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Abstract

The general non-split scalar coset of supergravity theories is dis-
cussed.The symmetric space sigma model is studied in two equivalent
formulations and for different coset parametrizations.The dualisation
and the local first order formulation is performed for the non-split
scalar coset G/K when the rigid symmetry group G is a real form of
a non-compact semisimple Lie group (not necessarily split) and the
local symmetry group K is G’s maximal compact subgroup.A com-
parison with the scalar cosets arising in the T 10−D-compactification
of the heterotic string theory in ten dimensions is also mentioned.

1 Introduction

The first order formulation of the maximal supergravities (D ≤11) has been
given in [1,2] where the scalar sectors which are governed by the G/K sym-
metric space sigma model are studied case by case.Dualisation of the fields
and the generators which parametrize the coset is the method used to ob-
tain locally the first order equations as a twisted self duality condition in
[1,2].In [3] a general formulation based on the structure constants is given
to construct an abstract method of dualisation and to derive the first order
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equations for the G/K coset sigma model when the rigid symmetry group G
is in split real form (maximally non-compact).Although the maximal super-
gravities fall into this class there are more general cases of pure or matter
coupled supergarvity theories whose scalar sectors posses a non-split rigid
symmetry group.When the Bosonic sector of the ten dimensional simple su-
pergravity coupled to N Abelian gauge multiplets is compactified on T 10−D

the scalar sector of the D-dimensional reduced theory can be formulated as
G/K symmetric space sigma model with G being in general non-split (not
maximally non-compact) [4].In particular when N is chosen to be 16 the for-
mulation and the coset realizations of [4] correspond to the D-dimensional
Kaluza-Klein reduction of the low-energy effective heterotic string theory in
ten dimensions.

In this work by presenting an algebraic outline we are enlarging the first
order formulation of [3] by using the solvable algebra parametrization [5,6]
to a more general case which contains a rigid symmetry group G which is a
real form of a non-compact semisimple Lie group and G is not necessarily
in split real form.We will choose a different spacetime signature convention
than the one assumed in [3].We will assume s = 1 whereas in [3] it has
been taken as s = (D−1).Therefore there will be a sign factor depending on
the spacetime dimension in the first-order equations.The formalism presented
here covers the split symmetry group case as a particular limit in the possible
choice of the non-compact rigid symmetry groups as it will be clear in section
two.Before giving the first order formulation we will present two equivalent
definitions of the G/K scalar coset sigma model and we will study them in
detail.We will introduce two coset maps,one being the parametrization used
in [1,2,3].A transformation law between the two sets of scalar fields will also
be established to be used to relate the corresponding first order equations.The
second order equations of the vielbein formulation and the internal metric
formulation will be derived for both of these coset maps.We will also discuss
the correspondence of our formulation with the scalar manifold cosets arising
in [4] by identifying the generators introduced in [4] and by inspecting the
coset parametrizations.

In section two we will introduce the algebraic outline of the symmetric
space sigma model.The Cartan and the Iwasawa decompositions will be dis-
cussed.Section three is reserved for the two equivalent formulations of the
symmetric space sigma model.In section four we will present the dualisation
by doubling the fields and the generators,we will also discuss the local first
order equations which are generalizations of the results of [3] for two different
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parametrizations of the coset G/K.We will also show that the same equa-
tions may be achieved by the dualisation performed on the coset map which
is different than the one used in [1,2,3].Finally in section five we will mention
about the comparison of our construction with the coset realizations of [4].

2 The Scalar Coset Manifold

The scalar manifolds of all the pure and the matter coupled N > 2 extended
supergravities in D = 4, 5, 6, 7, 8, 9 dimensions as well as the maximally ex-
tended supergravities in D ≤ 11 are homogeneous spaces in the sense that
they allow a transitive action of a Lie group on them.They are in the form of
a coset manifold G/K where G is a real form of a non-compact semisimple
Lie group and K is a maximal compact subgroup of G.

For a real semisimple Lie algebra g0 each maximal compactly imbedded
subalgebra k0 corresponding to a maximal compact subgroup of the Lie group
of g0 is an element of a Cartan decomposition [7]

g0 = k0 ⊕ u0 (2.1)

which is a vector space direct sum such that if g is the complexification
of g0 and σ is the conjugation of g with respect to g0 then there exists a
compact real form gk of g such that

σ(gk) ⊂ gk , k0 = g0 ∩ gk , u0 = g0 ∩ (igk). (2.2)

The proof of the existence of Cartan decompositions can be found in
[7].If we define a map ω : g0 → g0 such that ω(T +X) = T −X (∀T ∈ k0

and ∀X ∈ u0) then (g0, ω) is an orthogonal symmetric Lie algebra of non-
compact type.The pair (G,K) associated with (g0, ω) is a Riemannian sym-
metric pair.Therefore K is a closed subgroup of G and the quotient topol-
ogy on G/K induced by G generates a unique analytical manifold structure
and G/K is a Riemannian globally symmetric space for all the possible G-
invariant Riemann structures on G/K.The exponential map Exp [7] is a
diffeomorphism from u0 onto the space G/K.Therefore there is a legitimate
parametrization of the coset manifold by using u0.If {Ti} are the basis vec-
tors of u0 and {ϕi(x)} are C∞ maps over the D-dimensional spacetime the
map

ν(x) = eϕ
i(x)Ti (2.3)
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is an onto C∞ map from the D-dimensional spacetime to the Riemannian
globally symmetric space G/K.

