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Abstract

We study the Lorentz and CPT violating effects on the branching ratio, the CPT
violating asymmetry and the ratio of the decay width, including only the Lorentz violating
effects, to the one obtained in the standard model, for the flavor dependent part of the
lepton flavor conserving Z → l+l− (l = e, µ, τ) decay. The inclusion of the Lorentz and
CPT violating effects in the standard model contribution are too small to be detected,
since the corresponding coefficients are highly suppressed at the low energy scale.

∗E-mail address: eiltan@heraklit.physics.metu.edu.tr

http://arxiv.org/abs/hep-ph/0308151v2


1 Introduction

A considerable theoretical work has been done to construct a fundamental theory at higher

scales, like the Planck scale, which the standard model (SM) of particle physics is its low

energy limit. In such scales, there are hints that the Lorentz and CPT symmetries are broken

[1], in contrast to their conservation in the SM. The string theories [2] and the non-commutative

theories [3] are the examples of high energy extensions of the SM. Even if the Lorentz and CPT

symmetry violations exist in the extended theories given above, the small violations of these

symmetries can appear at the low energy level.

The general Lorentz and CPT violating extension of the SM is obtained in [4, 5]. In the

extension of the SM the Lorentz and CPT violating effects are carried by the coefficients coming

from an underlying theory at the Planck scale. These coefficients can arise from the expectation

values in the string theories or some coefficients in the non-commutative field theories [3]. The

loop quantum gravity [6], the space time foam [7] and cosmological scalar fields [8] are the

possible sources of the Lorentz violating coefficients . Furthermore, the space-time varying

couplings are also associated with the Lorentz violation, and they affect the photon dynamics

[9] .

In the literature, there are various studies in which some of the coefficients are probed, by

using the experiments [10, 11]. The general Lorentz and CPT violating Quantum Electro Dy-

namics (QED) extension has been studied in [12, 13] and in [13] the one loop renormalizability

of this extension has been shown. In [14] the Lorentz and CPT violating effects on the branch-

ing ratio (BR) and the CP violating asymmetry ACP for the lepton flavor violating (LFV)

interactions µ → eγ and τ → µγ, has been analyzed in the model III version of the two Higgs

doublet model (2HDM) and the relative effects of new coefficients on these physical parame-

ters have been studied. The Lorentz and CPT violating effects in the Maxwell-Chern-Simons

model have been examined in [15, 16] and these effects in the non-commutative space time have

been analyzed in [17]. In [18], the theoretical overview of Lorentz and CPT violation has been

done; in [19], the possible signals of Lorentz violation in sensitive clock-based experiments has

been investigated and in [20], the superfield realizations of Lorentz-violating extensions of the

Wess-Zumino model were presented. The threshold analysis of ultra- high-energy cosmic rays

can also be used for Lorentz and CPT violation searches. The basis for such threshold has been

investigated in [21].

In the present work, we study the Lorentz and CPT violating effects on the BR, the CPT

violating asymmetry (ACPT ) and the ratio R of the decay width Γ, including only the Lorentz
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violating effects, to the one obtained in the SM, for the flavor dependent part of the lepton

flavor conserving Z → l+l− (l = e, µ, τ) decay. The additional contribution, coming from

the Lorentz and CPT violating effects, on the physical parameters we study is too small to

be detected, since the corresponding coefficients are highly suppressed at the low energy scale.

Our aim is to investigate the relative importance of the coefficients which are responsible for the

Lorentz and CPT violating effects on the BR of the decays under consideration. Furthermore,

we predict the possible CPT violating asymmetry ACPT which is carried by the limited number

of coefficients, eµ and gµνα in the present process. The ACPT is sensitive to the flavor structure

of the process, however, it is considerably small, as expected. Finally, we study the ratio R to

understand contribution of the Lorentz and CPT violating effects on the flavor structure of the

decay and we observe that these effects are too weak to be detected in the present experiments.

The paper is organized as follows: In Section 2, we present the theoretical expression for

the decay width Γ, the ACPT and the ratio R, for the lepton flavor conserving Z → l+l−

(l = e, µ, τ) decay, in the case that the Lorentz and CPT violating effects are switched on.

Section 3 is devoted to discussion and our conclusions.

