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(Dated: November 6, 2018)

We consider the single photon transistor in coupled cavity system of resonators interacting with
multilevel superconducting artificial atom simultaneously. Effective single mode transformation is
used for the diagonalization of the hamiltonian and impedance matching in terms of the normal
modes. Storage and transmission of the incident field are described by the interactions between
the cavities controlling the atomic transitions of lowest lying states. Rabi splitting of vacuum in-
duced multiphoton transitions is considered in input/output relations by the quadrature operators
in the absence of the input field. Second order coherence functions are employed to investigate
the photon blockade and delocalization-localization transitions of cavity fields. Spontaneous virtual
photon conversion into real photons is investigated in localized and oscillating regimes. Reflection
and transmission of cavity output fields are investigated in the presence of the multilevel transitions.
Accumulation and firing of the reflected and transmitted fields are used to investigate the synchro-
nization of the bunching spike train of transmitted field and population imbalance of cavity fields.
In the presence of single photon gate field, gain enhancement is explained for transmitted regime.

PACS numbers: 42.50.Pq, 71.70.Ej,85.25.-j

I. INTRODUCTION

Atom photon interactions lies at the heart of the
emergence of the quantum optical devices templated
by the on-chip lab simulation in microwave frequency
quantum networks [1–4]. Cavity/Circuit QED leads to
the implementation of quantum information protocols
of light-matter coupling in both the strong and ultra-
strong regime[5–8]. Lattice arrays of coupled cavities
mimicks the collective behavior of many body coupled
systems in quantum phase transitions[9–12]. Coupled
resonator systems of cavities appears as the test bed
for photon blockade and localization-delocalization tran-
sition in both strong and ultrastrong coupling regimes
[13–15].

Jahn-Teller (JT)[16, 17] system as a solid state coun-
terpart of the coupled cavity system is investigated in
cavity QED [18]. In terms of two superconducting LC
resonators coupled with a common two-level artificial
atom is used as a simulator in the ultrastrong coupling
regime[19]. Two-frequency JT system can be switched to
an effective single mode from the two-mode model by tun-
ing the hopping term between the resonator in different
coupling regimes [20, 21]. As an electrical analog plat-
form to simulate the nonlinearities [23–26], photon block-
ade and localization-delocalization transitions is investi-
gated in coupled Superconducting Quantum Interference
Devices (SQUIDS). Population imbalance between cou-
pled resonators is used to synchronize the qubit dephas-
ing in networked JT system wired up to outer circuitry
on chip[27].

In analogy with the electronic counterpart, strong

∗Electronic address: yusufgul.josephrose@gmail.com.

atom field interactions give rise to construction of the
single photon transistor based on the transmission of a
strong coherent probe controlled by the gate field[28]. In
this scheme, nonlinear two-photon switch is used to ma-
nipulate the propagating surface plasmon excitations in
nanowires and the three-level atomic system [29]. While
the transmission of the signal photon is conditioned on
the impedance matching in terms of the presence or ab-
sence of the single photon in the gate field, the storage
process is described by the splitting of the incoming field
due to the scattering by the emitter [30–32]. Impedance
matching in Λ -type three-level systems, makes it possible
to implement the absorption and switching in supercon-
ducting qubit resonator interactions [33, 34].

Based on the single photon non-linearities, it is pos-
sible to propose different schemes of the resonator and
artificial atom configurations in strong and ultrastrong
coupling regimes. Two transmon qubits are used to cou-
ple the resonators on which photons are propagating and
forming localized scattering center controlling the block-
ade and transmission of the incident photon[35]. When
the single artificial atom is three level ladder Ξ system,
single photon transistor is realised by reflected or trans-
mitted photons are conditioned on the flipping of the
atom[36]. On the other hand, two separate cavities can
be wired up to construct single photon transistor by mak-
ing the each cavity is coupled with the upper or lower
transitions of a three level artificial atom with separate
multiphoton input/output [37, 38]. Moreover, coupled
cavity system interacting with a qubit can be described in
terms of the coordinates of the second auxiliary cavity ef-
fectively. Then, interactions between cavities and atomic
transitions can be turned into the dark state tuned by
the hopping term after eliminating the transitions of the
multilevel atomic states[39]. Input-output relations in
the ultrastrong coupling regime makes the multiphoton
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transitions possible in three-level cascaded atomic sys-
tem. Conversion of the virtual photons into real pho-
tons is succeeded by suitable designs of the Hamilto-
nians of the cascaded three-level atoms supporting the
dark states [40–43]. In the presence of atomic transi-
tions, Waveguide-QED systems reveal the importance of
the correlation functions in describing the output cavity
fields by relating the scattering theory and input output
formalism of single and few photon transportation [44–
46]. Other than the superconducting systems, quantum
optical transistors has also been proposed in the single-
photon level [48–51]

