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Abstract. We proved white noise generalization of the Clark-Ocone formula under change of

measure by using white noise analysis and Malliavin calculus. Let W (t) be a Brownian motion on

the filtered white noise probability space (Ω,B, {Ft}t≥0, P ) and let Ŵ (t) be defined as dŴ (t) =

u(t) + dW (t), where u(t) is an Ft-measurable process satisfying certain conditions. Let Q be

the probability measure equivalent P such that Ŵ (t) is a Brownian motion with respect to

Q, in virtue of the Girsanov theorem. In this paper, it is shown that for any random variable

F ∈ L2(P )

F (ω) = EQ[F ] +

Z T

0

EQ[(DtF − F

Z T

t

Dtu(s)dŴ (s)) | Ft] dŴ (t),

where EQ is the expectation under Q and DtF (ω) is the (Hida) Malliavin derivative. The

important point to note here is in this settlement F need not belong to stochastic Sobolev space,

D1,2 which is subset of L2(P ). This makes this formula more useful in applications to finance. For

example, the replicating portfolio for a digital option, whose payoff function χ[K,∞)W (T ) /∈ D1,2,

is calculated by using this generalized Clark-Ocone formula under change of measure.

1. Introduction. Gaussian white noise theory was first introduced by Hida [6]. After-
wards, it is developed by him and other researchers that becomes a powerful tool in
mathematical physics (see [7] and the references therein). After that H. Holden et al [8]
emphasized this theory with stochastic partial differential equations (SPDEs) driven by
Brownian motion. The first contribution to white noise theory to finance comes from the
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joint work of K. Aase et al to prove the generalization of Clark-Ocone formula [1]. By
this theorem it is a natural and intrinsic way of computing the replicating portfolio of
call option in Black & Scholes type market. They proved that

F (ω) = E[F ] +
∫ T

0

E[DtF | Ft] � Ẇ (t)dt. (1)

Here E[F ] denotes the generalized expectation, DtF (ω) = dF
dω is the (generalized) Malli-

avin derivative, � is the Wick product and Ẇ (t) is 1-dimensional Gaussian white noise.
This formula holds for all F ∈ G∗ ⊃ L2(P ), where G∗ is a space of stochastic distributions
and P is the white noise probability measure.
In particular, if F ∈ L2(P ) then equation (1) turns out to be

F (ω) = E[F ] +
∫ T

0

E[DtF | Ft]dW (t)

where W is the 1-dimensional Wiener process (Brownian motion) and DtF ∈ G∗.
Actually, the original Clark-Ocone formula was proved by Ocone in 1984 to give an explicit
representation to the integrand in Itô integral representation theorem in the context of
analysis on the Wiener space Ω = C0([0, T ]), the space of real continuous functions on
[0, T ] starting at zero [13]. He proved that

F (ω) = E[F ] +
∫ T

0

E[DtF | Ft] dB(t), (2)

where Dt is the Malliavin derivative and B(t) = B(t, ω) is one dimensional Brownian
motion on the Wiener space. In case of changing measure by Girsanov theorem, Karatzas
& Ocone 1991 [10] argued that under some assumptions the Clark-Ocone formula under
change of measure is

F (ω) = EQ[F ] +
∫ T

0

EQ[(DtF − F

∫ T

t

Dtu(s)dB̂(s)) | Ft] dB̂(t), (3)

where Dt is the Malliavin derivative defined on Wiener space and B̂(t) is one dimensional
Brownian motion under probability measure Q. However, the main drawback with this
setting is that the Malliavin derivative only exists for F ∈ D1,2. The problem is that
this settlement excludes many interesting applications in finance, such as digital option.
The purpose of this paper is to represent a new proof of the Clark-Ocone formula under
change of measure in the white noise setting.

The first three sections of this paper constitute sufficient preparation to prove the
Clark-Ocone formula under change of measure for F ∈ L2(P ). In the section 2 and 3
we summarize without proofs the relevant material on white noise analysis and special
functions respectively. Many versions of those results have already been provided and
known by many theorists but we think that it is better to have a unified approach
based on white noise theory. In section 4, we introduce the notion of chaos expansion and
define two different kinds of chaos expansions. Section 5 contains a brief summary of Hida
stochastic test function, distribution space and the Malliavin derivative on this space. In
section 6 we develop the theory of Clark-Ocone formula under change of measure on the
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analysis of white noise settlement. In the last section, we apply our result to compute the
replicating portfolio for a digital option in a Black-Scholes type market.

2.White noise analysis. In this section we will set up notation and terminology in
Gaussian white noise theory.
Let S = S(R) be the Schwartz space of rapidly decreasing smooth functions φ ∈ C∞(R)
such that

‖ φ ‖k,n= sup
x∈R

| φ(j)(x)xn |<∞ for all j ≤ k, n ≤ N.

The space S(R) equipped with the family of seminorms ‖ . ‖k,N constitutes a Frechet
space. The dual of S(R) is denoted by S

′
(R) and called the space of tempered distributions

equipped with the weak-star topology. If ω ∈ S′(R) and φ ∈ S(R) we set

ω(φ) =< ω, φ >

which denotes the action of the linear functional ω on the test function φ.

Theorem 1. (Bochner-Minlos)

Let g : S(R) → R be a given function. Then there exists a probability measure P on
Ω := S

′
(R) s.t. ∫

S′ (R)

ei<ω,φ>dP (ω) = g(φ) ; φ ∈ S(R)

if and only if

• g(0)=1

• g is positive definite

• g is continuous in Frechet topology.

