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Abstract

The dualised formulation of the symmetric space sigma model is
peformed for a general scalar coset G/K where G is a maximally non-
compact group and K it’s maximal compact subgroup.By using the
twisted self-duality condition the general form of the first-order equa-
tions are obtained.The results are applied to the example of SL(2,R)
/SO(2) scalar manifold of the IIB supergravity.

1 Introduction

In supergravity theories which possess scalar fields the global symmetries
of the scalar sector are essential to have a deeper understanding of these
theories.The scalar Lagrangians can be formulated as coset sigma models
which are non-linear realisations. The dimension of the coset space is equal
to the number of the scalars of the theory When we use the Kaluza-Klein
dimensional reduction for D=11 supergravity [1] and obtain the lower di-
mensional maximal supergravity theories the global (rigid) symmetry group
(i.e.a real Lie group) of the Bosonic sector of the reduced Lagrangians are
in split real form (maximally non-compact whose Cartan subalgebras can be
chosen along the non-compact directions).This global symmetry is also the
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global symmetry of the scalars of the theory.The scalar coset can be con-
structed as G/K-valued fields where G is the global symmetry group in split
real form and K it’s maximal compact subgroup.The scalars transform non-
linearly in the linear representations of G while the higher rank potentials
always transform linearly.Although the global symmetry scheme of the su-
pergravity theories are consequences of supersymmetry the study of the coset
symmetries of the supergravity theories provides a better understanding of
the underlying structure of these theories [2,3].

The method of non-linear realisations [4,5,6,7,8] is used in [9,10] to for-
mulate the gravity as a non-linear realisation in which the gravity and the
gauge fields appear on equal footing.Recently this formulation is enlarged to
have a detailed treatment of the maximal supergravity theories.

By introducing auxilary fields for a subset of the field content and by using
the coset formulation the global symmetries of the scalar sectors of maximal
supergravities are studied in [11].These symmetries which are realised on the
Bosonic fields are also studied in a general formalism in [12].However the
complete coset realisation of the scalars and the gauge fields is introduced
in [13] where the twisted self-duality structure of supergravities [14,15] is
generalised to regain the first-order equations of the theory from the Cartan
forms of the dualised coset.The spacetime symmetries turn out to be internal
symmetries after the Kaluza-Klein dimensional reduction in [11].It is shown
that these symmetries become gauge symmetries after dualisation.The dis-
cussion about the symmetry groups of the Cartan forms (the doubled field
strengths) of the coset formulation as well as the symmetry groups of the
twisted self-duality equation (i.e.first-order equations) which are larger than
the symmetry groups of the Cartan forms is given in [11] and [13] .In [13] for
IIB theory [16] it is also shown that the the global symmetry of the twisted
self-duality equation of the Cartan form of the coset realisation is the orig-
inal global symmetry.The same result is proved to exist for the dualisation
of the scalar sectors of maximal supergravities in all dimensions and it is
conjectured that the global symmetry is preserved for the full dualisation of
these theories.

In [17] the complete non-linear realisation of the D=11 and IIA [18,19,20]
supergravity theories is performed for the entire Bosonic sector including the
gravity which is missing in [13].The symmetries are also discussed in detail in
[17].In [21] the Bosonic sector of IIB is derived as a non-linear realisation.The
non-linear realisations of D=11 supergravity and IIA supergravity lead to
finite dimensional Lie algebras G11 and GIIA respectively which are not Kac-
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Moody algebras. The local subgroups are also chosen to be the Lorentz
group so that the general coset representative of the entire Bosonic sector
can not be parametrised by a Borel subgroup of some larger group .These
coset formulations are not like the ones for maximal supergravities which
all give rise to Kac-Moody algebras and whose general coset representatives
can be parametrised by a Borel subgroup of a larger group.In [21,22] it is
discussed that the non-linear realisations of D=11 and IIA supergravities
can be enlarged to include a Kac-Moody algebra identified as E11 which
contains the Borel subalgebra of E8.This can be done either by introducing
a larger local subgroup than the Lorentz group or by describing the gravity
by two fields which are duals of each other.Furhermore in [21] the IIB theory
is formulated as a non-linear realisation of an infinite dimensional algebra
GIIB which is the closure of the conformal algebra.It is also shown that the
non-linear realisation can be enlarged to include the Kac-Moody algebra E11