We consider the coupled cavity scheme of effective two-
frequency JT system in which, single photon transistor
is mimicked by the storage and transmission of the single
photon in Λ-system of artificial atom[28]. Interactions
between the cavities is described by the hoping term cor-
responding to the atomic transitions in the lowest lying
states of the artificial atom [39]. Input/output formalism
is employed to describe the extracavity emission in terms
of the quadrature operators in the absence of the input
field[40–43]. Two frequency JT hamiltonian is described
as the interaction of the bright and dark polaritons and
diagonalized in terms of the upper and lower polariton
components. Splitting of the polaritons modes is investi-
gated by the second order coherence functions.

This paper is organized as follows. In Sec.II we in-
troduce the coupled resonator model interacting with
the multilevel atom and protocol for the single photon
transistor. The results and discussions are presented in
Sec.III. Finally, we give conclusions in Sec. IV.

II. MODEL AND PROTOCOL

A. Circuit Layout and Protocol

Realization of our single photon protocol relies on the
propagation of signal photons dependent on photon num-
ber in a gate field. Splitting of the incident field and
the impedance matching are two essential steps in sin-
gle photon transistor schemes of coupled resonator sys-
tems. While the splitting of the incoming field leads to
the storage process, impedance matching is responsible
for the perfect transmission and reflection of the signal
field controlled by the gate field. [28, 36, 37]

Our physical system consists of the lumped element
LC resonators in Fig.1.a. The capacitive coupling be-
tween resonators is mediated by Cc. A 3-phase Joseph-
son junction flux qubit is used as an artificial supercon-
ducting atom simultaneously coupled to each resonator
through coupling inductances Lc1,c2 of individual induc-
tors [8, 19, 47]. The coupling strength between res-

onators is tuned by hopping parameter J = Cc
√

ω1ω2

4C1C1

in terms of individual capacitors C1,2 and resonator fre-

quencies ω1,2 = ((L1,2 + Lc1,c2)Cc)
−1/2. Lumped ele-

ment LC resonator with resonance frequency ωr/2π ' 8.2

(a)

(b)

(c)

FIG. 1: (Color online)(a) Circuit model of two-frequency cou-
pled resonator system. A 3-Josephson junction flux qubit ca-
pacitively coupled to LC resonators via coupling inductances
Lc1;c2 of individual inductors. The resonator are interacting
with each other via capacitor Cc which determines hopping
parameter J together with individual capacitances C1,2 and
frequencies ω1,2. Two resonators further combined with mi-
crowave waveguide resonators or transmission line resonator
(red and blue double lines) as input/output ports. (b) Cou-
pled system of two cavities which play the role of the res-
onators and three level superconducting artificial atom in Λ
structure. Atomic energy levels resides in separate cavities.
The metastable state |s〉 and ground state |g〉 which are local-
ized in left (red) and right (blue) cavities are further coupled
to each other by photon hopping controlled by J . Interaction
strength of J is determined by the coupling capacitor Cc in
the physical circuit. The storage process takes place by trig-
gering a spin flip from |g〉 to |s〉 governed by the photonic
nonlinearities with parameter J and controls the reflection
and transmission of cavity field. (c) Embedding of On-Chip
cavity-artificial superconducting qubit system into microwave
frequency waveguide or transmission line resonators serving
as outer detection circuitry. Spontaneous virtual photon con-
version into real photon can be detected by the input/output
cavity ports. Transmission (dashed blue arrow) and reflection
(dashed red arrow) of the cavity fields (red arrow) are tuned
by the hopping parameter J .

GHz couples to the flux qubit with interaction strength
g/ωr ∼ 0.1 in strong coupling regime. When resonance
frequency is in the range of 1.0 − 10 GHZ, cavity-qubit
coupling strength g/ωr ∼ 1.0 is addressed in ultrastrong
coupling regime of circuit QED[5–8, 47].