Note that if we take g(φ) = e
− 1

2‖φ‖
2
L2(R) which satisfies the above conditions then by

Bochner-Minlos theorem there exists probability measure P on Ω = S
′
(R) such as the

following equality holds: ∫
S′ (R)

ei<ω,φ>dP (ω) = e
− 1

2‖φ‖
2
L2(R) . (4)

Moreover, this probability measure is called white noise probability measure and it is
defined on the set B of Borel sets of Ω. The triple (Ω = S

′
(R),B, P ) is called the white

noise probability space. From the settlement (4) and by using the Taylor expansion we
can easily prove that

E[< ω, φ >] :=
∫

S′ (R)

< ω, φ > dP (ω) = 0 (5)

E[< ω, φ >2] :=
∫

S′ (R)

< ω, φ >2 dP (ω) =‖ φ ‖2
L2(R) . (6)

Hence, we can extend the definition of < ω, φ > from φ ∈ S(R) to φ ∈ L2(R) by using
the properties (5), (6) and the facts that S(R) is dense in L2(R) and L2(P ) is complete.
Therefore, it is natural to define

W̃ (t, ω) = W̃ (t) =< ω,χ[0,t](.) >
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where χ[0,t] belongs to L2(R) for all t and defined as follows:

χ[0,t](s) =
{

1 if s ∈ [0, t] or s ∈ [t, 0](t < 0)
0 otherwise

Then, W̃ (t) is a Gaussian process with mean 0 and variance t. By the Kolmogorov
continuity theorem [12] it has continuous version, denoted by W (t) = W (t, ω) which is
a Brownian motion. From now on we will work with the Brownian motion constructed
on the white noise probability space. Note that W (t, ω), t ∈ R, ω ∈ Ω = S

′
(R) can be

regarded as a tempered distribution and for all ψ ∈ L2(R),

< ω,ψ >=
∫

R
ψ(t)dW (t).

We will define the filtration Ft as the σ-algebra generated by {W (s, ·), 0 ≤ s ≤ t}.

3. Review on special functions. The scope of this section is to recall some facts about
special functions especially about Hermite polynomials and functions. By using them in
the next section we will define an orthogonal basis for L2(P ).
Hermite polynomials plays a crucial role in probability theory. The family of these poly-
nomials constitute an orthogonal basis for L2(R, µ(dx)) if the measure µ = 1√

2π
e

x2
2 .

Hermite polynomials hn(x) are defined by as follows:

hn(x) = (−1)ne
1
2 x2 dn

dxn
(e−

1
2 x2

), x ∈ R, n = 0, 1, 2, . . .

Thus the first Hermite polynomials are

h0(x) = 1, h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x, . . .

Moreover,
h
′

n(x) = nhn−1(x), n ≥ 1 (7)

hn+1(x) = xhn(x)− nhn−1(x), n ≥ 1 (8)

are commonly used important relations between Hermite polynomials. Hermite functions,
{ek}k≥1, can be described in terms of Hermite polynomials as follows:

ek(x) = π−1/4((k − 1)!)−
1
2 e−

1
2 x2

hk−1(
√

2x), k = 1, 2, 3, . . . (9)

where ek is the k’th Hermite function. Moreover, note that {ek}k≥1 constitutes an or-
thonormal basis for L2(R) and ek ∈ S(R) for all k. They will be used in the following
section for constructing the orthogonal basis for L2(P ).
There is a practical formula proved by Itô [9] for the computation of iterated Itô integrals
when the integrand is the tensor power of a given function. Then, for the tensor power
of g ∈ L2([0, T ]) we have

n!
∫ T

0

∫ tn

0

· · ·
∫ t2

0

g(t1)g(t2) · · · g(tn) dW (t1) · · · dW (tn) =‖ g ‖n hn(

∫ T

0
g(t)dW (t)

‖ g ‖L2([0,T ])
).

(10)
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Definition 1. Let g be a real valued function on L2([0, T ]n). Then n-fold iterated Itô
integrals on the interval [0, T ] satisfying 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T is defined by Jn, and

Jn(g) :=
∫ T

0

∫ tn

0

· · ·
∫ t2

0

g(t1, t2, · · · , tn) dW (t1) · · · dW (tn).

If g is symmetric function (i.e. g ∈ L̂2([0, T ]n)) then

n!Jn(g) = In(g)

where indeed In can be represented as follows:

In(g) :=
∫ T

0

∫ T

0

· · ·
∫ T

0

g(t1, t2, t3, · · · , tn)dW (t1) · · · dW (tn). (11)

4. Chaos expansions. Chaos expansion aims to represent a random variable in L2(P )
in terms of unique fundamental functions. In this section we will present two different
kinds of Wiener-Itô chaos expansion and we will state the relation between them.

Theorem 2. ( Wiener-Itô chaos expansion I)

Let F (ω) be an FT -measurable random variable in L2(P ), where

L2(P ) = {F : Ω → R s.t. ‖ X ‖2
L2(P ):=

∫
Ω

F 2(ω)dP (ω) <∞}.

Then there exists unique sequence {fn}∞n=0 of functions fn ∈ L̂2([0, T ]n) such that

F =
∞∑

n=0

In(fn), (12)

where the convergence is in L2(P ). Moreover, there exist the following isometry;

‖ F ‖2
L2(P )= E[F 2] =

∞∑
n=0

n! ‖ fn ‖2
L2([0,T ]n)

Proof. The proof of this representation can be found in G. Di Nunno et al [3].

The above representation theorem is in terms of iterated Itô integrals. Let us now
construct a new representation for the random variables in L2(P ) and deal with the
relations between these two representations. Define

θk(ω) :=< ω, ek >=
∫

R
ek(x)dW (x), ω ∈ Ω (13)

where ek is the k’th Hermite function defined in (9). Let I be the set of all finite multi-
indices α = (α1, α2, . . . , αm), where αm ∈ N0 = N ∪ {0}, m=1,2,. . . and | α |= α1 + α2 +
. . .+ αm. Define

Hα :=
m∏

k=1

hαk
(θk(ω)), ω ∈ Ω. (14)

The family {Hα}α∈I is an orthogonal sequence that constitutes basis for the Hilbert
space L2(P ).
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Theorem 3. (Wiener-Itô chaos expansion II )

For all F ∈ L2(P ) there exists unique constants cα ∈ R such that

F =
∑
α∈I

cαHα. (15)

Moreover, there exists the following isometry

‖ F ‖2
L2(P )=

∑
α∈I

α! c2α, (16)

where α! = α1!α2! . . . αm! for α = (α1, α2, . . . , αm).