If we define the Cartan involution θ as the involutive automorphism of g0

for which the bilinear form − < X, θY > is positive definite ∀X, Y ∈ g0 then
the root space of the Cartan subalgebra (the maximal Abelian subalgebra)
h0 of g0 decomposes into two orthogonal components with eigenvalues ±1
under θ [6].If we denote the set of invariant roots as ∆c (θ(α) = α) then
their intersection with the set of positive roots will be denoted as ∆+

c =
∆+ ∩ ∆c.The remaining roots in ∆+ namely ∆+

nc = ∆+ − ∆+
c are the ones

whose corresponding generators {Eα} do not commute with the elements of
hk = h0∩u0 where hk is the maximal Abelian subspace of u0 and it consists
of the non-compact part of h0 [5].

The Cartan subalgebra generates an Abelian subgroup in G which is
called the torus [6].Although we call it torus it is not the ordinary torus topo-
logically in fact it has the topology (S1)m ×R

n for some m and n and if it is
diagonalizable in R (such that m = 0) then it is called an R-split torus.These
definitions can be generalized for the subalgebras of h0 aswell.The subspace
of G which is generated by hk is the maximal R-split torus in G in the sense
defined above and it’s dimension is called the R-rank which we will denote
by r.There are two special classes of semisimple real forms.If r is maximal
such that r = l where l is the rank of G (l =dim(h0)),which also means
hk = h0 then the Lie group G is said to be in split real form (maximally
non-compact).If on the other hand r is minimal such that r = 0 then G is a
compact real form.All the other cases in between are non-compact semisimple
real forms.

Since we assume that G is a non-compact real form of a semisimple Lie
group the Iwasawa decomposition [7] enables a link between the Cartan de-
composition and the root space decomposition of the semisimple real lie
algebra g0

g0 = k0 ⊕ s0 (2.4)

where s0 is a solvable Lie algebra of g0 and the sum is a direct vector
space sum like in (2.1).A Lie algebra g is called solvable if it’s n-th derived
algebra is {0} denoted as Dng = 0 where the first derived algebra is the ideal
of g generated by the commutator [X, Y ] of all of it’s elements X, Y and the
higher order derived algebras are defined inductively in the same way over
one less rank derived algebra.Starting from the Cartan decomposition one
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can show that s0 indeed exists and Iwasawa decomposition is possible for a
non-compact real form of a semisimple Lie group [5,7].

The real Lie algebra g0 is a real form of the complex Lie algebra g.We
will denote the complex Lie subalgebra of g generated by the positive root
generators {Eα} for α ∈ ∆+

nc as n.A real Lie subalgebra of g0 can then be
defined as n0 = g0∩n.Both n and n0 are nilpotent Lie algebras.The solvable
real Lie algebra s0 of g0 defined in the Iwasawa decomposition in (2.4) can
then be written as a direct vector space sum [7]

s0 = hk ⊕ n0 (2.5)

where hk = h0 ∩ u0 as defined before.Therefore the elements of the coset
G/K are in one-to-one correspondence with the elements of s0 trough the
exponential map as a result of (2.4).This parametrization of the coset G/K
is called the solvable Lie algebra parametrization [5].

3 The Sigma Model

We will now present two equivalent formulations of the symmetric space
sigma model which governs the scalar sector of a class of supergravity theories
which have homogeneous coset scalar manifolds as mentioned in the previous
section.The first of these formulations does not specify a coset parametriza-
tion while the second one makes use of the results of the Iwasawa decom-
position.The first formulation is a more general one which is valid for any
Lie group G and it’s subgroup K namely it is the G/K non-linear sigma
model.In particular it is applicable to the symmetric space sigma models.If
we consider the set of G-valued maps ν(x) which transform onto each other
as ν → gνk(x) ∀g ∈ G, k(x) ∈ K we can calculate G = ν−1dν which is the
pull back of the Lie algebra g0-valued Cartan form over G through the map
ν(x).The map ν(x) can always be chosen to be a parametrization of the coset
G/K.Moreover if G obeys the conditions presented in the last section ν(x)
can be taken as the map (2.3) ν(x) = eϕ

i(x)Ti by using the Cartan decompo-
sition.As it is clear from section two when G is a real form of a non-compact
semisimple Lie group we can function the Iwasawa decomposition resulting
in the solvable Lie algebra parametrization aswell.For the most general case
of ν(x) we have

Gµdx
µ = (fa

µ(x)Ta + ωi
µ(x)Ki)dx

µ (3.1)
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where Ta ∈ u0 and Ki ∈ k0.Here u0 is the orthogonal complement of
k0 in g0.In particular if G is a real form of a semisimple Lie group and K
is a maximal compact subgroup of G then the Cartan decomposition (2.1)
can be used.When G/K is a Riemannian globally symmetric space then the
fields {fa

µ} form a vielbein of the G-invariant Riemann structures on G/K
and {ωi

µ} can be considered as the components of the connection one forms
of the gauge theory over the K-bundle.We should also bear in mind that
[k0,k0] ⊂ k0 and if furthermore [k0,u0] ⊂ u0 then we will have a simpler
theory.Let Pµ ≡ fa

µTa and Qµ ≡ ωi
µKi then we can construct a Lagrangian

[8,9]

L =
1

2
tr(PµP

µ) (3.2)

where the trace is over the representation chosen.L is invariant when ν(x)
is transformed under the rigid (global) action of G from the left and the local
action of K from the right as given above.The elements of (3.1) Pµ and Qµ

are invariant under the rigid action of G but under the local action of K they
transform as

Qµ → k(x)Qµk
−1(x) + k(x)∂µk

−1(x)

Pµ → k(x)Pµk
−1(x).

