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CLASS GROUPS OF DIHEDRAL EXTENSIONS

FRANZ LEMMERMEYER

Abstract. Let L/F be a dihedral extension of degree 2p, where p is an odd
prime. Let K/F and k/F be subextensions of L/F with degrees p and 2,
respectively. Then we will study relations between the p-ranks of the class
groups Cl(K) and Cl(k).

1. A Short History of Reflection Theorems

Results comparing the p-rank of class groups of different number fields (often
based on the interplay between Kummer theory and class field theory) are tradi-
tionally called ‘reflection theorems’; the oldest such result is due to Kummer him-
self: let h+ and h− denote the plus and the minus p-class number of K = Q(ζp),
respectively; then Kummer observed that p | h+ implies p | h−, and this was an
important step in verifying Fermat’s Last Theorem (that is, checking the regularity
of p) for exponents < 100. Kummer’s result was improved by Hecke [13] (see also
Takagi [32]):

Proposition 1. Let p be an odd prime, k = Q(ζp), and let Cl+p (k) and Cl−p (k)

denote the plus and the minus part of Clp(k). Then rk Cl+p (k) ≤ rk Cl−p (k).

Analogous inequalities hold for the eigenspaces of the class group Cl(k) under
the action of the Galois group; see e.g. [15].

Scholz [30] and Reichardt [28] discovered a similar connection between the 3-
ranks of class groups of certain quadratic number fields:

Proposition 2. Let k+ = Q(
√
m ) with m ∈ N, and put k− = Q(

√
−3m ); then the

3-ranks r+3 and r−3 of Cl(k+) and Cl(k−) satisfy the inequalities r+3 ≤ r−3 ≤ r+3 +1.

Leopoldt [21] later generalized these propositions considerably and called his
result the “Spiegelungssatz”. For expositions and generalizations, see Kuroda [19],
Oriat [23, 26], Satgé [29], Oriat & Satgé [27], and G. Gras [10].

Damey & Payan [4] found an analog of Proposition 2 for 4-ranks of class groups
of quadratic number fields:

Proposition 3. Let k+ = Q(
√
m ) be a real quadratic number field, and put k− =

Q(
√−m ). Then the 4-ranks r+4 and r−4 of Cl+(k+) (ideal class group in the strict

sense) and Cl(k−) satisfy the inequalities r+4 ≤ r−4 ≤ r+4 + 1.

Other proofs were given by G. Gras [8], Halter-Koch [12], and Uehara [33]; for a
generalization, see Oriat [24, 25].

In 1974, Callahan [2] discovered the following result; although it gives a con-
nection between p-ranks of class groups of different number fields, its proof differs
considerably from those of classical reflection theorems:
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Proposition 4. Let k be a quadratic number field with discriminant d, and suppose
that its class number is divisible by 3. Let K be one of the cubic extensions of Q
with discriminant d (then Kk/k is a cyclic unramified extension of k), and let r3(k)
and r3(K) denote the 3-ranks of Cl(k) and Cl(K), respectively. Then r3 = r2 − 1.

Callahan could only prove that r2− 2 ≤ r3 ≤ r2− 1, but conjectured that in fact
r3 = r2 − 1. This was verified later by G. Gras [9] and Gerth [7]. Callahan’s result
was generalized by Bölling [1]:

Proposition 5. Let L/Q be a normal extension with Galois group the dihedral
group of order 2p, where p is an odd prime, and let K be any of its subfields of
degree p. Assume that the quadratic subfield k of L is complex. Then

rp(k)− 1 ≤ rp(K) ≤ p− 1

2
(rp(k)− 1),

where rp(k) and rp(K) denote the p-ranks of the class groups of k and K, respec-
tively.

It is this result that we generalize to arbitrary base fields in this article. Our
proof will be much less technical than Bölling’s, who used the Galois cohomological
machinery presented in Koch’s book [17].

We conclude our survey of reflection theorems with the following result by
Kobayashi [16] (see also Gerth [6]):

Proposition 6. Let m be a cubefree integer not divisible by any prime p ≡ 1 mod 3,
and put K = Q( 3

√
m ) and L = K(

√
−3 ). Then rk Cl3(L) = 2 · rk Cl3(K).

This was generalized subsequently by G. Gras [9] to the following result; Spl(k/Q)
denotes the set of primes in Q that split in k.

Proposition 7. Let K be a cubic number field with normal closure L. Assume
that Gal(L/Q) ≃ S3, and let k denote the quadratic subfield of L. If no prime
p ∈ Spl(k/Q) ramifies in L/k, and if 3 ∤ h(k), then rk Cl3(L) = 2 · rk Cl3(K).

It seems plausible that the results of Proposition 5 hold for a large variety of
nonabelian extensions. Computer experiments suggest a rather simple result normal
extensions of Q with Galois group A4. In fact, consider a cyclic cubic extension
k/Q, and let 2r denote the 2-rank of Cl(k). Then there exist r nonconjugate quartic
extensions K/Q such that (cf. [14])

(1) Kk is the normal closure of K/Q, and Gal(Kk/Q) ≃ A4;
(2) Kk/k is an unramified normal extension with Gal(Kk/k) ≃ (2, 2).