Note that by the result of Itô [9], equation (9)we obtain the following equality

In(e⊗̂α) =
n∏

i=1

hαi(θi) = Hα (17)

where In is defined in (11), θ is described in the equation (13) and Hα is defined in the
equation (14).
Therefore, the connection between these two expansions is if

fn =
∑

α∈I:|α|=n

cαe
⊗̂α, n = 0, 1, 2, . . . , (18)

where
e⊗̂α = e⊗α1

1 ⊗̂e⊗α2
2 ⊗̂ . . . ⊗̂e⊗αm

m

and | α |=
∑m

i=1 αi then

F =
∞∑

n=0

In(fn) =
∑

α∈I,|α|=n

cαHα

for some suitable constants cα. In the above equation ⊗ and ⊗̂ stands for the tensor
product and symmetrized tensor product, respectively. For example, if f , g and h are
real functions on R then

(f ⊗ g ⊗ h)(x1, x2, x3) = f(x1)g(x2)h(x3)

and
(f ⊗̂ g⊗̂h)(x1, x2, x3) =

1
6

∑
σ

f(xσ1)g(xσ2)h(xσ3),

where the sum is taken over all permutations of σ of 1, 2, 3.

5. Hida Stochastic test function and distribution space. This section contains
a brief summary of (Hida) Malliavin derivative based on the representations and some
useful properties of it.A useful analogy between tempered distribution space, S

′
(R) and

Hida stochastic test function and distribution space on the white noise probability space
will be mentioned. We will denote Hida test functions (or functionals) space and Hida
distributions space with (S) and (S)∗ respectively. For more information about these
spaces one can see [7] and [8].
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Definition 2.

(i) f =
∑

α∈I aαHα ∈ L2(P ) belongs to the Hida test function Hilbert space (S)k for
k ∈ {1, 2, . . .} if

‖ f ‖2
k :=

∑
α∈I

α! a2
α (2N)αk <∞

where

(2N)α =
m∏

i=1

(2i)αi , for α = (α1, . . . , αm) ∈ I. (19)

Then define Hida space of stochastic test functions (S) as

(S) =
∞⋂

k=1

(S)k,

with projective topology (i.e. as n goes to infinity, fn → f in (S) iff
‖ fn − f ‖k→ 0, for all k ∈ N).

(ii) Similarly, let (S)−q, q = 1, 2, . . ., be the set of all expansions F =
∑

α∈I bαHα such
that

‖ F ‖2
−q:=

∑
α∈I

b2α α! (2N)−αq <∞,

where (2N)α is defined in the equation (19). Then define Hida space of stochastic
distributions (S)∗ as

(S)∗ =
∞⋃

q=1

(S)−q

with the inductive topology (i.e. as n goes to infinity, Fn → F in (S)∗ iff there
exists q such that ‖ Fn − F ‖−q→ 0).

Note that (S)∗ is the dual of (S) and one can define the action of F =
∑

α∈I bαHα ∈
(S)∗ on f =

∑
α∈I aαHα ∈ L2(P ) ∈ (S) as follows:

< F, f >= F (f) =
∑
α∈I

aα bαα!

From the definition of these spaces we can easily extract the following inclusions.

(S) ⊂ (S)k ⊂ L2(P ) ⊂ (S)−q ⊂ (S)∗, for all k, q.

It is convenient and natural way to define Wick product on the space (S)∗.

Definition 3. If X =
∑

α aαHα ∈ (S)∗ and Y =
∑

β bβ Hβ ∈ (S)∗ then the Wick
product X � Y of X and Y is defined by

X � Y :=
∑
α, β

aα bβ Hα+β

5.1. The (Hida) Malliavin Derivative. Although the Wiener space is natural space to work
on when dealing with Brownian motion, this approach has some disadvantages. However,
if we work on Ω = S

′
(R) instead and follow the theory of Hida [5] then we obtain a
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complete agreement between the directional derivative and the corresponding stochastic
gradient (or the Hida-Malliavin derivative). The scope of this part is to define the (Hida)
Malliavin derivative and some auxiliary theorems on the white noise probability space
(Ω = S

′
(R),B, P ) in order to use them in the proof of Clark-Ocone formula under change

of measure. First, let us define (S)∗-integrability.

Definition 4. A function ψ(t) : R → (S)∗ is (S)∗-integrable if

< ψ(t), φ > ∈ L1(R)

for all φ ∈ (S). Then the (S)∗-integral of ψ(t), denoted by
∫

R ψ(t)dt, is the unique (S)∗

element such that

<

∫
R
ψ(t)dt, φ >=

∫
R
< ψ(t), φ > dt,

for all φ ∈ (S).

Definition 5.

(i) Let F ∈ (S)∗ ⊃ L2(P ) be random variable and let γ ∈ L2(R) ⊂ Ω be a deterministic
function. Then the directional (or Gateaux) derivative of F in the direction of γ is
defined by

DγF (ω) = lim
ε→0

F (ω + εγ)− F (ω)
ε

(20)

if the limit exists in (S)∗.

(ii) Suppose there exists a function ψ(t, ω) : R → (S)∗ such that

ψ(t, ω)γ(t) is (S)∗-integrable

and

DγF (ω) =
∫

R
ψ(t, ω)γ(t) dt for all γ ∈ L2(R), (21)

then we say that F is (Hida)Malliavin differentiable and we put

DtF (ω) :=
dF

dω
(t, ω) = ψ(t, ω), t ∈ R.

DtF is called the Hida-Malliavin derivative or the stochastic gradient of F at t.