(3.3)

The field equations corresponding to (3.2) are

DµP
µ = ∂µP

µ + [Qµ, P
µ]

= 0

(3.4)

where we have introduced the covariant derivative Dµ ≡ ∂µ + [Qµ, ].
Besides having more general applications the above formalism covers the

symmetric space sigma model in it.We will now introduce another parametriza-
tion of the coset G/K which is locally legitimate [7] as a result of the solvable
Lie algebra parametrization of the Iwasawa decomposition which is discussed
in the last section.When G is a real form of a non-compact semisimple Lie
group and K is it’s maximal compact subgroup the coset G/K can locally
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be parametrized as

ν(x) = gH(x)gN (x)

= e
1
2
φi(x)Hieχ

m(x)Em

(3.5)

where {Hi} is a basis for hk for i = 1, ..., r and {Em} is a basis for n0.The
map (3.5) is obtained by considering a map from a coordinate chart of the
spacetime onto a neighborhood of the identity of s0.Thus it defines locally a
diffeomorphism from hk×n0 into the space G/K so it is a local parametriza-
tion of G/K.We assume that the locality is both over the spacetime and over
the space hk×n0 in order to write two products of exponentials instead of the
solvable Lie algebra parametrization.If G is in split real form then hk = h0

and ∆+
nc = ∆+ thus the solvable algebra s0 becomes the Borel subalgebra of

g0.The fields {φi} are called the dilatons and {χm} are called the axions.At
this stage we can calculate the field equations (3.4) in terms of these newly
defined fields under the parametrization (3.5).The Cartan form G = ν−1dν
can be calculated from (3.5) as follows

G = ν−1dν

= (g−1
N g−1

H )(dgHgN + gHdgN)

= g−1
N dgN + g−1

N g−1
H dgHgN .

(3.6)

If we make use of the identity e−CdeC = dC− 1
2!
[C, dC]+ 1

3!
[C, [C, dC]]−....
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in a matrix representation the first term can be calculated as

g−1
N dgN = e−χmEmdeχ

mEm

= dχmEm −
1

2!
[χmEm, dχ

nEn] +
1

3!
[χmEm, [χ

lEl, dχ
nEn]]− ....

= dχmEm −
1

2!
χmdχnKv

mnEv +
1

3!
χmχldχnKv

lnK
u
mvEu − ....

=
⇀

EΣ
⇀

dχ
(3.7)

where we have defined the row vector (
⇀

E)α = Eα and the column vector

(
⇀

dχ)α = dχα.We have also introduced Σ as the dimn0×dimn0 matrix

Σ =

∞∑

n=0

(−1)nωn

(n+ 1)!
(3.8)

ωγ
β = χαKγ

αβ where the structure constants Kγ
αβ are defined as [Eα, Eβ] =

Kγ
αβ Eγ.If we consider the commutator [Eα, Eβ] = Nα,βEα+β then Kα

ββ = 0
also Kα

βγ = Nβ,γ if in the root sense β + γ = α and Kα
βγ = 0 if β + γ 6=

α.Similarly since the Cartan generators commute with each other we have

g−1
H dgH = e−

1
2
φiHide

1
2
φiHi

=
1

2
dφiHi.

(3.9)
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The second term in (3.6) can now be calculated as

g−1
N (

1

2
dφiHi)gN = e−χmEm(

1

2
dφiHi)e

χmEm

=
1

2
dφiHi − [χmEm,

1

2
dφiHi]

+
1

2!
[χmEm, [χ

lEl,
1

2
dφiHi]]− ....

=
1

2
dφiHi + χm 1

2
dφimiEm

−
1

2!
χmχl 1

2
dφiliK

u
mlEu + ....

=
1

2
dφiHi +

⇀

EΣ
⇀

U

(3.10)

where we have used the Campbell-Hausdorff formula e−XY eX = Y −

[X, Y ] + 1
2!
[X, [X, Y ]] − .... and we have defined the column vector (

⇀

U)m =
1
2
χmmidφ

i.Also we have [Hi, Em] = miEm.Therefore the Cartan form G =
ν−1dν in (3.6) becomes

G =
1

2
dφiHi +

⇀

EΣ (
⇀

U +
⇀

dχ). (3.11)

Since the expansion of G consists of only the generators of s0 but not the
generators of k0 which is a direct result of (3.5) where the parametrization is
derived locally from the solvable Lie algebra parametrization we have Qµ = 0
and from (3.11) Pµ is

Pµ =
1

2
∂µφ

iHi + Σα
m(

1

2
χmmi∂µφ

i + ∂µχ
m)Eα. (3.12)

Since Qµ = 0 from (3.4) the equations of motion become

∂µPµ = 0. (3.13)

Thus we have
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∂µ∂µφ
i = 0

∂µ (Σα
m (

1

2
χmmi∂µφ

i + ∂µχ
m)) = 0 (3.14)

for i = 1, ...r and α ∈ ∆+
nc.

