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Abstract

We study τ → µ ν̄i νi, i = e, µ, τ decays in the two Higgs doublet model, with the

inclusion of one and two spatial non-universal extra dimensions. We observe that the

branching ratio is sensitive to two extra dimensions in contrary to a single extra dimension.
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1 Introduction

Lepton flavor violating (LFV) interactions are rich to analyze since they exist in the loop level

and they are sensitive the physics beyond the standard model (SM). On the other hand they are

clean theoretically because they are free from the nonperturbative effects. The experimental

work done and the numerical results obtained stimulate the theoretical studies on these decays.

The µ → eγ and τ → µγ processes are among the LFV decays and the experimental the current

limits for their branching ratios (BR) have been predicted as 1.2× 10−11 [1] and 1.1× 10−6 [2],

respectively.

There is an extensive theoretical work done on the LFV decays in the literature. Such

interactions are studied in a model independent way in [3], in the seesaw model [4], in the

framework of the two Higgs doublet model (2HDM) [5, 6], in supersymmetric models [7, 8, 9,

10, 11, 12, 13].

In the present work we study τ → µ ν̄i νi, i = e, µ, τ decay in the model version of the 2HDM

with the inclusion of the non-universal extra dimensions. This process exists at least at one

loop level in the model III. The lepton flavor violation is driven by the internal scalar bosons

h0 and A0 and the transition τ → µ is obtained. Furthermore the internal Z boson connects

this transition to the ν̄ν output (see Fig. 1). Notice that we respect the assumption of the

non-existence of Cabibbo-Kobayashi-Maskawa (CKM) type matrix in the leptonic sector and

vanishing charged Flavor Changing (FC) interactions.

With the inclusion of additional dimensions there may be an enhancement in the BR of the

decay under consideration. The extra dimensions have been studied in the literature extensively

[14]-[31]. These new dimensions could not be detected at present and the most favorable

description is their compactification on a surface with small radii. From the 4D point of view

this compactification results in Kaluza-Klein (KK) modes of the particles with masses regulated

by the parameter R, which is a typical size of the extra dimension. If all the fields are accessible

to the extra dimensions, the extra dimensional momentum, and therefore, the KK number at

each vertex is conserved. Such extra dimensions are called universal extra dimensions (UED)

and they are studied in various works [15, 16, 17, 18, 20, 21, 22, 23] in the literature. If the extra

dimensions are accessible to some fields but not all in the theory, such type of extra dimensions

are called non-universal extra dimensions (NUED) (see for example [25, 26, 30, 31]). In this

case the KK number at each vertex is not conserved and tree level interaction of KK modes

with the ordinary particles can exist.

In our work we take the extra dimensions as non-universal and assume that the first Higgs
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doublet and the gauge fields are accessible to the extra dimensions, however the leptons, the

quarks and the second Higgs doublet, which contains new Higgs particles, live in the 4D brane.

In this case the contributions due to the additional dimensions comes from the internal Z boson

KK modes after the compactification of the external dimensions on orbifold S1/Z2 ((S1 ×
S1)/Z2) for a single (two) extra dimensions. We observe that there is almost two orders larger

enhancement on the BR of the process we study in the case of two NUED. This enhancement

is obviously due to the abundance of Z boson KK modes.

The paper is organized as follows: In Section 2, we present the theoretical expression for the

decay width of the LFV decay τ → µ ν̄i νi, i = e, µ, τ , in the framework of the model III, with

the inclusion of one and two NUEDs. Section 3 is devoted to discussion and our conclusions.

In the appendix section, we give explicit expressions of the functions appearing in the general

effective vertex for the interaction of off-shell Z-boson with a fermionic current.

