
ar
X

iv
:0

90
5.

22
38

v1
  [

m
at

h.
G

T
] 

 1
4 

M
ay

 2
00

9

INVARIANTS OF LEGENDRIAN KNOTS FROM OPEN BOOK

DECOMPOSITIONS

SİNEM ÇELİK ONARAN

Abstract. In this note, we define a new invariant of a Legendrian knot in a contact
manifold using an open book decomposition supporting the contact structure. We define
the support genus sg(L) of a Legendrian knot L in a contact 3-manifold (M, ξ) as the
minimal genus of a page of an open book of M supporting the contact structure ξ such
that L sits on a page and the framing given by the contact structure and by the page agree.
We show any null-homologous loose knot in an overtwisted contact structure has support
genus zero. To prove this, we observe any topological knot or link in any 3-manifold M

sits on a page of a planar open book decomposition of M .

1. Introduction

Recently, contact geometry has been a major development in low dimensional topology
due to work of Eliashberg, Giroux, Etnyre, Honda and many other mathematicians. The
study of Legendrian knots is important in the theory since Legendrian knots reveal the
geometry and topology of the underlying contact 3-manifold. For example, Legendrian
knots used to distinguish contact structures [15], to detect topological properties of knots
[20] and to detect overtwistedness of contact structures [9].

In [10], given any contact 3-manifold, Etnyre and Ozbagci defined new invariants of
contact structures in terms of open book decompositions supporting the contact structure.
One of the invariants is the support genus of the contact structure which is defined as the
minimal genus of a page of an open book that supports the contact structure. In a similar
fashion, we define the support genus sg(L) of a Legendrian knot L in a contact 3-manifold
(M, ξ) as the minimal genus of a page of an open book of M supporting the contact structure
ξ such that L sits on a page and the framing given by the contact structure and by the page
agree. This definition is originally due to Etnyre.

First we study the topological properties of knots sitting on pages of open book decompo-
sitions. For knots and links in S3, we explicitly construct a planar open book decomposition
of S3 which contains the knot or the link on its page.

Theorem 1.1. Any topological knot or link in S3 sits on a planar page of an open book
decomposition whose monodromy is a product of positive Dehn twists.

As a result of this theorem, we have a general property for topological knots and links.

Theorem 1.2. Any topological knot or link in a 3-manifold M sits on a planar page of an
open book decomposition.

Next we work on the following question: What contact geometric properties of knots are
reflected by topological properties of knots sitting on pages of open books? Using the above
theorems, we prove:

Theorem 1.3. Any null-homologous loose Legendrian knot in an overtwisted contact 3-
manifold has support genus sg(L) = 0.
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On the other hand, we construct examples of non-loose knots with support genus non-
zero. We also want to remark that it is easy to find examples of Legendrian knots with
non-zero support genus in weakly fillable contact structures.

In the following section, we briefly give background information on contact structures,
knots in contact manifolds and open book decompositions. In Section 3, we show any topo-
logical knot sits on a planar page. Using this result, in Section 4, we conclude Theorem 1.3.
Finally, in Section 5, we present examples of support genus zero and non-zero non-loose
knots and we list several observations and open problems related to the support genus of
knots.

2. Background Information

Let us now review the basics of contact geometry and briefly mention the facts that we
will use throughout the paper.

2.1. Contact Structures and Knots in Contact Manifolds. A contact structure ξ on
an oriented 3-manifold M is a maximally non-integrable 2-plane field. Locally ξ can be
given as a kernel of a 1-form α and from the non-integrability condition we have α∧dα 6= 0.
The 1-form α is called a contact form. We denote a contact 3-manifold as (M, ξ).

A knot L in a contact 3-manifold (M, ξ) is called Legendrian if it is everywhere tangent to
ξ. The classical invariants of Legendrian knots are the topological knot type, the Thurston-
Bennequin invariant tb(L) and the rotation number rot(L). The Thurston-Bennequin in-
variant tb(L) measures the framing of L given by the contact planes with respect to the
framing given by the Seifert surface of L and the rotation number rot(L) of an oriented
Legendrian knot L can be computed as the winding number of TL after trivializing ξ along
a Seifert surface for L.

