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Abstract. Considering the Møller energy definition in both Einstein’s theory of gen-

eral relativity and tele-parallel theory of gravity, we find the energy of the universe

based on viscous Kasner-type metrics. The energy distribution which includes both

the matter and gravitational field is found to be zero in both of these different gravi-

tation theories and this result agrees with previous works of Cooperstock and Israelit,

Rosen, Johri et al., Banerjee-Sen, Vargas who investigated the problem of the energy

in Friedmann-Robertson-Walker universe in Einstein’s theory of general relativity and

Aydogdu-Saltı who considered the same problem in tele-parallel gravity. In all of these

works, they found that the energy of the Friedmann-Robertson-Walker space-time is

zero. Our result is the same as obtained in the studies of Saltı and Havare. They

used the viscous Kasner-type metric and found total energy and momentum by us-

ing Bergmann-Thomson energy-momentum formulation in both general relativity and

tele-parallel gravity. The result that the total energy and momentum components of

the universe is zero supports the viewpoints of Albrow and Tryon.
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1. Introduction

The conserved quantities such as energy and momentum play a crucial role as they

provide the first integrals of equations of motions, helping one to solve otherwise

intractable problems[1]. Furthermore the energy content in a sphere of radius R in

a given space-time gives a taste of the effective gravitational mass that a test particle

situated at the same distance from the gravitating object experiences. A large number

of researchers have devoted considerable attention to the problem of finding the energy

as well as momentum and angular momentum associated with various space-times.

The problem of obtaining the energy is considered for Einstein’s theory of general

relativity and also tele-parallel theory gravity. From the advents of these different

gravitation theories various methods have been proposed to deduce the conservation

laws that characterize the gravitational systems. The first of such attempts was made
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by Einstein who proposed an expression for the energy-momentum distribution of

the gravitational field. There have many attempts to resolve the energy-momentum

problem[2, 3, 4, 5, 6, 7, 8, 9, 10]. There exists an opinion that the energy-

momentum definitions are not useful to get finite and meaningful results in a given

geometry. Virbhadra and his collaborators re-opened the problem of the energy

and momentum by using the energy-momentum complexes. The Einstein energy-

momentum complex, used for calculating the energy in general relativistic systems, was

followed by many complexes: e.g. Tolman, Papapetrou, Bergmann-Thomson, Møller,

Landau-Liftshitz, Weinberg, Qadir-Sharif and the tele-parallel gravity analogs of the

Einstein, Landau-Lifshitz, Bergmann-Thomson and Møller’s. The energy-momentum

complexes give meaningful results when we transform the line element in quasi-Cartesian

coordinates. The energy and momentum complex of Møller gives the possibility to

perform the calculations in any coordinate system[11]. To this end Virbhadra and his

collaborators have considered many space-time models and have shown that several

energy-momentum complexes give the same and acceptable results for a given space-

time[12, 13, 14, 15, 16, 17]. In Phys. Rev. D60-104041 (1999), Virbhadra, using

the energy and momentum complexes of Einstein, Landau-Lifshitz, Papapetrou and

Weinberg for a general non-static spherically symmetric metric of the Kerr-Schild

class, showed that all of these energy-momentum formulations give the same energy

distribution as in the Penrose energy-momentum formulation.

Albrow[18] and in the following work, Tryon[19] suggested that in our universe, all

conserved quantities have to vanish. Tryon’s big bang model predicted a homogenous,

isotropic and closed universe including matter and anti-matter equally. They argue that

any closed universe has zero energy. The subject of the energy-momentum distributions

of closed and open universes was initiated by an interesting work of Cooperstock and

Israelit[20]. They found the zero value of energy for any homogenous isotropic universe

described by a Friedmann-Robertson-Walker metric in the context of general relativity.

This interesting result influenced some general relativists, for example: Rosen[21], Johri

et al.[22], Banerjee and Sen[23]. Johri et al. using the Landau-Liftshitz’s energy-

momentum complex, found that the total energy of an Friedmann-Robertson-Walker

spatially closed universe is zero at all times. Banerjee and Sen who investigated the

problem of total energy of the Bianchi-I type space-times using the Einstein complex,

obtained that the total energy is zero. This result agrees with the studies of Johri

et al. since the line element of the Bianchi-I type space-time reduces to the spatially

flat Friedmann-Robertson-Walker line element in a special case. Vargas[10] using the

definitions of Einstein and Landau-Lifshitz in tele-parallel gravity, found that the total

energy is zero in Friedmann-Robertson-Walker space-times. This results agree with

the works of Rosen and Johri. Saltı and his collaborators considered different space-

times for various definitions in tele-parallel gravity and obtained the energy-momentum

distributions in a given model. Firstly, Saltı and Havare[24] considered Bergmann-

Thomson’s complex in both general relativity and tele-parallel gravity for the Viscous

Kasner-type metric and in another work, Saltı[25] using the Einstein and Landau-
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Lifshitz’s complexes associated with the same metric in tele-parallel gravity, found that

total energy and momentum are zero. At the last, Aydogdu and Saltı[26] used Møller’s

definition in tele-parallel gravity for Bianchi-I type metric and found that the total

energy is zero.

