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Abstract. The Møller energy(due to matter and fields including gravity) distribu-

tion of the gamma metric is studied in tele-parallel gravity. The result is the same

as those obtained in general relativity by Virbhadra in the Weinberg complex and

Yang-Radincshi in the Møller definition. Our result is also independent of the three

teleparallel dimensionless coupling constants, which means that it is valid not only in

the teleparallel equivalent of general relativity, but also in any teleparallel model.
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1. Introduction

The well-known gamma metric[1, 2], a static asymptotically flat exact solution of

Einstein vacuum equations, is given by

ds2 = (1− 2m

r
)γdt2 − (1− 2m

r
)−γ

[

(
Ω

Ξ
)γ

2−1dr2 +
Ωγ2

Ξγ2−1
dθ2 + Ωsin2 θdφ2

]

(1)

where

Ω = r2 − 2mr, Ξ = r2 − 2mr +m2 sin2 θ. (2)

This metric has there three special cases given below.

• | γ |= 1, the metric is spherically symmetric. The gamma metric reduces to the

Schwarzschild space-time.

• | γ |6= 1, this space-time is axially symmetric. The gamma metric gives the

Schwarzschild space-time with negative-mass, as putting m = −m′(m′ > 0) and

carrying out a coordinate transformation r → R = r + 2m′, then one obtains the

Schwarzschild space-time with positive mass.

‡ To appear in IJMPD.
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Recently, the energy distribution associated with the gamma metric is calculated by

using the Weinberg and Møller energy-momentum complexes in general relativity[3, 4].

The energy in general relativity was found as

E = mγ. (3)

It is really tempting to investigate the teleparallel gravitational energy distribution in

this space-time model.

The problem of energy localization is one of the oldest and most controversial

problem which remain unsolved since the advent of Einstein’s theory of general

relativity[5]. Recently, this problem argued in tele-parallel gravity; It has been worked

out by many physicists[6, 7, 8]. After Einstein’s original work[9] on energy-momentum

formulations, various definitions for the energy-momentum densities were proposed: e.g.

Tolman, Papapetrou, Landau-Lifshitz, Bergmann-Thomson, Møller, Weinberg, Qadir-

Sharif and also tele-parallel gravity analogs of them. Except for the Møller formulation,

these energy-momentum definitions are restricted to calculate energy-momentum

distribution in quasi-Cartesian coordinates. Møller proposed an expression which could

be applied to any coordinate system. So, the notion of energy-momentum complexes

was severely criticized for a number of reasons. First, the nature of a symmetric and

locally conserved object is non-tensorial one; thus its physical interpretation appeared

obscure[10]. Second, different energy-momentum complexes could yield different energy-

momentum distributions for the same gravitational backgrounds[11]. Finally, energy-

momentum complexes were local objects while it was usually believed that the suitable

energy-momentum of the gravitational field was only total, i.e. it cannot be localized[12].

For a long time, attempts to deal with this problem were made only by proposers of

quasi-local approach[13, 14].

There have been several attempts to calculate energy-momentum densities by

using these energy-momentum definitions associated with many different space-times[15,

16, 17]. Virbhadra[18] showed different energy-momentum formulations gave the

same energy distributions as in the Penrose energy-momentum formulation by using

the energy and momentum definitions of Einstein, Landau-Lifshitz, Papapetrou and

Weinberg for a general non-static spherically symmetric metric of the Kerr-Schild class.

Vargas[8] found, using the definitions of Einstein and Landau-Lifshitz in tele-parallel

gravity, that the total energy was zero in Friedmann-Robertson-Walker space-times.

This result agrees with the previous works[19] of Cooperstock-Israelit, Rosen, Johri

et al., Banerjee-Sen. Later on, Saltı and his collaborators considered different space-

times for various definitions in tele-parallel gravity to obtain the energy-momentum

distributions in a given model. They found the same results as obtained in general

relativity, and showed that teleparallel gravity and general relativity agree with each

other[20, 21, 22].

The basic purpose of this paper is to obtain the total energy in the gamma metric by

using the energy-momentum expression of Møller in teleparallel gravity. We will proceed

according to the following scheme. In section 2, we give the energy and momentum
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definition of Møller in teleparallel gravity and calculate the total energy for given space-

time. Finally, we summarize and discuss our results. Throughout this paper, the Latin

indices (i, j, ...) represent the vector number, and the Greek ones (µ, ν,...) represent

the vector components; all indices run from 0 to 3. We use units where G = 1, c = 1.

2. Møller’s Energy in the Teleparallel Gravity

The teleparallel theory of gravity(tetrad theory of gravitation) is an alternative approach

to gravitation and corresponds to a gauge theory for the translation group based on

Weitzenböck geometry[23]. In the theory of teleparallel gravity, gravitation is attributed

to torsion[24], which plays the role of a force[25], and the curvature tensor vanishes

identically. The essential field is acted by a nontrivial tetrad field, which gives rise to

the metric as a by-product. The translational gauge potentials appear as the nontrivial

item of the tetrad field, so induces on space-time a teleparallel structure which is directly

related to the presence of the gravitational field. The interesting place of teleparallel

theory is that, due to its gauge structure, it can reveal a more appropriate approach to

consider some specific problem. This is the situation, for example, in the energy and

momentum problem, which becomes more transparent.

