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Abstract

In the presence of the supersymmetric CP phases, e+e− → Z∗ → hA scat-

tering is analyzed, with special emphasis on Z∗hA vertex, taking into account

radiatve corrections due to dominant top quark and top squark loops in the

Higgs sector as well as the vertex formfactors. It is found that the lightest

Higgs remains essentially CP–even whereas the heavier ones mix with each

other strongly. Moreover, the supersymmetric CP phases are found to cre-

ate tree-level couplings between a pseudoscalar and identical sfermion mass

eigenstates which, together with the radiative corrections in the Higgs sector,

are found to enhance the vertex formfactors significantly.
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I. INTRODUCTION

The Minimal Supersymmetric Standard Model (MSSM) is an appealing extension of
the minimal Standard Model in that it resolves the well-known gauge hierarchy problem
of the latter. The MSSM Higgs sector comprises two opposite hypercharge Higgs doublets
whose all quartic couplings are fixed by the gauge couplings at the tree level. In the MSSM
Lagrangian, other than Yukawa couplings and the µ parameter coming from the superpoten-
tial, there are several mass parameters in the soft supersymmetry breaking sector [1]. These
parameters consist of the gaugino masses Ma, sfermion mass-squareds m2

f̃
, Higgs-sfermion

trilinear couplings Af , Higgs mass-squareds m2
i , and bilinear Higgs mixing mass Bµ, all of

which could, in principle, be complex. However, not all these phases are physical [2], that is,
an arbitrary physical quantity depends only on certain combinations of them as dictated by
the global U(1) symmetries of the MSSM Lagrangian [3]. Indeed, one can choose observable
phases to be those of CKM matrix, trilinear couplings Af , and the µ parameter [2], and we
will adopt this convention below.

For getting information about the physical implications of these phases the most conve-
nient way is to look for the collider signatures of certain collision processes. Among others,
the lepton colliders can provide a clean signature independent of the hadronic uncertainities,
depending on the final state particles. In future generation of the colliders, with increasing
center of mass energy of the leptons it may be possible to detect supersymmetric particles,
in particular, the Higgs particles [4,5]. In this work we discuss e+e− → hA scattering in
the presence of explicit CP–violation in the MSSM Lagrangian through the complex µ and
A paarmeters. This process has been analyzed in detail in [6] at one-loop level, and ra-
diative corrections were found to contribute ∼ 5% in regions of the parameter space where
the cross section is maximized. Other than this one-loop analysis, as emhasized by Haber
[7], hAZ coupling becomes vanishingly small in large tan β − MA regime. This process,
compared to Bjorken process and W or Z fusion, involves two Higgs particles at the final
state whose mixings and indefinite CP characteristics can affect the cross section whereby
providing some information on the supersymmetry search. As will be seen below, mainly
there are two distinct effects of these phases on the pair production process: (1) Mixing
between the Higgs scalars due to CP– violation in the Higgs sector, and (2) loop effects of
the sfermions on the hAZ vertex. Below, analytical results will be general; however, in the
numerical analysis we will assume a vanishing phase for µ in accordance with the EDM [2,8]
and cosmological constraints [9] though several ways of relaxing these constraints have been
suggested [10]. Recently, the supersymmetric CP phases have gotten much interest in both
Higgs phenomenology [11–13] and FCNC processes [14].

II. SUPERSYMMETRIC CP PHASES AND E+E− → HA SCATTERING

The supersymmetric CP phases Arg{Af} and Arg{µ} show up in sfermion, chargino
and neutralino mass matrices so that the processes involving these particles as well as their
loop effects depend on these phases explicitly [14,11–13]. In the presence of these phases
there is explicit CP–violation in the Higgs sector; namely, the mass eigenstate Higgs bosons
are mixtures of scalars having different CP–properties. Moreover, these phases enhance
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the radiative corrections to certain quantities by introducing novel interaction vertices not
found in the CP–invariant theory. In what follows we shall discuss these points in detail
when analyzing the effective scalar–pseudoscalar–Z boson vertex.