of IIA and D=11 supergravities.
In this note we will give the dualisation of the general symmetric space

coset sigma model whose global (rigid) symmetry group is in split real form.The
scalar sectors of the maximal supergravity theories are in this category and in
[11] and [13] the scalar sectors are formulated case by case with in the context
of the dualisation of the Bosonic sectors of these theories. The formulation
presented here assumes a formal construction based on general structure con-
stants and it is performed for a general G/K scalar manifold (G is a max-
imally non-compact group and K is it’s maximal compact subgroup).The
formulation is based on the Borel gauge as proposed in [11,13] where the
maximal supergravities with D≤ 9 are based on a coset representative in
which the axions appear as various exponential factors.A transformation of
the fields is needed to relate the formulation given here and the one in [11]
and [13] for D≤ 9.On the other hand for IIB and IIA we have the exact
match of the form of the coset representative chosen (IIA does not contain
axions at all).Among the three possible formulations of the symmetric space
sigma model [11] we will follow the one which defines an internal metric
that is used instead of the coset element. Although the general form of the
coset Lagrangian is given in [13] the explicit general dualised formulation is
not performed.This work completes the missing general formulation by pre-
senting the dualisation of the general coset G/K by means of the abstract
structure constants.It also contains the first-order formulation of the equa-
tions of motion as a twisted self-duality condition for the symmetric space
coset sigma model with the global symmetry group in split real form.
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We will start with the derivation of the second-order equations of motion
of the G/K scalar coset manifold in section two.In section three we will
calculate the general structure constants of the dualised algebra in terms of
the ones of the originally assumed Borel subalgebra by introducing the dual
fields and the dual generators.In section four the doubled field strength G will
be calculated and the first-order equations will be derived by using the twisted
self-duality equation ∗G = SG (which is an exact self-duality condition since
S = 1 in our case).Finally we will give an application of the results we derive
for the example of SL(2,R) /SO(2) scalar manifold in section five.

2 The General Scalar Coset Sigma Model

In this section we will derive the equations of motion for the scalar coset
after we introduce the Lagrangian.The formulation is parallel with the one
in [23].The equations are second-order and the dualisation will enable us to
obtain the first-order equations of motion.Let G be a maximally non-compact
(split) group and K it’s maximal compact subgroup.One can consider the
G-valued scalar fields over the D-dimensional spacetime to form the scalar
manifold first and then demand the local K invariance.This will reduce the
degrees of freedom and the physical scalar manifold elements will be the
G/K coset-valued fields.The coset representatives can be parametrised by
the Borel subgroup elements.The Borel subgroup is generated by the Borel
subalgebra whose generators are the Cartan generators {Hi | i = 1, .., l} of
the Cartan subalgebra and the positive root generators {Eα | α = 1, .., m}
of the Lie algebra of G.So the G/K-valued field ν(x) can be written as

ν(x) = gH(x)gN (x)

= e
1

2
φi(x)Hieχ

m(x)Em .

(2.1)

In this so-called Borel gauge the fields {φi} which couple to {Hi} are
called the dilatons and the fields {χm} which couple to the positive root
generators {Em} are called the axions.Totally there are n = l + m scalar
fields which generate the G/K−valued fields ν(x) of the scalar manifold.

One can parametrise the positive root part of ν(x) in various ways.For
example like in [11,13] the positive root part in (2.1) can be constructed
as products of exponentials of individual positive root generators multiplied
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with the corresponding axions.The factors are ordered in a special way so
that the axions chosen are the same fields which appear in the particular form
of the Lagrangians used. The Campbell-Hausdorff formula can be used to
relate the field content (dilatons and axions) of the different parametrisations
of ν(x).Indeed each parametrisation corresponds to a transformation of the
scalar fields but we should also bear in mind that the Borel gauge of the
coset does not change as in all of the parametrisations mentioned above the
G/K coset is still parametrised by the Borel subgroup.