Conjecture 1. Let L/Q be an A4 extension unramified over its cubic subfield k,
and let K denote one of the four conjugate quartic subfields of L. Then we have
the following inequalities:

rk Cl2(k) ≥ rk Cl2(K) ≥ rk Cl2(k)− 2,

rk Cl+2 (k) + 1 ≥ rk Cl+2 (K) ≥ rk Cl+2 (k)− 1

Examples show that these inequalities are best possible. In fact, consider the cyclic
cubic extension k generated by a root of the cubic polynomial f(x) = x3−ax2−(a+
3)x−1; choose b ∈ N odd and a = 1

2 (b
2−3). Then L = k(

√
α− 2,

√
α′ − 2 ) is an A4-

extension of Q, L/k is unramified, and using PARI we find that Cl(k) ≃ (4, 4, 2, 2),
Cl(K) ≃ (2, 2) for a = 143, and Cl(k) ≃ (114, 2), Cl(K) ≃ (4, 2) for a = 1011.
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2. The Main Results

Let p = 2m+ 1 be an odd prime and let

Dp = 〈σ, τ : σp = τ2 = 1, τστ = σ−1〉
denote the dihedral group of order 2p. Put ν = 1 + σ + σ2 + . . . + σp−1; then a
simple calculation gives ντ = τν and νσ = σν.

L

✏✏✏✏✏✏✏✏

✚
✚

✚
✚

K ′ K

❏
❏
❏
❏
❏

k

✚
✚
2

F

p

Dp

✏✏✏✏✏✏✏✏

✚
✚

〈στ〉 〈τ〉
❏
❏
❏
❏
❏

〈σ〉

✚
✚

1
Let F be a number field with class number not divisible by p, L/F a dihedral

extension with Galois group Gal(L/F ) ≃ Dp, k its quadratic subfield, and K the

fixed field of τ . Note that K ′ = Kσm

is the fixed field of στ .
In the sequel, L/k will always be unramified. Our main result generalizes

Bölling’s theorem to base fields F with class number prime to p:

Theorem 1. Let F be a number field with class number not divisible by p, let L/F
be a Dp-extension such that L/k is unramified, and let rp(k) and rp(K) denote the
p-ranks of the class groups of k and K, respectively; then

rp(k)− 1− e ≤ rp(K),

where pe = (EF : NEK).

The idea of the proof of Theorem 1 is to compare the class groups of K and k
by lifting them to L and studying homomorphisms between certain subgroups of
Clp(L). We get inequalities for the ranks by computing the orders of elementary
abelian p-groups.

If F = Q or if F is a complex quadratic number field (different from Q(
√
−3 ) if

p = 3), then e = 0 since in these cases EF is torsion of order not divisible by p.
Actually, Bölling’s upper bound from Prop. 5 is conjectured to be valid in

general:

Conjecture 2. Under the assumptions of Theorem 1 we have

rp(K) ≤ p− 1

2
(rp(k)− 1).

We will prove Conjecture 2 if p = 3, if rp(k) = 1, or if Clp(k) = (p, p); by
Bölling’s result, the upper bound holds if F = Q and k is complex quadratic.

Conjecture 3. Fix an odd prime p and a number field F with class number
not divisible by p. Then for every integer e with 0 ≤ e ≤ dimEF /E

p
F , every

integer r ≥ 1 and every R ≥ 0 such that r − 1 − e ≤ R ≤ p−1
2 (r − 1) there

exist dihedral extensions L/F satisfying the assumptions of Theorem 1 such that
rp(k) = r, rp(K) = R, and (EF : NK/FEK) = pe.
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A proof of Conjecture 3 seems to be completely out of reach; it expresses the
expectation that the bounds in Theorem 1 and Conjecture 2 are best possible.

Using the results needed for the proof of Theorem 1, we get the following class
number formula almost for free:

Theorem 2. Let L/F be a dihedral extension of degree 2p, where p is an odd prime,
and assume that L is unramified over the quadratic subextension k of L/K. Let
q = (EL : EKEK′Ek) denote the unit index of L/F and write a = 1+λ(k)−λ(F ),
where λ(M) denotes the Z-rank of the unit group of a number field M . Then

(1) hL = p−aqhk

(hK
hF

)2

.

In the special case F = Q, an arithmetic proof of the class number formula for di-
hedral extensions of degree 2p (even without the restriction that L/k be unramified)
was given by Halter-Koch [11].

A simple application of the lower bound in Theorem 1 gives

Theorem 3. Let L/F be as in Theorem 1. If rp(k) ≥ e + 2, then there exists
a normal unramified extension M/k (containing L) with Gal(M/k) ≃ E(p3), the
nonabelian group of order p3 and exponent p.