Positive (negative) stabilization S+(L) (S−(L)) of a Legendrian knot L in the standard
contact structure ξst on R3 is obtained by modifying the front projection of L by adding a
down cusp (an up cusp) as in Figure 1. Since stabilizations are done locally, by Darboux
this defines stabilizations of Legendrian knots in any contact 3-manifold (M, ξ). After
stabilizing a Legendrian knot the classical invariants change as tb(S±(L)) = tb(L) − 1 and
rot(S±(L)) = rot(L)± 1.

Figure 1. The positive stabilization S+(L) and the negative stabilization
S−(L) of L.

A contact structure ξ on M is overtwisted if there is an embedded disk with a Legen-
drian boundary having Thurston-Bennequin invariant zero, otherwise ξ is called tight. A
Legendrian knot in an overtwisted contact 3-manifold M is loose if its complement is also
overtwisted. We call a Legendrian knot non-loose if its complement is tight.

For details on contact structures and knots in contact structures, see [5], [7].

2.2. Open Book Decompositions. An open book decomposition of a closed, oriented 3-
manifold M is a triple (B,S, ϕ) where B is an oriented link inM and the complement M−B
fibers over the circle with the monodromy map ϕ, that is, ϕ is identity on a neighborhood of
the boundary ∂S of S and M −B = S× [0, 1]/(1, x) ∼ (0, ϕ(x)). The fibers are the interior
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of the Seifert surface S of B. The link B is called the binding and the fiber surface S is
called the page of the open book decomposition. The genus of an open book decomposition
is defined as the genus of the page. In particular, planar open book decompositions are
genus zero open book decompositions.

Positive (negative) stabilization of an open book decomposition (B,S, ϕ) is the open book
decomposition (B,S′, ϕ◦ta

±1) where S′ = S∪(1-handle) and ta (t−1
a )is a right (left) handed

Dehn twist along the closed curve a in S′ running over the 1-handle and intersecting the
co-core of the 1-handle once.

An open book decomposition of M and a contact structure ξ on M are compatible if after
an isotopy of the contact structure, there is a contact form α for ξ such that α > 0 on the
binding B, in other words the binding B is a positive transverse link, and dα > 0 on every
page of the open book decomposition.

In [22], Thurston and Winkelnkemper show that every open book decomposition of a 3-
manifold admits a compatible contact structure. In [12], Giroux proves that every contact
structure is compatible with some open book decomposition and he also proves there is a
one to one correspondence between oriented contact structures up to isotopy and open book
decompositions up to positive stabilization.

The following lemma is useful and gives the relation between the stabilizations of open
book decompositions and the stabilizations of Legendrian knots sitting on a page of an open
book decomposition. For the proof see for example [2].

Lemma 2.1. Let (B,S, ϕ) be an open book decomposition of M compatible with ξ. Let L
be a Legendrian knot sitting on a page of the open book.

(1) Positive (negative) stabilization S+(L) (S−(L)) of the Legendrian knot L can be
seen on the page of the open book by first stabilizing the open book positively and
then pushing the knot L over the 1-handle that we use to stabilize the open book.
See Figure 2(a) and (b).

(2) If we first negatively stabilize the open book and then push the knot L over the 1-
handle that we use to stabilize the open book, then the negatively stabilized open
book is no longer compatible with the contact structure ξ but the curve L on the page
gives a Legendrian knot L′ in the new contact structure and Legendrian knots in
Figure 2(c) and (d) are positive and negative destabilizations of L′, respectively.

Figure 2. (a) Positive stabilization S+(L) of L, (b) Negative stabilization
S−(L) of L, (c) Positive destabilization of L′, S+(L+) = L′, (d) Negative
destabilization of L′, S−(L−) = L′.

To prove main theorems we also need the following lemma.
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Lemma 2.2. Let (B,S, ϕ) be an open book decomposition for a closed, oriented 3-manifold
M .

(1) If K is a knot in M intersecting each page S transversely once, then the result of a
0-surgery along K gives a new manifold with an open book decomposition having a
page S′ = S−{open disk} and having the knot K as one of the binding components.
In particular, if the knot K = {x} × [0, 1]/ ∼ in the mapping torus Mϕ in M for
a fixed point x ∈ S of ϕ then the new monodromy ϕ′ after a 0-surgery along K is
ϕ′ = ϕ |S′ .