Example. Let F (ω) =< ω, f >=
∫

R f(t)dW (t), for some f ∈ L2(R). Then

DγF (ω) = lim
ε→0

< ω + εγ, f > − < ω, f >

ε
= < γ, f > (22)

Hence, F is Malliavin differentiable and DtF (ω) = f(t), i.e.,

Dt(
∫

R
f(s)dW (s)) = f(t). (23)

Definition 6. Let represent F in terms of Wiener-Itô chaos expansion II, i.e.
F (ω) =

∑
α∈I cαHα ∈ (S)∗ then

DtHα =| α | I|α|−1(e⊗̂α(., t)) (24)
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or

DtHα = Dt(
m∏

i=1

hαi(< ω, ei >))

= Dt(hα1(< ω, e1 >)hα2(< ω, e2 >) . . . hαm(< ω, em >))

=
m∑

k=1

∏
i=1,j 6=k

αkhαk−1(< ω, ek >)ek(t)hαi
(< ω, ei >)

=
m∑

k=1

αkek(t)Hα−εk , (25)

where α− ε(k) = (α1, α2, . . . , αk − 1, . . . , αm) and ek is the kth Hermite function.

Lemma 4.

(i) Let G ∈ (S)∗. Then DtG ∈ (S)∗ for a.a. t ∈ R.

(ii) Suppose G,Gn ∈ (S)∗ for all n ∈ N and

Gn → G in (S)∗.

Then there exist a subsequence {Gnk
}k≥1 such that

DtGnk
→ DtG in (S)∗,

for almost all t > 0.

Proof. (i) Let G =
∑

α∈I cαHα ∈ (S)∗. Then there exists a q <∞ such that

‖ G ‖2
(S)−q

:=
∑
α∈I

c2αα!(2N)−αq

=
∞∑

n=0

∑
|α|=n

c2αα!(2N)−αq <∞.

By using equation (24), the Hida-Malliavin derivative of G is as follows:

DtG(ω) =
∑
α∈I

cαDt(Hα(ω))

=
∑
α∈I

cα
∑

i

αiHα−ε(i)(ω)ei(t)

=
∑

β

(
∑

i

cβ+ε(i)(βi + 1)ei(t))Hβ(ω)

:=
∑

β

gβ(t)Hβ(ω),

where gβ(ω)(t) =
∑

i cβ+ε(i)(βi + 1)ei(t).
We want to prove that

‖ DtG ‖2
(S)−q−1

:=
∞∑

n=0

(
∑
|β|=n

g2
β β!)(2N)−β(q+1) <∞ for a.a. t.
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Note that, ∫
R
g2

β(t)dt =
∑

β

c2β+ε(i)(βi + 1)2.

and

(2N)−β =
∏

i

(2 · i)−βi

≤
∏

i

e−βi(log 2) = e−|β̃|

where β̃i = (log 2)βi for all i ∈ I. Hence,∫
R
‖ DtG ‖2

(S)−q−1
dt =

∑
β

(
∑

i

c2β+ε(i)(βi + 1)2)β!(2N)−β(q+1)

=
∑

β

(βi + 1)(2N)−β(q+1)
∑

α, |α|=|β|+1

c2α α!

<
∑

n

∑
|β̃|=n

(n+ 1)e−n
∑

|α|=(log 2)−1n+1

c2α α! (2N)−αq

Using the fact that (n+ 1)e−n ≤ 1 for all n, we get∫
R
‖ DtG ‖2

(S)−q−1
dt <

∑
n

(
∑

|α|=(log 2)−1n+1

c2α α!) (2N)−αq

≤ ‖ G ‖(S)−q
<∞ (26)

Therefore, DtG ∈ (S)−q−1 ⊂ (S)∗ for a.a. t.
(ii) To prove this part, it sufficies to prove that if Gn → 0 in (S)−q, then there exist a
subsequence {Gnk

}k≥1 such that DtGnk
→ 0 in (S)∗ as k goes to infty, for a.a. t. We

have proved that ∫
R
‖ DtGn ‖2

(S)−q−1
dt ≤‖ Gn ‖2

(S)−q
→ 0. (27)

Therefore,
‖ DtGn ‖(S)−q−1→ 0 in L2(R).

So, there exists a subsequence {‖ DtGnk
‖(S)−q−1}k≥1 such that ‖ DtGnk

‖(S)−q−1→ 0
for a.a. t as k →∞.

Let
F = P (x) =

∑
α

cαx
α

be a polynomial and the Wick product version of F can be written as

F = P �(X) =
∑
α

X�α,

where α = (α1, α2, . . . , αm) ∈ I, X�α(ω) = (X�α1
1 �. . .�X�αm

m ) where Xi(ω) =< ω, ei >.
Note that under this settlement, X�α(ω) = Hα(ω) for all multi indices α.

Theorem 5. (Chain rule for polynomials)

Suppose P (x) =
∑

α cαx
α be a n variables polynomial. Then P (X) is (Hida)Malliavin
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differentiable and

DtP (X) =
n∑

i=1

∂P

∂Xi
(X1, . . . , Xn) ei(t)

=
n∑

i=1

∂P

∂Xi
(X1, . . . , Xn)Dt(Xi). (28)

Proof. In this proof we will use the definition of directional derivative of F in the direction
γ ∈ L2(R). Put F (ω) = P (X(ω)).

DγP (X) = DγF

= lim
ε→0

F (ω + εγ)− F (ω)
ε

= lim
ε→0

P (X(ω + εγ))− P (X(ω))
ε

= lim
ε→0

P (X(ω) + ε < γ, ei >)− P (X(ω))
ε

=
n∑

i=1

∂P

∂xi
(X(ω)) < γ, ei >

So we can conclude that DγF (ω) =
∫

R(
∑n

i=1
∂P
∂xi

(X(ω))ei(t)) γ(t) dt. This proves that
F = P (X) is also (Hida)-Malliavin differentiable and (28) holds.

