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1 Introduction

The CP violation is among the most interesting physical phenomena and the electric dipole

moments (EDMs) of fermions are important tools to understand it since EDMs are driven

by the CP violating interaction. There are various experimental and theoretical works done

in the literature and the experimental results of the electron, muon and tau EDMs are de =

(1.8 ± 1.2 ± 1.0) × 10−27e cm [1], dµ = (3.7 ± 3.4) × 10−19e cm [2] and dτ = (3.1)× 10−16e cm

[3], respectively. Furthermore, the experimental upper bound of neutron EDM has been found

as dN < 1.1× 10−25e cm [4]. From the theoretical point of view, the source of CP violation in

the standard model (SM) is the complex Cabbibo-Kobayashi-Maskawa (CKM); lepton mixing

matrix in the quark; lepton sector and the calculation of fermion EDMs shows that their

numerical values are negligible in the SM. In work [5], the quark EDMs have been estimated as

∼ 10−30 (e−cm), which is a small quantity since the non-zero contribution exists at least in the

three loop level. In order to enhance the fermion EDMs, one needs an alternative source of CP

violation and the additional contributions coming from the physics beyond the SM. The multi

Higgs doublet models (MHDMs), the supersymmetric model (SUSY) [6] are among the possible

models carrying an additional CP phase. The electron EDM has been predicted of the order

of the magnitude of 10−32 e− cm in the two Higgs doublet model (2HDM), including the tree

level flavor changing neutral currents (FCNC) [7] and, in this case, the additional CP sources

are new complex Yukawa couplings. The EDMs of fermions have been analyzed in [8] and [9],

in the 2HDM with the inclusion of non-universal extra dimensions and in the framework of

the split fermion scenario. The EDMs of quarks were calculated in the MHDMs, including the

2HDM in [10, 11, 12], the fermion EDMs in the SM, with the inclusion of non-commutative

geometry, have been estimated in [13], the lepton EDMs have been studied in the seesaw model

in [14], the EDMs of nuclei, deutron, neutron and some atoms have been predicted extensively

in [15], limits on the dipole moments of leptons have been analyzed in a left-right symmetric

model and in E6 superstring models in [16].

In the present work, we analyze the charged lepton EDMs in the framework of the 2HDM,

with the inclusion of a single extra dimension, respecting the Randall Sundrum (RS1) scenario

[17, 18]. The extra dimensions are introduced to solve the hierarchy problem between weak and

Planck scales. In the RS1 model, the gravity is localized on a 4D boundary, so called hidden

(Planck) brane, and the other fields, including the SM fields, live on another 4D boundary,

so called the visible (TeV) brane. The warp factor that is an exponential function of the

compactified radius in the extra dimension drives the difference of induced metrics on these
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boundaries. With this factor, two effective scales, the Planck scaleMP l and the weak scale mW ,

are connected and the hierarchy problem is solved. If the SM fields are accessible to the extra

dimension, one obtains a richer phenomenology [19]-[37]. The fermion mass hierarchy can be

obtained by considering that the fermions have different locations in the extra dimension and

it is induced by the Dirac mass term in the Lagrangian [23, 26, 27, 28]. [29] is devoted to this

hierarchy by considering that the Higgs field has an exponential profile around the TeV brane

and [30] is devoted to an extensive work on the bulk fields in various multi-brane models. The

different locations of the fermion fields in the extra dimension can ensure the flavor violation

(FV) and it is carried by the Yukawa interactions, coming from the SM Higgs-fermion-fermion

vertices. The fermion localization in the RS1 background has been applied to the high precision

measurements of top pair production at the ILC [35] and the various experimental FCNC

constraints and the electro weak precision tests for the location parameters of the fermions in

the extra dimension are analyzed in [36, 37].

Here, we study the charged lepton EDMs in the case that the leptons and gauge fields are

accessible to the extra dimension with localized leptons in the RS1 background. We observe

that the de (dµ; dτ ) reach to the values of the order of 10−26 e− cm (10−20 e− cm; 10−20 e− cm)

with the inclusion of the KK modes.