(2) If K is a knot in M sitting on a page S of the open book decomposition, then ±1-
surgery along K with respect to the page framing gives a new manifold with an open
book decomposition (B,S, ϕ ◦ t∓1

K ) where t+1
K / t−1

K denotes right/ left handed Dehn
twists along the knot K.

For the proof of above Lemma 2.2 and for more information on open book decompositions,
see [8].

3. Invariants of Knots from Open Book Decompositions

Theorem 3.1. Any knot K in S3 is planar, that is K sits on a page of a planar open book
for S3.

Before the proof of Theorem 3.1, let us define some terminology, state a fundamental
lemma and give an illustrative example.

It is well known that any link L of k components L1, . . . , Lk, in particular any knot K,
can be represented as a 2n-plat, see Figure 3(a). We define the shifted 2n-plat of the link
L (or the knot K) as the closure of a 2n-braid as shown in Figure 3(b). We say a shifted
2n-plat of the link L is pure braided 2n-plat if its associated 2n-braid is a pure braid. For
details on braid group, pure braid group and plat presentation of knots and links, see [1].

Figure 3. Shifted 2n-plat of L is called pure braided 2n-plat if its associated
2n-braid is a pure braid.

Example 3.2. The figure eight knot K is planar. The aim here is to present the figure
eight knot K as a pure braided plat as in Figure 6(a) and using this pure braided plat and
the ideas in Lemma 2.2 to construct a planar open book which contains the figure eight
knot on its page.

We start with a minimum braid representation of the figure eight knot K as in Figure 4.
Throughout σi, i = 1, . . . , n−1, stand for the standard generators of the braid group Bn on
n-strands. Note that K has braid index 3 and its associated braid word is b = σ−1

2 σ1σ
−1
2 σ1.
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Figure 4. Braid representative of the figure eight knot

As seen in Figure 5(a), we can represent K by a 6-plat which is associated to a 6-braid

b0b̃b0
−1 where b0 = (σ2σ3σ4σ5)(σ3σ4) and b̃ is the 6-braid obtained from b by adding 3

trivially braided strands. Now isotope the diagram in Figure 5(a) to obtain a shifted 6-plat
as in Figure 5(b) and continue isotoping to obtain a pure braided 6-plat for the figure eight
knot as in Figure 5(c). In Lemma 3.3 below, we present an algorithm to obtain a pure
braided plat for any given knot in S3.

Figure 5. Pure braided plat presentation of the figure eight knot.

Next, we decompose the pure braided 6-plat of the figure eight knot in standard generators
of the pure braid group on 6-strands as in Figure 6(a). Now to obtain the open book
decomposition which contains the figure eight knot K, we unknot K using the diagram in
Figure 6(a). We unknot K by blowing up twists. See Figure 6(b). We get a link LK of
unknots linking K whose components have framing ±1. We continue blowing up to ensure
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Figure 6. Unknotting the figure eight knot.

Figure 7. The unknotted knot K bounds a disk and we isotope the middle
±1-framed unknots onto the disk.

that each component of LK links K exactly once. See Figure 6(c). Notice that we add new
±1-framed components to the link LK and the components of LK link each other as the
Hopf link and link the knot K only once. We continue blowing up as in Figure 7 to remove
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Figure 8. Page of a planar open book decomposition containing the figure
eight knot, pages are disk with 16 punctures.

each linking between the components. We need to be careful with the resulting ±1-framed
unknots linking the components of LK . To be more precise, at each linking crossing between
the components of LK we have different choices where to blow up as explained in the proof
of Theorem 3.1 below. We always choose the one that guarantees that after blowing up,
the resulting ±1-framed unknots linking the components of LK can be isotoped to sit on
the page of the open book decomposition at the end. See Figure 7 again.

Finally, we blow up again as in Figure 8 so that each component of the link LK has framing
coefficient 0. Now, using Lemma 2.2 we are in a position to see the open book decomposition
explicitly. Note that we obtain a planar open book decomposition for S3 where the figure
eight knot K and each 0-framed components of LK are the binding components of the open
book decomposition and each ±1-framed unknots linking the components of LK sits on the
page and contributes ∓ Dehn twists to the monodromy of the open book decomposition
respectively.

Lemma 3.3. (1) Every knot can be represented as a pure braided plat.