Theorem 6. (Chain rule)

Suppose F ∈ (S)∗ ⊃ L2(λ× P ) is Malliavin differentiable. Let Φ ∈ C1(R). Then Φ(F ) is
Malliavin differentiable and

Dt(Φ(F )) = Φ
′
(F )DtF. (29)

Proof. This can be easily proved by using Lemma 4. This representation is the extension
of Chain rule for polynomials.

More generally, if F1, F2, . . . , Fm are Malliavin differentiable then

Dt(Φ(F1, F2, . . . , Fm)) =
m∑

i=1

∂Φ
∂Fi

(F1, F2, . . . , Fm) ·DtFi

Remark 1.

(i) Note that as a consequence of general chain rule we can easily write product rule,
i.e.,

Dt(F1F2) = F1DtF2 + F2DtF1 (30)

(ii) Another result of chain rule is

Dt(hn(< ω, f >)) = h
′

n(< ω, f >)f(t)

= nhn−1(< ω, f >)f(t),

where {hn(x)}n≥0 are the Hermite polynomials.
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Lemma 7. Let F = In(fn) ∈ L2(P ) for some fn ∈ L̂2([0, T ]n). Then

DtF = nIn−1(fn(., t)), (31)

where In−1(fn(., t)) stands for the (n-1)-iterated Itô integral which is defined with respect
to the n− 1 first variables t1, t2, . . . , tn−1 of fn(t1, t2, . . . , tn−1, t).

Proof. Here we will give the sketch of the proof. Let us firstly assume fn = f⊗n for some
f ∈ L2([0, T ]). Then by equation (10),

In(fn) =‖ f ‖n hn(
< ω, f >

‖ f ‖
).

Hence by Remark (ii)

DtIn(fn) = Dt(‖ f ‖n hn(
< ω, f >

‖ f ‖
))

= n ‖ f ‖n hn−1(
< ω, f >

‖ f ‖
)
f(t)
‖ f ‖

= n ‖ f ‖n−1 hn−1(
< ω, f >

‖ f ‖
)f(t)

= nIn−1(fn(., t)) (32)

Secondly, suppose fn has the form

fn = e⊗̂α1
1 ⊗̂e⊗̂α2

2 ⊗̂ . . . ⊗̂e⊗̂αk

k , (33)

where | α |= α1 + α2 + . . . + αk = n for α = (α1, . . . , αk), ⊗̂ denotes the symmetrized
tensor product and {ek}k≥1 is the family of hermite functions which are orthonormal
basis of L2(R). By equation (10),

In(fn) = hα1(< ω, e1 >) · · ·hαk
(< ω, ek >)

then the equality (31) holds again by using chain rule. Since any function fn ∈ L̂2([0, T ]n)
can be approximated in L2([0, T ]n) by linear combinations of basis of the form given by
(33) the proof is completed.

Hence, Hida-Malliavin derivative defined above coincides with the Malliavin derivative
on the stochastic Sobolev space, D1,2 with Wiener space settlement for this case.

6. The Clark-Ocone formula under change of measure. In this section, we will
prove the extended Clark-Ocone formula under change of measure by using the white
noise theory. We will work on the space G∗ ⊃ L2(P ), the space of stochastic distributions.
The advantage of using G∗ lies in the fact that it is convenient space to work with the
conditional expectation. Moreover, DtF is not well defined in the classical sense, because
we have not assumed that F ∈ D1,2. Therefore, DtF is assumed to be an element of (S)∗,
where E[DtF | Ft] ∈ L2([0, T ]× P ).

6.1.The construction of the spaces G and G∗ In this subsection we will follow the
theory in T. Hida et al. [7] and K. Aase et al. [1].
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Definition 7.

(i) Let λ ∈ R. The space Gλ consists of all formal expansions

F =
∞∑

n=0

In(fn)

such that

‖ F ‖2
Gλ

:=
∞∑

n=0

n! ‖ fn ‖2
L2(Rn) e

2λn <∞. (34)

(ii) Define
G =

⋂
λ∈R

Gλ

equip with the projective topology and

G∗ =
⋃
λ∈R

Gλ

equip with inductive topology. Then G∗ is the dual of G, and the action of
Y =

∑
n≥∞ In(fn) ∈ G∗ on X =

∑
m≥∞ Im(gm) ∈ G is

< Y,X >G,G∗=
∞∑

n=0

n!(fn, gn)L2(Rn). (35)

Lemma 8.

(i) Suppose F ∈ G∗. Then DtF ∈ G∗ for a.a. t ∈ R.

(ii) Suppose F, Fn ∈ G∗ for all n ∈ N and

Fn → F in G∗.

Then there exists a subsequence {Fnk
}k≥1 such that

DtFnk
→ DtF in G∗, (36)

for almost all t > 0.

Proof. The proof and further details can be found in K. Aase et al [1].

The following theorem plays a crucial role for proving the Clark-Ocone formula under
change of measure.

Theorem 9. Let F =
∑∞

n=0 In(fn) ∈ L2(P ). Then DtF ∈ G∗ and it is defined as

DtF =
∞∑

n=1

nIn−1(fn(., t)). (37)

Proof. Let F ∈ L2(P ). Define Fm =
∑m

n=0 In(fn). Then Fm → F in L2(P ) which implies
Fm → F in G∗. By Lemma 6.1., there exists a subsequence Fmk

such that DtFmk
→ DtF

in G∗, i.e.,
mk∑
n=0

nIn−1(fn(., t)) → DtF
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in G∗. We want to prove that
mk∑
n=0

nIn−1(fn(., t)) →
∞∑

n=0

nIn−1(fn(., t))

in G∗ as mk goes to infinity. Consider

‖
∞∑

mk+1

nIn−1(fn(., t)) ‖2
G−q−1

=
∞∑

mk+1

(n− 1)!n2 ‖ fn(., t) ‖2
L2(Rn−1) e

−2q(n−1).