It is possible to tune the strength of the interaction
between qubit and privileged mode in ultrastrong regime
when disadvantaged mode interacts with the qubit in
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strong regime[19, 27]. Privileged mode, in which cou-
pling energies concentrated, dominates the system and
behaves like the scattering center for the cavity fields. Be-
sides this, the interaction of the qubit with the disadvan-
taged mode and the interaction between the resonators
are treated as perturbation. The ability of tuning each
resonator in different coupling regimes makes our model
suitable to control the storage and transmission of the
photons in various input/output ports.

Employing the resonator normal modes, our coupled
cavity system which plays the role of the resonators is
described by the so-called effective single privileged mode
transformation [19–21] and described as

H = Heff +H ′ph +Hint, (1)

where effective hamiltonian is

Heff =
ω

2
σz + ωeff [α†1α1 + keff (α1 + α†1)σx] (2)

with the effective mode frequency

ωeff =
ω1k

2
1 + ω2k

2
2

keff
, (3)

in terms of individual resonator frequencies ω1,2 and cou-
pling strength of the qubit-resonator interaction is

k2
eff = k2

1 + k2
2. (4)

Hamiltonian of the disadvantaged effective mode is given
by

H ′ph = ω′α†α (5)

with the disadvantaged mode frequency

ω′ =
ω1k

2
2 + ω2k

2
1

keff
, (6)

Interaction between the effective and disadvantaged
mode is described by

Hint = c2[(α†1α2 + α1α
†
2) + keff (α†2 + α2)σx], (7)

and the strength of the coupling between privileged mode
and disadvantaged mode is given by

c2 =
∆k1k2

k2
eff

, (8)

where the frequency difference ∆ = ω1−ω2 is used to con-
trol the perturbative interactions on the effective single-
mode model.

Our protocol consists of the storage and transmission
of the cavity fields in coupled cavity system. It can be fur-
ther connected to microwave waveguide or transmission
line resonators serving as input/ouput ports for detection
and measurement using photon statistics. In Fig.1.b. we
use artificial atom in Λ-configuration with three states
|g〉, |s〉, and |e〉, from the lowest energy levels to highest

as a generic setup of storage and transmission processes
for single photon transistor [28, 36, 37]. In our scheme,
the excitation of signal, control and gate fields are de-
scribed by Heff , H ′ and Hint respectively. The reso-
nant interaction between cavity mode α1 and |s〉 − |e〉
transition and is tuned by coupling strength ωeffkeff .
Similarly the interaction between α2 mode and |g〉 − |e〉
transition tuned by c2keff . Effective JT hamiltonian re-
veals the inter cavity interactions between lowest lying
states |s〉 and |g〉 tuned by the c2 = J in the presence of
the adiabatic elimination of the upper excited states by
stimulated Raman transitions.

In Fig.1.c, we choose the privileged mode α1 as the first
cavity mode and the interaction with the second cavity
mode α2 is treates as the perturbation. Both transmis-
sion (dashed blue row)and reflection (dashed red row)
of the cavity fields are tuned by the hopping parameter
J in different coupling regimes. Two microwave waveg-
uide resonators are used to observe photon statistics in
input/output ports. The beam-splitter like interaction
hamiltonian HI makes it possible to get resonant absorp-
tion and emission when there is a resonance between the
α2 excitation and the energy of the nth eigenstate of JT-
center Heff in the absence of time dependent auxiliary
driving field.

Different from the generic models given in Refs. [28,
36, 37] our system uses the hopping parameter of coupled
cavity system in controlling lower lying level atomic tran-
sitions. Control of the atomic excitations between lower
lying states is governed by the photonic nonlinearities
rather than external driving fields.

B. Input-Output Theory and Effective Model

Quantum coherence suffers from dephasing of the ar-
tificial superconducting atoms, due to the fluctuations of
the cavities which cause phase shift in qubit state de-
pending on the coupling strength. Suppression of de-
phasing requires dealing with vacuum fluctuations and
excitations in coupled qubit-cavity systems [24–26].