If we define the right,rigid action of the group G over the G/K−valued
fields as ψ(x) = ν(x)g for g ∈ G we see that ψ(x) is not in the Borel gauge
.We should introduce another transformation which would map it into the
range of the Borel gauge again.The Iwasawa decomposion [24] is the tool for
this.It assures that any group element g ∈ G which is in the range of the
exponential map can uniquely be expressed as

g = gKgHgN (2.2)

where gK ∈ K while gH and gN are the group elements obtained by the
exponentiation of the Cartan subalgebra and the positive root part of the Lie
algebra of G respectively.Thus if we use this result for ψ(x) we have ψ(x) =
gK(x)ν

′(x) where ν ′(x) = g−1
K (x)ψ(x) is in the Borel gauge.Consequently for

each rigid transformation g ∈ G there exists a local transformation g−1
K (x) ∈

K which enables the map

ν ′(x) = g−1
K (x)ν(x)g (2.3)

to be closed over the range of the Borel gauge.The general scalar coset
Lagrangian is given as [11,13,23]

L =
1

4
tr(∗dM−1 ∧ dM). (2.4)

Here the internal metric M is M =ν#ν where ( )# is the generalised
transpose.In order to define it we first introduce τ : g → g namely the Cartan
involution which acts on g the Lie algebra of G.It reverses the sign of the
non-compact generators while leaving the compact generators unchanged.In
terms of the basis we use

τ : (Eα, E−α, Hi) −→ (−E−α,−Eα,−Hi) (2.5)
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where {E−α} are the negative root generators.For any real group the com-
pact generators can be written as (Eα − E−α) and the non-compact ones as
(Eα + E−α).For a Lie algebra element g′ the general transpose # is defined
as (g′)# = −τ(g′).As mentioned in [23] it is possible to find a higher dimen-
sional representation of the Lie algebra in which # coincides with the matrix
transpose operator.For this reason one can define a conjugate # map over
the group G as (expg′)# = exp(g′#).If the subgroup of G generated by the
compact generators is an orthogonal group then in the fundamental repre-
sentation the generators can be chosen such that g# = g⊺(i.e.SL(n,R)).If it
is a unitary group then g# = g†.Therefore the generalized transpose of the
coset representative is defined as follows

ν# = τ(ν−1)

= eχ
mE

−me
1

2
φiHi.

(2.6)

The Iwasawa decomposition assures that the Lagrangian (2.4) is invari-
ant under the rigid transformations of G which we have defined before.As
discussed in [13] the transformation acting on the general Noether currents
generated by the rigid (non-coordinate dependent) right action of G on the
scalar coset manifold is linear.Since the number of currents exceeds the to-
tal number of scalars (dilatons and axions) of the theory these currents are
not all independent.Therefore the Borel currents corresponding to the sym-
metries generated by the Borel subalgebra transform non-linearly under the
action of G.This may be phrased as the non-linear realisation of the global
symmetry group G over the scalars.

By using ν−1dν = −dν−1ν and the properties of the generalized transpose
# also the fact that the cyclic permutations are permissable under the trace
the scalar coset Lagrangian can be expressed as

L = −
1

2
tr(∗dνν−1 ∧ (dνν−1)# + ∗dνν−1 ∧ dνν−1). (2.7)

As mentioned in section one the scalar coset manifolds of the maximal su-
pergravity theories can be given as G/K ,G being a maximally non-compact
group and K it’s maximal compact subgroup.For D=11 supergravity the
global symmetry group G is the trivial group,for IIB G is SL(2,R) and K is
SO(2),for IIA G is SO(1, 1)/Z2 and K is the trivial group.The D=9 maxi-
mal supergravity has the scalar coset GL(2,R)/SO(2).Exceptional groups En
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arise as the global symmetry groups for D < 9 maximal supergravities.The
details of the maximal compact subgroups of these theories can be found in
[24].

The 1-form G0 = dνν−1 is the pullback of a Lie algebra valued 1-form
on G through the map ν.For this reason it can be expressed in the Borel
subalgebra basis

G0 = dνν−1

= (dgHgN + gHdgN)(g
−1
N g−1

H )

= dgHg
−1
H + gHdgNg

−1
N g−1

H .