2 The Z → l+l− (l = e, µ, τ) decay with the addition of

the Lorentz and CPT violating effects

In this section, we study the Lorentz and CPT violating effects on the BR, the CPT asymmetry

and the ratio R for the leptonic Z decay. In the SM, this process is allowed at tree level and the

BR is weakly sensitive to the lepton flavor. The insertion of the Lorentz and CPT violating

effects in the tree level brings new contribution and its size is regulated by the magnitudes of

the new coefficients coming from the tiny Lorentz and CPT violation. The Lorentz and CPT

violating lagrangian in four space-time dimensions responsible for the decay of Z boson to the

lepton pair reads [4]

L =
i

2
(ψ̄LΓ

µDµψL + ψ̄RΓ
µDµψR) (1)

where

Γµ = γµ + Γµ
1 ,

Γµ
1 = cαµ γα + dαµ γ5 γα + eµ + ifµ γ5 +

1

2
gλνµ σλν . (2)

Here the coefficients cαµ, dαµ, eµ, fµ and gλνµ are responsible for the Lorentz violation. Even

if the U(1) charge symmetry and renormalizability does not exclude the part of lagrangian
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including the coefficients eµ, fµ and gλνµ, they are not compatible with the electroweak structure

of the SM extension. However, the possible nonrenormalizable higher dimensional operators

respecting the electroweak symmetry and including Higgs field with vacuum expectation value

can create these highly suppressed terms (see [4] for details). In our analysis we also take these

terms into consideration since they are sources of the CPT violation ([13]).

Now, we would like to present the additional vertex due to the Lorentz and CPT violating

effects for the Z → l+l− decay:

VLorV io =
−i Ql e

sW cW

{

cαµ γα + dαµ γ5 γα + eµ + i fµ γ5 +
1

2
gλνµ σλν

}

(clL L+ clRR) , (3)

where L(R) = 1
2
(1 ± γ5), c

l
L = −1

2
+ s2W , clR = s2W and Ql = −1. Our aim is to calculate the

decay width of the Z → l+l− process including the Lorentz violating effects. It is known that

the invariant phase-space elements in the presence of Lorentz violation are modified [16]. In

the conventional case where there are no Lorentz violating effects, the well known expression

for decay width in the Z boson rest frame reads

dΓ =
(2π)4

6mZ

δ(4)(pZ − q1 − q2)
d3q1

(2π)3 2E1

d3q2

(2π)3 2E2

× |M |2(pZ , q1, q2) (4)

with the four momentum vector of Z boson (lepton, anti-lepton) pZ (q1, q2), and the matrix

element M for the process Z → l+ l−. The inclusion of the new Lorentz violating parameters

changes the lepton dispersion relation and an additional part in the phase space element d3qi
(2π)3 2Ei

is switched on. The variational procedure generates the Dirac equation 1.

(γµqµ −m+ Γµ
1qµ)ψ = 0 . (5)

and a small modification on Ei in the phase space element is obtained. In our case, the

corresponding dispersion relation is a complicated function of the various Lorentz violating

parameters (see [5] for example). In addition to this, the crowd of Lorentz violating parameters

causes large number of fixed directions and makes the angular integrations complicated, since

the amplitude has a functional dependence of these angular variables. Finally, spin sums in the

final state are not trivial in the case of Lorentz violating effects since the phase factors depend

on the outgoing lepton polarizations (see [22] for details). Therefore, in the present work, we do

1In the case of the existence of the new Lorentz violating effects lying in the part −ψ̄Mψ whereM = m+M1,
M1 = aµγµ + bµγ5γµ + 1

2
Hµνσµν (see [13] for details), the modified Dirac equation becomes (γµqµ −m−M1 +

Γµ
1
qµ)ψ = 0
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not take into account these tiny additional effects 2 and use the conventional expression for the

decay width in the Z boson rest frame (see eq. (4)). With the inclusion of the Lorentz violating

effects in the matrix element, the Lorentz violating part of the decay width Γ(Z → l+l−) is

obtained as

ΓLorV io =
e2Q2

l

48 πm2
Z c

2
W s2W

sl {c00
(

2m2
l −m2

Z (1− 4 s2W + 8 s4W )
)

+ d00 (2m
2
l −m2

Z) (1− 4 s2W ) +
1

2
g mZ ml (1− 4 s2W ) } . (6)

Here sl =

√

m2

Z

4
−m2

l , the parameters c00 and d00 are the zeroth components of the coefficients

cαβ and dαβ and the last term g is g = ǫijk g
ikj , where i, j, k = 1, 2, 3. Notice that we take

only the additional part of the decay width which is linear in the Lorentz violating coefficients.