In the special case where F is Q or a complex quadratic number field 6= Q(
√
−3 )

this was proved by Nomura [22] (note that e = 0 in these cases).

3. Preliminaries

In this section we collect some results that will be needed in the sequel.
Let Am = Am(L/k) = {c ∈ Clp(L) : cσ = c} denote the ambiguous p-class

group and Amst = {c = [a] ∈ Am : aσ = a} its subgroup of strongly ambiguous
ideal classes. Since L/k is unramified, ambiguous ideals are ideals from k, hence
Amst = Clp(k)

j , where j : Cl(k) −→ Cl(L) is the transfer of ideal classes. This
proves

Lemma 1. For unramified extensions L/k, the sequence

1 −−−−→ κL/k −−−−→ Clp(k)
j−−−−→ Amst −−−−→ 1,

where κL/k is the capitulation kernel, is exact.

The next lemma is classical; it measures the difference between the orders of
ambiguous and strongly ambiguous ideal classes:

Lemma 2. Let L/k be a cyclic extension of prime degree p. Then the factor group
Am /Amst is an elementary abelian p-group. In fact, we have the exact sequence

(2) 1 −−−−→ Amst −−−−→ Am
ϑ−−−−→ Ek ∩NL×/NEL −−−−→ 1.

If, in addition, L/k is unramified, then Ek ∩NL× = Ek, and we find

(3) 1 −−−−→ Amst −−−−→ Am
ϑ−−−−→ Ek/NEL −−−−→ 1.

Proof. Let us start by defining ϑ. Write c = [a] ∈ Am; then a
σ−1 = (α) and ε :=

Nα ∈ Ek. Now put ϑ(c) = εNEL. We claim that ϑ is well defined: in fact, if c = [b]
and b

σ−1 = (β), then a = γb for some γ ∈ L×; thus a
σ−1 = γσ−1

b
σ−1, and this

shows that α = ηγσ−1β, hence Nα = NηNβ, and therefore Nα ·NEL = Nβ ·NEL.
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We have c ∈ kerϑ if and only if ε = NL/kη for some unit η. Then N(α/η) = 1,

hence α/η = β1−σ , therefore βa is an ambiguous ideal, and this implies that c ∈
Amst. Conversely, if c ∈ Amst, then c = [a] with a

σ−1 = (1), hence ϑ(c) = 1.
It remains to show that ϑ is surjective. Given ε ∈ Ek ∩NL×, write ε = NL/kα

for some α ∈ L×: then NL/k(α) = (1), hence Hilbert’s theorem 90 for ideals implies

that (α) = a
σ−1 for some ideal a in OL; clearly εNEL = ϑ([a]), and this proves the

claim.
Finally we have to explain why Ek∩NL× = Ek if L/k is unramified. In this case,

every unit is a local norm everywhere (in the absence of global ramification, every
local extension is unramified, and units are always norms in unramified extensions
of local fields), hence a global norm by Hasse’s norm residue theorem for cyclic
extensions L/k. �

Proposition 8 (Furtwängler’s Theorem 90). If L/k is a cyclic unramified extension
of prime degree p and Gal(L/k) = 〈σ〉, then Clp(L)[N ] = Clp(L)

1−σ.

Proof. This is a special case of the principal genus theorem of classical class field
theory; see [20]. �

Lemma 3. Let A be a Dp-module; then A1−σ = A1+τA1+στ .

Proof. For a ∈ A we have a1−σ = (a−σ)1+τa1+στ . �

4. Galois Action

Let m > 1 be an integer, p ≡ 1 mod m an odd prime, and r an element of order
m in (Z/pZ)×. Consider the Frobenius group

Fmp = 〈σ, τ : σp = τm = 1, τ−1στ = σr〉.
In the following, let s ∈ Fp denote the inverse of r; note that τστ−1 = τs.

Let A be an abelian p-group and Fmp-module. Then the action of H = 〈τ〉 ≃
Z/mZ allows us to decompose A into eigenspaces

A =
m−1
⊕

j=0

A(j),

where Aj = {a ∈ A : aτ = ar
j}. Note that A(j) = ejA for

ej =
1

m

m−1
∑

k=0

sjkτk;

the set {e0, e1, . . . , em−1} is a complete set of orthogonal idempotents of the group
ring (Z/mZ)[Fmp]. Also observe that A(0) = AH is the fixed module of A under
the action of H .

Lemma 4. Let A,B,C be abelian p-groups and H-modules. If

1 −−−−→ A
ι−−−−→ B

π−−−−→ C −−−−→ 1

is an exact sequence of H-modules, then so is

1 −−−−→ A(j) −−−−→ B(j) −−−−→ C(j) −−−−→ 1

for every 0 ≤ j ≤ m− 1.
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Proof. This is a purely formal verification based on the fact that, by the assumption
that ι and π be H-homomorphisms, the homomorphisms ej commute with ι and
π. �

Proposition 9. Assume that A, B, C are abelian p-groups and H-modules, that

1 −−−−→ A
ι−−−−→ B

π−−−−→ C −−−−→ 1

is an exact sequence of abelian groups, and that ι(aτ ) = ι(a)τ and π(bτ ) = π(b)sτ .
Then

1 −−−−→ A(j)
ι−−−−→ B(j)

π−−−−→ C(j + 1) −−−−→ 1

is exact for every 0 ≤ j ≤ m− 1.