(2.8)

Now in order to simplify the first term we will use the formula

deXe−X = dX +
1

2!
[X, dX ] +

1

3!
[X, [X, dX ]] + .... (2.9)

Therefore we have

dgHg
−1
H = de

1

2
φiHie−

1

2
φiHi

=
1

2
dφiHi

(2.10)

where we have used the fact that [Hi, Hj ] = 0.The other commuta-
tion relations of the Borel subalgebra are [Hi, Eα] = αiEα and [Eα, Eβ] =
Nα,βEα+β .By using the above expansion for deXe−X we can also calculate
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dgNg
−1
N

dgNg
−1
N = deχ

mEme−χmEm

= dχmEm +
1

2!
[χmEm, dχ

nEn] +
1

3!
[χmEm, [χ

lEl, dχ
nEn]] + ....

= dχmEm +
1

2!
χmdχnKv

mnEv +
1

3!
χmχldχnKv

lnK
u
mvEu + ....

=
⇀

EΩ
⇀

dχ.
(2.11)

In the compact form on the right hand side of the last line
⇀

E is the row

vector of the positive root generators; Eα = Eα and
⇀

dχ is the column vector
of the 1-forms {dχα}.The matrix Ω is a series which arises from the infinite
sum given above

Ω =
∞∑

n=0

ωn

(n+ 1)!
(2.12)

ω is an m×m matrix m being the number of the positive roots and it is
composed of the axions coupled to the structure constants ωγ

β = χαKγ
αβ.In

this definition we have introduced [Eα, Eβ] = Kγ
αβ Eγ .In other words Kα

ββ =
0, Kα

βγ = Nβ,γ if in the root sense β + γ = α and Kα
βγ = 0 if β + γ 6= α again

in the root sense.Now if we use the Campbell-Hausdorff formula

eXY e−X = Y + [X, Y ] +
1

2!
[X, [X, Y ]] + .... (2.13)

we can explicitly write the second term in (2.8) as

gHdgNg
−1
N g−1

H = e
1

2
φiHi(

⇀

EΩ
⇀

dχ)e−
1

2
φiHi

=
⇀

E′ Ω
⇀

dχ.

(2.14)
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The primed row vector
⇀

E′ is defined as E′
β = e

1

2
βiφ

i

Eβ .Finally we can now
write G0 expanded in the Borel subalgebra generators

G0 = dνν−1

=
1

2
dφiHi + e

1

2
αiφ

i

F αEα

(2.15)

We have also introduced the vector F α = Ωα
β dχ

β.We will express the

equations of motion in terms of
⇀

F.If we use (2.15) in (2.7) we find that

L =−
1

2

l∑

i=1

∗dφi ∧ dφi −
1

2

m∑

α=1

eαiφ
i

∗ F α ∧ F α. (2.16)

By following the outline of [23] one can derive the equations of motion of
the general scalar coset Lagrangian.We should first observe that d(dνν−1) =
−dν ∧ dν−1 = dνν−1 ∧ dνν−1.If (2.15) is substituted into this equation one

gets the Bianchi identity for
⇀

F.

dF γ =
1

2

∑

α+β=γ

Nα,βF
α ∧ F β. (2.17)

If {F γ} are considered as independent fields and if we propose the Bianchi
identity as a constraint equation the Lagrange multipliers ( (D−2)-forms) can
be introduced and the additional Lagrangian corresponding to the Bianchi
identity can be given as

LBianchi = (dF α −
1

2

∑

α=β+γ

Nβ,γF
β ∧ F γ) ∧ A(D−2),α. (2.18)

The new Lagrangian becomes L′ = L+LBianchi.The variation with respect
to A(D−2),α for α = 1, .., m will give back the Bianchi identities.If we vary L′

with respect to F γ and then take the exterior derivative of the resulting field
equation we achieve the second-order equations of motion for F γ

d(eγiφ
i

∗ F γ) =
∑

α−β=−γ

Nα,−βF
α ∧ eβiφ

i

∗ F β. (2.19)
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By varying (2.16) with respect to the dilatons {φi} (since LBianchi does
not depend on {φi}) we can also find the equations of motion for φi

d(∗dφi) =
1

2

m∑

α=1

αie
1

2
αiφ

i

F α ∧ e
1

2
αiφ

i

∗ F α. (2.20)

The details of the formulation given above can be found in [23].As we will
see in the next section in order to formulate the dualised theory we need to
use a slightly different form of (2.19) namely

d(e
1

2
γiφ

i

∗ F γ) = d(e−
1

2
γiφ

i

eγiφ
i

∗ F γ)

= −
1

2
γje

− 1

2
γiφ

i

dφj ∧ eγiφ
i

∗ F γ

+
∑

α−β=−γ

e−
1

2
γiφ

i

Nα,−βF
α ∧ eβiφ

i

∗ F β

= −
1

2
γje

1

2
γiφ

i

dφj ∧ ∗F γ +
∑

α−β=−γ

e
1

2
αiφ

i

e
1

2
βiφ

i

Nα,−βF
α ∧ ∗F β.