In the input-output theory of cavity QED, output pho-
ton flux is proportional to the average number of cavity
photons 〈E−(t)E+(t)〉 in terms of the positive (negative)
electric fields E+(t)(E−(t)) [13, 43]. Similarly, output
voltages which are proportional to the electric fields are
used in circuit QED. In the presence of vacuum input for
a system in its ground state, the destruction operator for
the multi-output cavities is expressed as

aout,i = ain,i +
√
γ0X

+
i (9)

where i = 1, 2 is the cavity output port number, γ0

is dissipation term,(X+
i ) = 〈j|(ai + a†i )|k〉|j〉〈k|, and

X−i = (X+
i )† corresponds to the higher and lower fre-

quency electric field. When the input is in the vacuum
state, the output cavity photon rate for single mode is
given as

Φout,i = γ0〈X−i X
+
i 〉 (10)
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in terms of the port number i = 1, 2. In three-level arti-
ficial atoms, spontaneous emission of the cavity photon
pairs can be detected by Φout,i for each port i. These
spontaneous virtual photons can be converted into real
photons. In our atomic configuration, the transition
|s〉 → |g〉 leads to the spontaneous emission of photons
which can leave the cavities.

Apart from the ports i = 1, 2 each carrying fieldsX+
i =

1
2 (ai + a†i ), we introduce the third port

X+
3,i = αi + α†i (11)

as a linear combination of the quadrature operators

X+
3,1 = X+

1 + X+
2 = α1 + α†1 and X+

3,2 = X+
1 − X

+
2 =

α2 + α†2. We used the transformation(
α1

α2

)
=

1

2

(
1 1
1 −1

)(
a1

a2

)
to obtain the cavity modes a1,2 in terms of the normal
modes α1,2. This makes it possible to express the mix-
ture of cavity fields in terms of pure normal modes α1,2

in definite port numbers. Interactions between qubit and
cavities led to tuning of the parameters to satisfy robust-
ness of the system against the dephasing in terms of the
expectation values of cavity fields a1,2 and qubit operator
σx. Using the commutation relations[20, 21]

[H, (a†1,2 − a1,2)] = ω1,2(a†1,2 + a1,2) + 2k1,2ω1,2σx(12)

[H, (a†1,2 + a1,2)] = ω1,2(a†1,2 + a1,2) (13)

and employing the normal modes α1,2, we obtain the
relation between the quadrature operator and qubit ex-
citations which is described by

〈n|α†1 + α1|n′〉[1−
(En − E′n)

weff
] = −2keff 〈n|σx|n′〉.(14)

where En and E′n are the eigenergies. In Eqn.(14), we
consider an undamped qubit that is linearly coupled with
damped cavities. The cavities are further coupled to a
bath at temperature T. These temporal fluctuations of
photon number in cavity led to the qubit frequency shift.
In the presence of vacuum and ground state excitation
of the cavity fields, dephasing of the qubit is described
by the two time correlation function C(τ) = 〈(α̂1(τ) +

α̂†1(τ))(α̂1(0) + α̂†1(0))〉 [24–26].
In our model, expectation values of cavity output field

(α†1 +α1) could be decoupled from the qubit operator σx
in definite conditions. Whenever En −E′n = weff , qubit
state is decoupled, 〈n|σx|n′〉 = 0, and perfect transmis-
sion is obtained when qubit state is in metastable state
|s〉 corresponding to impedance matching of the cavity
field and qubit transitions. Moreover, when En = E′n,
the expectation value of privileged mode α1 and qubit
operator σx can be expressed as

〈n|η + η†|n′〉 = 0 (15)

where the hybrid operators, η = α1 + keffσx, η† =

α†1 + keffσx are the bosonic creation and annihilation
operators obeying the commutation relation [η, η†] = 1.
In a frame rotating with the qubit frequency, we describe
our JT-system hamiltonian H as

H = Heff +Hph +Hint, (16)

where hamiltonian describing the JT-center is

Heff = ωeffη
†η − ωeffk2

effσx, (17)

and the α2 excitation is

Hph = ω′α†2α2. (18)

Interaction between the η and α2 excitation is written as

Hint = c2(α†2η + η†α2). (19)

with the coupling strength c2 = J .
Thus, our effective model describes coupled cavity-

qubit system in terms of coupled bright and dark polari-
tons, η and α2 respectively[19]. We further decouple the
system hamiltonian in terms of upper and lower polari-
tons. For this purpose, using the Bogoulibov De-Gennes
transformation to diagonalize our system, we obtain

H =
∑
l=1,2

Elp
†
l pl (20)

where pl and p†l are the annihilation and creation opera-
tors of the polaritons.