2 τ → µ ν̄i νi decay in the general two Higgs doublet

model with the inclusion of non-universal extra di-

mensions

The LFV τ → µ ν̄i νi decay exists at least in the one loop level and, therefore, the physical

quantities like the BR contains rich information about the model used and the free parameters

existing. The extension of the Higgs sector in the SM makes the flavor violation (FV) possible

with the help of the new Yukawa interactions coming from the new Higgs scalars. In the multi

Higgs doublet models, the flavor changing neutral current (FCNC) at tree level, which induces

the FV interactions, can appear and the general 2HDM, so called model III, is one of the

candidate. The additional Yukawa interactions arising from new Higgs doublet are responsible

for the non vanishing theoretical values of the physical quantities like the BR. The inclusion of

extra dimensions may bring further contributions to these physical quantities. In the present

work we assume that the first Higgs doublet and the gauge fields feel the extra dimensions,

however, the leptons, the quarks and the second Higgs doublet, which contains new Higgs

particles, live in the 4D brane. With the addition of single (double) extra dimension, the

Yukawa interaction, including the LFV part in the model III, reads

LY = ηE5(6) ij l̄iL(φ1|y(z)=0)EjR + ξEij l̄iLφ2EjR + h.c. , (1)

where i, j are family indices of leptons, L and R denote chiral projections L(R) = 1/2(1∓ γ5),

φi for i = 1, 2, are the two scalar doublets, liL and EjR are lepton doublets and singlets respec-
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tively. Here ηE5(6) ij are 5(6)-dimensional dimensionful, ξEij are dimensionless Yukawa couplings

and ηE5(6) ij can be rescaled to the ones in 4-dimension as ηE5(6) ij =
√
2πR (2πR) ηEij , R is the

compactification radius and y (z) is the coordinate represents the 5(6)’th dimension. The cou-

pling ξEij , which has complex entries in general, is responsible for the FCNC at tree level 1. At

this stage we take two Higgs doublets φ1 and φ2 as

φ1 =
1√
2

[(

0
v +H0

)

+

( √
2χ+

iχ0

)]

;φ2 =
1√
2

( √
2H+

H1 + iH2

)

, (2)

respecting that only the first one has a vacuum expectation value but not the second, namely,

< φ1 >=
1√
2

(

0
v

)

;< φ2 >= 0 . (3)

Therefore the CP even neutral Higgs particles H1 and H0 do not mix in the tree level and they

are obtained as the mass eigenstates h0 and H0 respectively. The neutral Higgs particle H2 is

the well known CP odd A0. In this case, the SM particles lie in the first doublet and the new

particles in the second one.

The LFV τ → µ ν̄i νi decay is induced by τ → µZ∗ transition and Z∗ → ν̄i νi process

(see Fig. 1). The τ → µZ∗ transition, which needs the FCNC at tree level, is driven by the

internal new neutral Higgs bosons h0 and A0, which are living in the 4D brane. Since the gauge

fields are accessible to the extra dimensions, the internal Z boson has KK modes, which have

additional contribution to the physical quantities related to the decay studied. The KK modes

of gauge fields appear after the compactification of the external dimensions on the orbifold

S1/Z2 ( (S1 × S1)/Z2 ) for a single (two) extra dimensions and, for two extra dimensions, the

gauge fields can be expanded to the KK modes as:

Aµ(x, y, z) =
1

(2πR)d/2

{

A(0,0)
µ (x) + 2d/2

∞
∑

n,r

A(n,r)
µ (x) cos(ny/R+ rz/R)

}

,

Ai(x, y, z) =
1

(2πR)d/2

{

2d/2
∞
∑

n,r

A
(n,r)
i (x) sin(ny/R+ rz/R)

}

, (4)

where i = 5, 6, d = 2, the indices n and r are positive integers including zero, but both are not

zero at the same time. The KK modes of the gauge field Z have the masses
√

m2
Z +m2

n +m2
r ,

where mn = n/R and mr = r/R. Notice that the gauge boson mass matrix is diagonal since

the Higgs field, which has the non-zero vacuum expectation value, is in the bulk (see [30] for

details). Here, we take the compactification radius R as the same for both new dimensions. In

the case of a single extra dimension, one should set d = 1, take z = 0, and drop the summation

over r in eq. (4).
1Notice that, in the following, we replace ξE with ξEN where ”N” denotes the word ”neutral”.
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Now, we present the general effective vertex for the interaction of off-shell Z-boson with a

fermionic current

Γ(REN)
µ (τ → µZ∗) = f1 γµ + f2 γµγ5 + f3 σµνk

ν + f4 σµνγ5k
ν , (5)