(2.21)
The second-order equations (2.20) and (2.21) are the ones which we will

refer to derive the commutation relations of the dualised generators when we
construct the doubled field strength G which will give the correct first-order
equations by satisfying a twisted self-duality condition.

3 Dualisation

If we double the number of the fields by introducing a (D− 2)-form for each
scalar field we can construct a doubled field strength G which is Lie super-
algebra valued [11,13].This algebra is generated by the Borel generators and
the generators we introduce for each dual (D− 2 )-form whose commutation
relations we will calculate.As we will see the choice of the appropriate struc-
ture constants will be based on the formulation which will give the correct
equations of motion.The doubled field strength G is invariant under the Borel
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subgroup G+ of G which corresponds to the rigid symmetries of the constant
shifts of the dilatons and the axions and G is also invariant under the local
gauge symmetries which are generated by the generators coupled to the dual
(D − 2)-forms as discussed in [13].For the doubled field content we propose
the map ν ′(x) as

ν ′(x) = e
1

2
φiHieχ

mEmeχ̃
mẼme

1

2
φ̃iH̃i . (3.1)

The doubled field strength G is defined as dν ′ν ′−1.In [11] and [13] the
twisted self-duality condition is applied on G to regain the first-order equa-
tions of the maximal supergravity theories.The twisted self-duality condition
which is imposed on G is ∗G = SG.Here S is a pseudo-involution of the pro-
posed Lie superalgebra (which is generated by the original Borel generators
and their duals).It’s action on the scalar and dual generators is as follows

SHi = H̃i , SEm = Ẽm,

SH̃i = Hi , SẼm = Em. (3.2)

In general S sends the Borel generators to their duals and the dual ones
to their Borel counterparts with a sign factor which is (−1)p(D−p)+swhere p is
the degree of the corresponding field strength which the generator is coupled
to and s is the signature of the spacetime metric.In fact the eigenvalues
of S2 must be the same with the eigenvalues of (∗ ◦ ∗) operator acting on
the field strength coupled to the dual generator which S2 acts on.For the
present case the field strengths are (D − 1)-forms so p = D − 1 and the
signature of the spacetime is assumed to be s = D − 1.So the sign factor is
(−1)p(D−p)+s = (−1)2(D−1) = 1.

The Borel generators satisfy the commutation relations given in the pre-
vious section and as mentioned in [13] the general form of the remaining
commutation relations of the newly constructed algebra are

[Eα, T̃m] = f̃n
αmT̃n , [Hi, T̃m] = g̃nimT̃n,

[T̃m, T̃n] = 0 (3.3)
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where T̃i = H̃i for i = 1, ..., l and T̃α+l = Ẽα for α = 1, ..., m.In the next
section we will calculate the doubled field strength G =dν ′ν ′−1 explicitly but
the following formulation will make use of an alternative method introduced
and used in [13].We will define a the field strength G ′ as G ′ = G0 + S ∗ G0.By
using (2.15)

G ′ = dνν−1 +
1

2
∗ dφiH̃i + e

1

2
αiφ

i

∗ F αẼα. (3.4)

From it’s definition G ′ trivially satisfies the twisted self-duality condition
∗G ′= SG ′.Since d(dνν−1) = dνν−1 ∧ dνν−1 G0 satisfies the Cartan-Maurer
equation dG0 − G0 ∧ G0 = 0.As a matter of fact G ′ is nothing but G in which
the self-duality condition ∗G = SG is used for this reason G ′ also satisfies the
Cartan-Maurer equation

dG ′ − G ′ ∧ G ′ = 0. (3.5)

This equation gives the original second-order equations of the coset La-
grangian.Therefore one way of obtaining the structure constants in (3.3) is
to calculate (3.5) by substituting (3.4) and to compare the result with the
second-order equations (2.20) and (2.21).