The paper is organized as follows: In Section 2, we present EDMs of charged leptons in

the RS1 scenario, in the 2HDM. Section 3 is devoted to discussion and our conclusions. In

Appendix section, we present how to construct the SM fermions and their KK modes.

2 Electric dipole moments of charged leptons in the two

Higgs doublet model, in the RS1 scenario.

The fermion EDM arises from the CP violating fermion-fermion-photon effective interaction

and, therefore, their experimental and theoretical search ensure considerable information about

the nature of the CP violation. In the SM, the CP violation is driven by the complex CKM

matrix elements in the quark sector and a possible lepton mixing matrix in the lepton sector.

The tiny theoretical values of fermion EDMs in the SM force one to go beyond and the extension

of the Higgs sector with FCNCs at tree level is one of the possibility in order to enhance their

theoretical values. In the present work, we consider the 2HDM, which allows the FCNC at

tree level with the complex Yukawa couplings1. The additional effect coming from the extra

1Here, we assume that the CKM type matrix in the lepton sector does not exist, the charged flavor changing
(FC) interactions vanish and the lepton FV comes from the internal new neutral Higgs bosons, h0 and A0.
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dimension(s) is another possibility to enhance the CP violation and, here, we consider the RS1

scenario with localized charged leptons in the extra dimension. The RS1 background is curved

and the corresponding metric reads

ds2 = e−2σ ηµν dx
µ dxν + dy2 , (1)

where σ = k |y| with the bulk curvature constant k and the exponential e−k |y|, with y = R |θ|,
is the warp factor which drives the hierarchy and rescales all mass terms on the visible brane for

θ = π. Here R is the compactification radius in the extra dimension that is compactified onto

S1/Z2 orbifold with two boundaries, the hidden (Planck) brane and the visible (TeV) brane. In

the RS1 model, all SM fields live in the visible brane, however, the gravity is accessible to the

bulk and it is considered to be localized on the hidden brane. With the assumption that the

gauge fields and the fermions are also accessible to the extra dimension, the particle spectrum

is extended and the physics becomes richer. In the present work, we consider this scenario with

the addition of Z2 invariant2 Dirac mass term to the lagrangian of bulk fermions which results

in the fermion localization in the extra dimension [20, 22, 23, 25, 26, 28, 29]

Sm = −
∫

d4x
∫

dy
√−g m(y) ψ̄ψ , (2)

where m(y) = mσ′(y)
k

with σ′(y) = dσ
dy

and g = Det[gMN ] = e−8σ, M,N = 0, 1, ..., 4. Here the

bulk fermion is expanded as

ψ(xµ, y) =
1√
2 π R

∞
∑

n=0

ψ(n)(xµ) e2σ χn(y) , (3)

with the normalization

1

2 π R

∫ πR

−πR
dy eσ χn(y)χm(y) = δnm . (4)

Using the Dirac equation and the normalization condition, the zero mode fermion is obtained

as follows:

χ0(y) = N0 e
−r σ , (5)

where r = m/k and the normalization constant N0 reads

N0 =

√

k π R (1− 2 r)

ek π R (1−2 r) − 1
. (6)

2The fermions have two possible transformation properties under the orbifold Z2 symmetry, Z2ψ = ±γ5ψ
and the combination ψ̄ψ is odd. The Z2 invariant mass term is obtained if the Z2 odd scalar field is coupled to
the combination ψ̄ψ.
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On the other hand

χ′
0(y) = e−

σ
2 χ0(y) , (7)

is the appropriately normalized solution and it is localized in the extra dimension. The param-

eter r is responsible for the localization and for r > 1
2
(r < 1

2
) it is localized near the hidden

(visible) brane.

The action which is responsible for the charged lepton EDMs in the RS1 background is:

SY =
∫

d5x
√−g

(

ξE5 ij l̄iLφ2EjR + h.c.