The energies are

E1,2 =
1

2
[(ωeff + ω′)±

√
(ωeff − ω′)2 + 4c22] (21)

and the polariton mode operators is described as

p1 = cos θη + sin θα2 (22)

p2 = − sin θη + cos θα2 (23)

with

tan 2θ =
c2

ωeff − ω′
(24)

where 2θ is the mixing angle.
Comparing with the generic models in circuit QED,

our model differs in cavity particle interpretation and
output field detection. In cascaded atomic configurations
Ξ [36, 37], dark states results from interference effects be-
tween vacuum and ground state. These coherent super-
positions of vacuum and multiphoton states are decou-
pled from higher energy levels by adiabatic Raman tran-
sitions and leads to the generation of virtual two pho-
ton excitations between atomic levels [40–43]. We use
Λ structured atomic configuration together with the cou-
pled cavity system and describe the operators η = α1+σx
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and α2 as the bright and dark polaritons interacting with
coupling strength c2. Instead of using coupled bright and
dark polaritons, we further decouple the system hamilto-
nian in terms of upper and lower polaritons to deal with
the second order coherence functions for transmission and
reflection. To investigate the conversion from virtual to
real photons, we employed the expectation values of the
quadrature operators X+

1,2 as the evidence of two photon
emission.

III. RESULTS

For simulation of our single photon transistor, we use
the parameters of two-frequency JT system as a test bed
in ref[19, 27]. Coupling regimes is considered in weak,
strong and ultrastrong regimes of circuit QED. Dissi-
pation and dephasing terms are used to describe Non-
Equilibrum dynamics of coupled cavities interacting si-
multaneously with the flux qubit.

A. Power Spectrum and Impedance Matching

Two time first order correlation function for the elec-
tric field operator in terms of privileged mode α̂1 + α̂†1
is used in power spectrum calculation which is described
by

P (ω) =

∫ ∞
−∞
〈(α̂1(t) + α̂†1(t))(α̂1(0) + α̂†1(0))〉e−iωt.(25)

Bloch-Redfield quantum master equation in Born-
Markov approximation is employed to investigate the dis-
sipative dynamic of our system. Open system dynamics
is described by

dρ

dt
= −i[H, ρ] + Lρ, (26)

where the Liouvillian superoperator L is given by

Lρ =
∑
j=1,2

(1 + nth)κD[α̂j ]ρ+ nthκD[α̂†j ]ρ

+ γD[σ]ρ+
γφ
2
D[σz]ρ, (27)

representing the average thermal photon number is rep-
resented with nth. The thermal occupation number
nth = 0.15 is taken as 100 mK [19, 27]. D denotes
the Lindblad type damping superoperators, κ shows the
cavity photon loss rate. Qubit relaxation and dephasing
rates represented with γ and γφ , respectively. Resonator
decay parameters are κ1 = κ2 = 0.001 and qubit re-
laxation and dephasing parameters are represented with
γ = 0.001, γφ = 0.01.

Impedance matching plays an important role in stor-
age and transmission/reflection step of the transistor of
Λ structured atomic transitions. Among the different se-
quence of transitions between atomic energy levels |g〉,

|s〉, |e〉 [33, 34], impedance matching occurs in the se-
quence of the transitions |g〉 → |s〉 → |e〉 → |g〉 in which
|g〉 → |s〉 transition leads to capture of single photon en-
tering to the coupled cavity system. For the purpose of
the controlling transmission and reflection of the incident
photon, we employed the Raman transitions by adiabatic
elimination of the upper energy level |e〉. Then, our sys-
tem, as a coupled cavity model, describe the atomic tran-
sitions by the interactions of the excitations lying on the
eigenstates of Heff and H ′ coupled by the interaction
Hamiltonian Hint.