Another formulation of the G/K symmetric space sigma model (with G
not necessarily split) can be done by introducing the internal metric M.In
this formulation the Lagrangian which is invariant under the global action of
G from the left and the local action of K from the right is [1,2,10]

L =
1

4
tr(∗dM−1 ∧ dM) (3.15)

where the internal metric M is defined as M =ν#ν and # is the gen-
eralized transpose over the Lie group G such that (exp(g))# = exp(g#).It
is induced by the Cartan involution θ over g0 (g# = −θ(g)) [1,10].The La-
grangian can be expressed as

L = −
1

2
tr(∗dνν−1 ∧ (dνν−1)# + ∗dνν−1 ∧ dνν−1). (3.16)

We will again assume the parametrization given in (3.5).By following
the same steps given in detail in [3] we can calculate the s0-valued one form
G0 = dνν−1.This is possible because the Borel parametrization used in [3] is a
limit case of the solvable Lie algebra parametrization as discussed in section
two so as far as the commutation relations are concerned the equivalence
between the general case and the split case of [3] is straightforward.Thus
from (3.5) we have

G0 = dνν−1

=
1

2
dφiHi + e

1
2
αiφi

F αEα

=
1

2
dφiHi +

⇀

E′ Ω
⇀

dχ.

(3.17)
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where {Hi} for i = 1, ..., r are the generators of hk and {Eα} for α ∈ ∆+
nc

are the generators of n0.We have defined F α = Ωα
βdχ

β and the row vector

(
⇀

E′)α = e
1
2
αiφ

i

Eα.Also Ω is a dimn0×dimn0 matrix

Ω =
∞∑

n=0

ωn

(n+ 1)!

= (eω − I)ω−1

(3.18)

The matrix ω has been already defined before.The equations of motion
of the Lagrangian (3.15) can be found as [6,10]

d(∗dφi) =
1

2

∑

α∈∆+
nc

αie
1
2
αiφ

i

F α ∧ e
1
2
αiφ

i

∗ F α

d(e
1
2
γiφi

∗ F γ) = −
1

2
γje

1
2
γiφi

dφj ∧ ∗F γ

+
∑

α−β=−γ

e
1
2
αiφi

e
1
2
βiφi

Nα,−βF
α ∧ ∗F β

(3.19)

where i, j = 1, ..., r and α, β, γ ∈ ∆+
nc.We have put the second equation

in a convenient form for the analysis we will use in the dualisation section as
in [3].

We will now introduce a transformation between the two parametriza-
tions given in (2.3) and (3.5) which are based on two different sets of scalar
functions.We can derive a procedure to calculate the transformation between
these two sets.We may assume that the coset valued maps in (2.3) and (3.5)
can be chosen to be equal.This is possible if we restrict the scalar maps with
the ones which generate ranges in sufficiently small neighborhoods around
the identity element of g0 when they are coupled to the algebra generators
in (2.3) and (3.5) [7].This local equality is sufficient since our aim is to ob-
tain the local first order formulation of the parametrization of (2.3) from
the first order formulation which is based on (3.5) in the next section.We
will firstly show a method through which one can calculate the exact trans-
formations from {ϕi} to {φj, χm}.We will not attempt to solve the explicit
transformation functions which are dependent on the structure constants in
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a complicated way.One can solve these set of differential equations when the
structure constants are specified.Let us first define the function

f(λ) = eλ(
1
2
φiHi)eλ(χ

αEα). (3.20)

Taking the derivative of f(λ) with respect to λ gives

∂f(λ)

∂λ
f−1(λ) =

1

2
φiHi + e

λ
2
φiαiχαEα. (3.21)

We have used the fact that e
λ
2
φiHiχαEαe

−
λ
2
φiHi = e

λ
2
φiαiχαEα.Now if

we let f(λ) = eC(λ) where we define C(λ) = ϕi(λ)Ti and use the formula
deCe−C = dC + 1

2!
[C, dC] + 1

3!
[C, [C, dC]] + .... we find that

1

2
φiHi + e

λ
2
φiαiχαEα =

⇀

T S(λ)
⇀

∂ϕ (3.22)

where the components of the row vector
⇀

T are Ti = Hi for i = 1, ..., r

and Tα+r = Eα for α = 1, ...,dimn0.Besides the column vector
⇀

∂ϕ is defined

as {∂ϕi(λ)
∂λ

}.We have also introduced the dims0×dims0 matrix S(λ) as

S(λ) =
∞∑

n=0

V n(λ)

(n + 1)!

= (eV (λ) − I)V −1(λ)

(3.23)

The matrix V (λ) is V β
α (λ) = ϕi(λ)Cβ

iα for [Ti, Tj ] = Ck
ijTk.The calculation

of the right hand side of (3.22) is similar to (3.17).If the structure constants
are given for a particular s0 one can obtain the functions {ϕi(λ)} from the set
of differential equations (3.22).Then setting λ = 1 will yield the desired set of
functions {ϕi(φj, χα)}.We might also make use of a direct calculation namely
the Lie’s theorem [7].For a matrix representation and in a neighborhood of
the identity if we let eC = eAeB then

C = B +

1∫

0

g(etadAeadB)Adt

= A+B +
1

2
[A,B] +

1

12
([A, [A,B]]− [B, [B,A]]) + ...

(3.24)
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where g ≡ lnz/z−1.In the above equation if we choose A = 1
2
φiHi,B = χαEα

and C = ϕiTi we can calculate the transformations we need.
We may also derive the differential form of the transformation between

the two parametrizations which is more essential for our purposes of obtaining
the local first order formulation of the parametrization in (2.3) in the next
section.From (2.3) by choosing {Ti} as the basis of s0,similar to the previous
calculations we can calculate the s0-valued Cartan form dνν−1 as

dνν−1 = deϕ
iTie−ϕiTi

=
⇀

T∆
⇀

dϕ.

(3.25)

We have defined
⇀

T before
⇀

dϕ is a column vector of the field strengths
{dϕi} and the dims0×dims0 matrix ∆ can be given as

∆ =
∞∑

n=0

Mn

(n+ 1)!