Proof. Define an H-module C′ by putting C = C′ as an abelian group and letting
τ act on C′ via c 7−→ csτ . Then

1 −−−−→ A
ι−−−−→ B

π−−−−→ C′ −−−−→ 1

is an exact sequence ofH-modules, and taking the ej-part we get the exact sequence

1 −−−−→ A(j) −−−−→ B(j) −−−−→ C′(j) −−−−→ 1.

But C′(j) = {c ∈ C : csτ = cr
j} = {c ∈ C : cτ = cr

j+1} = C(j + 1). �

Before we can apply the results above to our situation, we have to check that
the homomorphism ϑ in (2) satisfies the assumption of Prop. 9.

Lemma 5. Let L/F be an Fmp-extension. Then the map ϑ in (2) (and therefore
also in (3)) has the property ϑ(cτ ) = ϑ(c)sτ .

Proof. Write c = [a], aσ−1 = (α), and NL/kα = ε; then ϑ(c) = εNL/kEL. We have

τ(σ − 1) = (σs − 1)τ = (σ − 1)φτ for φ = 1 + σ + . . . + σs−1, hence (aτ )σ−1 =
(aσ−1)φτ = (αφτ ). Since the norm 1+ σ+ . . .+ σp−1 is in the center of Z[Fmp], we
get NL/k(α

φτ ) = (NL/kα)
φτ = εsτ , and this shows ϑ(cτ ) = csτ as claimed. �

Let us now specialize to the case m = 2, where F2p = Dp is the dihedral group
of order 2p. For Dp-modules A we put

A+ = A(0) = {a ∈ A : aτ = a} and A− = A(1) = {a ∈ A : aτ = a−1}.

If A is finite and has order coprime to p, then A = A+ ⊕ A−, A+ = A1+τ and
A− = A1−τ . In the following, let H = 〈τ〉 denote the subgroup of Dp generated by
τ .

The main ingredient in our proof of Theorem 1 will be the following result, which
was partially proved by G. Gras [9]:

Theorem 4. Let L/F be as above, and assume in particular that L/k is unramified.
Then there is an exact sequence

(4) 1 −−−−→ Amst
ι−−−−→ Am− ϑ−−−−→ EF /NEK −−−−→ 1.

Moreover, Am+ ≃ (Ek/NEL)
−; in particular, Am+ is an elementary abelian group

of order pρ−1−e, where pρ = #κL/k is the order of the capitulation kernel and
pe = (EF : NEK).
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Proof. We apply Proposition 9 with i = 1 to (3). Clearly τ acts as −1 on Amst,
hence Am−

st = Amst. Thus we only have to show that the plus part of Ek/NL/kEL

is isomorphic to EF /NK/FEK . By sending εNK/FEK to εNL/kEL we get a homo-

morphism ψ : EF /NK/FEK −→ (Ek/NL/kEL)
+.

We claim that ψ is injective; in fact, kerψ = {εNK/FEK : ε ∈ NL/kEL}; but ε =
NL/kη implies ε2 = ε1+τ = NL/kη

1+τ = NK/F η
1+τ . Thus ε2 ∈ NK/FEK , hence so

is ε1+p = (ε2)(p+1)/2. Since EF /NK/FEK is a p-group, we have ε ∈ NK/FEK .

Moreover, ψ is surjective: in fact, if εNL/kEL is fixed by τ , then ε2NL/kEL =

ε1+τNL/kEL is clearly in the image of ψ, and the claim follows again from the fact
that Ek/NL/kEL is a p-group.

Applying Proposition 9 with i = 0 yields the isomorphism Am+ ≃ (Ek/NEL)
−;

since Ek/NEL is elementary abelian, so is Am+. Moreover, the decomposition into
eigenspaces Ek/NEL = (Ek/NEL)

− ⊕ (Ek/NEL)
+ shows

#Am+ =
(Ek : NEL)

(EF : NEK)
.

The exact sequence (1) shows that pρ = #Clp(k)/#Amst; since

#Amst =
#Clp(k)

p(Ek : NEL)
,

this implies that pρ = p(Ek : NEL), hence #Am1+τ = (Ek:NEL)
p(EF :NEK) = pρ−1−e. �

5. The Class Number Formula

As a simple application of the exact sequence (4), let us prove the class number
formula (1).