(a)

(b)

FIG. 2: (Color online) Power spectrum of inter-cavity out-
put photons in uncoupled J = 0.0 and coupled cavities,J =
0.5, J = 1.0. (a) At intermediate coupling regime k = 0.5/

√
2,

central peak becomes higher in amplitude due to increase in
hopping.(b)The distance between the two Rabi peaks gets
closer in uncoupled scheme. Rabi Splitting occurs in coupled
cavities in ultrastrong coupling regime k = 1.0/

√
2

Effect of cavity interaction Hint on α1 via hopping pa-
rameter J is shown by the power spectrum in impedance
matched condition. Fig.2, shows the power spectrum
of the extracavity output field in terms of the electric
field operator for hopping parameter J = 0.0, J = 0.5
and J = 1.0. Fig.2(a) shows asymmetric Lorentzian
line shape of the Rabi peaks in weak coupling regime
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k = 0.5/
√

2. When the hoping paremeter reach J = 1.0,
the two Rabi sidebands become symmetric in ampli-
tude and localized equally in distance from the central
peak. In Fig.2(b) the distance between the asymmet-
ric Rabi peaks become narrower in the weak coupling
regime k = 1.0/

√
2 for hopping parameter J = 0.0 and

J = 0.5. Whereas, symmetric Rabi peaks are localized
further away in ultrastrong regime for J = 1.0. Multi-
photon transitions lead to the splitting of the Rabi peaks
in coupled cavity scheme.

B. Photon Blockade and Input/Output Theory

The photon blockade appears as the underlying mech-
anism of realizing the correlated photons in both uncou-
pled and coupled cavity systems. Photon blockade makes
transmission of an another identical photon conditioned
on the presence or absence of previous photon residing
in the cavity. Second photon can not be excited in the
presence of another one in the cavity. The competition
between photon blockade and photon hopping in cou-
pled cavity systems results in localized and delocalized
regimes. To illustrate the photon blockade, we use the
normalized second order coherence functions which are
described as

g
(2)
i =

〈O†i (t)O
†
i (t+ τ)Oi(t)Oi(t+ τ)〉
〈O†i (t)Oi(t)〉2

(28)

where i = 1, 2 are used in place of the cavity field oper-
ators. For θ = π

4 , polariton states are described as the
normal modes of η and α2(

p1

p2

)
=

1√
2

(
1 1
−1 1

)(
η
α2

)
.

Population imbalances of cavity field (polariton) is de-

fined as zc,p(t) = (n1−n2)/(n1 +n2) where nj =Trα̂†jα̂j ρ̂

for j = 1, 2 corresponds to the two cavity (polariton)
number operators. The total photon (polariton) number
is given by N = n1 + n2. In our calculations, first cavity
contains single photon initially.

In the strong and ultrastrong coupling regimes, the
time elapsed by the photon inside cavity gets larger than
the decay of the qubit. Then, the photon decay leads to
an anti-bunched train of photons leaving the cavity out-
put ports. Due to the asymmetrical couplings of qubit
with privileged and disadvantaged modes α1,2, we use
the population imbalance between coupled cavities and
bunching and antibunching behavior of photons in cou-
pled cavity system. In this manner, transmission and
reflection of the cavity field in single field transistor can
be studied by the delocalization-localization transition in
the presence of virtual photons of coupled cavity systems.

In Fig.3, the top panel shows the second order correla-
tion functions of upper (blue) and lower component (red)
polaritons and the second panel shows population imbal-
ances of polaritons (green) and cavities (brown) in weak,

(a)

(b)

(c)

FIG. 3: (Color online) Top panel shows temporal behavior of
second order coherence functions for upper and lower polari-
tons in weak, strong and ultrastrong coupling regimes,(a),(b),
(c) respectively. τ is the time-delay between two measure-
ments and defined in units of µs. Photon antibunching

(bunching) occurs when g
(2)
i (τ) > g

(2)
i (0)(g

(2)
i (τ) < g

(2)
i (0))

where i represents output cavity ports. The value of g(2)(0)�
1 corresponds to antibunching, and used as the signature of
photon blockade. Population imbalances of polariton and cav-
ity fields are presented in lower panel. (a)Both upper (blue)
and lower(red) polaritons are in blockade regime and anti-
bunching. Coherent oscillations are seen in cavity popula-
tion imbalance and upper polariton get higher populated in
the system.(b) Both polaritons are antibunching. Lower po-
laritons becomes higher populated in the system. (c)Upper
polaritons are higher populated than the lower polaritons.