= (eM − I)M−1

(3.26)

where Mβ
α = ϕiCβ

iα.We should imply that ∆ = S(λ = 1) and M = V (λ =
1).If we refer to the equation (3.17) we have already calculated the s0-valued
Cartan form for the parametrization of (3.5).Therefore if we compare (3.17)
and (3.25) since locally they must be equal we find

∆
γ
i dϕ

i =
1

2
dφγ

∆
β
i dϕ

i = e
1
2
βjφj

Ω
β
kdχ

k.

(3.27)

The indices above are γ = 1, ..., r; β, k = r+1, ...,dimn0; i = 1, ...,dims0 =
r+dimn0 and β ∈ ∆+

nc.As a result we have obtained the differential form of
the transformation between {ϕi} and {φj, χα}.It can be seen that the rela-
tion between the two scalar parametrizations is dependent on the structure
constants in a very complicated way.One can also integrate (3.27) to obtain
the explicit form of this transformation as an alternative to the equation
(3.22).
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Finally we will calculate the field equations (3.4) for the parametrization
(2.3) by assuming the Iwasawa decomposition.Smilar to (3.25) from (2.3) the
s0-valued Cartan form ν−1dν is

ν−1dν = e−ϕiTideϕ
iTi

=
⇀

TW
⇀

dϕ.

(3.28)

where we have

W =

∞∑

n=0

(−1)nMn

(n + 1)!

= (I − e−M)M−1.

(3.29)

From (3.28) like in (3.11) we see that Qµ = 0 due to the solvable Lie
algebra parametrization.On the other hand Pµ is

Pµ = P i
µ Ti

= (W) l
k ∂µϕ

k Tl.

(3.30)

Thus in terms of the fields {ϕi} the second order equations (3.4) become

∂µ Pµ = ∂µ ((W) l
k ∂µϕ

kTl)

= 0.

(3.31)

4 Dualisation and the First Order Formula-

tion

The local first order formulation of the G/K symmetric space sigma model
when G is in split real form has been given in [3] where we have applied the
standard dualisation method of [1,2] by introducing dual generators for the
Borel subgroup generators and also new auxiliary fields (D−2)-forms for the
scalar fields.Then the enlarged Lie superalgebra which contains the original
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Borel algebra has been inspected so that it would realize the original second
order equations in an enlarged coset model.In [3] after calculating the extra
commutation relations coming from the new generators locally the first order
equations were given as a twisted self-duality equation ∗G ′ = SG ′ where G ′

is the doubled field strength (the Cartan form generated by the new coset
representative) and S is a pseudo-involution of the enlarged Lie superalgebra
which for the special case of the scalar coset maps the original generators
onto the dual ones and the dual generators onto the original scalar generators
with a sign factor depending on the dimension D and the signature s of the
spacetime as explained in [1,2,3].The split rigid group symmetric space sigma
model is a limiting case as discussed in section two.The solvable algebra is
a subalgebra of the Borel algebra in general and the field equations (3.19)
for the general non-compact (not necessarily split) real form model are in
the same form with the split case except the summing indices.Therefore the
results in [3] can be generalized for the general non-compact symmetric space
sigma model.We will give a summary of the results which are generalizations
and whose detailed calculations are similar to the ones in [3].

Firstly we will introduce dual (D − 2)-form fields for the dilatons and

the axions which are defined in (3.5).The dual fields will be denoted as {φ̃i}
and {χ̃m}.For each scalar generator we will also define dual generators which
will extend the solvable Lie algebra s0 to a Lie superalgebra which gener-
ates a differential algebra with the local differential form algebra [2].These

generators are {Ẽm} as duals of {Em} and {H̃i} for {Hi}.If we define a new
parametrization into the enlarged group

ν ′(x) = e
1
2
φiHieχ

mEmeχ̃
mẼme

1
2
φ̃iH̃i (4.1)

we can calculate the doubled field strength G ′ = dν ′ν ′−1 and then use the
twisted self-duality condition ∗G ′ = SG ′ to find the structure constants of the
dual generators and the first order equations of motion.The general form of
the commutation relations in addition to the ones of s0 can be given as [1,2]

[Eα, T̃m] = f̃n
αmT̃n , [Hi, T̃m] = g̃nimT̃n,

[T̃m, T̃n] = 0 (4.2)

where T̃i = H̃i for i = 1, ..., r and T̃α+r = Ẽα for α = 1, ...,dimn0.In
general the pseudo-involution S maps the original generators onto the dual
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ones and it has the same eigenvalues ±1 with the action of the operator ∗◦∗ on
the corresponding dual field strength of the coupling dual potential.Therefore
STi = T̃i and ST̃i = (−1)(p(D−p)+s)Ti where p is the degree of the dual field
strength and s is the signature of the spacetime.The degree of the dual field
strengths corresponding to the dual generators is (D−1) in our case.In [3] the
signature of the spacetime is assumed to be (D − 1) for this reason S sends
the dual generators to the scalar ones with a positive sign.In this work we will
assume that the signature is s = 1.Thus the sign factor above is dependent
on the spacetime dimension D and we have ST̃i = (−1)DTi.Now by following
the same steps in [1,2,3] and using the twisted self-duality equation we can
express the doubled field strength as

G ′ = dνν−1 +
1

2
(−1)D ∗ dφiH̃i + (−1)De

1
2
αiφ

i

∗ F αẼα. (4.3)