Then taking the integral of both sides,∫
R
‖

∞∑
mk+1

nIn−1(fn(., t)) ‖2
G−q

dt =
∞∑

mk+1

nn! ‖ fn(., t) ‖2
L2(Rn) e

−2q(n−1)

≤ K

∞∑
mk+1

n! ‖ fn ‖2
L2(Rn)

= K ‖ F ‖L2(P )<∞ (38)

where K is a constant.

6.2.Conditional Expectation in G∗

Definition 8. Let F =
∑∞

n=0 In(fn) ∈ G∗. Then the conditional expectation of F with
respect to filtration Ft is defined by

E[F | Ft] =
∞∑

n=0

In(fnχ[0,t]⊗n). (39)

Note that this coincides with the usual expectation if F ∈ L2(P ). Moreover, since

‖ E[F | Ft] ‖Gλ
≤‖ G ‖Gλ

, for all λ ∈ R

then

E[F | Ft] ∈ G∗

Proposition 10. If F ∈ G∗ then E[F | Ft] ∈ G∗ and

DsE[F | Ft] = E[DsF | Ft]χ[0,t](s). (40)

Proof. We begin by proving this equality for F = In(fn) ∈ G∗. By using equation (39)
and Lemma 7, we have

DsE[F | Ft] = DsE[In(fn) | Ft]

= Ds(In(fnχ
⊗n
[0,t]))

= nIn−1(fn(., s)χ⊗(n−1)
[0,t] (.))χ[0,t](s)

= E[DsF | Ft]χ[0,t](s)
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Next, assume F =
∑∞

n=0 In(fn) ∈ G∗. Then by definition, E[F | Ft] =
∑∞

n=0 In(fnχ
⊗n
[0,t]).

Consider,

‖ E[F | Ft] ‖2
G−q

=
∞∑

n=0

n! ‖ fnχ
⊗n
[0,t] ‖

2
L2(Rn) e

−2qn

<

∞∑
n=0

n! ‖ fn ‖2
L2(Rn)

= ‖ F ‖2
G−q

<∞
Therefore, if E[F | Ft] ∈ G∗ and

Ds(E[F | Ft]) =
∞∑

n=1

nIn−1(fn(., s)χ⊗(n−1)
[0,t] )χ[0,t](s)

= E[DsF | Ft]χ[0,t](s).

Corollary 11. Let u = u(t) ∈ L2(P ), t ∈ [0, T ], be an F-adapted stochastic process.
Then

(i) Dsu(t) is F adapted for all s,

(ii) Dsu(t) = 0 for s > t.

Theorem 12. (Fundamental theorem of stochastic calculus)

Let u ∈ L2(P ) be a stochastic process satisfying the following conditions:

(i) E[
∫ T

0
u(s)2ds] <∞

(ii) s→ Dtu(s) is (S)∗-integrable, for all t ∈ [0, T ]

(iii) E[
∫ T

0
(
∫ T

0
Dt(u(s))δW (s))2dt] <∞

then δ(u) =
∫ T

0
u(s)δW (s) ∈ L2(P ) and

Dt(
∫ T

0

u(s)δW (s)) =
∫ T

0

Dtu(s)δW (s) + u(t). (41)

Proof. Let us firstly assume that u(s) = In(fn(., s)), where fn(., s) ∈ L2([0, T ]n+1) and
fn(., s) is symmetric with respect to the first n variables. Then by definition, the skorohod
integral of u(s) is

δ(u) = In+1(f̃n(t1, t2, · · · , tn+1)),

where
f̃n(t1, t2, · · · , tn+1) =

1
n+ 1

[fn(·, t1) + . . .+ fn(·, tn+1)]. (42)

Then,

Dtδ(u) = (n+ 1)In(f̃n(·, t))

= (n+ 1)In(
1

n+ 1
[fn(t, ·, t1) + . . .+ fn(t, ·, tn) + fn(·, ·, t)])

= In(fn(t, ·, t1) + . . .+ fn(t, ·, tn) + fn(·, ·, t)).
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On the other hand,

δ(Dtu) =
∫ T

0

Dtu(s)δW (s)

=
∫ T

0

nIn−1(fn(·, t, s))δW (s)

= nIn(f̂n(·, t, ·)),

where

f̂n(t1, · · · , tn−1, t, tn) =
1
n

[fn(t, ·, t1) + · · ·+ fn(t, ·, tn)].

Therefore,
δ(Dtu) = In(fn(t, ·, t1) + · · ·+ fn(t, ·, tn)).

Hence, Dt(δ(u)) − δ(Dt(u)) = u(t), which completes the first part of the proof. Next,
assume u(s) is the infinite summation of iterated integrals, i.e., u(s) =

∑∞
n=0 In(f).

Define um(s) =
∑m

n=0 In(fn(·, s)). Then um → u in L2(P ) which implies um → u in G∗.
By Lemma 8, there exists a subsequence {umk

}k≥1 such that Dt(umk
) → Dt(u) in G∗.

Since Skorohod integral of random variable in G∗ is in (S)∗,(i.e. δ(Dt(umk
)) ∈ (S)∗) by

assumption (ii) and lemma for Skorohod integrals then∫ T

0

‖ Dt(δ(u))−Dt(δ(umk
)) ‖2

(S)−q
dt→ 0

and by Lemma 4, ∫ T

0

‖ δ(Dtu)− δ(Dtumk
) ‖2

(S)−q
dt→ 0.

Corollary 13. Let u be as in previous theorem and in addition to this assume u(s) is
F-adapted then

Dt(
∫ T

0

u(s)dW (s)) =
∫ T

t

Dtu(s)dW (s) + u(t) (43)

6.3.The Clark-Ocone theorem for L2(P )

Theorem 14. Let λ denote the Lebesgue measure on R. Suppose F (ω) ∈ L2(P ) be FT -
measurable. Then

(t, ω) → E[DtF | Ft](ω) ∈ L2(λ× P )

and

F (ω) = E[F ] +
∫ T

0

E[DtF | Ft]dW (t) (44)

Proof. The proof can be found in K. Aase et al [1].