We will use this fact to read the structure constants in (3.3) in terms of
the information of the Borel subalgebra of G.We should bear in mind that the
generators Hi and Eα are of even degree and the ones H̃i and Ẽα are of even
or odd degree whether their corresponding potentials (D−2)-forms are even
or odd rank depending on the spacetime dimension.In the exterior algebra of
the Lie superalgebra valued forms even or odd generators behave like even
or odd degree forms when commuting with the differential forms.Also if T
is an odd generator d(TA) = −TdA and if it is even d(TA) = TdA.Now by
using (3.4) if we calculate dG ′ − G ′ ∧ G ′ and equate it to zero we find that

dG ′ − G ′ ∧ G ′ =
1

2
d(∗dφi)H̃i + d(e

1

2
αiφ

i

∗ F α)Ẽα −
1

4
dφj ∧ ∗dφi[Hj , H̃i]

−
1

2
dφj ∧ e

1

2
αiφ

i

∗ F α[Hj, Ẽα]−
1

2
e

1

2
αiφ

i

F α ∧ ∗dφj[Eα, H̃j]

− e
1

2
αiφ

i

e
1

2
βiφ

i

F α ∧ ∗F β[Eα, Ẽβ].
(3.6)
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We have to equate the coefficients of the linearly independent algebra
generators to zero and the resulting equations must be the same with the
second-order equations of motion (2.20) and (2.21).Direct comparison gives
the commutation relations as

[Hj, H̃i] = 0 , [Eα, H̃j] = 0,

[Hj, Ẽα] = −αjẼα , [Eα, Ẽα] =
1

4

l∑

i=1

αiH̃i,

[Eα, Ẽβ] = Nα,−βẼγ , α− β = −γ, α 6= β. (3.7)

The conditions in the last line must be understood in the root sense.We
can now express the structure constants f̃n

αm and g̃nim by using the results we
have found

f̃n
αm = 0, m ≤ l , f̃ i

α,α+l =
1

4
αi, i ≤ l

f̃ i
α,α+l = 0, i > l , f̃ i

α,β+l = 0, i ≤ l, α 6= β

f̃ γ+l
α,β+l = Nα,−β, α− β = −γ

f̃ γ+l
α,β+l = 0, α− β 6= −γ, α 6= β. (3.8)

The conditions on the indices α and β are in the root sense.Also we have

g̃nim = 0, m ≤ l , g̃nim = 0, m > l,m 6= n

g̃αiα = −αi, α > l. (3.9)
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4 The First-Order Equations of Motion

Now that we have obtained the complete commutation relations of the du-
alised algebra we can explicitly calculate the doubled field strength in terms
of the structure constants and then use the twisted self-duality equation
∗G = SG to reach the first-order equations of motion.We should make the
remark that although the symmetry group of G is composed of the Borel
subgroup G+ and the local gauge symmetries of the dual generators the
symmetry group which leaves the first-order equations ∗G = SG is larger
than that.The reason for this is that there could be symmetry transforma-
tions which may change G but still leave the twisted self-duality condition
invariant.By using (3.1) we have

G =dν ′ν ′−1 = G0 + e
1

2
φiHieχ

mEmdeχ̃
mẼme−χ̃mẼme−χmEme−

1

2
φiHi

+ e
1

2
φiHieχ

mEmeχ̃
mẼmde

1

2
φ̃iH̃ie−

1

2
φ̃iH̃ie−χ̃mẼme−χmEme−

1

2
φiHi.

(4.1)

Now by using the equation (2.9) and the fact that [Ẽm, Ẽn] = [H̃i, H̃j] =

[Ẽm, H̃i] = 0 we obtain

deχ̃
mẼme−χ̃mẼm = dχ̃mẼm

eχ̃
mẼmde

1

2
φ̃iH̃ie−

1

2
φ̃iH̃ie−χ̃mẼm =

1

2
dφ̃iH̃i.

(4.2)

So the field strength becomes

G = G0 + e
1

2
φiHieχ

mEmAnT̃ne
−χmEme−

1

2
φiHi (4.3)

where we have defined the vector
⇀

A as Ai = 1
2
dφ̃i for i = 1, ..., l and

Ai+α = dχ̃α for α = 1, ..., m.If we use the Campbell-Hausdorff formula (2.13)

14



twice we can calculate the second term in (4.3)

eχ
mEmAnT̃ne

−χmEm = AnT̃n + [χmEm, A
nT̃n] +

1

2!
[χmEm, [χ

lEl, A
nT̃n]] + ....