The eq. (6) shows that ΓLorV io depends on the CPT even (c00 and d00) and the CPT odd g

coefficients. Using ΓLorV io it is easy to calculate the Lorentz violating part of the BR (BRLorV io)

as:

BRLorV io =
ΓLorV io

ΓZ

, (7)

where the ΓZ is the total decay width of the Z boson and its numerical value is ΓZ =

2.490 (GeV ).

The coefficient g switches on the CPT asymmetry and it reads

ACPT =
(1− 4 s2W )ml g

D
, (8)

where

D = 2mZ

(

(

1− 4 s2W (1− 2 s2W )
)

−
m2

l

m2
Z

(

1 + 8 s2W (1− 2 s2W )
)

+
(

2
m2

l

m2
Z

− (1− 4 s2W (1− 2 s2W ))
)

c00 + (1− 4 s2W ) (2
m2

l

m2
Z

− 1) d00

)

. (9)

2The modified Dirac equation for the outgoing lepton in the present case is (γµqµ −m+Γµ
1
qµ)ψ = 0. Now,

we assume that all the Lorentz violating coefficients, except c00, d00, e0, f0 and gijk, are vanishing. Furthermore,
gijk is small compared to other coefficients. After some algebra, the dispersion relation is obtained as
(q2 −m2

l + 2mlE e
0)2 − 4m2

l E
2 (s00)2 = 0, where (s00)2 = (c00)2 − (d00)2 − (f0)2 and the energy eigenvalues

read En
± ≃ −ml (e

0+(−1)n s00)±

√

~q2 +m2

l

(

1 + (e0 + s00)2
)

where n = 1 or 2. Following the integration over

the anti lepton four momentum q2, the phase factor 1/E1 is replaced by

1/
(

−ml (e
0 + s00) +

√

~q2 +m2

l

(

1 + (e0 + s00)2
) )

≃
(

1 +ml (e
0 + s00)/

√

~q2
1
+m2

l

)

/
√

~q2
1
+m2

l . We expect

that the factor 1/
√

~q2
1
+m2

l in the additional part further suppresses the Lorentz violating effects in the phase
factor, after the kinematical integration over the lepton four momentum q1.
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This equation shows that the ACPT depends on the flavor part of the decay under consideration

and becomes larger for the heavier lepton pair decay.

Finally, we study the ratio R =
Γflavor

LorV io

Γflavor

SM

R =
4ml c00 + (1− 4 s2W ) (4 d00ml + gmZ)

2ml (1 + 8 s2W (1− 2 s2W ))
(10)

where Γflavor
LorV io (Γ

flavor
SM ) is the flavor dependent part of the decay width including only the Lorentz

violating (the SM without Lorentz violating) effects. This ratio is sensitive to the lepton mass

and it is dominant for the light lepton pair decay.

3 Discussion

The SM is invariant under the Lorentz and CPT transformations, however, the small violations

of Lorentz and CPT symmetry, possibly coming from an underlying theory at the Planck scale,

can arise in the extensions of the SM. In this section, we analyze the Lorentz and CPT violating

effects on the BR and the ACPT for the Z → l+l− (l = e, µ, τ) decays, in the SM extension.

Furthermore, we study the ratio R =
Γflavor

LorV io

Γflavor

SM

to understand contribution of the Lorentz and

CPT violating effects on the flavor structure of the decay. It is well known that these effects are

tiny to be observed, however, it would be interesting to see the relative behaviors of different

coefficients, which are responsible for the violation of the Lorentz and CPT symmetry.

The natural suppression scale for these coefficients can be taken as the ratio of the light

one ml to the one of the order of the Planck mass. Therefore, the coefficients which carry the

Lorentz and CPT violating effects are roughly in the range of 10−23 − 10−17 [11]. Here the

first (second) number represent the electron mass me (mEW ∼ 250GeV ) scale. We take the

numerical values of the coefficients |d|, |c|, |e|, |g| at the order of the magnitude of 10−23−10−17.