The loop effects of the MSSM particle spectrum on the Higgs potential could be
parametrized in a simple and elegant way by applying the effective potential method [15]. Its
implicit renormalization prescription corresponds to the DR scheme. Indeed, if the theory
is regularized by dimensional reduction (reducing to the usual dimensional regularization in
the absence of gauge boson loops, and with the conventional algebra for Dirac matrices), in
the Landau gauge, the effective potential is given by

V = V0 +
1

64π2
StrM4(log

M2

Q2
− 3

2
−∆) (1)

where V0 is the tree level MSSM potential depending on the bare parameters, ∆ = 2/(4 −
D) − γ + log 4π, D is the dimension of spacetime, γ is Euler constant, M2 is the field
dependent mass-squared matrix of all fields, and Q is the renormalization scale. Here the
renoralization scale is naturally at the weak scale and we shall take Q2 ∼ m2

t though slightly
different choices are also possible [15]. Expressing the bare parameters and fields in V0 in
terms of the renormalized ones and one-loop counterterms as V0 = Vtree + ∆V , and using
the minimal prescription ∆V = ∆StrM4/(64π2), the UV divergence of (1) is cured. Here
Vtree is the tree-level MSSM Higgs potential composed of renormalized parameters and fields
only. As usual, the second order derivatives of the effective potential (1) with respect to
the components of the Higgs fields, evaluated at the stationarity point, give the Higgs mass-
squared matrix from which the radiatively–corrected Higgs masses and Higgs mixing matrix
follow. The effective potential (1) gets the most important contributions from the top quark
and top squark loops for moderate values of tanβ (for tanβ ∼ 60 bottom quark-squark, tau
lepton-slepton contributions become important) [15]. Therefore, to a good approximation,
it is sufficient to take into account only the dominant top quark and top squark loops, and
neglect the contributions of other particles as justified by the analysis of [16]. Neglecting the
D-term contributions, in (t̃L, t̃R) basis field– dependent stop mass-squared matrix is given
by

Mt̃ =

(

M2
L̃
+m2

t ht(AtH
0
2 − µ∗H0

1
∗
)

ht(A
∗
tH

0
2
∗ − µH0

1 ) M2
R̃
+m2

t

)

(2)

where the top quark mass has the usual expression m2
t = h2

t |H0
2 |

2
, and M2

L̃,R̃
are the soft

mass parameters of left– and right– handed stop fields, respectively. Here H0
1,2 are the

neutral components of the Higgs doublets, and in the true vacuum state of the MSSM,
< H0

2 >= v2/
√
2, < H0

1 >= v1/
√
2 such that v21 + v22 = 4M2

W/g2, and v2/v1 ≡ tan β. In this
vacuum state stop mass-squared matrix (1) is diagonalized as U †

t̃
Mt̃Ut̃ = diag(m2

t̃1
, m2

t̃2
) via

the unitary matrix

Ut̃ =

(

cos θt̃ sin θt̃e
iγt

− sin θt̃e
−iγt cos θt̃

)

(3)

whose entries have the meaning
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tan 2θt̃ = − 2mtÃt

m2
L −m2

R

tan γt =
|At| sin γA + |µ| cotβ sin γµ
|At| cos γA − |µ| cotβ cos γµ

Ãt = [|At|2 + |µ|2 cot2 β − 2|At||µ| cotβ cos(γµ + γA)]
1/2 (4)

where γA ≡ Arg{Af}, γµ ≡ Arg{µ}. The mass eigenstate stops are denoted by t̃1 and t̃2,
with mt̃1 < mt̃2 , where

mt̃1(t̃2) = (1/2)(2m2
t +M2

L̃ +M2
R̃ − (+)

√

(M2
L̃
−M2

R̃
)2 + 4m2

t Ã
2
t ) . (5)

Since Ãt increases as γA + γµ increases from zero to π, mt̃1 (mt̃2) decreases (increases) with
γA+ γµ. Therefore, mt̃1 becomes minimal for CP phases around π. This point will be useful
in discussing the radiative corrections to scalar–pseudoscalar–Z boson vertex.