= AnT̃n + χmAnf̃k
mnT̃k +

1

2!
χmχlAnf̃ v

mkf̃
k
lnT̃v + ....

=
⇀

T̃ eΛ
⇀

A.
(4.4)

We have defined the row vector
⇀

T̃ in section three and the matrix Λ
is defined as Λk

n = χmf̃k
mn.Now applying the Campbell-Hausdorff formula

(2.13) once more

e
1

2
φiHi(

⇀

T̃ eΛ
⇀

A)e−
1

2
φiHi =

⇀

T̃ eΛ
⇀

A+ [
1

2
φiHi, (

⇀

T̃ eΛ
⇀

A)]

+
1

2!
[
1

2
φiHi, [

1

2
φjHj, (

⇀

T̃ eΛ
⇀

A)]] + ....

=
⇀

T̃ eΛ
⇀

A+
1

2
φi(eΛ)kl A

lg̃vikT̃v

+
1

2!

1

4
φiφj(eΛ)kl A

lg̃uisg̃
s
jkT̃u + ....

=
⇀

T̃ eΓ eΛ
⇀

A

(4.5)

where we have defined the matrix Γ as Γk
n = 1

2
φi g̃kin.We can now write
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the doubled field strength G

G = G0 +
⇀

T̃ eΓ eΛ
⇀

A

=
1

2
dφiHi +

⇀

E′ Ω
⇀

dχ+
⇀

T̃ eΓ eΛ
⇀

A.

(4.6)

As we have expressed G in the basis {Hi, Eα, H̃i, Ẽα} finally we can find
the first order equations of the scalar Lagrangian (2.7) by using the twisted
self- duality equation ∗G = SG .If we substitute (4.6) into this equation we
can read the first-order equations for the dilatons and the axions in terms of
the dual (D−1)-form field strengths.So the first-order equations are obtained
by equating the coefficients of the same generators on opposite sides of the
equation ∗G = SG and in compact form they can be written as

∗
⇀

Ψ = eΓeΛ
⇀

A. (4.7)

In this vector equation the column vector
⇀

Ψ is defined as Ψi = 1
2
dφi for

i = 1, ..., l and Ψα+l = e
1

2
αiφ

i

Ωα
l dχ

l for α = 1, ..., m where Ω is the m ×m
matrix defined in the second section.This concludes our formulation next we
will give an application of the results we have obtained for the SL(2,R) coset.

5 The SL(2,R) /SO(2) Scalar Coset

The SL(2,R) /SO(2) scalar coset Lagrangians arise when the Kaluza-Klein
reduction is applied over Tori.For example when the pure gravity in D+2 di-
mensions is reduced to D dimensions over the 2-Torus T2 the global symme-
try of the reduced scalar Lagrangian becomes R×SL(2,R).The Scalar coset
manifold of IIB supergravity also appears as SL(2,R) /SO(2).The dualisa-
tion of the SL(2,R) /SO(2) coset is studied in [11,13].We will derive the same
results by using the general formulation we have developed.The Lie algebra
of SL(2,R) namely sl(2,R) is isomorphic to su(2) and it has three generators
{H,E+, E−} so it’s Cartan subalgebras are one dimensional and there is one
positive root and one negative root.Therefore the Borel subalgebra is gener-
ated by {H,E+} and they satisfy the commutation relation [H,E+] = 2E+

16



denoting α = 2.For sl(2,R) one can chose the following representation

H =

(
1 0
0 −1

)
E+ =

(
0 1
0 0

)
E− =

(
0 0
1 0

)
. (5.1)

So that we can calculate ν as

ν = e
1

2
φHeχE+ =

(
e

1

2
φ χe

1

2
φ

0 e−
1

2
φ

)
. (5.2)

Also since for sl(2,R) the generalized transpose is simply the matrix
transpose

M =ν⊺ν =

(
eφ χeφ

χeφ e−φ + χ2eφ

)
. (5.3)

Now from (2.4) we have the Lagrangian

L = −
1

2
∗ dφ ∧ dφ−

1

2
e2φ ∗ dχ ∧ dχ. (5.4)

We only have one positive root soKγ
αβ = 0, ω = 0 and from (2.12)Ω =1.If

we use these results in (2.15) we have

G0 = dνν−1

=
1

2
dφH + eφdχE+.