where k is the momentum transfer, k2 = (p − p′)2, p (p′) is the four momentum vector of

incoming (outgoing) lepton and the explicit expressions for the functions f1, f2, f3 and f4 are

given in the appendix section. The matrix element M of the τ → µ ν̄i νi process is obtained

with the internal Z boson connection between the τ → µ transition and the ν̄iνi pair. Since

the gauge fields are accessible to the extra dimensions, the KK modes of the internal Z boson

have additional contributions to the process (see Fig. 1). Notice that the KK number need

not to be conserved in the vertices where Z boson appears since the the extra dimensions in

this case are so called NUED. Using the matrix element M the decay width Γ of the decay

under consideration can be obtained in the τ lepton rest frame with the help of the well known

expression

dΓ =
(2 π)4

2mτ
|M |2 δ4(p−

3
∑

i=1

pi)
3
∏

i=1

d3pi
(2π)32Ei

, (6)

where p (pi, i=1,2,3) is four momentum vector of τ lepton (µ lepton, incoming ν, outgoing ν).

3 Discussion

The τ → µ ν̄i νi is induced by the LFV τ → µ transition which depends on the various Yukawa

couplings ξ̄EN,ij
2 i = µ, τ ; j = e, µ, τ and they need to be restricted by using the present

and forthcoming experiments. In our work, we take only the τ lepton as an internal lepton

and, therefore, we choose the couplings ξ̄EN,ττ and ξ̄EN,τµ as non-zero. Here we expect that the

couplings which contain at least one τ index are dominant similar to the Cheng-Sher scenario

[32]. The upper limit of the coupling ξ̄EN,τµ has been estimated as 30GeV (see [33] and references

therein) by assuming that the new physics effects can not exceed experimental uncertainty 10−9

in the measurement of the muon anomalous magnetic moment. In our numerical calculation

we choose ξ̄EN,τµ = 1GeV by respecting this upper limit. Since there is no restriction for the

Yukawa coupling ξ̄EN,ττ , the numerical values we use are greater than ξ̄EN,τµ.

This work is devoted to the a single and two NUED effects on the BR of the LFV processes

τ → µ ν̄i νi, in the type III 2HDM. In the case of two extra dimensions, we observe that

the contribution of KK modes enhances the BR considerably, due to the crowd of Z boson KK

2The dimensionfull Yukawa couplings ξ̄EN,ij are defined as ξEN,ij =
√

4GF√
2

ξ̄EN,ij .
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modes. Notice that we use the numerical values, mZ = 91 (GeV ), mW = 80 (GeV ), sw =
√
0.23,

GF = 1.6637× 10−5 (GeV −2), Γτ = 2.27× 10−12 (GeV ), in our numerical calculations.

In Fig. 2, we present ξ̄EN,ττ dependence of the BR for ξ̄EN,τµ = 1 (GeV ) and for different values

of the compactification scale 1/R, in the case of a single extra dimension. Here solid (dashed,

small dashed, dotted, dash-dotted, three dashed-spaced) line represents the case without extra

dimensions (with extra dimensions for 1/R = 200, 400, 800, 1000, 2000 (GeV )). It is observed

that the BR lies in the range 1.0 × 10−6 − 5.0 × 10−5 for the interval of the Yukawa coupling

10 (GeV ) ≤ ξ̄EN,ττ ≤ 50 (GeV ). The addition of a single extra dimension enhances the BR

almost twice for the small values of the compactification scale. However this enhancement is

not more than the order of 1% for its large values.

Fig. 3, represents the compactification scale 1/R dependence of the BR for ξ̄EN,τµ = 1 (GeV )

and for different values of the coupling ξ̄EN,ττ , in the case of a single extra dimension. Here solid-

dashed-dotted straight lines (curved lines) represents the BR for ξ̄EN,ττ = 10 − 30 − 50 (GeV )

without extra dimensions (with extra dimensions). This figure also shows that the contribution

due to the extra dimensions is negligible especially for 1/R ≥ 600 (GeV ).

Now we make the same analysis for two NUED. In this case the crowd of Z boson KK

modes cause to enhance the BR of the decay analyzed and these effects can be observable.