)

δ(y − πR) , (8)

where L and R denote chiral projections L(R) = 1/2(1 ∓ γ5), φ2 is the new scalar doublet,

liL (EjR) are lepton doublets (singlets), ξE5 ij , with family indices i, j , are the complex Yukawa

couplings in five dimensions and they induce the FV interactions in the lepton sector. Here, we

assume that the Higgs doublet φ1, living on the visible brane, has non-zero vacuum expectation

value to ensure the ordinary masses of the gauge fields and the fermions, however, the second

doublet, that lies also on the visible brane, has no vacuum expectation value:

φ1 =
1√
2

[(

0
v +H0

)

+

( √
2χ+

iχ0

)]

;φ2 =
1√
2

( √
2H+

H1 + iH2

)

, (9)

and

< φ1 >=
1√
2

(

0
v

)

;< φ2 >= 0 . (10)

The gauge and CP invariant Higgs potential which spontaneously breaks SU(2)× U(1) down

to U(1) reads:

V (φ1, φ2) = c1(φ
+
1 φ1 − v2/2)2 + c2(φ

+
2 φ2)

2

+ c3[(φ
+
1 φ1 − v2/2) + φ+

2 φ2]
2 + c4[(φ

+
1 φ1)(φ

+
2 φ2)− (φ+

1 φ2)(φ
+
2 φ1)]

+ c5[Re(φ
+
1 φ2)]

2 + c6[Im(φ+
1 φ2)]

2 + c7 , (11)

with constants ci, i = 1, ..., 7. The choice eq.(10) and the potential eq.(11) leads to the fact that

the SM particles are collected in the first doublet and the new particles in the second one. This

is the case that no mixing occurs between CP-even neutral Higgs bosons H0 and h0 in the tree

level and H1 and H2 in eq. (9) are obtained as the mass eigenstates h0 and A0, respectively.

The lepton doublet and singlet fields in eq. (8) is expanded to their KK modes as

liL(x
µ, y) =

1√
2 π R

e2σ l
(0)
iL (xµ)χi L0(y)
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+
1√
2 π R

∞
∑

n=1

e2σ
(

l
(n)
iL (xµ)χl

i Ln(y) + l
(n)
iR (xµ)χl

iRn(y)

)

,

EjR(x
µ, y) =

1√
2 π R

e2σ E
(0)
jR (x

µ)χj R0(y)

+
1√
2 π R

∞
∑

n=0

e2σ
(

E
(n)
jR (xµ)χE

j Rn(y) + E
(n)
jL (xµ)χE

j Ln(y)

)

, (12)

where the zero mode leptons χi L0(y) and χj R0(y) are given in eq. (5) with the replacements

r → riL and r → riR, respectively. For the effective Yukawa coupling ξEij , we integrate out the

Yukawa interaction eq.(8) over the fifth dimension by taking the zero mode lepton doublets,

singlets, and neutral Higgs fields S = h0, A0:

V 0
RL ij =

ξE5 ij
2 π R

∫ π R

−π R
dy χiR0(y)χjL0(y) δ(y − πR)

=
e−k π R (riR+rjL) k

√

(1− 2 riR) (1− 2 rjL)
√

(ek π R (1−2 riR) − 1) (ek π R (1−2 rjL) − 1)
ξE5 ij . (13)

Here, we embed the vertex factor V 0
RL (LR) ij into the coupling ξEij

(

(ξEij )
†
)

and fix the numerical

value of ξEij
(

(ξEij )
†
)

by assuming that the coupling ξE5 ij in five dimension is flavor dependent. In

this case the hierarchy of new Yukawa couplings is not related to the lepton field locations. On

the other hand, we need the vertex factors due to S-KK mode charged lepton-charged lepton

couplings V n
LR (RL) ij since charged lepton KK modes exist in the internal line (see fig.1). After

the integration of the Yukawa interaction eq.(8) over the fifth dimension, the S-zero mode

lepton singlet (doublet)-KK mode lepton doublet (singlet) vertex factor (see appendix for the

construction of KK mode charged lepton doublets and singlets) reads

V n
RL (LR) ij =

ξE5 ij
(

(ξE5 ij)
†
)