(2) Every link of k components L1, . . . , Lk can be represented as a pure braided plat.

Proof. (1) We may isotope a shifted 2n-plat of the knot K to get a pure braided 2n-plat
for K as follows: First orient the knot K and label the lower and the upper end points of
the strands of associated 2n-braid b and pair them as in Figure 9. We have the following
list of pairs: for the lower end points (2n, 1), (2, 3), . . . , (2n − 2, 2n − 1) and for the upper
end points (1′, 2′), . . . , ((2n − 1)′, (2n)′). Also, denote the permutation in the permutation
group Sn on the set {1, . . . , 2n} associated to 2n-braid b of the shifted 2n-plat by σ.

Now, start in the lower left strand with a labeled 1 lower end point. This strand connects
to its upper point j′ = σ(1). Isotope (j′, (j+1)′) to the left as in Figure 10(a) so that the first
labeled upper point at the top is j′ = σ(1). Now relabel upper end points as 1′, 2′, . . . , (2n)′.
Next, find where the strand whose upper end point is 2′ connects at the bottom, its lower
end point will be σ−1(2′) = k where k is an element from the set {2, . . . , 2n − 1}. Note
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Figure 9. From a shifted 2n-plat to a pure braided plat

Figure 10. From a shifted 2n-plat to a pure braided plat

that k 6= 2n, otherwise the knot K would be a link. Isotope (k, k + 1) to the left as in
Figure 10(b) to be the second labeled strand at the bottom. Relabel the lower end points
as 1, 2, . . . , 2n. Note that we have σ(1) = 1′, σ(2′) = 2. Find σ(3) and isotope similarly to
be the third labeled strand at the top. Continuing in this manner, we will obtain a pure
braid giving a pure braided 2n-plat of the knot K.

(2) First of all, given a link L of k components L1, . . . , Lk we can present the link L as a
plat. From this plat we can obtain a shifted 2n-plat of L such that it has the same form as
in Figure 3(b) with an associated braid b which is not necessarily a pure braid. However,
the algorithm described in proof of (1) extends to convert a shifted 2n-plat of L into a pure
braided 2n-plat. �

Proof. of Theorem 3.1. Given a knot K in S3, we construct a planar open book of S3 such
that K is one of the binding components. Then, we push the knot K onto one of the pages.

First, present the knot K as a pure braided plat using the algorithm given in Lemma 3.3.
Next, decompose the pure braided plat of K in terms of standard generators of the pure
braid group. A generating set of braids Aij , 1 ≤ i < j ≤ 2n, for the pure braid group on
2n-strands is shown in Figure 11(a). Note to unknot the knot K using a decomposed pure
braided plat presentation of K, we only need to remove full twists. We remove twists and
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unknot K by blowing up. Note also that there is not a unique way to do so. The different
ways of blowing up are shown in Figure 11(b).

Figure 11. (a) Generator Aij for the pure braid group, (b) Different ways
of blowing up to remove twists.

The idea of the proof is that using this presentation of the knot K, unknot K by blowing
up several times in such a way that at the end K is the unknot which we denote by UK and
the resulting link of unknots LK coming from the blow ups linking UK satisfy:

(1) The components of LK are pairwise unlinked or linked as the Hopf link,
(2) If the components of LK linked as the Hopf link, then continue blowing up to remove

the linking and get ±1-framed unknots L± linking the components of LK ,
(3) L± does not link UK and each can be isotoped to sit on a disk that UK bounds,
(4) Each component of LK links UK only once and has a 0-framing.

Note, the knot UK has a natural open book in S3 coming from the disk it bounds. The
0-framed link LK of unknots puncture each disk page transversely once and we can isotope
±1-framed unknots L± linking the components of LK onto one of the punctured disk pages.
Thus, after performing surgeries UK will be isotopic to the knot K and by Lemma 2.2 we
will get a planar open book of S3 where the knot UK and the 0-framed link LK of unknots
form the binding components and each ±1-framed unknot sitting on the punctured disk
page contributes to ∓ Dehn twist to the monodromy of the new open book.