The paper is organized as follows: In the next section, we introduce viscous Kasner-

type space-times. In section III, by using Møller’s energy-momentum complex we

calculate the total energy in the viscous Kasner-type space-times in general relativity.

Section IV gives us, the total energy distribution for the same metric in tele-parallel

gravity. At the last, we summarize and discuss our results. Throughout this paper, Latin

indices (i, j, ...) represent the vector number, and Greek indices (µ, ν,...) represent the

vector components. All indices run from 0 to 3 and we use the convention that G = 1,

c = 1 units.

2. The Viscous Kasner-type Space-time

The Friedmann-Robertson-Walker cosmological model has attracted considerable

attention in the relativistic cosmology literature. Maybe one of the most important

properties of this model is, as predicted by inflation[27, 28, 29], the flatness, which

agrees with the observed cosmic microwave background radiation.

In the early universe the sorts of the matter fields are uncertain. The existence of

anisotropy at early times is a very natural phenomenon to investigate, as an attempt

to clarify among other things, the local anisotropies that we observe today in galaxies,

clusters and super-clusters. So, at the early time, it appears appropriate to suppose a

geometry that is more general than just the isotropic and homogenous Friedmann-

Robertson-Walker geometry. Even though the universe, on a large scale, appears

homogenous and isotropic at the present time, there are no observational data that

guarantee this in an epoch prior to the recombination. The anisotropies defined above

have many possible sources; they could be associated with cosmological magnetic or

electric fields, long-wave length gravitational waves, Yang-Mills fields[30].

The line element of the viscous Kasner-type universe[31] is given as,

ds2 = −dt2 + t2adx2 + t2bdy2 + t2cdz2 (1)

where a, b and c are three parameters that we shall require to be constants. The

expansion factors t2a, t2b and t2c could be determined via Einstein’s field equations.

The Kasner universe, in Einstein’s theory(with cosmological constant Λ = 0), refers

to a vacuum cosmological model given by (1) where the numbers a, b and c satisfy the

constraints

a+ b+ c = a2 + b2 + c2 = 1 (2)

An anisotropic Kasner-type universe can be considered to be filled with an ideal(non-

viscous) fluid which has an equation of state p = ρ(stiff matter-the velocity of sound

coincides with the speed of light), where ρ is the energy density and p is the isotropic

pressure.
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For the line element (1), gµν and gµν are defined by

gµν = −δ0µδ
0
ν + t2aδ1µδ

1
ν + t2bδ2µδ

2
ν + t2cδ3µδ

3
ν (3)

gµν = −δ
µ
0 δ

ν
0 + t−2aδ

µ
1 δ

ν
1 + t−2bδ

µ
2 δ

ν
2 + t−2cδ

µ
3 δ

ν
3 (4)

The non-trivial tetrad field induces a tele-parallel structure on space-time which is

directly related to the presence of the gravitational field, and the Riemannian metric

arises as

gµν = ηabh
a
µh

b
ν (5)

Using this relation, we obtain the tetrad components:

ha
µ = δa0δ

0
µ + taδa1δ

1
µ + tbδa2δ

2
µ + tcδa3δ

3
µ (6)

and its inverse is

hµ
a = δ0aδ

µ
0 + t−aδ1aδ

µ
1 + t−bδ2aδ

µ
2 + t−cδ3aδ

µ
3 (7)

From the Christoffel symbols which are defined by

Γα
µν =

1

2
gαβ (∂µgβν + ∂νgβµ − ∂βgµν) (8)

we obtain following non-vanishing components:

Γ0
11 = at2a−1, Γ0

22 = bt2b−1, Γ0
33 = ct2c−1

Γ1
01 = Γ1

10 =
a

t
, Γ2

02 = Γ2
20 =

b

t
, Γ3

03 = Γ3
30 =

c

t
(9)

The metric given by (1) reduces to the spatially flat Friedmann-Robertson-Walker

metric in a special case. Defining ta = R(t) with a = b = c, and transforming the

line element (1) to t, x, y, z coordinates according to x = r sin θ cos φ, y = r sin θ sinφ,

z = r cos θ gives

ds2 = −dt2 +R2(t)[dr2 + r2(dθ2 + sin2 θdφ2)] (10)

which describes the well-known spatially flat Friedmann-Robertson-Walker space-time.

3. Mφller’s Energy in General Relativity

In this section considering Mφller’s energy-momentum complex in general relativity we

calculate total energy associated with the viscous Kasner-type space-time.