Notice that there is a possible divergence problem due to the abundance of KK modes in the

summation of the KK mode contributions, however, the ratio 1
m2

Z
+(n2+r2)/R2 appearing in the

internal line converges to zero sharply with the increasing values of the integers n and r and

the convergence of the KK sum is obtained for the region of the compactification scale that we

study, 1/R > 200GeV .

In Fig. 4, we present ξ̄EN,ττ dependence of the BR for ξ̄EN,τµ = 1 (GeV ) and for different values

of the compactification scale 1/R in the case of two NUEDs. Here solid (dashed, small dashed,

dotted, dash-dotted, three dashed-spaced) line represents the case without extra dimensions

(with extra dimensions for 1/R = 200, 400, 800, 1000, 2000 (GeV )). This figure shows that the

BR is considerably enhanced for the small values of the compactification scale 1/R. The BR

is two orders (one order, three times, two times, 30 %) larger for 1/R = 200 (GeV ) (1/R =

400 (GeV ), 1/R = 800 (GeV ), 1/R = 1000 (GeV ), 1/R = 2000 (GeV )) compared to the one

without NUED. Even for large values of the compactification scale near 1/R ∼ 2000 (GeV )

there is an enhancement in the BR.

Fig. 5 is devoted to the compactification scale 1/R dependence of the BR for ξ̄EN,τµ =

1 (GeV ) and for different values of the coupling ξ̄EN,ττ , for two NUEDs. Here solid-dashed-
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dotted straight lines (curved lines) represents the BR for ξ̄EN,ττ = 10 − 30 − 50 (GeV ) without

extra dimensions (with extra dimensions). The enhancement in the BR is observed in this

figure also. These contributions become negligible for the large values of the compactification

scale, namely for 1/R > 2000 (GeV ).

At this stage we would like to summarize our results:

• We predict the BR in the range 1.0×10−6−5.0×10−5 for the interval of the Yukawa cou-

pling 10 (GeV ) ≤ ξ̄EN,ττ ≤ 50 (GeV ). The inclusion of a single NUED brings contributions

which increase the BR twice of the one without the extra dimension, for the small values

of the compactification scale. However this enhancement is not more than the order of

1% for the large values of the compactification scale.

• With the inclusion of two extra dimensions the BR is considerably enhanced for the small

values of the compactification scale 1/R, even two orders. In the case of large values of

the compactification scale, there is still an enhancement in the BR.

Therefore, the future theoretical and experimental investigations of the process τ → µ ν̄iνi

would ensure a valuable information about signals coming from the extra dimensions.
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4 Appendix

The explicit expressions for the functions f1, f2, f3 and f4 appearing in eq. (5) read

f1 =
g

64 π2 cos θW

∫ 1

0
dx

1

m2
l2
−m2

l1

{

cV (ml2 +ml1)

(

(−mi η
+
i +ml1(−1 + x) ηVi ) ln

Lself
1, h0

µ2
+ (mi η

+
i −ml2(−1 + x) ηVi ) ln

Lself
2, h0

µ2

+ (mi η
+
i +ml1(−1 + x) ηVi ) ln

Lself
1, A0

µ2
− (mi η

+
i +ml2(−1 + x) ηVi ) ln

Lself
2, A0

µ2

)

+ cA (ml2 −ml1)
(

(−mi η
−

i +ml1(−1 + x) ηAi ) ln
Lself
1, h0

µ2
+ (mi η

−

i +ml2(−1 + x) ηAi ) ln
Lself
2, h0

µ2

+ (mi η
−

i +ml1(−1 + x) ηAi ) ln
Lself
1, A0

µ2
+ (−mi η

−

i +ml2(−1 + x) ηAi ) ln
Lself
2, A0

µ2

)}

− g

64 π2 cos θW

∫ 1

0
dx

∫ 1−x

0
dy

{

m2
i (cA ηAi − cV ηVi ) (

1

Lver
A0

+
1

Lver
h0

)

− (1− x− y)mi

(

cA (ml2 −ml1) η
−

i (
1

Lver
h0

− 1

Lver
A0

) + cV (ml2 +ml1) η
+
i (

1

Lver
h0

+
1

Lver
A0

)