Note that it is enough to verify we can do this for the set of generators and their inverses
given in Figure 12. All the generators fall in one of the five cases given in Figure 12. We
explain one complicated case in Figure 13 and we give a summary for all cases in Figure 14.
We want to remark that the cases for the inverses are very similar to these cases except the
inverses possibly have different framing coefficients. We also want to remark that a pure
braided plat presentation of the knot K of the type in Figure 3(b) let us isotope ±1-framed
curves onto a page. For details on each cases, see [2]. �

Theorem 3.4. Let L be a link of k components L1, . . . , Lk in S3 then L is planar that is
L sits on a page of a planar open book for S3.

Proof. Here, we mimic the proof of the Theorem 3.1. The only modification required is at
the end. Using a pure braided plat presentation of the link L, repeatedly blow up to unknot
the given link L and arrange the framing of the unknots linking L only once to be 0 and
remove each linking between the unknots linking L to get the middle ±1-framed curves.
After performing the 0-surgeries, the page of the open book can be constructed by taking
the connected sum of components L1, . . . , Lk of the link L as shown in Figure 15. Hence,
we can isotope the middle ±1-framed curves onto a page using the bands connecting the
components. Clearly, the link L sits on a page of this planar open book. �

We are now ready for the proof of one of the main theorems of this section.
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Figure 12. Generators: Aii+1, Ai+1j+1, Aij+1, Ai+1j , Aij .

Figure 13. Ai+1j+1

Theorem 3.5. Let L be a link of k components L1, . . . , Lk in a 3-manifold M then L is
planar.

Proof. It is known, see [16] and [23], that any closed oriented 3-manifold M may be obtained
by ±1 surgery on a link LM of unknots in S3. Given a link L of k components L1, . . . , Lk

in a 3-manifold M , we may think of L as a link in S3 which is disjoint from the surgery link
LM . Now using the algorithm described in Theorem 3.4 we can find a planar open book
decomposition for S3 such that the link L ⊔ LM sits on its page. Also, using Lemma 2.1
we can arrange framing of each component of LM sitting on a page to be ±1 with respect
to the page framing. Then away from the link L, we can perform ±1 surgery on LM which
yields a planar open book for the 3-manifold M containing the link L on its page. Moreover,
this new open book has a monodromy which is the old monodromy composed with ∓ Dehn
twists along each ±1-framed component of the link LM . �
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Figure 14. Generators: Aii+1, Ai+1j+1, Aij+1, Ai+1j , Aij .

Figure 15. Construct the page of the open book by taking connected sum
of the components L1, . . . , Lk of the link L.

4. Support genus of Legendrian Knots

Definition 4.1. The support genus sg(L) of a Legendrian knot L in a contact 3-manifold
(M, ξ) is the minimal genus of a page of an open book decomposition of M supporting ξ
such that L sits on a page of the open book and the framing given by ξ and by the page
agree.

Theorem 4.2. Let L be a null-homologous Legendrian loose knot in a knot type K in an
overtwisted contact 3-manifold (M, ξot). Then sg(L) = 0.

Proof. It is known that two null-homologous Legendrian loose knots L1 and L2 in knot type
K with the same Thurston-Bennequin invariant and the same rotation number are related
by a contactomorphism of (M, ξot), [11]. Here, we show that we can realize any pair of
integers (m,n) with m± n odd as (tb(L), r(L)) for a null-homologous loose knot L in knot
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type K that sits on a planar open book (B,S, ϕ) supporting (M, ξot). By Theorem 3.5, we
know there is a planar open book decomposition, say (BK , SK , ϕK), for M such that K
lies on a page of the open book. The planar open book (BK , SK , ϕK) is compatible with
some contact structure ξ′ on M . If necessary we can negatively stabilize the open book in
such a way that the resulting open book is still planar and it is overwisted. Furthermore,
following [6] we can assume ξ′ is the same as the overtwisted contact structure ξot. Briefly,
this is done by performing necessary Lutz twists and taking Murasugi sum of M with
an appropriate overtwisted S3, we can arrange the 2-dimensional invariants d2 and the 3-
dimensional invariants d3 of ξ′ and ξot to be the same. Thus, the two contact structures
will be homotopic, [13]. Then, by Eliashberg two overtwisted contact structures will be
isotopic. Note we can do this keeping the open book planar and keeping the given knot K
on the page. For the details of how to arrange invariants of overtwisted contact structures,
see the proof of Theorem 3.5 in [6].