2 π R

∫ π R

−π R
dy χiR0 (iL0)(y) χjLn (jRn)(y) δ(y − π R) , (14)

and

V n
RL ij =

NLn e
kπR (1/2−riR)

(

J 1
2
−rjL

(ekπR xnL) + cL Y 1
2
−rjL

(ekπR xnL)

)

πR
√

ek π R (1−2 riR)−1
k π R (1−2 riR)

ξE5 ij ,

V n
LR ij =

NRn e
kπR (1/2−riL)

(

J 1
2
+rjR

(ekπR xnR) + cR Y 1
2
+rjR

(ekπR xnR)

)

πR
√

ek π R (1−2 riL)−1
k πR (1−2 riL)

(ξE5 ij)
† , (15)

where cL (cR) is given in eq.(29) (eq.(32)) with the replacements r → rjL (r → rjR). Here

the effective S-zero mode lepton singlet (doublet)-KK mode lepton doublet (singlet) coupling
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ξE n
ij (ξE n

ij )† reads

ξE n
ij

(

(ξE n
ij )†

)

=
V n
RL (LR) ij

V 0
RL (LR) ij

ξEij . (16)

Notice that the strengths of S-KK mode charged lepton-charged lepton couplings are regulated

by the locations of the lepton fields and we use two different sets, Set I and Set II3.

SET I SET II

rL rR rL rR

e -0.4900 0.8800 -1.0000 0.8860
µ -0.4900 0.7160 -1.0000 0.7230
τ -0.4900 0.6249 -1.0000 0.6316

Table 1: Two possible locations of charged lepton fields. Here rL and rR are left handed and
right handed lepton field location parameters, respectively.

The effective EDM interaction for a fermion f is reads

LEDM = idf f̄ γ5 σ
µν f Fµν , (17)

where Fµν is the electromagnetic field tensor, ’df ’ is EDM of the fermion and it is a real number

by hermiticity (see Fig. 1 for the 1-loop diagrams which contribute to the EDMs of fermions).

Now, we present the charged lepton EDMs with the addition of KK modes in the framework

of the RS1 scenario. Since there is no CKM type lepton mixing matrix according to our

assumption, only the neutral Higgs part gives a contribution to their EDMs and l-lepton EDM

’dl’ (l = e, µ, τ) can be calculated as a sum of contributions coming from neutral Higgs bosons

h0 and A0. For l = e, µ and we get4,

dl = −iGF√
2

e

32π2
Qτ

{

1

mτ
((ξ̄E ∗

N,lτ)
2 − (ξ̄EN,τl)

2)

(

(F1(yh0)− F1(yA0))

)

+
∞
∑

n=1

((ξ̄E n ∗
N,lτ )

2 − (ξ̄E n
N,τl)

2)

(

G(ynL,h0, ynR,h0)−G(ynL,A0, ynR,A0)

)}

, (18)

where

G(ynL,S, ynR,S) = G1(ynL,S, ynR,S) +G1(ynR,S, ynL,S) +G2(ynL,S, ynR,S)

+ G2(ynR,S, ynL,S) , (19)

3In this scenario, the source of FV is not related to the different locations of the fermion fields in the extra
dimension (see [33, 34]) but it is carried by the new Yukawa couplings in four dimensions and the additional
effect due to the extra dimension is the enhancement in the physical quantities of the processes studied.

4In the following we use the dimensionful coupling ξ̄EN,ij in four dimensions, with the definition ξEN,ij =
√

4GF√
2
ξ̄EN,ij where N denotes the word ”neutral”.
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with

F1(w) =
w (3− 4w + w2 + 2 lnw)

(−1 + w)3
,

(20)

and

G1(ynL,S, ynR,S) =

ynR,S

(

mnL (ynR,S − 1) ynR,S −mnR

(

ynL,S (ynR,S − 2) + ynR,S

)