The Cartan form G0 = dνν−1 is already calculated in (3.17).As explained

in [3] the generators {Ti} are even and {T̃i} are even or odd depending on
the spacetime dimension D within the context of the differential algebra
generated by the solvable algebra generators, their duals and the differential
forms.By using the properties of this differential algebra [2] and the fact that
from it’s definition G ′ obeys the Cartan-Maurer equation

dG ′ − G ′ ∧ G ′ = 0 (4.4)

we can show that if we choose

[Ti, H̃j] = 0,

[Hj , Ẽα] = −αjẼα , [Eα, Ẽα] =
1

4

r∑

j=1

αjH̃j,

[Eα, Ẽβ] = Nα,−βẼγ , α− β = −γ, α 6= β. (4.5)

for i = 1, ...,dims0,j = 1, ..., r and α, β.γ ∈ ∆+
nc then (4.4) by inserting

(4.3) gives the correct second order equations (3.19).As a matter of fact

if we choose in general [Eα, H̃j] = aαjαjẼα and [Hj, Ẽα] = bjααjẼα with
ajα, bαj arbitrary but obeying the constraint ajα+bαj = −1 in addition to the
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rest of the commutators in (4.5) we can satisfy the second order equations
(3.19).However for simplicity like in [3] we will choose ajα = 0 as seen in
(4.5).Therefore the structure constants in (4.2) become

f̃n
αm = 0, m ≤ r , f̃ i

α,α+r =
1

4
αi, i ≤ r

f̃ i
α,α+r = 0, i > r , f̃ i

α,β+r = 0, i ≤ r, α 6= β

f̃ γ+r
α,β+r = Nα,−β, α− β = −γ, α 6= β

f̃ γ+r
α,β+r = 0, α− β 6= −γ, α 6= β. (4.6)

Also

g̃nim = 0, m ≤ r , g̃nim = 0, m > r,m 6= n

g̃αiα = −αi, α > r. (4.7)

These relations with the commutation relations of the solvable Lie algebra
s0 form the complete algebraic structure of the enlarged Lie superalgebra.In
(4.3) G ′ has been given only in terms of the original scalar fields as the twisted
self-duality condition has been used primarily.From the definition of ν ′(x) in
(4.1) since we have obtained the full set of commutation relations without
using the twisted self-duality condition we can explicitly calculate the Cartan
form G ′ in terms of both the scalar fields and their duals [3].

G ′ = dν ′ν ′−1

=
1

2
dφiHi +

⇀

E′ Ω
⇀

dχ+
⇀

T̃ eΓ eΛ
⇀

A.

(4.8)

We have introduced the matrices (Γ)kn = 1
2
φi g̃kin and (Λ)kn = χm f̃k

mn.The

row vector
⇀

T̃ is defined as {T̃i} and the column vector
⇀

A is Ai = 1
2
dφ̃i for

i = 1, ..., r and Aα+r = dχ̃α,α ∈ ∆+
nc in other words if we enumerate the roots
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in ∆+
nc then α = 1, ...,dimn0.When we apply the twisted self-duality condition

∗G ′ = SG ′ on (4.8) we may achieve the first order equations locally whose
exterior derivative will give the second order equations (3.19), [1,2].Therefore
similar to the split case in [3] the locally integrated first order field equations
of the Lagrangian (3.15) are

∗
⇀

Ψ = (−1)DeΓeΛ
⇀

A. (4.9)

The column vector
⇀

Ψ is defined as Ψi = 1
2
dφi for i = 1, ...r and Ψα+r =

e
1
2
αiφ

i

Ωα
l dχ

l where α = 1, ...,dimn0.Due to the assumed signature of the
spacetime these equations unlike the ones in [3] have a sign factor depending
on the spacetime dimension.We should also observe that the case SL(2,R)
/SO(2) scalar coset of IIB supergravity whose first-order equations are ex-
plicitly calculated in [3] has a positive sign factor for both of the signatures
introduced here and in [3] since D = 10.

Following the discussion in section three we can also find the first order
equations for the set {ϕi}.Firstly we can define the transformed matrices
Γ′(ϕj) ≡ Γ(φi(ϕj)) and Λ′(ϕj) ≡ Λ(χm(ϕj)) which can be obtained by cal-
culating the local transformation rules from (3.22) or (3.27).If we make the
observation that the right hand side of the differential form of the trans-
formation between {ϕi} and {φi, χα} namely (3.27) are the components of
⇀

Ψ,from (4.9) we can write down the first order equations for {ϕi} as

∆ ∗
⇀

dϕ = (−1)DeΓ
′

eΛ
′
⇀

A. (4.10)

We may also transform (4.10) so that we do not have to calculate the ex-
plicit transformations between the fields.Firstly we should observe that the
structure constants {g̃kin} and {f̃k

mn} of (4.2) form a representation for s0 as
the representatives of the basis {Hi} and {Em} respectively.Thus under the
representation

e
1
2
φiHieχ

mEm = eΓeΛ

≡ e
1
2
φi g̃kineχ

m f̃k
mn .