In Fig. 1 (2), we present the magnitude of the coefficient dependence of the Lorentz violating

part of the BR (BRLorV io) for the decay Z → τ+τ− (µ+µ−). Here solid (dashed, small dashed)

line represents the dependence to the coefficient c00 (d00, g), in the case that the other coefficients

have the same numerical value 10−20. Notice that, in the figures, the parameter χ denotes to

the size of c00, d00 and g for different lines. It is observed that the BR is more sensitive to the

coefficient c00 compared to the others and the contribution of the new effects to the BR is at

the order of the magnitude of 10−19 for the large values of the coefficient c00 ∼ 10−17. With the

increasing values of the coefficient g the BR decreases for Z → τ+τ− decay and this effect is

weak for the light lepton pair case, namely Z → µ+µ− decay. Notice that the Lorentz violating
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coefficient dependence of the BRLorV io for the decay Z → e+e− is almost the same as the one

for the decay Z → µ+µ−.

Now, we analyze the CPT violating asymmetry ACPT for the decays under consideration.

The coefficient g and the lepton flavor are responsible for this violation as seen in the eq. (8).

Fig. 3 is devoted to the magnitude of the coefficient dependence of the ACPT . Here solid

(dashed, small dashed) line represents the ACPT for the decay Z → τ+τ− (µ+µ−, e+e−). The

ACPT is sensitive to the lepton flavor and it is at the order of the magnitude of 10−20 (10−21,

10−23) for the large values of the coefficient g ∼ 10−17, for the decay Z → τ+τ− (µ+µ−, e+e−).

The ACPT enhances with the increasing lepton mass.

Finally, we study the ratio R =
Γflavor

LorV io

Γflavor

SM

and we present the the magnitude of the coefficient

dependence of the ratio R for the decay Z → τ+τ− (µ+µ−, e+e−) in Fig. 4 (5, 6). Here solid

(dashed, small dashed) line represents the dependence to the coefficient c00 (d00, g), in the case

that the other coefficients have the same numerical value 10−20. The ratio R is more sensitive to

the coefficients c00 and g compared to the coefficient d00 and it is at the order of the magnitude

of 10−17 for the large values of the coefficient c00 (g) ∼ 10−17, for the decay Z → τ+τ−. For

the Z → µ+µ− decay, R is more sensitive to the coefficient g and it can reach the values of

10−16. In the case of Z → e+e− decay, the sensitivity of R to the coefficients c00 and d00 is

weak, however, it enhances up to the values of 10−14.

At this stage we would like to summarize our results:

We analyze the Lorentz and CPT violating effects on the BR, ACPT and the ratio R and

we study the relative behaviors of different coefficients by taking their numerical values at the

order of the magnitude of 10−20 − 10−17:

• The contribution of the Lorentz and CPT violating part to the BR of the decays Z → l+l−

(l = e, µ, τ) is at most at the order of the magnitude of 10−19 for the large values of the

coefficients c00, d00 and g and these numbers are too small to be detected.

• We predict the numerical value of ACPT at the order of 10−20 (10−21, 10−23) for the

large values of the coefficient g ∼ 10−17 for the decay Z → τ+τ− (µ+µ−, e+ e−). This

physical parameter is driven by the coefficient g and the lepton flavor. It enhances with

the increasing values of lepton mass.

• We study the ratio R =
Γflavor

LorV io

Γflavor

SM

and we observe that its sensitivity to the coefficient g

(c00, d00) increases (decreases) with the decreasing values of the lepton mass. It is at the

order of the magnitude of 10−17 (10−16, 10−14) for g ∼ 10−17, for the decay Z → τ+τ−
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(Z → µ+µ−, Z → e+ e−).
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Figure 1: The magnitude of the coefficient dependence of BRLorV io for the decay Z → τ+τ−.
Here solid (dashed, small dashed) line represents the dependence to the coefficient c00 (d00, g),
in the case that the other coefficients have the same numerical value 10−20.
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Figure 2: The same as Fig. 1 but for the decay Z → µ+µ−.
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Figure 3: The magnitude of the coefficient dependence of the ACPT for the decay Z → l+l−,
(l = e, µ, τ) Here solid (dashed, small dashed) line represents the ACPT for the decay Z → τ+τ−

(µ+µ−, e+e−).
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Figure 4: The magnitude of the coefficient dependence of the ratio R for the decay Z → τ+τ−.
Here solid (dashed, small dashed) line represents the dependence to the coefficient c00 (d00, g),
in the case that the other coefficients have the same numerical value 10−20.
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Figure 5: The same as Fig. 4 but for the decay Z → µ+µ−
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