)

m2
S (ynR,S − ynL,S)2 (1− ynR,S)2

ln ynR,S ,

G1(ynR,S, ynL,S) = G1(ynL,S, ynR,S)|ynL,S⇔ynR,S ;mnL⇔mnR
,

G2(ynL,S, ynR,S) =
ynL,SmnL

m2
S (ynR,S − ynL,S) (1− ynL,S)

,

G2(ynR,S, ynL,S) = G2(ynL,S, ynR,S)|ynL,S⇔ynR,S ;mnL⇔mnR
. (21)

The tau lepton EDM reads

dτ = −iGF√
2

e

16π2
Qτ

{

1

mτ
((ξ̄E ∗

N,ττ )
2 − (ξ̄EN,ττ)

2)
∫ 1

0
dx

∫ 1−x

0
dy

(

(x− 1)
( yh0

Lh0

− yA0

LA0

)

+
∞
∑

n=1

∫ 1

0
dx

∫ 1−x

0
dy

(

(ξ̄E n
N,ττ)

2
(

mnR y +mnL (1− x− y)
)( 1

m2
h0 Ln,h0

− 1

m2
A0 Ln,A0

)

− (ξ̄E n ∗
N,ττ )

2
(

mnL y +mnR (1− x− y)
)( 1

m2
h0 L′

n,h0

− 1

m2
A0 L′

n,A0

)

)}

, (22)

where

LS = x+ (x− 1)2 yS ,

Ln,S = x+ x (x− 1) yS + y ynR,S + (1− x− y) ynL,S ,

L′
n,S = Ln,S|ynL,S⇔ynR,S

. (23)

Here yS = m2
τ

m2
S

, ynL (nR),S =
m2

nL (nR)

m2
S

and Qτ is the tau lepton charge. In eqs. (18) and (22)

we take into account only the internal τ -lepton contribution, respecting our assumption that

the Yukawa couplings ξ̄EN,ij, i, j = e, µ, are small compared to ξ̄EN,τ i i = e, µ, τ (see Discussion

section for details). Notice that, we make our calculations in arbitrary photon four momentum

square q2 and take q2 = 0 at the end. For the Yukawa couplings we used the parametrization

ξ̄E n
N,τl = |ξ̄E n

N,τl| eiθl , (24)

where l = e, µ, τ . Here, θl is the CP violating parameter which is the source of the lepton

EDM5.
5The Yukawa factors in eq.(18) can be written as

((ξ̄E n ∗
N,lτ )2 − (ξ̄E n

N,τl)
2) = −2 isin 2θl |ξ̄E n

N,τl|2 . (25)
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3 Discussion

In this section, we study the effects lepton KK modes on the EDMs of charged leptons in

the framework of the RS1 scenario, with extended Higgs sector. The source of fermion EDMs

is the CP violating interaction that is arisen from a CP violating phase. Here, we assume

that this phase comes from the complex Yukawa couplings appearing in the tree level fermion-

fermion-new Higgs interactions, in the framework of the 2HDM. In the case of charged leptons,

the leptonic complex Yukawa couplings ξ̄EN,ij, i, j = e, µ, τ are responsible for the EDMs and

they are free parameters in the model considered. Here, we expect that the Yukawa couplings

ξ̄EN,ij, i, j = e, µ are weak compared to ξ̄EN,τ i i = e, µ, τ and the couplings ξ̄EN,ij in four dimensions

are symmetric with respect to the indices i and j. Finally, we consider that the coupling ξ̄EN,τ e,

(ξ̄EN,τ µ, ξ̄
E
N,τ τ ) is dominant among the others. This is the case that the tau lepton and its KK

mode appear in the internal line (see Fig.1). The numerical value of the coupling ξ̄EN,τµ is chosen

by respecting the experimental uncertainty, 10−9, in the measurement of the muon anomalous

magnetic moment [38] (see [39] for details)6. This upper limit and the experimental upper

bound of BR of µ → eγ decay, BR ≤ 1.2× 10−11, can give clues about the numerical value of

the coupling ξ̄EN,τe (see [7]) and we take it of the order of 10−2 (GeV ). For the coupling ξ̄EN,ττ

there is no stringent prediction and we consider an intermediate value which is greater than the

coupling ξ̄EN,τµ. For the CP violating parameter which drives the EDM interaction we choose

the range, 0.1 ≥ sin θe (µ, τ) ≥ 0.7.