In general theory of relativity the energy-momentum complex of Mφller[5] is given

by

Mν
µ =

1

8π
χνα
µ,α (11)

satisfying the local conservation laws:

∂Mν
µ

∂xν
= 0 (12)

where the antisymmetric super-potential χνα
µ is

χνα
µ =

√
−g[gµβ,γ − gµγ,β ]g

νγgαβ. (13)



Energy-Momentum of a Stationary Beam of Light 5

The locally conserved energy-momentum complex Mν
µ contains contributions from the

matter, non-gravitational and gravitational fields. M0
0 is the energy density and M0

a are

the momentum density components. The energy-momentum components are given by

Pµ =
∫ ∫ ∫

M0
µdxdydz. (14)

Using Gauss’s theorem, the energy and momentum are

Pµ =
1

8π

∫ ∫
χνα
µ µαdS. (15)

where µα is the outward unit normal vector over the infinitesimal surface element dS.

Pi give momentum components P1, P2, P3 and P0(say EGR) gives the energy. We wish

to find the total energy in the space-time which is described by the line element (1).

Using equation (13) we found the components of χνα
µ are zero. From this point of view

using equation (11) we obtain

M0
0 = M0

a = 0 (16)

However, we easily see that in the viscous Kasner-type universe Mφller’s energy is found

as

EGR = 0 (17)

4. Mφller’s Energy in Tele-Parallel Gravity

The tele-parallel gravity is an alternative approach to gravitation and corresponds to

a gauge theory for the translation group based on Weitzenböck geometry[32]. In the

theory of the tele-parallel gravity, gravitation is attributed to torsion[33], which plays

the role of a force[34], and the curvature tensor vanishes identically. The essential field

is acted by a nontrivial tetrad field, which gives rise to the metric as a by-product.

The translational gauge potentials appear as the nontrivial item of the tetrad field, so

induces on space-time a tele-parallel structure which is directly related to the presence

of the gravitational field. The interesting place of tele-parallel gravity is that, due to

its gauge structure, it can reveal a more appropriate approach to consider some specific

problem. This is the situation, for example, in the energy and momentum problem,

which becomes more transparent.

Mφller modified general relativity by constructing a new field theory in tele-parallel

space[35]. The aim of this theory was to overcome the problem of the energy-momentum

complex that appears in Riemannian Space[36]. The field equations in this new theory

were derived from a Lagrangian which is not invariant under local tetrad rotation.

Saez[37] generalized Mφller theory into a scalar tetrad theory of gravitation. Meyer[38]

showed that Mφller theory is a special case of Poincare gauge theory[39, 40].

The super-potential of Mφller in tele-parallel gravity is given by Mikhail et al.[9] as

Uνβ
µ =

(−g)1/2

2κ
P τνβ
χρσ [Φρgσχgµτ − λgτµγ

χρσ − (1− 2λ)gτµγ
σρχ] (18)
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where P τνβ
χρσ is

P τνβ
χρσ = δτχg

νβ
ρσ + δτρg

νβ
σχ − δτσg

νβ
χσ (19)

with gνβρσ being a tensor defined by

gνβρσ = δνρδ
β
σ − δνσδ

β
ρ (20)

and γµνβ is the con-torsion tensor given by

γµνβ = hiµh
i
ν;ρ (21)

where the semicolon denotes covariant differentiation with respect to Christoffel symbols.

g is the determinant of the gµν , Φµ is the basic vector field defined by

Φµ = γρ
µρ (22)

κ is the Einstein constant and λ is the free dimension-less parameter. The energy may

be expressed by the surface integral[5]

ETG = lim
r→∞

∫
r=constant

U0α
0 nαdS (23)

here nα is the unit three-vector normal to the surface element dS. Taking the results

which are given by (6) and (7) into equation (21) we get the non-vanishing components

of γµνβ as:

γ011 = −γ101 = at2a−1

γ022 = −γ202 = bt2b−1

γ033 = −γ303 = ct2c−1 (24)

Using this result, we find following non-vanishing component of basic vector field:

Φ0 =
1

t
(25)

From equation (18) with the results which are given in equation (24) and (25) we find

the required components of Møller’s super-potential are vanishing. Substituting these

values into equation (23) we get

ETG = 0 (26)

This is the same result as which is obtained by general relativity version of Møller’s

energy-momentum complex.

5. Discussions

The definition of energy-momentum localization in both the general theory of relativity

and tele-parallel gravity has been very exciting and interesting; however, it has been

associated with some debate.

Through this paper, to compute the total energy of the universe based on the viscous

Kasner-type metric, we have considered two approaches of Møller’s energy-momentum
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complex: the versions in both the general theory of relativity and tele-parallel gravity.

We found the total energy in these different gravitation theories as:

EGR = ETG = 0 (27)

which agree with the result that obtained by Cooperstock and Israelit, Rosen, Johri

et al., Banerjee-Sen, Vargas, Saltı et al.. Moreover; the result that the total energy of

the universe in the viscous Kasner-type space-time is zero supports the viewpoints of

Albrow and Tyron. It is also independent of the tele-parallel dimensionless coupling

constant, which means that it is valid in any tele-parallel model. The Moller approach

is one among others to compute total energy, and the Kasner-type metrics should be

analyzed and get the same results in some of these different ways: e.g. Papapetrou,

Landau-Lifshitz, Qadir-Sharif, Weinberg, Tolman and Einstein.
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