Proof of Theorem 2. For primes l 6= p, equation (1) claims that the l-class number
of L is given by hl(L) = (hl(K)/hl(F ))

2hl(k); in fact we have an isomorphism

(5) Cll(L) ≃ Cll(k)× Cll(K/F )× Cll(K
′/F ),

where Cl(K/F ) is the relative class group of K/F defined by the exact sequence

1 −−−−→ Cl(K/F ) −−−−→ Cl(K)
NK/F−−−−→ Cl(F ) −−−−→ 1;

note that the norm is surjective since K/F is nonabelian of prime degree.
The isomorphism (5) follows from the fact that the transfer of ideal classes jk→L :

is injective and the norm NL/k is surjective on classes of order coprime to p, hence

NL/k ◦ jk→L(c) = cl induces an automorphism of Cll(k), which in turn implies that
the sequence

1 −−−−→ Cll(L)[N ] −−−−→ Cll(L) −−−−→ Cll(k) −−−−→ 1

splits, i.e. Cll(L) ≃ Cll(k) × Cll(L)[N ]. A result of Jaulent (see [3]) guarantees
that the transfer of ideal classes Cl2(K) −→ Cl2(L) is injective; for primes l ∤ 2p,
the injectivity of Cll(K) −→ Cll(L) is trivial. By Furtwängler’s Theorem 90 and
Lemma 3 we have Cll(L)[N ] = Cll(K/F )Cll(K

′/F ).
We claim that Cll(K/F ) ∩ Cll(K

′/F ) = 1: a class c ∈ Cll(K/F ) ∩ Cll(K
′/F ) is

fixed by τ and στ , hence by σ, and since it is killed by the norm, we find cp = 1;
since c has l-power order, this implies c = 1.

It remains to prove the p-part of the class number formula. In the rest of the
proof, all class numbers and class groups are p-class numbers and p-class groups.
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Let N = NL/k denote the relative norm of L/k. Since L/k is unramified and
cyclic, we know that (Cl(k) : N Cl(L)) = p. Thus

(6) hL = #Cl(L) = #Cl(L)[N ] ·#N Cl(L) =
h2K

#Am1+τ · hk
p

= pe−ρh2Khk.

If B is a subgroup of finite index in an abelian group A and if f : A −→ A′ is a
group homomorphism, then (A : B) = (Af : Bf )(ker f : ker f ∩B), where Af and
Bf denote the images of A and B under f .

Now let us apply this to the special situation where f is given by the norm map
N : EL/EKEK′Ek −→ Ek/E

p
kNEK . We have

(EL : EKEK′Ek) = (NEL : N(EKEK′Ek)) · (EL[N ] : EL[N ] ∩ EKEK′Ek).

Lemma 6. If L/k is unramified, then (EL[N ] : EL[N ] ∩ EKEK′Ek) = 1.

Proof. It suffices to show that EL[N ] ⊆ EKEK′ . Assume therefore that NL/kε = 1

for some ε ∈ EL. Then ε = α1−σ for some α ∈ L× by Hilbert’s Theorem 90, hence
a = (α) is ambiguous. Since L/k is unramified, a must be an ideal from k, and this
implies that α = ηa for some η ∈ EL and a ∈ k×. But then ε = α1−σ = η1−σ ∈
E1−σ

L , and by Lemma 3 we have E1−σ
L = (E−σ

L )1+τE1+στ
L ⊆ EKEK′ . �

Thus q = (NEL : N(EKEK′Ek)); clearly N(EKEK′Ek) = Ep
kNEK , and we can

transform q as follows:

(NEL : N(EKEK′Ek)) = (NEL : Ep
kNEK) =

(Ek : Ep
kNEK)

(Ek : NEL)

=
(Ek : Ep

k)(E
p
k : Ep

kNEK)

(Ek : NEL)

=
(Ek : Ep

k)(E
p
kEF : Ep

kNEK)

(Ep
kEF : Ep

k)(Ek : NEL)
.

Now

(Ep
kEF : Ep

kNEK) =
(Ep

kEF : Ep
k)

(Ep
kNEK : Ep

k)
=

(EF : EF ∩ Ep
k)

(NEK : NEK ∩ Ep
k)

=
(EF : Ep

F )

(NEK : Ep
F )

= (EF : NEK),

as well as

(Ep
kEF : Ep

k) = (EF : EF ∩ Ep
k) = (EF : Ep

F ),

hence we get

q =
(Ek : Ep

k)(EF : NEK)

(EF : Ep
F )(Ek : NEL)

= pλ(k)−λ(F )pe+1−ρ,

where λ(M) denotes the Z-rank of the unit group of a number field M . Note that
WL = Wk (where WM denotes the group of roots of unity in M) since L/F is
non-abelian.

Collecting everything we find

hL = pe−ρh2Khk = p−aqh2Khk

for the p-class numbers, and this proves the theorem. �
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6. The Lower Bound for rp(K)

The idea of the proof is to lift parts of Clp(k) and Clp(K) to L and compare their
images. We start with the group Cl(k)[p] of rank rp(k); its image after lifting it to
Cl(L) has rank rk Cl(k)[p]j = rp(k)− ρ. Now observe that Cl(k)[p]j is a subgroup
of Clp(L) that is killed by p, 1 + τ , σ − 1, and the relative norm N = NL/k. In

particular, Cl(k)[p]j ⊆ C0, where C0 = {c ∈ Clp(L) : c
p = c1+τ = c1−σ = 1}. The

key result is the following observation:

Proposition 10. There exists a monomorphism C0 →֒ Cl(K)[p]/Am+.