Now, we can assume the planar open book (BK , SK , ϕK) containing the knot K on
its page is compatible with the overtwisted contact structure ξot on M . If necessary by
stabilizing the open book positively and pushing the knot K over the 1-handle, we can
assume K is non-separating and we may Legendrian realize the knot K on the page, say
it has a Thurston-Bennequin invariant t′ and a rotation number r′. To realize any pair
(tb(L), r(L)) for any Legendrian representative of the knot K from the pair (t′, r′), first
realize the appropriate Thurston-Bennequin invariant tb(L). If t′ > tb(L), then to decrease
the Thurston-Bennequin invariant stabilize the knot positively or negatively on the page
by using Lemma 2.1(1). Modify the open book as in Figure 2(a) or (b), both will decrease
tb(L). Note, this modification alters neither the contact structure nor the genus of the open
book. Now, if t′ < tb(L), then to increase the Thurston-Bennequin invariant we need to
destabilize the knot positively or negatively on the page by using Lemma 2.1(2). Note, this
modification alters the contact structure. However, as before, away from the knot by taking
the Murasugi sum of M with an appropriate overtwisted S3, we can make sure that the
resulting overtwisted contact structure is still isotopic to ξot.

Now, assume that we realize the pair (tb(L), r′′). Hence to complete the proof we only
need to realize any possible rotation number rot(L) from r′′. To increase or decrase the
rotation number, we will use Lemma 2.1 again and stabilize the knot positively or negatively
on the page. Recall that a positive and a negative stabilization of a knot increase and
decrease the rotation number by 1, respectively and also recall that both stabilizations
decrease the Thurston-Bennequin invariant tb(L) by 1. Thus, every time we increase or
decrease r′′, we need to make sure that tb(L) stays the same. Clearly, this is possible
since to increase the rotation number if we first positively stabilize the knot on the page
as in Figure 2(a) and then negatively destabilize the knot on the page as in Figure 2(d),
the rotation number will increase by 2 and tb(L) stays the same. Note after negatively
stabilizing the open book, we again perform a Murasugi sum to keep the contact structure
same as ξot. Similarly, to decrease the rotation number, we first modify the open book as in
Figure 2(b) and then as in Figure 2(c), this time the rotation number will decrease by 2 and
tb(L) stays the same. Since tb(L) ± rot(L) is odd, we can realize any pair (tb(L), rot(L)).
Thus, for any null-homologous loose Legendrian representative of the knot K we can find
a planar open book decomposition supporting ξot such that the Legendrian representative
sits on the page. �

5. Final Remarks and Questions

Remark 5.1. Note that other than the unknots with 0-framing coming from resolving
the generators (1) Aii+1, (3) Aij+1, (4) Ai+1j in the proof of Theorem 3.1, we have only
−1-framed unknots. In these cases, −1-framed unknots contribute positive Dehn twists to
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the monodromy of the new open book. We want to remark that we can arrange this to be
the case for all generators and their inverses. Namely, by blowing up in different ways we
can make sure that other than 0-framed unknots, each case contains only −1-framed knots.
Thus, at the end we will have an open book decomposition for S3 whose monodromy is a
product of only positive Dehn twists and contains the given knot or link on its page. We
discuss one case, case (2) Ai+1j+1, in Figure 16. Other cases can be worked out similarly.
For details see [2].

Figure 16.

As a consequence, we have

Theorem 5.2. Any topological knot or link in S3 sits on a planar page of an open book
decomposition whose monodromy is a product of positive Dehn twists.

Also, from this observation it follows that

Theorem 5.3. Given a knot type K in (S3, ξstd), there is a Legendrian representative L of
K such that sg(L) = 0.

It is easy to find examples of support genus non-zero Legendrian knots in weakly fillable
tight contact structures.

Lemma 5.4. Let L be a Legendrian knot in a weakly fillable tight contact structure with
a Thurston-Bennequin invariant tb(L) > 0 then sg(L) > 0. In particular, any Legendrian
knot L in (S3, ξst) with Thurston-Bennequin invariant tb(L) ≥ 0 has sg(L) > 0.