Mφller modified general relativity by constructing a new field theory in teleparallel

space. The aim of this theory was to overcome the problem of the energy-momentum

complex that appears in Riemannian Space[26]. The field equations in this new theory

were derived from a Lagrangian which is not invariant under local tetrad rotation.

Saez[27] generalized Mφller theory into a scalar tetrad theory of gravitation. Meyer[28]

showed that Mφller theory is a special case of Poincare gauge theory[29, 30].

In teleparallel gravity, the super-potential of Mφller is given by Mikhail et al.[?] as

Uνβ
µ =

(−g)1/2

2κ
P τνβ
χρσ [Φ

ρgσχgµτ − λgτµξ
χρσ − (1− 2λ)gτµξ

σρχ] (4)

where ξαβµ = hiαh
i
β;µ is the con-torsion tensor and h

µ
i is the tetrad field and defined

uniquely by gαβ = hα
i h

β
j η

ij (here ηij is the Minkowski space-time). κ is the Einstein

constant and λ is free-dimensionless coupling parameter of teleparallel gravity. For the

teleparallel equivalent of general relativity, there is a specific choice of this constant.

Φρ is the basic vector field given by

Φµ=̇ξρµρ (5)

and P τνβ
χρσ can be found by

P τνβ
χρσ = δτχg

νβ
ρσ + δτρg

νβ
σχ − δτσg

νβ
χσ (6)

with gνβρσ being a tensor defined by

gνβρσ = δνρδ
β
σ − δνσδ

β
ρ . (7)

The energy-momentum density is defined by

Ξβ
α = U

βλ
α,λ (8)
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where comma denotes ordinary differentiation. The energy is expressed by the surface

integral;

E = lim
r→∞

∫

r=constant
U

0ζ
0 ηζdS (9)

where ηζ (with ζ = 1, 2, 3) is the unit three-vector normal to surface element dS.

The general form of the tetrad, h
µ
i , having spherical symmetry was given by

Robertson[31]. In the Cartesian form it can be written as

h0
0 = iA, h0

a = Cxa, hα
0 = iDxα,

hα
a = Bδαa + Exαxα + ǫaαβFxβ (10)

where A,B,C,D,E, and F are functions of t and r =
√
xαxα, and the zeroth vector hµ

0

has the factor i2 = −1 to preserve Lorentz signature§.
Using the general coordinate transformation

haµ =
∂Xν

∂Xµhaν (11)

where Xν and Xν are, respectively, the isotropic and Schwarzschild coordinates

(t, r, θ, φ), we obtain the tetrad components of h µ
a as:

(1− 2m

r
)
γ

2



























i(1− 2m
r
)−γ 0 0 0

0 (Ω
Ξ
)
1

2
− γ

2

2 sθcφ Ω
−

γ
2

2

Ξ
1−γ2

2

cθcφ − sφ√
Ωsθ

0 (Ω
Ξ
)
1

2
− γ

2

2 sθsφ Ω
−

γ
2

2

Ξ
1−γ2

2

cθsφ cφ√
Ωsθ

0 (Ω
Ξ
)
1

2
− γ

2

2 cθ − Ω
−

γ
2

2

Ξ
1−γ2

2

sθ 0



























(12)

where we have introduced the following notation: sθ = sin θ, cθ = cos θ, sφ = sinφ and

cφ = cosφ. For the gamma metric, gµν is defined by














(1− 2m
r
)γ 0 0 0

0 −(1− 2m
r
)−γ(Ω

Ξ
)γ

2−1 0 0

0 0 −(1− 2m
r
)−γ Ωγ

2

Ξγ2−1
0

0 0 0 −(1 − 2m
r
)−γΩ sin2 θ















(13)

and its inverse gµν















(1− 2m
r
)−γ 0 0 0

0 −(1− 2m
r
)γ(Ω

Ξ
)1−γ2

0 0

0 0 −(1− 2m
r
)γ Ω−γ

2

Ξ1−γ2
0

0 0 0 −(1 − 2m
r
)γ 1

Ω sin2 θ















(14)

Next, in the case, the required non-vanishing component of Uνβ
µ is[32, 33]

U01
0 =

2mγ

κ
sin θ (15)

§ The tetrad of Minkowski space-time is hµ

a
= diag(i, δα

a
) where (a=1,2,3)
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From this point of view, using equation (9) with this result the energy associated with

the gamma metric is found as:

E = mγ (16)

It is the same energy as obtained in general relativity by Virbhadra and Yang-Radinschi.

3. Discussion

We evaluated the energy distribution associated with the gamma metric using the the

teleparallel gravity version of Møller’s energy-momentum definition. The energy was

found that it depends on the mass m. Therefore, we got the same result as Virbhadra[3]

has obtained using the energy-momentum complex of Weinberg and Yang-Radinschi[4]

have obtained using the general relativity version of the Møller energy-momentum

complex. The energy distribution is also independent of the teleparallel dimensionless

coupling constant, which means that it is valid not only in the teleparallel equivalent of

general relativity, but also in any teleparallel model.

Further, this paper sustains (a) the importance of the energy-momentum definitions

in the evaluation of the energy distribution of a given space-time, (b) the opinion that

different energy-momentum expressions definitions could give the same result in a given

space-time and (c) the Møller energy-momentum definition allows to make calculations

in any coordinate system.
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