For computing the radiative corrections to Higgs masses and mixings one applies the
usual procedure, that is, the stop mass–squared matrix (2) is diagonalized to obtain field
dependent stop masses which are inserted to the effective potential formulae (1) together
with the field dependent mass for the top quark. Then the second order derivatives of (1)
evaluated at the stationarity point give the radiatively–corrected Higgs mass-squared matrix.
One can find detailed expressions for the elements of Higgs mass-squared matrix in [11] which
uses the basis B = (Re[H0

1 ],Re[H0
2 ], A ≡ sin βIm[H0

1 ] + cos βIm[H0
2 ]). Diagonalization of

the Higgs mass-squared matrix produces three mass-eigenstate scalars H1, H2, H3 which are
choosen to correspond to h, H and A at γA = 0, respectively. Symbolically one has







H1

H2

H3





 =







R11 R12 R13

R21 R22 R23

R31 R32 R33













Re[H0
1 ]

Re[H0
2 ]

A





 . (6)

From this matrix equality it is obvious that the mass-eigenstate scalars Hi are no longer
CP eigenstates. This CP–breaking follows from the associated entries of the Higgs mass-
squared matrix which are all proportional to sin(γA+γµ); namely, CP–violation in the Higgs
sector is lifted once the supersymmetric CP–phases vanish [11]. Elements of the matrix R
characterize the CP–violation in the Higgs sector and they appear in couplings of Hi to
fermions, gauge bosons, and other Higgs particles as well [11,13]. To compute the radiative
corrections to scalar–pseudoscalar–Z boson vertex in the presence of the supersymmetric
CP–phases one needs Feynman rules for certain vertices. The Z boson couples to Higgs
particles and stops as follows:

VZHiHj
= (cos βRj2 − sin βRj1)Ri3 − (cos βRi2 − sin βRi1)Rj3

VZt̃1t̃1 = −i(
1

2
cos2 θt̃ −

2

3
s2W )

VZt̃1t̃2 = −i
1

4
sin 2θt̃e

iγt (7)

VZt̃2t̃1 = −i
1

4
sin 2θt̃e

−iγt

VZt̃2t̃2 = −i(
1

2
sin2 θt̃ −

2

3
s2W )
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where i, j = 1, 2, 3. For future convenience, VZt̃1 t̃1 is given in units of G ≡
√

g2 + g′2, and
VZHiHj

in units of G/2 with their Lorentz structures suppressed. On the other hand, the
CP–odd componenet of Hi couples to stops as follows

V
(P )

Hi t̃1 t̃1
=

1

2
sin 2θt̃(A

i
P − Ai

P

∗
)

V
(P )

Hi t̃2 t̃2
= −1

2
sin 2θt̃(A

i
P −Ai

P

∗
) (8)

V
(P )

Hi t̃1 t̃2
= sin2 θt̃A

i
P e

iγt + cos2 θt̃A
i
P
∗
e−iγt

V
(P )

Hi t̃2 t̃1
= −(cos2 θt̃A

i
P e

−iγt + sin2 θt̃A
i
P

∗
e−iγt)

where Ai
P = (|At| cos βeiγA + |µ| sinβe−iγµ)eiγtRi3 shows the effects of the stop left-right

mixings on the couplings of the CP–odd component of Hi. Finally, the CP–even component
of Hi couples to stops via

V
(S)

Hi t̃1 t̃1
= i{4

3

M2
Z

mt
s2W (1 +

3− 8s2W
4s2W

cos2 θt̃) sin β(cosβRi1 − sin βRi2) + 2mtRi2

− 1

2
sin 2θt̃(A

i
S + Ai

S

∗
)}

V
(S)

Hi t̃2 t̃2
= i{4

3

M2
Z

mt
s2W (1 +

3− 8s2W
4s2W

sin2 θt̃) sin β(cosβRi1 − sin βRi2) + 2mtRi2

+
1

2
sin 2θt̃(A

i
S + Ai

S
∗
)} (9)

V
(S)

Hi t̃1 t̃2
= i{1

6

M2
Z

mt

(3− 8s2W ) sin 2θt̃ sin β(cos βRi1 − sin βRi2)e
γt

+ cos2 θt̃A
i
S
∗
eiγt − sin2 θt̃A

i
Se

iγt}

V
(S)