We know that rk Cl(K)[p] = rp(K) and rk Am+ = ρ− 1− e; since both groups

are elementary abelian we deduce that rk Cl(K)[p]/Am+ = rp(K)−ρ+e+1. Thus

from Cl(k)[p]j ⊆ C0 ⊆ Cl(K)[p]/Am+ we deduce that

rp(k)− ρ = rk Cl(k)[p]j ≤ rk Cl(K)[p]/Am+ = rp(K)− ρ+ e + 1,

and this proves Theorem 1.
It remains to prove Proposition 10. The next result (showing in particular that

Am+ ⊆ Clp(K)) can be found in Halter-Koch [11]:

Lemma 7. Let L/F be as above; in particular, assume that L/k is unramified. We
have Clp(L)[N ] = Clp(K)Clp(K

′) and Clp(K)∩Clp(K
′) = Am+, where K and K ′

are the fixed fields of τ and στ .

Proof. Since (L : K) = 2, the transfer of ideal classes Clp(K) −→ Clp(L) is injec-
tive, and we can view Clp(K) as a subgroup of Clp(L). Clearly Clp(K) and Clp(K

′)
are killed by N , so Clp(K)Clp(K

′) ⊆ Clp(L)[N ].
Using Lemma 3 we now find

Clp(L)
1−σ = Clp(L)

1+τ Clp(L)
1+στ ⊆ Clp(K)Clp(K

′) ⊆ Clp(L)[N ],

and by Furtwängler’s Theorem 90 we have equality throughout. �

Proof of Prop. 10. Given any c ∈ Clp(L)[N ], we can write c = c1c2 with c1 ∈
Clp(K) and c2 ∈ Clp(K

′). Since Clp(K) ∩ Clp(K
′) = Am+, the ci are determined

modulo Am+, and we get a homomorphism λ : Clp(L)[N ] −→ Clp(K)/Am+.
We claim that c1 ∈ Cl(K)[p] if c ∈ C0. To prove this, assume that cσ = c and

cp = 1; from cστ2 = c2 we get cσ2 = cτ2 , and since cτ = c−1 and cτ1 = c1, we find
c−1 = cτ = c1c

τ
2 , that is, c

τ
2 = c−2

1 c−1
2 . This gives cσ1 = (cc−1

2 )σ = c1c2c
2
1c2 = c31c

2
2.

Induction shows that cσ
t

1 = c2t+1
1 c2t2 and cσ

t

2 = c−2t
1 c1−2t

2 . In particular,

cν1 = c1+3+5+...+2p−1
1 c2+4+...+2p−2

2 = cp
2

1 c
(p−1)p
2 = c(p−1)pcp1.

But since cp = 1 and cν1 = 1, this implies cp1 = 1, that is, c1 ∈ Cl(K)[p].
Now assume that c ∈ kerλ; then c1 ∈ Am+, hence c = c1c2 ∈ Cl(K ′). Thus c is

fixed by σ and στ , hence by τ ; since c ∈ Cl(L)−, this implies c2 = c1+τ = 1, hence
c = 1. Thus λ is injective. �

7. Embedding Problems

Theorem 3 on the existence of unramified E(p3)-extensions is a rather simple
consequence of our results. Let k/F be a quadratic extensions, p and odd prime
such that p ∤ h(F ), and L/F a normal extension with Gal(L/F ) ≃ Dp and L/k
unramified. If rk Clp(k) ≥ 2 + e, then Theorem 1 guarantees that any nonnormal
subextension K of L/F will have class number divisible by p. Let M/K be an
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unramified cyclic extension of K, and let N denote the normal closure of LM/k.
Then N/k is a p-extension containing L, and its maximal abelian subextension Nab

has type (p, p). Let E/k be a central extension of Nab/k of degree p3 over k; then
Gal(E/k) = E(p3) or Gal(E/k) = Γ(p3), where Γ = Γ(p3) is the nonabelian group
of order p3 and exponent p2. We claim that Gal(E/k) = E(p3).

We remark in passing that – in the case where N 6= E – this follows immediately
from the fact that Γ(p3) has trivial Schur multiplier. In general, we have to invoke
the automorphism group Aut(Γ) of Γ(p3). It is known (see Eick [5] and e.g. Schulte
[31]) that Aut(Γ) ≃ (Z/pZ)× × p-group, and that (Z/pZ)× acts trivially on exactly
one of the two generators of Γ/Γ′. In particular, the unique element of order 2 in
Aut(Γ) acts as −1 on one and trivially on the other generator.