strong and ultrastrong coupling regimes respectively. In
blockade regime, delocalization-localization transitions in
definite cavities is tuned by the hopping parameter J .
Localization in state |s〉 allows transmission whereas the
localization in state |g〉 cause reflection of the cavity
field. The process of capturing the incoming single pho-
ton while triggering a spin flip from |g〉 to |s〉 give rise to
switching of reflection to transmission of cavity output
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fields. Conversion between the reflected and transmit-
ted field is conditioned on the switching the transitions
|s〉 ↔ |g〉. Fig.3.a shows coherence functions starting in

a blockade regime, g
(2)
1,2(0)� 1, in weak coupling regime,

k = 0.1/
√

2. Since g
(2)
1,2(τ) > g

(2)
1,2(0), both polaritons are

antibunching. Coherent oscillations are seen in popula-
tion imbalance of cavities and upper polaritons get higher
populated. In the strong coupling regime, k = 0.5/

√
2,

Fig.3.b shows that both of the coherence functions of up-
per and lower polaritons are anti-bunching. Contrary to
the weak regime, lower polaritons get higher populated
and cavity fields are in localized regime favored by the
strong qubit cavity coupling. In Fig.3.c, upper polaritons
becomes higher populated in ultrastrong coupling regime,
k = 1.0/

√
2. Moreover, delocalization-localization tran-

sition occurs in cavity fields. The photon hopping re-
sets localization-delocalization transitions by driving the
atomic transitions between lowest lying states. Recycling
the atomic transitions by virtue of optical nonlineari-
ties in coupled cavities results in repeated cyclic pattern
of delocalization-localization transitions in cavity output
fields. Resetting transmission conditioned on the cyclic
atomic transitions makes our system plausible for single
photon transistor architecture.

Input-Output formalism can be extended to the sys-
tems containing both single and few photon transport
in terms of the output cavity fields. S-matrix elements
are used to describe the relation between input output
analysis and scattering theory in both single and two
photon transport [44]. In the presence of intermodal
coupling between two modes of coupled waveguide in-
teracting with a whispering-gallery-atom, second order
coherence functions are used to describe the reflected and
transmitted output resonator fields [45]. When the sys-
tem is composed of ladder-type three level atom coupled
to a waveguide, lower and upper atomic transitions are
used to control the oscillating reflected and transmitted
waveguide output photons [46]. In the presence of vac-
uum input, standard input output formalism makes it
possible to investigate the vacuum induced virtual pho-
tons in expectation values of output cavities and correla-
tions functions[40–43].

In Fig.(4), we show the second order correlation func-

tions g
(2)
R,T (top panel) and the expectation values n1,2

(lower panel) of reflected and transmitted cavity out-
put fields X+

3,1 and X+
3,2 in weak and strong coupling

regimes. The population imbalance of the coupled cav-
ities is investigated in terms of the normal modes α1,2

(lower panel). Fig 4.a, Second order coherence func-

tion of bunching transmitted cavity field g
(2)
T (τ) shows

both peak and dips in weak coupling regime k = 0.1 and
J = 0.5. Difference between the amplitudes of the expec-
tation values of output cavity fields n1,2 and population
imbalance for coupled cavities implies the spontaneous
conversion of virtual photons into real photons. Both
expectation values of cavity output fields n1,2 and cav-
ity normal modes are in oscillation (delocalized) regime

(a)

(b)

FIG. 4: (Color online)Second order coherence functions
(top panel) and expectation values (lower panel) for trans-
mission and reflected output cavity fields in the presence of
multilevel transitions. Populations imbalance of coupled cav-
ity system is shown in the lower panel. In weak couping
regime, k = 0.1, J = 0.5, bunching of transmitted cavity
field and oscillations of multilevel transitions are shown in
(a). delocalization-localization transition of cavity fields for
the strong coupling regime k = 0.5, J = 1.0 is shown in (b.

tuned by the hopping parameter J . Fig.4b shows the
delocalization-localization transition of n1,2 and popula-
tion imbalance in strong regime, k = 0.5 and J = 1.0.

Different from the generic models[36, 37], spontaneous
emergence of synchronization [27, 52] in the presence of
virtual photon conversion [40–43] makes our model ad-
vantageous in coupled cavity systems for switching and
sending photons. When the single photon gate field is
sent to the coupled cavity system, the incoming field is
split into two fields incident both on the left and right
cavities by time-reversed process of single-photon gen-
eration. It follows that the reflected and transmitted
fields shows different statistics where the reflected field
is purely scattered field due to the artificial atom and
the transmitted field consists both the incident and scat-
tered field. This mixture of the transmitted field makes
it difficult to determine the detection of the photons in
output ports[28, 36, 37]. For this purpose, we employed
the third port in coupled cavity system which describes
the transmitted field in terms of the operators X+

3,1 =

X+
1 + X+

2 = α1 + α†1 and X+
3,2 = X+

1 − X
+
2 = α2 + α†2

as a linear combination of both reflected and transmitted
fields. While both of the reflected and transmitted fields
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α1,2 are antibunching in Fig.3, the quadrature operators
X+

3,1 and X+
3,2 which are responsible for the virtual pho-

ton conversion makes it possible to observe bunching in
photon statistics of output port in first panel of fig 4.a.