)

− (cA ηAi + cV ηVi )

(

− 2 + (k2 x y +ml1 ml2 (−1 + x+ y)2) (
1

Lver
h0

+
1

Lver
A0

)− ln
Lver
h0

µ2

Lver
A0

µ2

)

− (ml2 +ml1) (1− x− y)

(

ηAi (xml1 + yml2) +mi η
−

i

2Lver
A0 h0

+
ηAi (xml1 + y ml2)−mi η

−

i

2Lver
h0 A0

)

+
1

2
ηAi ln

Lver
A0 h0

µ2

Lver
h0 A0

µ2

}

,

f2 =
g

64 π2 cos θW

∫ 1

0
dx

1

m2
l2
−m2

l1

{

cV (ml2 −ml1)

(

(mi η
−

i +ml1(−1 + x) ηAi ) ln
Lself
1, A0

µ2
+ (−mi η

−

i +ml2(−1 + x) ηAi ) ln
Lself
2, A0

µ2

+ (−mi η
−

i +ml1(−1 + x) ηAi ) ln
Lself
1, h0

µ2
+ (mi η

−

i +ml2(−1 + x) ηAi ) ln
Lself
2, h0

µ2

)

+ cA (ml2 +ml1)
(

(mi η
+
i +ml1(−1 + x) ηVi ) ln

Lself
1, A0

µ2
− (mi η

+
i +ml2(−1 + x) ηVi ) ln

Lself
2, A0

µ2

+ (−mi η
+
i +ml1(−1 + x) ηVi ) ln

Lself
1, h0

µ2
+ (mi η

+
i −ml2(−1 + x) ηVi )

ln Lself
2, h0

µ2

)}

+
g

64 π2 cos θW

∫ 1

0
dx

∫ 1−x

0
dy

{

m2
i (cV ηAi − cA ηVi ) (

1

Lver
A0

+
1

Lver
h0

)
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− mi (1− x− y)

(

cV (ml2 −ml1) η
−

i + cA (ml2 +ml1) η
+
i

)

(
1

Lver
h0

− 1

Lver
A0

)

+ (cV ηAi + cA ηVi )

(

− 2 + (k2 x y −ml1 ml2 (−1 + x+ y)2)(
1

Lver
h0

+
1

Lver
A0

)− ln
Lver
h0

µ2

Lver
A0

µ2

)

− (ml2 −ml1) (1− x− y)

(

ηVi (xml1 − yml2) +mi η
+
i

2Lver
A0 h0

+
ηVi (xml1 − yml2)−mi η

+
i

2Lver
h0 A0

)

− 1

2
ηVi ln

Lver
A0 h0

µ2

Lver
h0 A0

µ2

}

,

f3 = −i
g

64 π2 cos θW

∫ 1

0
dx

∫ 1−x

0
dy

{(

(1− x− y) (cV ηVi + cA ηAi ) (xml1 + y ml2)

+ mi (cA (x− y) η−i + cV η+i (x+ y))

)

1

Lver
h0

+

(

(1− x− y) (cV ηVi + cA ηAi ) (xml1 + y ml2)−mi (cA (x− y) η−i + cV η+i (x+ y))

)

1

Lver
A0

− (1− x− y)

(

ηAi (xml1 + y ml2)

2

( 1

Lver
A0 h0

+
1

Lver
h0 A0

)

+
mi η

−

i

2

( 1

Lver
h0 A0

− 1

Lver
A0 h0

)

)}

,

f4 = −i
g

64 π2 cos θW

∫ 1

0
dx

∫ 1−x

0
dy

{(

(1− x− y)
(

− (cV ηAi + cA ηVi ) (xml1 − y ml2)
)

− mi (cA (x− y) η+i + cV η−i (x+ y))

)

1

Lver
h0

+

(

(1− x− y)
(

− (cV ηAi + cA ηVi ) (xml1 − y ml2)
)

+mi (cA (x− y) η+i + cV η−i (x+ y))

)

1

Lver
A0

+ (1− x− y)