Hi t̃2 t̃1
= i{1

6

M2
Z

mt
(3− 8s2W ) sin 2θt̃ sin β(cos βRi1 − sin βRi2)e

−γt

+ cos2 θt̃A
i
Se

−iγt − sin2 θt̃A
i
S

∗
e−iγt}

where Ai
S = (|At|Ri2e

iγA − |µ|Ri1e
−iγµ)eiγt summarizes nothing but the effects of stop left-

right mixings on the CP–even component of Hi. All Hi to t̃at̃b couplings listed in (8) and
(9) are given in units of ht/

√
2 for future convenience.

Couplings of the Higgs scalars to stops depend on several parameters coming from the
mass-squared matrices of stops and Higgs scalars. Among all, stop left-right mixing angle
θt̃, CP–breaking phases γA,t and Higgs mixing parameters Rij are particularly interesting.
The CP–violating supersymmetric phases enter all couplings in (7)-(9), masses of the Higgs
scalars and stops, and Higgs mixing matrix R. These phases not only modify the couplings
existing in the CP–invariant theory, but also create new ones as the expressions of V

(P )

Hi t̃1 t̃1

and V
(P )

Hi t̃2 t̃2
show explicitly. These two couplings are created solely by the supersymmetric

CP phases and necessarily vanish in the CP–conserving limit: γA,µ → 0.
When the off-diagonal elements of the stop mass-squared matrix are large (provided the

light stop mass in above the present LEP lower bound of ∼ 75 GeV) compared to its diagonal
elements, the stop mixing becomes maximal, that is, sin 2θt̃ ❀ 1. In this limit, Z to t̃at̃b6=a,
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HP
i to t̃at̃b, and HS

i to t̃at̃a couplings are maximized as seen from (7)-(9). Of course such
statements depend on relative strengths of |At| and |µ| as well as their phases. In essence,
one needs large chiral mixings to highlight the effects of novel HP

i t̃at̃a couplings; however,
in this limit HS

i t̃at̃a and HP
i t̃at̃b6=a couplings (which exist in the CP–conserving limit too

) become also large though the corresponding formfactors are expected to be suppressed
partially by heavy t̃2. The CP–compositions of the Higgs scalars are dictated by Rij ; hence,
whatever the strengths of the one-loop vertex corrections, they constitute the envelope of
the effective scalar–pseudoscalar–Z boson vertices. These points will be clearer when the
explicit numerical computation is carried out.

For a proper analysis of the Higgs pair production, it is not sufficent to compute the
radiative corrections to Higgs masses and couplings, one has to compute also the radia-
tive corrections to scalar–pseudoscalar–Z boson vertex. Once the radiative corrections are
switched on vector boson self energies as well as the vertex formfactors need be computed
with the inclusion of the entire MSSM particle spectrum [6]. However, consistent with the
description of the Higgs sector, dominant corrections come from the top quark and top
squark loops. Using the form of the radiatively–corrected cross section [6] one can easily
incorporate the radiative corrections to ‘tree’ vertex VZHiHj

as follows

V̂ZHiHj
= VZHiHj

+ βht{cos β(Ri2Rj3 − Rj2Ri3)Qt(−pi, pj, mt, mt, mt)

+ (VZt̃bt̃c
V

(S)

Hi t̃a t̃b
V

(P )

Hj t̃c t̃a
− VZt̃c t̃b

V
(P )

Hi t̃b t̃a
V

(S)

Hj t̃a t̃c
)Qt̃(−pi, pj, mt̃a , mt̃b

, mt̃c)} (10)

where βht = 3h2
t/(16π

2), summation of a, b = 1, 2 is implied, and top quark and
top squark triangles are represented by the loop functions Qt(−pi, pj, mt, mt, mt) and
Qt̃(−pi, pj, mt̃a , mt̃b

, mt̃c), respectively. These vertex formfactors could be expressed in terms
of the standard Veltman-Passarino loop functions [19] as follows

Qt(p, q,m,m,m) = B0(p− q,m) + 2m2C0(p, q,m,m,m) + p2C1(p, q,m,m,m)