In oscillating (delocalization) regime, the anti-phase
synchronized oscillatory dynamics of both reflected and
transmitted fields n1,2(τ) are governed by the lower level
atomic transitions |g〉 ↔ |s〉. In the second panel of
fig.4.a, the |g〉 → |s〉 transition leads to the transmit-
ted regime by making the initially higher populated cav-
ity with n1(τ) lower populated while the second cavity
with n2(τ) gets higher populated. Whereas, |s〉 → |g〉
transition leads to the reflected regime with higher pop-
ulated n1(τ) on the first cavity by blocking second pho-
ton entrance. Being in accordance with the |g〉 ↔ |s〉
transitions, switching on the reflected regime to trans-
mitted regime indicates the accumulate and firing pro-
cess [52] of the single photon transistor. Accumulation
(firing) process in reflected (transmitted) regime leads
to weak (strong) bunching in coherence function of the
transmitted field. Moreover, transition between reflected
and transmitted regimes give rise to the sudden enhance-
ment of the bunching in the form of the spikes with peak
(dip) values resulting in the constructive (destructive) in-
terference of the reflected and transmitted field in output
port. In addition to the single cycle of the spiking, both of
the oscillating individual cavity populations n1,2(τ) and
population imbalance zc(τ) between two cavities becomes
phase locked synchronized with the spike train [53, 54]
of coherence function [27]. In delocalization-localization
transition, there is destruction of phase locked synchro-
nization due to the damping in amplitudes of both spike
train and individual cavity populations as signature of
the strong coupling regime with k = 0.5.

In generic single and two-sided cavity system [36, 37],
avalanche of gain photons at the output port relies on
the atomic excitations between the upper levels of the
atom triggered by the single photon entrance into cavity.
Whereas, in our system, gain enhancements relies on the
triggering of the spontaneous virtual photon conversion
and beam-splitter structure of the cavity fields in output
ports. Contrary to the case in which the photon fields are
mixture of the reflected and transmitted fields a1,2 used
for the gain enhancement in the generic models, we used

the reflected and transmitted fields aout,1,aout,2 that con-
tribute the output port in a beam-splitter structure via
operators X+

3,1 and X+
3,2. The presence of virtual photon

conversion reveals the gain enhancement in population of
individual cavities in terms of the linear combinations of
the operators X+

1,2 with n1,2(τ) in fig 4.a. In the pres-
ence of multilevel transitions, branching ratio of decay
rates Γ|e〉→|g〉 and Γ|e〉→|s〉 of the |e〉 → |g〉 and |e〉 → |s〉
transitions is given by n ∼ Γ|e〉→|g〉

Γ|e〉→|s〉
and used for the de-

scription of effective gain [28]. In our model, we used the

ratio n ∼ n2(τ)
n1(τ) in terms of the transmitted and reflected

field populations n2,1(τ). In fig 4.a, when the system is in
the transmitted regime, n2(τ) > n1(τ), n ∼ 3. Similarly,
in fig 4.b, n ∼ 4.5 indicates the gain enhancement in the
favor of transmitted field when we go to strong coupling
regime.

IV. CONCLUSION

To summarize, we investigated the single photon tran-
sistor in the two frequency JT system of the two coupled
resonators interacting with a flux qubit simultaneously.
Effective single mode transformation is taken into ac-
count to describe the system. In input-output relations,
extracavity field is analysed in terms of the quadrature
operator of the normal modes. Our system hamiltonian
is diagonalized via Bogoulibov transformation and pop-
ulation imbalances of both cavity fields and polaritons
are employed for the localization-delocalization transi-
tion. Conditioned on the atomic transitions tuned by
the hopping parameter J , reflection and transmission of
the cavity output fields are investigated in the presence
of virtual photons.
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