(4.11)

In section three we have assumed that locally

eϕ
iTi = e

1
2
φiHieχ

mEm . (4.12)
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Therefore the first-order equations (4.10) for {ϕi} can be written as

∆ ∗
⇀

dϕ = (−1)DeΠ
⇀

A (4.13)

where we have defined (Π)kn =
r∑

i=1

ϕig̃kin +
dimn0∑
m=r+1

ϕmf̃k
mn.by using the rep-

resentation established by (4.2).
One may also obtain these first order equations independently by applying

the dualisation method on the parametrization (2.3).We again assume the
solvable Lie algebra parametrization.Let us first define the doubled coset
map

ν ′′ = eϕ
iTieϕ̃

iT̃i (4.14)

in which we have introduced the dual fields and generators as usual.If we
calculate the Cartan form G ′′ = dν ′′ν ′′−1 by carrying out similar calculations
like we have done before we find that

G ′′ = deϕ
iTie−ϕiTi + eϕ

iTideϕ̃
iT̃ie−ϕ̃iT̃ie−ϕiTi

=
⇀

T∆
⇀

dϕ+
⇀

T̃ eΠ
⇀

dϕ̃.

(4.15)

The first term has already been calculated in (3.25).We have calculated
the structure constants related to the dual generators in (4.6) and (4.7).If
we apply the twisted self-duality equation ∗G ′′ = SG ′′ above we find the first
order equations as

∆ ∗
⇀

dϕ = (−1)DeΠ
⇀

dϕ̃. (4.16)

Since the dual fields are auxiliary fields we can always choose (dϕ̃)i =
Ai thus the equations (4.13) and (4.16) are the same equations.This result
verifies the validity of (4.13) which is obtained by using the transformation
law (3.27) in (4.9).

Finally we should point out the fact that the case when the global sym-
metry group G is in split real form which is analyzed in detail in [3] can be
obtained by choosing r = l (the rank of G) and ∆+

nc = ∆+ in the expressions
given in this section.
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5 The O(p, q)/(O(p)×O(q)) Scalar Cosets of the

T 10−D−Compactified Heterotic String The-

ory

In this section we will briefly discuss the correspondence between our results
and the scalar cosets constructed in [4] by identifying the solvable Lie algebra
generators and by comparing the coset parametrizations.The Kaluza-Klein
compactification of the Bosonic sector of the ten dimensional simple super-
gravity which is coupled to N Abelian gauge multiplets on the Euclidean Tori
T 10−D is discussed in [4].The scalar sectors of the resulting D-dimensional
theories are formulated by the introduction of the G/K coset spaces.When as
a special case the number of U(1) gauge fields is chosen to be 16 the formu-
lation corresponds to the dimensional reduction of the low-energy effective
Bosonic Lagrangian of the ten dimensional heterotic string theory.The global
symmetries of the Bosonic sectors of these reduced theories are also studied
in detail in [4].

As it is clear from the mainline of [4] the scalar Lagrangian of the D-
dimensional compactified theories for 9 ≥ D ≥ 3 can be described in the
form of (3.15) with an additional dilatonic kinetic term after certain field
redefinitions.It is also shown that the G/K coset representative ν and the
internal metric M = νT ν are elements of O(10 − D, 10 − D + N).The de-
termination of the fiducial point W0 =diag(1, 1, ..., 1) by choosing all the
scalar fields in the coset representative ν zero enables the identification of
the isotropy group as O(10−D)×O(10−D+N).Therefore the scalar manifold
for the D-dimensional compactified theory with N gauge multiplet couplings
becomes

O(10−D, 10−D +N)

O(10−D)× O(10−D +N)
× R. (5.1)

The extra R factor arises since there is an additional dilaton which is
decoupled from the rest of the scalars in the scalar Lagrangian.In [4] it is
also shown that O(10 −D, 10 −D +N) × R is the global symmetry of not
only the scalar Lagrangian but the entire D-dimensional Bosonic Lagrangian
aswell.Here again R corresponds to the constant shift symmetry of the de-
coupled dilaton.Furthermore the D = 4 and the D = 3 cases are studied
separately in [4] since they have symmetry enhancements in addition to the
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general scheme of (5.1).When the two-form potential is dualised with an ad-
ditional axion in D = 4,an axion-dilaton SL(2,R) system [1,2,3] which is
decoupled from the rest of the scalars occurs in the scalar Lagrangian and
the enlarged D = 4 scalar manifold becomes

O(6, 6 +N)

O(6)× O(6 +N)
×

SL(2,R)

O(2)
. (5.2)

On the other hand in D = 3 apart from the original scalars the remaining
Bosonic fields are dualised to give 7 + 7 + N additional axions so that the
entire Bosonic Lagrangian is composed of only the scalars.The D = 3 scalar
manifold then becomes

O(8, 8 +N)

O(8)× O(8 +N)
. (5.3)

We see that all of the global symmetry groups in (5.1),(5.2),(5.3) apart
from the contributions of the decoupled scalars namely O(10−D, 10−D +
N), O(6, 6+N), O(8, 8+N) are real forms of a non-compact semisimple Lie
group and they enable solvable Lie algebra parametrizations of the cosets
generated by the denominator groups O(10−D)× O(10−D +N), O(6)×
O(6+N), O(8)×O(8+N) respectively.In fact the orthogonal algebras o(p,q)
are elements of the Dn-series when p + q = 2n and the Bn-series when
p+q = 2n+1.Depending on the values of p and q the group O(p, q) can be in
split real form or not.Forexample O(2, 3) is in split real form.In the direction
of the observation mentioned above the analysis of the previous sections can
be applied for the scalar cosets of (5.1),(5.2),(5.3).However we should inspect
the realizations of these cosets in [4] from a closer point of view.It is shown
in [4] that if one assigns the set of generators {H i, Ej

i , V
ij, U i

I} to the scalar
fields {φi, A

i
(0)j , A(0)ij , B

I
(0)i} resulting from the dimensional reduction in [4]

respectively,the scalar Lagrangian of the compactified D-dimensional theory
apart from the decoupled scalars,for all of the cases described above can be
constructed in the form of (3.15) by using the coset parametrization