+ q2C2(p, q,m,m,m)

Qt̃(p, q,ma, mb, mc) = −2(C0(p, q,ma, mb, mc) + C1(p, q,ma, mb, mc)

+ C2(p, q,ma, mb, mc)) (11)

where the notation and definitions of [20] are adopted. Here p2i = M2
Hi
, p2j = M2

Hj
and

2pi.pj = s − M2
Hi

− M2
Hj
. The light stop contribution is finite whereas the top quark

contribution, due to B0 function, has a UV divergence, ∆, which is renormalized with
minimal prescription as was done for the effective potential (1). Moreover, B0 has a scale
dependence through logm2

t/Q
2.

There are several aspects of (10) deserving a detailed discussion. First, one notes that top
quark contribution is proportional to cos β, which means that this contribution is suppressed
for large tan β (before bottom and tau Yukawa coupligs become comparable to top Yukawa
coupling). In the same way VZHiHj

gets diminished for large tanβ [7,18] especially when
|Ri3| is negligably small (this will be seen to hold in H1Hj 6=1 production). Unlike VZHiHj

and
top quark loop contribution, however, the stop contribution is not necessarily suppressed
in the large tan β regime due to the fact that it has both sin β and cos β dependencies
weigted by |At| and |µ| as seen from the expression of Ai

P below (8). In this way one expects
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stop contributions to lead important variations in the effective vertex depending on the
supersymmetric parameter space adopted. From eq. (8) one observes that the coupling
of HP

i to t̃1t̃1 pair is purely imaginary so that its contribution to |V̂ZHiHj
| remains at the

two-loop order unless Qt̃(−pi, pj, mt̃1 , mt̃1 , mt̃1) develops an absorbtive part part entailing
an interference with VZHiHj

and the dispersive part of the top quark contribution. These
observations require light stop be light enough (weighing ∼ mt) to have stop contributions
be enmhanced.

To have better understanding of the role of the supersymmetric phases on Higgs pair
production it is convenient to analyze the one-loop vertex (10) numerically. However, for
this purpose it is necessary to have a detailed knowledge of the mixing matrix R to identify
the CP–impurities of the Higgs bosons. In the numerical analysis below we shall adopt the
following parameter values

ML̃ = MR̃ = 500 GeV; |At| = 1.3 TeV; |µ| = µ = 250 GeV; M̃A = 200 GeV (12)

having in mind an e+e− collider with
√
s = 500 GeV (for example the recently planned

TESLA facility [17]). Here M̃A is analogous to pseudoscalar mass MA in the CP–invariant
theory [15], and its definition can be found in [11]. In the analysis, phase of At, γA, is treated
as a free variable whereas γµ is set to zero. In each case tan β = 2 and 30 are considered
seperately to illustrate low and high tan β cases, respectively. Depicted in Figures 1-3 are
the γA dependence of the percentage compositions of H1, H2 and H3. Fig. 1 shows R

2
11 (solid

curve), R2
12 (dashed curve), and R2

13 (dotted curve) for tan β = 2 (left panel) and tanβ = 30
(right panel). As the figure suggests, tanβ = 2, CP–even components ofH1 oscillate between
∼ 45% and ∼ 55% in the entire γA range while its CP–odd component remains below 1%
everywhere. The right panel shows the γA dependence of the same quantities for tan β = 30,
from which it is seen that R2

12 remains above ∼ 90%, and correspondingly R2
11 is always

below ∼ 10% line. This rearrangement of the CP–even components results from the large
value of tanβ as in the CP–invariant theory [7]. Similar to Fig. 1 the CP–odd composition
of H1 is rather small, never exceeding ∼ 0.5% level. That the lightest Higgs (H1) remains
essentially CP–even follows from the decoupling between the heavy and light sectors in the
MSSM Higgs sector [12,11,13]. Indeed, if M̃A were lighter (say below ∼ 150 GeV with a low
enough tan β) H1 would have a larger CP=-1 composition.