Now our aim is to derive the formula when the probability measure is changed.

6.4.The Clark-Ocone theorem under change of measure for L2(P )
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Theorem 15. (Girsanov)

Let W (t) be a Brownian motion on the white noise probability space (Ω,F , P ). Let
(u(t))0≤t≤ be an adapted measurable process satisfying

∫ T

0
u2(s)ds < ∞ a.s. and such

that Z(T ) defined by

Z(T ) = exp{−
∫ T

0

u(s)dW (s)− 1
2

∫ T

0

u2(s)ds} (45)

is a martingale. Then under the white noise probability measure Q with density Z(T )
relative to P, the process Ŵ (t) defined by Ŵ (t) = W (t)+

∫ t

0
u(s)ds is a Brownian motion

under measure Q.

Lemma 16. Let F ∈ L2(P ) be FT -measurable, Q and Z(T ) is defined as in Girsanov
theorem. Then

Dt(Z(T )F ) = Z(T ){DtF − F [u(t) +
∫ T

t

Dtu(s)dŴ (s)]} (46)

Proof. By the product rule,

Dt(Z(T )F ) = DtFZ(T ) +DtZ(t)F.

So it remains to find the (Hida)Malliavin derivative of Z(T ). By the Theorem 6 , Corol-
lary 11 and Corollary 13,

DtZ(T ) = Z(T ){−Dt(
∫ T

0

u(s)dW (s))− 1
2
Dt(

∫ T

0

u2(s))}

= Z(T ){−(
∫ T

t

Dtu(s)dW (s) + u(t))−
∫ T

0

u(s)Dtu(s)ds}

= Z(T ){−
∫ T

t

Dtu(s)dŴ (s)− u(t)}

After setting the necessary theory on white noise analysis we are ready to define and
prove the Clark-Ocone formula under change of measure formula.

Theorem 17. (The Clark-Ocone formula under change of measure for L2(P ))
Suppose F ∈ L2(P ) is FT -measurable and that

EQ[| F |] <∞

EQ[
∫ T

0

| DtF |2 dt] <∞

EQ[| F |
∫ T

0

(
∫ T

0

Dtu(s)dW (s) +
∫ T

0

u(s)Dtu(s)ds)2dt] <∞

Then

F (ω) = EQ[F ] +
∫ T

0

EQ[(DtF − F

∫ T

t

Dtu(s)dŴ (s)) | Ft]dŴ (t), (47)

where Ŵ (t) is a Brownian motion under white noise probability measure Q and DtF ∈ G∗
is Hida-Malliavin derivative.
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Proof. Let Y (t) = EQ[F | Ft]. Note that

EQ[F | F0] = EQ[F ]

and

EQ[F | FT ] = F.

Let us define

λ(t) = Z−1(t) = exp{
∫ t

0

u(s)dW (s) +
1
2

∫ t

0

u2(s)ds}. (48)

Then by Itô Formula,

dλ(t) = λ(t)u(s)dŴ (s).

Using Bayes’ formula (Karatzas and Shreve Lemma 3.5.3. [11]) and the settlement of
Y (t),

Y (t) = E[Z(T )F | Ft]Z−1(t)

= λ(t)E[Z(T )F | Ft].

If we apply Clark-Ocone formula for the random variable E[Z(T )F | Ft] ∈ L2(P ) , we
get

E[Z(T )F | Ft] = E[Z(T )F ] +
∫ t

0

E[Ds(Z(T )F ) | Fs]dW (s)

:= U(t).

Hence, Y (t) = λ(t)U(t) and by using Bayes’ formula, Lemma 16 we have the following:

dY (t) = λ(t)dU(t) + U(t)dλ(t) + d < λ,U >t

= {EQ[DtF | Ft]− EQ[Fu(t) | Ft]

− EQ[F
∫ T

t

Dtu(s)dŴ (s) | Ft] + u(t)EQ[F | Ft]}dŴ (t).

If we integrate both sides on [0, T ], the proof will be completed.

7. Application to finance. In this section we will demonstrate how extended Clark-
Ocone theorem under change of measure can be applied in portfolio optimization. The
main advantage of this setting is that F need not be in D1,2. Let us assume that we have
two possible investments which are a risk free asset, bond, and a risky asset, stock. More-
over, suppose the prices of these two financial instrument follow the following stochastic
differential equations under probability measure P;

(i) Risk free asset (Bond)

dS0(t) = ρ(t)S0(t)dt,

S0(0) = 1. (49)
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(ii) Risky asset (Stock)

dS1(t) = µ(t)S1(t)dt+ σ(t)S1(t)dW (t),

S1(0) > 0. (50)

Here ρ(t) = ρ(t, ω), µ(t) = µ(t, ω) and σ(t) = σ(t, ω), ω ∈ Ω are Ft-measurable processes
for all t ≥ 0 satisfying the following condition,

E[
∫ T

0

{| ρ(t) | + | µ(t) | +σ2(t)}dt] <∞.

Moreover, suppose in the economy there exists a contingent-claim. In this paper, we will
deal with a digital option which has a payoff function at the maturity

F = χ[K,∞)(W (T )), (51)

where K is the exercise price of this contingent-claim. Our aim is to find the replicating
portfolio for this option where at the maturity the value of the portfolio is equal to the
payoff function. If θ(t) = θ(t, ω) = (θ0(t), θ1(t)), ω ∈ Ω, denotes the number of the unites
invested at time t in risk free and risky assets respectively, then the value of the portfolio
will be

V θ(t) = θ0(t)S0(t) + θ1(t)S1(t).