(5.5)

This could directly be calculated from (5.2).Since α = 2, F = dχ and
N1,1 = 0 from (2.19) and (2.20) we have the second-order equations of motion

d(∗dφ) = e2φdχ ∧ ∗dχ,

d(e2φ ∗ dχ) = 0.

(5.6)

By using (3.7) the commutation relations for the dual generators can be
found as
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[H, H̃] = [E+, H̃] = 0,

[H, Ẽ+] = −2Ẽ+ , [E+, Ẽ+] =
1

2
H̃. (5.7)

We can now calculate the first-order equations from (4.7).We should first
observe that if we use the commutation relations (5.7) in (3.8) and (3.9) or
directly in (3.3) we find that

f̃ 1
11 = f̃ 2

11 = f̃ 2
12 = 0 , f̃ 1

12 =
1

2
,

g̃111 = g̃211 = g̃112 = 0 , g̃212 = −2. (5.8)

In order to calculate the first-order equations we will first calculate the
exponentials in (4.7).Since Γk

n = 1
2
φi g̃kin and Λk

n = χm f̃k
mn we have the Γ and

Λ matrices as

Γ =

(
0 0
0 −φ

)
, Λ =

(
0 1

2
χ

0 0

)
. (5.9)

When we exponentiate these matrices and multiply the results we get

eΓ =

(
1 0
0 e−φ

)
, eΛ =

(
1 1

2
χ

0 1

)
,

eΓeΛ =

(
1 1

2
χ

0 e−φ

)
. (5.10)

The vectors in (4.7) are calculated from their definitions given in section
three and section four and by using (5.8)

⇀

Ψ =

(
1
2
dφ

eφdχ

)
,

⇀

A =

(
1
2
dφ̃
dχ̃

)
. (5.11)
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When we substitute these results in the equation (4.7)

(
1
2
∗ dφ

eφ ∗ dχ

)
=

(
1 1

2
χ

0 e−φ

)(
1
2
dφ̃
dχ̃

)
(5.12)

from which we read the first-order equations of motion for the SL(2,R)
/SO(2) coset as

∗dφ = dφ̃+ χdχ̃,

eφ ∗ dχ = e−φdχ̃.

(5.13)

These first-order equations are the same equations with the ones in [13]
which are obtained by directly integrating the second-order equations (5.6).

6 Conclusion

We have derived the second-order equations of motion for a general scalar
coset sigma model.By following the framework of [13] the general form of the
structure constants and the first-order equations are derived for the doubled
field strength formalism.We have shown that these general formulas lead to
the correct results for the case of SL(2,R) /SO(2).

We have started from any given coset G/K and derived the dualised for-
mulation as well as the first-order equations in terms of the given knowledge
of the original global symmetry group of the scalar Lagrangian.The results
achieved in this work are applicable to the scalar sectors of the maximal
supergravities but as they are derived for a general symmetric space sigma
model with the abstract notion of the structure constants they would dualise
and construct the first-order formulation of any other theory which assumes
the same form.Especially the non-linear realisations of the supergravity the-
ories in various dimensions in which there is matter coupling would include
the scalar formalism introduced here. The dualisation of the scalar sector is
a primary task and a good starting point for the non-linear realisation of any
supergravity theory since it contains the knowledge of the global symmetry
group of the Bosonic sector of the theory.This work in the most general sense
relates the structure of the original scalar coset and the symmetry group of
the doubled field strength from which the first-order equations are derived.
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In spite of the fact that we have given the formulation of the coset sigma
models for the maximally non-compact global symmetry group a similar for-
mulation can be performed for the general case of non-compact groups but
in that case the role of the Borel subgroup must be replaced by the solvable
subgroup.The formulation of the non-linear sigma models and in general the
principle sigma models would follow the same pattern presented here.
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[11] E.Cremmer,B.Julia,H.Lū and C.N.Pope,‘Dualisation of dualities ’ ,Nucl.
Phys. B523 (1998) 73, hep-th/9710119.
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