Fig. 2 shows γA dependence of R2
21 (solid curve), R2

22 (dashed curve), and R2
23 (dotted

curve) for tan β = 2 (left panel) and tan β = 30 (right panel) . As is seen form Fig. 3,
for γA → 0, H2 becomes the usual heavy CP–even Higgs boson of the MSSM, its CP–even
components start at γA = 0 in agreemnet with Fig. 1 (left panel), and completely vanish
at γA = π at which it becomes a completely CP–odd Higgs boson. Indeed, H2 assumes
a definite CP property for sin γA → 0; however, it has opposite CP quantum numbers for
γA = 0 and γA = π. Swithching to Fig. 2 right panel one observes an even stronger CP–
impurity for H2: Except for γA <

∼ 1 ( and of course γA >
∼ 5) H2 is almost a pure CP–odd

Higgs boson where its CP–even composition remains below ∼ 12%. As in Fig. 3 for γ = π
H2 is purely CP–odd. The strong CP–impurity of H2 automatically implies a symmetric
situation for H3 (the would-be CP–odd boson of the CP–invariant theory) as suggested
by Fig. 3. Indeed H2 and H3 are complementary to each other in the sense that H3 is
mostly CP–even in regions where H2 is nearly CP–odd. The lesson drawn from Figs. 1-3
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is that the lightest Higgs H1 keeps becoming, to a good approximation, CP–even while the
other two Higgs scalars mix with each other significantly depending on γA and tan β. In
forming these graphs use has been made of the parameter set in (8) in which M̃A is fixed
to 200 GeV. Similar to MA of the CP–invariant theory M̃A determines the masses of heavy
scalars H2 and H3. Together with large tan β values, large M̃A values imply the decoupling
limit described in [7]. However, for collider applications (with

√
s = 500 GeV as considered

here) it is necessary to keep M̃A around 200 GeV to allow for pair production of the Higgs
scalars. In accordance with the results of [11], on the average, MH1

= 130 GeV (155 GeV),
MH2

= 210 GeV (200 GeV), and MH3
= 200 GeV (200 GeV) for tanβ = 2(30) in the entire

range of γA. Therefore, with
√
s = 500 GeV, it is possible to produce even H2 − H3 pairs

despite strong kinematic suppression compared to H1 −H2 or H1 −H3 productions.
The CP compositions of H2 and H3 shown in Figs. 2 and 3 need further discussion. One

notices that γA = 0 and γA = π are equivalent in the sense that CP–breaking components
of the Higgs mass-squared matrix vanish at both points. However, according to the CP
compositions of H2 and H3 these points are no longer equivalent. This follows from the fact
that the radiative corrections at these two points are no longer equivalent since the quantities
involving cos γA,µ (which remain non-vanishing in the CP–conserving limit) reverse their sign
as one switches from γA = 0 to γA = π. Therefore, as an example, one observes from (5)
that for γA = π light stop (heavy stop) assumes its smallest (largest) possible mass for a
given parameter space. This then maximizes logm2

t̃2
/m2

t̃1
type stop–splitting contributions

modifying the strength of the radiative corrections. Other than all these, diagonalization of
the Higgs mass-squared matrix (described in (6)) uses only the properties of the scalars at
γA = 0 in naming them, and does not care their behaviour at finite γA.

Given the CP–properties of the Higgs bosons in Figs. 1-3, and the effective scalar-
pseudoscalar-Z boson vertex in (10) then one can analyze the effective vertex |V̂ZHiHj

| by
identifying the loop and tree-level contributions for each Hi. For the parameter set in (12),
the light stop mass start with 274 GeV (234 GeV) at γA = 0, and falls to 177 GeV (227 GeV)
at γA = π for tanβ = 2 (30). For tanβ = 2, mt̃1 falls below 250 GeV at γA ∼ 1.