On the other hand, Gal(Nab/F ) is a generalized dihedral group by class field
theory (since p does not divide the class number of F ), hence the element of order
2 in Gal(k/F ) acts as −1 on both generators of Gal(Nab/k): this means that
Gal(N/k) 6= Γ(p3), and Theorem 3 follows.

8. The Upper Bound for rp(K)

We will start by proving the upper bound in Theorem 1 in two special cases:
a refinement of our techniques used to derive the lower bound will give the result
if p = 3, and a simple Galois theoretic argument suffices to prove it in the case
rp(k) = 1.

8.1. The Case p = 3.

In the special case p = 3 we can prove the upper bound rp(K) ≤ rp(k)−1 using the
same techniques we used for deriving the lower bound. Our first ingredient holds
in general:

Lemma 8. We have rk Amst[N ] = rp(k)− ρ and rk Am−[N ] ≤ rp(k)− ρ+ e.

Proof. Clearly Cl(k)[p]j ⊆ Amst[N ]; conversely, if c ∈ Clp(k) with cj ∈ Amst[N ],
then cp = 1, hence we actually have Cl(k)[p]j = Amst[N ], and this proves that
rk Amst[N ] = rp(k)− ρ.

The exact sequence

1 −−−−→ Amst[N ] −−−−→ Am−[N ] −−−−→ EF /NEK

derived from (4) shows that rk Am−[N ] ≤ rk Amst[N ] + e. �

From now on assume that p = 3; then the map c 7−→ c1+2σ defines a homomor-

phism µ : Cl(K)[p] −→ C0. In fact, since cν = c3 = 1, we have µ(c)σ = cσ+2σ2

=

c−2−σ = µ(c) since cσ
2

= c−1−σ. Moreover, µ(c)τ = cτ(1+2σ2) = c−1−2σ = c−1

since cτ = c for c ∈ Cl(K); thus µ(c) is killed by N , p and 1 + τ , hence µ(c) ∈ C0.
Next c ∈ kerµ implies c = cσ, i.e., c ∈ Am+, and clearly Am+ ⊆ kerµ: thus

Proposition 11. If p = 3, then Cl(K)[p]/Am+ ≃ C0.

In particular, rp(K) − ρ + 1 + e = rk C0 if p = 3. Since C0 ⊆ Am−[N ], we find
rp(K)− ρ+ 1 + e ≤ rp(k)− ρ+ e, and we have proved

Theorem 5. If p = 3, then rp(k)− 1− e ≤ rp(K) ≤ rp(k)− 1.
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8.2. The case rp(k) = 1.

The second special case of the upper bound that can be proved easily is

Proposition 12. If rp(k) = 1, then rp(K) = 0.

Proof. Assume not; then there exists a cyclic unramified extension M/K of degree
p. Let N denote the normal closure of ML/k. If N = ML, then ML/k has
a Galois group of order p2 and thus is abelian, and since ML/L and L/k are
unramified, so is ML/k. Since Clp(k) is cyclic by assumption, we conclude that
Gal(ML/k) = Z/p2Z, and since p does not divide the class number of F , we
conclude that ML/F is normal and Gal(ML/F ) ≃ Dp2 . On the other hand,
Gal(ML/K) ≃ Z/2Z×Z/pZ by construction, and since the dihedral group of order
2p2 does not contain an abelian subgroup of order 2p, we have a contradiction. �

8.3. The Case Clp(k) ≃ (p, p). Our main tool will be the following result due to
G. Gras [9]:

Proposition 13. Let p be an odd prime, G = 〈σ〉 a group of order p generated by σ,
and assume that G acts on the abelian p-group A in such a way that #AG = #{a ∈
A : aσ−1 = 1} = p. Put ν = 1 + σ + σ2 + . . .+ σp−1, let n be the smallest positive
integer such that A(σ−1)n = 1, and write n = α(p− 1) + β with 0 ≤ β ≤ p− 2.

If Aν = 1, then
A ≃ (Z/pα+1Z)β × (Z/pαZ)p−1−β .

If Aν 6= 1, then

A ≃











(Z/p2Z)× (Z/pZ)n−2 if n < p,

(Z/pZ)p if n = p,

(Z/pα+1Z)β × (Z/pαZ)p−1−β if n > p.

Note that #A = pn and that the p-rank of A is bounded by p.

Assume now that Clp(k) ≃ (p, p) = Z/pZ × Z/pZ and put A = Clp(L). Then
#AG = #Am(L/k) = p by the ambiguous class number formula since every unit
in k is a norm from L. Moreover, Ak = NL/kA has index p in Clp(k) by class field
theory, hence Ak = 〈c〉 for some ideal class c of order p, and we have to distinguish
two cases:

(A) c capitulates in L/k; then Aν = 1.
(B) c does not capitulate in L/k; then Aν 6= 1.

Moreover, ρ ≥ e+ 1 implies that the following classification is complete:

#Clp(K) ∩ Clp(K
′) =

{

1 if (ρ, e) = (1, 0), (2, 1)

p if (ρ, e) = (2, 0).

