3γE0(x)M

2

18π2

[

8(η11 + η2)− 12ζ2u
2
0 + 8u0(η1 − 3η11 − η2 + ζ2)
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+ (u0 − 2)u0ψ
a(u0)

]

− 4

81M4
〈ūu〉(〈ūu〉+ 〈d̄d〉)

[

− 10m2
0u0ζ3 + 12M2(1 + 3u0ζ3 + ξ2 − ξ3)

] }

+ ed

{ −E1(x)M
4(u0 − 1)u20

16π4

+
f3γE0(x)M

2

36π2

[

8(η11 + η2)− 12u20ζ2 + 8u0(η1 − 3η11 − η2 + ζ2)

+ (u0 − 2)u0ψ
a(u0)

]

+
4

81M4
〈ūu〉〈d̄d〉

[

10m2
0u0ζ3 − 12M2(3u0ζ3 + ξ2 − ξ3)

] } )

, (B.4)

where, the functions entering the above equations are given as

ηi =

∫

Dαi

∫ 1

0

dvfi(αi)δ(αq + vαg − u0),

ξi =

∫

Dαi

∫ 1

0

dv̄gi(αi)θ(αq + vαg − u0),

ζi =

∫ 1

u0

duhi(u),

En(x) = 1− e−x

n
∑

k=0

xk

k!
, (B.5)

and f1(αi) = A(αi), f2(αi) = vA(αi), f3(αi) = S(αi), f4(αi) = S̃(αi),

f5(αi) = vS̃(αi), f6(αi) = g2(αi) = T2(αi), f7(αi) = vT2(αi), f8(αi) =

vT3(αi), f9(αi) = g3(αi) = T4(αi), f10(αi) = vT4(αi), f11(αi) = vV(αi),

g1(αi) = T1(αi), h1(u) = hγ(u), h2(u) = ψv(u) and h3(u) = (u − u0)hγ(u)

are the photon distribution amplitudes. Note that, in the above equations,

x = s0/M
2, v̄ = 1−v and the Borel parameterM2 is defined asM2 =

M2
1M

2
2

M2
1+M2

2

and u0 =
M2

1

M2
1
+M2

2

. Since the masses of the initial and final baryons are the

same, we will set M2
1 =M2

2 and u0 = 1/2.
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