Depicted in Fig. 4 is the γA dependence of |V̂ZH1H3
| for tanβ = 2 (left panel) and tanβ =

30 (right panel). Here solid curve shows |VZH1H3
| which includes no vertex corrections. For

tan β = 2 (left panel) |VZH1H3
| ∼ 0.36 at γA = 0, and it gradually decreases with increasing

γA eventually vanishing at γA = π. This behaviour is dictated by the left panels of Figs. 1
and 3 where H1 remains essentially CP–even for all γA whereas H3 becomes a pure CP–even
scalar in a narrow region around γA = π. The dashed curve shows |V̂ZH1H3

| when only
the top quark loop is considered. The top quark loop is seen to contribute by ∼ 0.5% and
has essentially the same γA dependence as the solid curve. This essentially follows from
the dominance of the ‘tree–vertex’ VZH1H3

. Here one notes that the absorbtive part of the
top quark loop does not interfere with VZH1H3

and becomes a two–loop effect in computing
|V̂ZH1H3

|. When the scalar top quark loops (dotted curve) are included, however, one gets
a ∼ 6% enhancement in |VZH1H3

| at γ = 0. This amount of enhancement is typical of this
process as already noted in [6]. This large correction is due to the fact that HS,P

i to t̃1t̃2
couplings are large because of relatively large value of |At|. In fact, in the CP–conserving
limit HP

i couples only distinct stops so that the stop loop involves at leat one t̃2. |V̂ZH1H3
|

starts with this relatively large value at γA = 0, and decreases faster than the previous two
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until γA ∼ 1.1. This decrease follows from the gradual increase in mt̃2 suppressing the vertex
formfactors. In this region γA dependence are dictated by Rij and the vertices listed in (7)-
(9). At γA ∼ 1.1, however, it changes sharply due to the fact that Qt̃(−pi, pj, mt̃1 , mt̃1 , mt̃1)
now develops an absorbtive part (since at γA ∼ 1.1 mt̃1 just falls below

√
s/2) which, when

multiplied by the purely imaginary vertex V
(P )

H3 t̃1 t̃1
, becomes pure real and interferes with the

‘tree-level’ vertex VZH1H3
modifying it sharply. It is this kind of behaviour that shows clearly

the effects of the pure light stop loop existing solely due to the CP–violation. Asymmetric
behaviour of |V̂ZH1H3

| with respect to γA = π axis as well as its concidences with |VZH1H3
|

follows from the γA dependence of vertices listed in (7)-(9): It behaves as ∼ sin 2γ cos 2γ
appropriate for γµ = 0 and |At| >> |µ|.

The right panel of Fig. 4 shows the γA dependence of |V̂ZH1H3
| for tan β = 30. One

observes first decrease in the strength of all curves compared to the left panel. One observes
several differences between this figure and the left panel: First, as mentioned before, the
light stop mass is below the

√
s/2 for the entire range of γ so that there is no sharp change

in the variation of the figure at any value of γA. Second, the comparatively fast variation of
|V̂ZH1H3

| follows the right panels of Figs. 1 and 3 where φ2 component of H1 remains large
whereas the CP–odd component of H3 is diminished rather fast (see the dotted curve in Fig.
3, right panel). It is for this reason that |V̂ZH1H3

| oscillates faster than in left panel. Third,
|V̂ZH1H3

| for tanβ is rescaled to smaller values compared to the left panel. This follows from
the large value of tanβ which is known to suppress tree as well as the one–loop corrections
[6]. However, the gain in |V̂ZH1H3

| with respect to its value at γA = 0 is much larger than
the one in the left panel. For example, around γA ∼ 2.5 |V̂ZH1H3

| is ∼ 2.3 times bigger than
its value at γA = 0. Finally one notices that, at large tan β, almost entire behaviour of
|V̂ZH1H3

| is determined by the ’tree-vertex’ VZH1H3
; the one–loop corrections are suppressed

compared to the left panel. In this limit top quark contribution is suppressed by cos β
factor it multiplies, on the other hand, stop contributions are suppressed by the cos β factor
multiplying |A|t (|µ| is already small) in Ai

P and by similar factors in Ai
S.