Applying the class number formula (6) we get

hp(L) = p2+e−ρh2K = pµ

for some integer µ ≥ 1. Now we can prove

Theorem 6. Let p be a prime and assume that F is a number field whose class
number is not divisible by p. Let L/F be a normal extension with Galois group Dp,
and let L/k be unramified. Assume that Clp(k) ≃ (Z/pZ)2. Then

a) hp(L) = hp(K)2p2−ρ = pµ for some µ ≥ 2, and in particular µ ≡ ρ mod 2.
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b) Write µ = α(p− 1) + β with 0 ≤ β < p− 1; then the structure of Clp(L) is
given by the following table:

case A B

µ > p (Z/pα+1Z)β × (Z/pαZ)p−1−β

µ = p (Z/p2Z) × (Z/pZ)p−2 (Z/pZ)p

µ < p (Z/pZ)µ (Z/p2Z)× (Z/pZ)µ−2

c) Write µ − 1 = a(p − 1) + b, 0 ≤ b ≤ p − 2; note that b is even if ρ − e is
odd. The structure of Clp(L)[N ] and Clp(K) is given by

Clp(L)[N ] ≃ (Z/pa+1Z)b × (Z/paZ)p−1−b,

Clp(K) ≃
{

(Z/pa+1Z)b/2 × (Z/paZ)(p−1−b)/2 if ρ = e+ 1,

(Z/pa+1Z)(b+1)/2 × (Z/paZ)(p−2−b)/2 if ρ = 2, e = 0.

Observe that Clp(K) is elementary abelian if and only if µ ≤ p. On the

other hand, we have rk Clp(K) = p−1
2 whenever µ ≥ p− 1.

Proof. We already proved the class number formula in a), and b) follows by applying
Prop. 13 to A = Clp(L). Similarly, the claims in c) about the structure of Clp(L)[N ]
follow by applying Prop. 13 to A = Clp(L)[N ].

It remains to derive the structure of Clp(K). If ρ = e + 1, then we have seen
that Clp(K) ∩ Clp(K

′) = 1, hence Clp(L)[N ] ≃ Clp(K) ⊕ Clp(K), and this allows
us to deduce the structure of Clp(K) from that of Clp(L). If (ρ, e) = (2, 0), on the
other hand, then Clp(L)[N ] = Clp(K)Clp(K

′) with Clp(K) ∩ Clp(K
′) ≃ Z/p, and

again the claims follow easily. �

Examples. Consider the cubic field Ka generated by a root of the polynomial
x3 + ax+ 1; let d = disc k.

a d Cl3(k) Cl3(K) Cl3(L)
29 −97583 (3, 3) (3) (3, 3, 3)
10 −4027 (3, 3) (3) (32, 3)
70 −1372027 (3, 3) (32) (33, 32)
94 −3322363 (3, 3) (33) (34, 33)

755 −1721475527 (3, 3) (34) (35, 34)
409 −273671743 (3, 3) (35) (36, 35)

The data suggest that the exponent of Cl3(Ka) is not bounded.

9. Examples

It is expected that the upper bounds are best possible even if p > 3. The
following family of simplest dihedral quintics extracted from Kondo [18] show that
the upper bound is attained for p = 5. Let

f(x) = x5 − 2x4 + (b + 2)x3 − (2b+ 1)x2 + bx+ 1,

let α denote a root of f , and put K = Q(α). Then discK = d2 for some odd d, and
if we choose the sign of d such that d ≡ 1 mod 4, then then the splitting field L of
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f (which has Galois group D5) is unramified over its quadratic subfield k = Q(
√
d )

if d is squarefree.

b d Cl(k) Cl(K) Cl(L)
1 −103 (5) 1 1

19 −38047 (15, 5) (20, 4) (300, 20, 4, 4)
39 −280847 (20, 20) (55, 5) (1100, 220, 5, 5)

Using F = Q(
√
5 ) as the base field, we find

b d Cl(k) Cl(K)
41 47 (5) 1
9 5447 (60, 20) (55)

16 23983 (50, 10, 5) (305)
17 28199 (480, 15) (4, 4)
39 280847 (1080, 40) (55, 5)

Here are a few examples for p = 3 that also show that the term e in our lower
bound is necessary: let d be the discriminant of a dihedral cubic number field
k0, and consider the fields F = Q(

√
−3 ), K = k0(

√
−3 ), k = Q(

√
−3,

√
d ) and

L = Kk.

d Cl(k) Cl(K)
−31 (3) (1)
−107 (3, 3) (1)

−4027 (3, 3, 3) (6, 2)
−8751 (12, 3, 3) (3, 3)

229 (6, 3) (2)
469 (6, 6) (3)

26821 (72, 3) (18)
2813221 (198, 6, 6, 6) (285, 3)
13814533 (270, 3, 3, 3, 3) (360, 3, 3)
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ℓ à la clôture galoisiennes diédrale de degré 2ℓ, J. Math. Soc. Japan 26 (1974), 677–685
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