In the present work, we study the charged lepton EDMs in the RS1 background with the

assumption that the leptons are also accessible to the extra dimension. The inclusion of extra

dimensions brings additional contributions which come from the KK modes of leptons in the 4D

effective theory after the compactification. Here, we consider that the lepton fields are localized

in the extra dimension with the help of the Dirac mass term ml = rσ′, σ = k |y| (eq.(2)) in the

action. This is the case that the SM leptons, the right and left handed parts are located in the

extra dimension with exponential profiles (see eq.(5)) which makes it possible to explain the

different flavor mass hierarchy (see Appendix section for the construction of the SM fields and

their masses).

The gauge sector of the model should live in the extra dimension necessarily if the leptons

exist in the bulk and, therefore, their KK modes appear after the compactification of the

extra dimension. These KK modes result in additional FCNC effects at tree level coming from

6In [39], the upper limit of the coupling ξ̄EN,τµ is estimated as ∼ 30 (GeV ) in the framework of the 2HDM
and here, we take the numerical value which is less than this quantity.
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the couplings with charged leptons and they should be suppressed even for low KK masses,

by choosing the lepton location parameters cL (cR) appropriately (see the discussion given in

[36, 37]). Here, we use two different sets of locations of charged leptons (Table 1) in order to

obtain the masses of different flavors and we verify the various experimental FCNC constraints

with KK neutral gauge boson masses as low as few TeVs. In both sets, we estimate the right

handed locations of leptons by choosing the left handed charged lepton locations as the same.

For the case that the left handed charged lepton locations near to the visible brane (see set II),

the strengths of the couplings of leptons with the new Higgs doublet living in the 4D brane

becomes stronger and, therefore, the physical quantities related to these couplings enhance.

Throughout our calculations we use the input values given in Table (2). Furthermore, the

Parameter Value

mµ 0.106 (GeV)
mτ 1.78 (GeV)
mh0 100 (GeV)
mA0 200 (GeV)
GF 1.1663710−5(GeV −2)

Table 2: The values of the input parameters used in the numerical calculations.

curvature parameter k and the compactification radius R are the additional free parameters

of the theory. Here we take k R = 10.83 and consider in the region 1017 ≤ k ≤ 1018 (see the

discussion in appendix and the work [28]).

In Fig.2, we present the parameter k dependence of the electron EDM de, for ξ̄EN,τe =

0.01 (GeV ) and two different values of the CP violating parameter sin θ. Here, the lower-upper

solid (dashed, small dashed) line represents the de for sin θ = 0.1 − 0.5 without KK modes

(with KK modes set I, II). It is observed that the de is of the order of 10−29 − 10−28 e − cm

for sin θ = 0.1 − 0.5 without KK modes. The inclusion of the KK modes enhances the de

50 times-two orders for the set I-II for the values of the curvature scale k ∼ 1017 (GeV ) and

this enhancement becomes weak for k ∼ 1018 (GeV ). For the set II, the enhancement in the

de is almost two times larger compared to the set I case. This is due to the fact that the

left handed leptons (zero and KK modes) are near to the visible brane and their couplings

to the new Higgs scalars become stronger for set II case. The experimental upper limit is

de = (1.8±1.2±1.0)×10−27e cm and this numerical value can be reached even for small values

of the CP parameter sin θ ∼ 0.1 with the inclusion of charged lepton KK modes.