(

ηVi
2

(ml1 x−ml2 y)
( 1

Lver
A0 h0

+
1

Lver
h0 A0

)

+
mi η

+
i

2

( 1

Lver
A0 h0

− 1

Lver
h0 A0

)

)}

, (7)

where

Lself
1, h0 = m2

h0 (1− x) + (m2
i −m2

l1 (1− x)) x ,

Lself
1, A0 = Lself

1, h0(mh0 → mA0) ,

Lself
2, h0 = Lself

1, h0(ml1 → ml2) ,

Lself
2, A0 = Lself

1, A0(ml1 → ml2) ,

Lver
h0 = m2

h0 (1− x− y) +m2
i (x+ y)− k2 x y ,

Lver
h0 A0 = m2

A0 x+m2
i (1− x− y) + (m2

h0 − k2 x) y ,

Lver
A0 = Lver

h0 (mh0 → mA0) ,

Lver
A0 h0 = Lver

h0 A0(mh0 → mA0) , (8)

and

ηVi = ξEN,l1i
ξE ∗

N,il2
+ ξE ∗

N,il1
ξEN,l2i

,
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ηAi = ξEN,l1i
ξE ∗

N,il2
− ξE ∗

N,il1
ξEN,l2i

,

η+i = ξE ∗

N,il1ξ
E ∗

N,il2 + ξEN,l1iξ
E
N,l2i ,

η−i = ξE ∗

N,il1
ξE ∗

N,il2
− ξEN,l1i

ξEN,l2i
. (9)

The parameters cV and cA are cA = −1
4
and cV = 1

4
− sin2 θW . In eq. (9) the flavor changing

couplings ξEN,ji represent the effective interaction between the internal lepton i, (i = e, µ, τ)

and outgoing (incoming) j = l1 (j = l2) one. Here we take only the τ lepton in the internal

line and we neglect all the Yukawa couplings except ξEN,ττ and ξEN,τµ in the loop contributions

(see Discussion section). The Yukawa couplings ξEN,ji are complex in general, however, in the

present work, we take them real.
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Figure 1: One loop diagrams contribute to τ → µ ν̄i νi, i = e, µ, τ decay due to the neutral
Higgs bosons h0 and A0 in the model III version of 2HDM. Solid lines represent leptons and
neutrinos, curly (dashed) lines represent the virtual Z boson and its KK modes in 6 dimensions
(h0 and A0 fields).
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Figure 2: ξ̄EN,ττ dependence of the BR for ξ̄EN,τµ = 1 (GeV ) and for different values of the
compactification scale 1/R, in the case of a single extra dimension. Here solid (dashed, small
dashed, dotted, dash-dotted, three dashed-spaced) line represents the BR without extra dimen-
sions (with extra dimensions for 1/R = 200, 400, 800, 1000, 2000 (GeV )).
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Figure 3: The compactification scale 1/R dependence of the BR for ξ̄EN,τµ = 1 (GeV ) and for
different values of the coupling ξ̄EN,ττ , in the case of a single extra dimension. Here solid-dashed-
dotted, straight lines (curved lines) represents the BR for ξ̄EN,ττ = 10− 30− 50 (GeV ) without
extra dimensions (with extra dimensions).
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Figure 4: ξ̄EN,ττ dependence of the BR for ξ̄EN,τµ = 1 (GeV ) and for different values of the com-
pactification scale 1/R, in the case of two extra dimensions. Here solid (dashed, small dashed,
dotted, dash-dotted, three dashed-spaced) line represents the BR without extra dimensions
(with extra dimensions for 1/R = 200, 400, 800, 1000, 2000GeV )
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Figure 5: The compactification scale 1/R dependence of the BR for ξ̄EN,τµ = 1 (GeV ) and for
different values of the coupling ξ̄EN,ττ , in the case of two extra dimensions. Here solid-dashed-
dotted, straight lines (curved lines) represents the BR for ξ̄EN,ττ = 10− 30− 50 (GeV ) without
extra dimensions (with extra dimensions).

16


	Introduction
	 "7016i  i decay in the general two Higgs doublet model with the inclusion of non-universal extra dimensions
	Discussion
	Appendix
	Acknowledgement