As is seen from Fig. 2 H2 (which becomes H at γA = 0) is no longer a CP–even Higgs as
γA varies. Thus, it is possible to produce H1H2 pairs in addition to H1H3 ditailed above. As
expected, |V̂ZH1H2

| vanishes at γA = 0 at which both scalars are CP–even. In similarity with
the discussions concerning |V̂ZH1H3

| above one can analyze this process too. For example,
minima and maxima of the effective vertex follow from their CP compositions in Figs. 2 and
3 using repestive panels. In general since the vertex is generated by the CP–violation in the
Higgs sector, rather than the vertex radiative corrections, behaviour of |V̂ZH1H2

| is mainly
dictated by VZH1H2

everywhere. One finally notices that the effects of the absorbtive part
of the light stop contribution is too small to be seen in the variation of VZH1H2

.
In principle one can also analyze the effective vertex for H2H3 production. However,

for the collider search the main concern is the associated production of H1 with a heavy
Higgs scalar as this is the first step towards a complete discovery of the Higgs spectrum of
the MSSM. Moreover, for the center-of-mass energy chosen in this work pair production of
such heavy scalars will be suppressed. In spite of these facts, however, from the comparison
of Figs. 2-3 it is obvious that |V̂ZH2H3

| will not have a significant γA dependence because
these two scalars have complementary CP–properties. One expects similar effects to occur
in other Higgs boson couplings [11].

9



III. DISCUSSIONS AND CONCLUSION

This work has concentrated on the associated production of one light and one heavy
Higgs scalars in the presence of explicit CP violation due to non-vanishing supersymmetric
CP phases. In the light of the results derived in the text one can state that: (i) The
lightest of the three Higgs scalars remains essentially CP–even due to decoupling between
the light and heavy sectors in the MSSM [7], and this is also confirmed by [11,13]. (ii) Due
to this CP–purity of the lightest Higgs e+e− → HiHj probe only the CP–odd composition
of the heavy scalar; therefore, assuming sufficient mass resolution at next generation of
colliders one expects MSSM to behave as having two CP–odd Higgs bosons for certain
values of the supersymmetric CP–phases. (iii) Explicit CP–violation not only mixes scalars
of different CP–properties but also induces a novel vertex where a CP–odd Higgs boson
can couple to identical sfermions. Effects of this additional interaction rule has been shown
to be observable by through the phase dependence of the one–loop scalar–pseudoscalar–Z
boson vertex. However, this additional interaction can show up most significantly in the
pseudoscalar → γγ decay whose rate gets no contribution from the sfermion loops in the
absence of CP–violation. (iv) The explicit CP–violation discussed here, in particular the
relations among vertices coupling Higgs scalars to gauge bosons and fermions, are special
cases of the general rules described in [22].

This work as well as others [12,11,13] assume the existence of non-vanishing phases for
µ parameter and all other soft mass parameters. Though it is not essential for low-enegry
supersymmetry phenomenology one can relate these phases to the Goldstone bosons of some
broken global symmetries of the hidden sector in supergravity breaking [23]. As the analysis
of [3] shows these phases generally relax to (near) a CP–conserving point in the case of
universality. However, in more general cases, especially when the supersymmetry breaking
in the hidden sector is realized non-linearly, these phases may relax to some point away from
the CP–conserving limit. In this sense, it is this possibility that is investigated here. As the
graphs of the effective vertices in Figs. 4-5 show, if these phases relax to points away from
the CP–conserving point they can have drastic implications for the collider phenomenology
of Higgs bosons [12,11,13], and also for Kaon and B-meson phenomenology [14]. Finally one
notes the acceleration in the interest to the supersymmetric CP–phases in the context of the
electroweak baryogenesis [24].
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FIG. 1. Percentage composition of H1 as a function of γA for tanβ = 2 (left panel) and tanβ = 30

(right panel). Here R2

11
, R2

12
and R2

13
are shown by solid, dashed, and dotted curves, respectively.
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FIG. 2. Percentage composition of H2 as a function of γA for tanβ = 2 (left panel) and tanβ = 30

(right panel). Here R2

21
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are shown by solid, dashed, and dotted curves, respectively.
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FIG. 3. Percentage composition of H3 as a function of γA for tanβ = 2 (left panel) and tanβ = 30

(right panel). Here R2

31
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are shown by solid, dashed, and dotted curves, respectively.
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with γA when there is no vertex corrections (solid curve), when only top
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