Fig. 3 is devoted to the parameter k dependence of the dµ, for ξ̄
E
N,τµ = 1 (GeV ) and two
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different values of the CP violating parameter sin θ. Here, the lower-upper solid (dashed, small

dashed) line represents the dµ for sin θ = 0.1 − 0.5 without KK modes (with KK modes set I,

II). We observe that the dµ is of the order of 10−25− 10−24 e− cm for sin θ = 0.1− 0.5 without

KK modes. With the inclusion of the KK modes the dµ increases to the values of the order of

10−23; 2.0 × 10−23 e − cm for sin θ = 0.1 and 5.0 × 10−23; 10−22 e − cm for sin θ = 0.5 in the

case of the set I; set II, for the values of the curvature scale k ∼ 1017 (GeV ). With the choice

of ξ̄EN,τµ = 10 (GeV ), which is the numerical value near to the upper limit that is obtained

by respecting the experimental uncertainty, 10−9, in the measurement of the muon anomalous

magnetic moment (see [39]), the dµ is reached to the value 10−20 e − cm for sin θ ∼ 0.5, with

the inclusion of charged lepton KK modes in the case of set II and k ∼ 1017 (GeV ). This is a

numerical value near to the experimental upper limit dµ = (3.7± 3.4)× 10−19 e− cm.

Fig.4 represents the parameter k dependence of the dτ , for ξ̄EN,ττ = 10 (GeV ) and two

different values of the CP violating parameter sin θ. Here, the lower-upper solid (dashed, small

dashed) line represents the dτ for sin θ = 0.1− 0.5 without KK modes (with KK modes set I,

II). Here it is observed that the dτ is of the order of 10−23 − 10−22 e− cm for sin θ = 0.1− 0.5

without KK modes. The inclusion of the KK modes causes that dτ is enhanced to the values of

the order of 10−21; 2.0×10−21 e−cm for sin θ = 0.1 and 5.0×10−21; 10−20 e−cm for sin θ = 0.5

in the case of the set I; set II, for the values of the curvature scale k ∼ 1017 (GeV ). The

experimental upper limit of dτ , |dτ | < (3.1) × 10−16 e − cm, is almost two orders far from the

theoretical value obtained, even with the strong coupling ξ̄EN,ττ ∼ 100 (GeV ) and it needs more

sensitive experimental measurements.

Now, we analyze the CP violating parameter sin θ dependence of the charged lepton EDMs,

for completeness.

In Fig.5, we present the parameter sin θ dependence of the de; dµ; dτ , for ξ̄
E
N,τe = 0.01 (GeV );

ξ̄EN,τµ = 1.0 (GeV ); ξ̄EN,ττ = 10 (GeV ) and for k = 1018 (GeV ). Here, the lower-intermediate-

upper solid (dashed, small dashed) line represents the de-dµ-dτ without KK modes (with KK

modes set I, II). Here it is observed that the EDMs are not so much sensitive to the location of

lepton fields in the bulk for the large values of the curvature parameter k, k ∼ 1018 (GeV ) and

the enhancements in the EDMs are %6 (%12) for set I (set II). This sensitivity becomes weak

for the small value of the CP violating parameter sin θ.

With the more accurate experimental investigation of the charged lepton EDMs, it will

be possible to understand the mechanism behind the CP violation and one will get powerful

information about the effects of warped extra dimensions, if they exist.
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4 Appendix

The SM fermions are constructed by considering the SU(2)L doublet ψL and the singlet ψR,

satisfying two separate Z2 projection conditions: Z2ψR = γ5ψR and Z2ψL = −γ5ψL (see for

example [20]). The zero mode fermions can get mass through the Z2 invariant left handed

fermion-right handed fermion-Higgs interaction, ψ̄R ψLH
7 and, one gets the location parameters

of the left and the right handed parts of fermions in order to obtain the current masses of

fermions of different flavors. If we consider that the SM Higgs field lives on the visible brane,

the masses of fermions are calculated by using the integral

mi =
1

2 π R

∫ π R

−π R
dy λ5 χiL0(y)χiR0(y) < H > δ(y − π R) , (26)

where λ5 is the coupling in five dimensions and it can be parametrized in terms of the one in four

dimensions, the dimensionless coupling λ, λ5 = λ/
√
k. Here the expectation value of the Higgs

field < H > reads < H >= v/
√
k where v is the vacuum expectation value, v = 0.043MP l, in

order to provide the measured gauge boson masses [28] and choose k R = 10.83 in order to get

the correct effective scale on the visible brane, i.e., MW = e−π k RMpl is of the order of TeV.