Proof. In [6], Etnyre gives constraints on contact structures having support genus zero. In
particular, according to [6] a contact 3-manifold (M, ξ) obtained by a Legendrian surgery
along a Legendrian knot L in a weakly fillable contact structure having Thurston-Bennequin
invariant tb(L) > 0 has sg(ξ) > 0. If a Legendrian knot with tb(L) > 0 had support genus
sg(L) = 0, then performing a Legendrian surgery on L would yield a contact 3-manifold
(M, ξ) with support genus sg(ξ) = 0, which is not the case. Therefore, such a Legendrian
knot has sg(L) > 0. The Legendrian knots with tb(L) = 0 has sg(L) > 0 follows from
[19]. �

There are examples of support genus non-zero non-loose knots in overtwisted contact
structures.

Example 5.5. Consider a Legendrian knot L with a Thurston-Bennequin invariant tb(L) >
0 in (S3, ξstd). Let (M, ξ) denote the contact 3−manifold results from a +1-contact surgery
on a positive stabilization S+(L) of the Legendrian knot L. (M, ξ) is overtwisted by [17]
and since tb(S+(L)) ≥ 0 according to the previous Remark 5.4, sg(S+(L)) > 0. Note
the image S+(L)

′ of S+(L) in the surgered overtwisted contact manifold (M, ξ) is a non-
loose Legendrian knot with a non-zero support genus. The Legendrian knot S+(L)

′ is
non-loose since the complement of S+(L)

′ in (M, ξ) is contactomorphic to the complement
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of S+(L) in (S3, ξstd) and sg(S+(L)
′) > 0, otherwise this would contradict to the fact that

sg(S+(L)) > 0.

There are examples of support genus zero non-loose knots in overtwisted contact struc-
tures.

Example 5.6. The contact 3-manifold given by the surgery diagram in Figure 17 is an
overtwisted (S3, ξn) with d3(ξn) = 1 − np(p − 1). The Legendrian knot Ln in (S3, ξn)
is non-loose with support genus zero and topologically a (p, pn + 1) positive torus knot.
When p = 2, Legendrian non-loose knots of knot type (2, 2n + 1) positive torus knots first
appeared in [18]. Let X denote the 4-manifold obtained by viewing the integral surgeries
as 4-dimensional 2-handle attachments to S3. With the help of X, we can compute the
3-dimensional invariant d3(ξn) of the contact structure ξn. From Figure 17, the signature
of X is σ(X) = −n − p + 1 and the Euler characteristic of X is χ(X) = n + p + 1. Also,
using a second homology class c ∈ H2(X,Z) defined by the rotation number, we compute
c2 = −n(2p− 1)2 − (p − 1). From the formula:

d3(ξ) =
1

4
(c2 − 3(σ(X)) − 2(χ(X))) + q

where q denotes the number of +1-contact surgeries, the 3-dimensional invariant of ξn is
d3(ξn) = 1 − np(p − 1). Note that ξn is overtwisted since d3(ξn) < 0. Note also that Ln is
non-loose since Legendrian surgery on Ln cancels one of the +1-surgeries in Figure 17 and
results in a tight contact structure. By a similar argument used in [21], the surgery link
together with the Legendrian knot Ln given in Figure 17 can be put on a page of a planar
open book of (S3, ξst). After performing surgeries, we will get (S3, ξn) compatible with a
planar open book containing the Legendrian knot Ln on its page. Therefore, sg(Ln) = 0.

Remark 5.7. As we discussed in Example 5.5 above, in overtwisted contact structures there
are examples of non-loose knots having support genus non-zero. Let L be a null-homologous,
support genus non-zero, non-loose Legendrian knot of knot typeK in an overtwisted contact
manifold (M, ξot). We can find a loose knot L̃ of knot type K in (M, ξot) such that L̃ has

the same classical invariants as L. Moreover, by Theorem 4.2 it follows that sg(L̃) = 0.
Thus, we have examples of knots having the same classical invariants but different support
genus in overtwisted contact structures. Also, it would be very interesting to know

Question 5.8. What are the examples of Legendrian knots L1 and L2 in a tight contact
structure such that tb(L1) = tb(L2) and rot(L1) = rot(L2) but sg(L1) 6= sg(L2)?

As explained in Lemma 2.1, if a Legendrian knot L sits on a page of an open book
decomposition, then positive or negative stabilization of L can be seen on the page of the
open book as in Figure 2. Note that we add 1-handles in such a way that the resulting open
book still has the same genus. As a result, we have

Theorem 5.9. If a Legendrian knot L has support genus sg(L) = n, then the stabilizations
Sn1

+ Sn2

− (L) of L have support genus sg(Sn1

+ Sn2

− (L)) ≤ n.