For computational purposes it is often convenient to assume the portfolio self-financing,
i.e.,

dV θ = θ0(t)dS0(t) + θ1(t)dS1(t).

Then the value of the portfolio at time t can be represented as follows:

dV θ(t) = [ρ(t)V θ(t) + (µ(t)− ρ(t))θ1(t)S1(t)]dt+ σ(t)θ1(t)S1(t)dW (t). (52)

There are various ways to define market price of risk. It is convenient to define market
price of risk, u(t) as follows

µ(t)− ρ(t) = σ(t)u(t),

or equivalently

u(t) =
µ(t)− ρ(t)

σ(t)
.

Then by Girsanov theorem,

Ŵ (t) = W (t) +
∫ t

0

u(t)dt (53)

is a Wiener process with respect to the measure Q. Then using equation (53) we can
rewrite the equation (52)in terms of the Wiener process Ŵ (t),

dV θ(t) = ρ(t)V θ(t)dt+ σ(t)θ1(t)S1(t)dŴ (t).

Define discounted value of the portfolio Uπ(t), ∀t ∈ [0, T ],

Uθ(T ) = e−
R T
0 ρ(s)dsV π(T ) = V θ(0) +

∫ T

0

e−
R t
0 ρ(s)dsσ(t)θ1(t)S1(t)dŴ (t). (54)
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If we apply Clark-Ocone formula under change of measure for Uθ(t),∀t ∈ [0, T ],

Uθ(T ) = EQ[Uθ(T )] +
∫ T

0

EQ[(DtU
π(T )− Uθ(T )

∫ T

t

Dtu(s)dŴ (s)) | Ft]dŴ (t). (55)

Comparing the terms in equations (54) and (55), the number of risky assets in the repli-
cating portfolio can be found as follows:

θ1(t) = e
R t
0 ρ(s)dsσ−1(t)S−1

1 EQ[(Dt(e−
R T
0 ρ(s)dsF )− e−

R T
0 ρ(s)dsF

∫ T

t

Dtu(s)dŴ (s)) | Ft].

In particular, if we choose ρ constant and µ, σ deterministic functions then the equation
turns out to be

θ1(t) = e−ρ(T−t)σ−1(t)S−1
1 EQ[DtF | Ft],

where F = χ[K,∞)(W (T )). In order to calculate EQ[Dt(χ[K,∞)(W (T )))|Ft] we will use
the Donsker delta function. For more information we refer to K. Aase et al. [2].

Definition 9. Let Y : Ω → R be a random variable which belongs to G∗. Then the
continuous function

δY (.) : R → G∗

is called Donsker delta function of Y if it has the following property,∫
R
g(y)δY (y)dy = g(Y ) a.s.

for all measurable function g : R → R such that the integral converges.

Theorem 18. Let φ : [0, T ] → R and α : [0, T ] → R be deterministic functions such that
||φ||L2([0,T ]) and ||α||L2([0,T ]) <∞. Define

Y (t) = Y (t, ω) =
∫ t

0

φ(s)dŴ (s) +
∫ t

0

φ(s)α(s)ds.

Let g : R → R be bounded. Then

f(Y (T )) = V0 +
∫ T

0

Ψ(t, ω) � (α(t) + ˙̂
Wt)dt, (56)

where

V0 =
∫

R

g(y)√
2π ||φ||L2([0,T ])

exp[− y2

2||φ||L2([0,T ])
]dy,

Ψ(t, ω) = φ(t)
∫

R

g(y)√
2π ||φ||L2([0,T ])

exp�[− (y − Y (t))�2

2||φ||L2([0,T ])
] � y − Y (t)

||φ||L2([0,T ])
dy,

� is Wick product and ˙̂
Wt is the white noise of Wiener process Ŵ (t) under measure Q.

If we take g(y) = χ[K,∞)(y) and Y (T ) = W (T ) which implies φ(t) = 1, α(t) = −u(t)
where u(t) is defined in equation (53) then Ψ(t, ω) is expressed as follows;

Ψ(t, ω) =
∫ ∞

K

(
√

2π)−1/2 T−1/2 exp�[− (y −W (t))�2

2T
] � y −W (t)

T
dy, (57)
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Also note that by using Clark-Ocone formula we can write the payoff of the digital
function which is;

χ[K,∞)(W (T )) = EQ[χ[K,∞)(W (T ))] +
∫ T

0

EQ[Dt{χ[K,∞)(W (T ))}|Ft]dŴ (t) (58)

Substituting equation (57) into the equation (56) and comparing the terms of the equation
(58) with (56), we obtain the following result:

EQ[Dt{χ[K,∞)(W (T ))}|Ft] = (2π)−1/2 T−1/2

∫ ∞

K

exp�[− (y −W (t))�2

2T
] � y −W (t)

T
dy.

(59)
By K. Aase et al (Lemma 3.8, page 362) [2], equation (59) equals to

EQ[Dt{χ[K,∞)(W (T ))}|Ft] = (2π)−1/2 (T − t)−1/2

∫ ∞

K

exp[− (y −W (t))2

2(T − t)
]
y −W (t)
T − t

dy.

Therefore, in the replicating portfolio the number of the risky assets for hedging digital
option should be

θ1(t) = e−ρ(T−t)(2π(T − t))−1/2σ−1(t)S−1
1 (t)

∫ ∞

K

exp[− (y −W (t))2

2(T − t)
]
y −W (t)
T − t

dy. (60)

References

[1] K. Aase, B. Øksendal, N. Privault and J. Ubøe, White noise generalizations of the Clark-

Haussmann-Ocone theorem with application to mathematical finance, Finance and

Stochastic 4 (2000), 465–496.

[2] K. Aase, B. Øksendal and J. Ubøe, Donsker delta function to compute hedging strategies,

Potential Analysis 14 (2001), 351–374.

[3] G. Di Nunno, B. Øksendal and F. Proske, Malliavin Calculus for Lèvy Processes with
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