Since the EDMs of fermions exist at least in the one loop level, there appears the S-charged

lepton-KK charged lepton vertices. The Z2 the projection condition Z2ψ = −γ5ψ, used to

construct the left handed fields on the branes and as a result, the left handed zero and KK

modes appear, the right handed KK modes disappear on the branes. Here the boundary

conditions coming from the Dirac mass term in the action eq.(2):

( d

dy
−m

)

χl
iLn(y0) = 0

χl
iRn(y0) = 0 , (27)

where y0 = 0 or π R. The left handed lepton χl
i Ln(y) that lives on the visible brane is obtained

χl
iLn(y) = NLn e

σ/2

(

J 1
2
−r(e

σ xnL) + cL Y 1
2
−r(e

σ xnL)

)

, (28)

by using the Dirac equation for KK mode leptons. Here the constant cL is

cL = −
J−r− 1

2
(xnL)

Y−r− 1
2
(xnL)

. (29)

where NLn is the normalization constant and xnL = mLn

k
. The functions Jβ(w) and Yβ(w)

appearing in eq.(28) are the Bessel function of the first kind and of the second kind, respectively.

7Here, we consider different location parameters r for each left handed and right handed part of different
flavors.
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The right handed zero mode fields on the branes can be constructed by considering the Z2

projection condition Z2ψ = γ5ψ and this ensures that the right handed zero mode appears, the

right (left) handed KK modes appear (disappear) on the branes with the boundary conditions:

( d

dy
+m

)

χE
iRn(y0) = 0

χE
iLn(y0) = 0 . (30)

Similarly, the right handed lepton χE
iRn(y) that lives on the visible brane is calculated

χE
iRn(y) = NRn e

σ/2

(

J 1
2
+r(e

σ xnR) + cR Y 1
2
+r(e

σ xnR)

)

, (31)

by using the Dirac equation for KK mode leptons. Here cR reads

cR = −
Jr− 1

2
(xnR)

Yr− 1
2
(xnR)

, (32)

where NRn is the normalization constant and xnR = mRn

k
. Notice that the constant cL, the n

th

KK mode mass mLn in eq.(28) and the constant cR, the n
th KK mode mass mRn in eq.(31) are

obtained by using the boundary conditions eq.(27) and eq.(30), respectively. For mL(R)n ≪ k

and kR ≫ 1 they are approximated as:

mLn ≃ k π
(

n−
1
2
− r

2
+

1

4

)

e−π kR ,

mRn ≃ k π
(

n−
1
2
+ r

2
+

1

4

)

e−π kR for r < 0.5 ,

mRn ≃ k π
(

n +
1
2
+ r

2
− 3

4

)

e−π kR for r > 0.5 . (33)
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Figure 1: One loop diagrams contributing to EDM of l-lepton due to the neutral Higgs bosons
h0 and A0 in the 2HDM. Wavy (dashed-solid) line represents the electromagnetic field (h0 or
A0 fields-charged lepton fields and their KK modes).
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Figure 2: The parameter k dependence of the electron EDM de, for ξ̄
E
N,τe = 0.01 (GeV ). Here,

the lower-upper solid (dashed, small dashed) line represents the de for sin θ = 0.1−0.5 without
KK modes (with KK modes set I, II).
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Figure 3: The same as Fig. 2 but for dµ and ξ̄EN,τµ = 1 (GeV ).
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Figure 4: The same as Fig. 2 but for dτ and ξ̄EN,ττ = 10 (GeV ).
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Figure 5: The parameter sin θ dependence of the de; dµ; dτ , for ξ̄
E
N,τe = 0.01 (GeV ); ξ̄EN,τµ =

1.0 (GeV ); ξ̄EN,ττ = 10 (GeV ) and for k = 1018 (GeV ). Here, the lower-intermediate-upper solid
(dashed, small dashed) line represents the de-dµ-dτ without KK modes (with KK modes set I,
II).
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