By the above Theorem 5.9, given a knot type K, if all Legendrian knots realizing K
without maximal Thurston-Bennequin invariant destabilize and the Legendrian knots with
maximal Thurston-Bennequin invariant has support genus zero, then all Legendrian knots
of knot type K has support genus zero. For example, all Legendrian unknots in (S3, ξst)
are planar.

Recall that for a non-zero rational number r ∈ Q, a contact r-surgery on a Legendrian
knot L in a contact 3-manifold (M, ξ) is a topological r-surgery with respect to the contact
framing. The resulting manifold is a new contact 3-manifold (M ′, ξ′) where the contact
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Figure 17. (p, pn+ 1) Torus knots

structure ξ′ is constructed by extending ξ from the complement of a standard contact
neighborhood of L to a tight contact structure on the glued solid torus, [3]. Such an
extension always exists and it is unique when r = 1

k
, k ∈ N, [14].

Theorem 5.10. Let L be a Legendrian knot in a contact 3-manifold (M, ξ) such that
sg(L) = 0. Then, the contact 3-manifold (M ′, ξ′) results from a contact r-surgery on L has
sg(ξ′) = 0.

Proof. For contact r-surgery with r < 0, consider a continued fraction expension of r − 1

[r1, r2, . . . , rn] = r1 −
1

r2 −
1

···− 1

rn

with integers ri ≤ −2, i = 1, . . . , n. Let L1 be the |r1 + 1| times stabilization of the front
projection of the Legendrian knot L and let Li be the Legendrian push off of Li−1 with
additional |ri + 2| stabilizations, i = 2, . . . , n. Then following [3], we can replace contact
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r-surgery on L by a sequence of contact −1-surgery on L1, . . . , Ln. Since the support
genus sg(L) = 0, by using Lemma 2.1(1) and by keeping the page of the open book planar
we can realize each Li on a planar open book containing L on its page. Again by using
Lemma 2.1(1) we can arrange framing of each Li sitting on a planar page to be −1 with
respect to the page framing. After performing contact surgeries, we will obtain a support
genus zero contact 3-manifold.

According to [3], for p, q relatively prime positive integers, a contact r = p
q
> 0 surgery

on L corresponds to k contact +1-surgeries on k Legendrian push offs of L followed by a
contact r′ = p

q−kp
-surgery on a Legendrian push off of L for any integer k ∈ N such that

q − kp < 0. By starting with a planar open book containing the Legenrian knot L on its
page, we can easly see k Legendrian push offs of L on the page and by using Lemma 2.1(1)
we can arrange the framings of each push off of L sitting on a planar page to be +1 with
respect to the page framing. Hence to complete the proof we need only to show we can
perform r′ < 0 surgery on a Legendrian push off of L on the page also but this can be easily
arranged as we did above. �

Remark 5.11. Note that the support genus of a Legendrian knot gives an upper bound on
the support genus of a contact structure, that is, sg(L) ≥ sg(ξ). So, if there is a Legendrian
knot L in a contact 3-manifold (M, ξ) having support genus zero, then sg(ξ) = 0. Also, it
is still not known if there is a contact structure ξ having support genus sg(ξ) > 1. This
raises a natural question:

Question 5.12. Is sg(L) or sg(ξ) ever bigger than 1?

Remark 5.13. In [18], Heegaard Floer invariants of Legendrian knots are defined by using
an open book decomposition that supports the contact structure and contains the knot on
its page. Also, in [19], Heegaard Floer homology is used to give restrictions on contact
structures supported by planar open book decompositions. One can investigate the work
on knots sitting on planar pages in this paper from Heegaard Floer theory perspective:

Question 5.14. Can one find restrictions on Legendrian knots sitting on planar pages by
using Heegaard Floer homology?

Here are some final questions:

Question 5.15. Let L be a Legendrian knot in (S3, ξst) with tb(L) < 0. Is sg(L) = 0?

Question 5.16. Is the support genus of knots additive under connected sums?

Question 5.17. What is the relation between support genus of a knot and its mirror?
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