ν = e
1
2
φiH

i

eA
i
(0)j

Ej
i e

1
2
A(0)ijV

ij

eB
I
(0)i

U i
I . (5.4)

The non-vanishing commutators of the generators are calculated in order
that they lead to the scalar Lagrangian in [4] as
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[
⇀

H,Ej
i ] =

⇀

bijE
j
i , [

⇀

H, V ij ] =
⇀
a ijV

ij , [
⇀

H,U i
I ] =

⇀
c iU

i
I ,

[Ej
i , E

l
k] = δjkE

l
i − δliE

j
k , [Ej

i , V
kl] = −δki V

jl − δliV
kj,

[Ej
i , U

k
I ] = −δki U

j
I , [U i

I , U
j
J ] = δIJV

ij (5.5)

where
⇀
a ij ,

⇀

bij,
⇀
c i are the dilaton vectors whose detailed descriptions can

be found in [4].We note that since in the D-dimensional T 10−D-compactified
theory the scalars are coupled to the one-form potentials which form the
(20 − 2D + N)-dimensional fundamental representation of O(10 − D, 10 −
D + N),both the coset representative (5.4),the internal metric M and the
generators in (5.5) are represented by (20− 2D +N)-dimensional matrices.

In [4] an embedding of the algebra (5.5) into o(10 − D, 10 − D + N) is
also given as

Hi = (2)1/2hẽi , Ej
i = E−ẽi+ẽj , V ij = Eẽi+ẽj ,

U i
2k−1 = (2)−1/2(Eẽi+ek+m

+ Eẽi−ek+m
),

U i
2k = i(2)−1/2(Eẽi+ek+m

− Eẽi−ek+m
) (5.6)

where 1 ≤ i < j ≤ 10 − D.We have defined m = 10 − D and 1 ≤ k ≤
[N/2].When N is odd in addition to (5.6) we also have

U i
N = Eẽi. (5.7)

In (5.6) and (5.7) {ei} is an orthonormal basis with a representation of null
entries except the i’th position which is equal to one.It is used to characterize
the positive roots of o(10−D, 10−D +N) [4] and {ẽi} are defined as

ẽi = e11−D−i, 1 ≤ i ≤ 10−D. (5.8)
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As it is mentioned in [4] owing to their definitions the generators {hẽi}
appearing in (5.6) form a basis for hk and the ones {Eẽi±ej , Eẽi±ẽj , Eẽi} ap-
pearing in (5.6) and (5.7) are the generators of n0 (the last set {Eẽi} is in-
cluded when N is odd and excluded when N is even).Therefore we conclude
by following the discussion of section two that the algebra structure presented
in (5.5) corresponds to the solvable Lie algebra of o(10−D, 10−D+N).We
can identify the basis {hẽi, Eẽi±ej , Eẽi±ẽj , Eẽi} with the one {Hi, Eα} which
we have used in our previous analysis in sections three and four bearing in
mind that the even N and the odd N cases are differing.

We observe that (5.6) and (5.7) give us the transformations between the
abstract solvable Lie algebra generators we have used in the previous sec-
tions and the original generators which arise in the coset formulations of the
D-dimensional compactified theories of [4].Therefore the embedding of the
generators of (5.4) and (5.5) can be used to derive the exact and the differen-
tial form of the transformation between the associated scalar fields defined in
the coset parametrizations (5.4) and (3.5).Furthermore we should also remark
that since the exponential factors are not the same in (3.5) and (5.4) by using
a similar analysis which is held in the last part of section three one needs
to find the local transformations of these different parametrizations.Thus
one has to express the coset (5.4) in terms of {hẽi, Eẽi±ej , Eẽi±ẽj , Eẽi} by us-
ing (5.6) and (5.7) then search for a local transformation law to write it as
(3.5).Refering to section four we need only to determine the structure con-
stants of the solvable Lie algebra of o(10−D, 10−D+N) generated by the
generators {hẽi, Eẽi±ej , Eẽi±ẽj , Eẽi} (the last set {Eẽi} is included when N is
odd) to find the first-order equations.We see that we do not need to use the
(20 − 2D + N)-dimensional fundamental representatives of the generators
{H i, Ej

i , V
ij, U i

I} [4] or the ones of {hẽi, Eẽi±ej , Eẽi±ẽj , Eẽi} to find the first-
order equations.One would certainly need the fundamental representation
when one considers the gauge multiplet coupling.Finally the transformation
laws would enable us to express the first-order formulations of the scalar
cosets constructed in [4] in terms of the original scalar fields which the di-
mensional reduction contributes.

6 Conclusion

The solution space of the scalar sector of a wide class of supergravity theories
is generated by the G/K symmetric space sigma model.After introducing the
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algebraic structure and the suitable parametrizations for the coset G/K in
section two we have given two equivalent formulations of the non-split coset
sigma model and studied them in detail in section three.The solvable Lie
algebra parametrization is used to derive the field equations for both of these
formulations.In general we have formed an analysis on two different coset
maps which define two sets of scalar fields.A local transformation between
these two different sets is also constructed in section three.In section four
we have generalized the results of [3] for the case when the non-compact
symmetry group G is not necessarily in split real form.From the choice of the
solvable Lie algebra parametrization given in section two it is apparent that
the split case whose dualisation is introduced in [3] for a different spacetime
signature convention than the one assumed here is a special example of the
general formulation constructed in this note.Thus the formulation given here
contains the split case as a limiting example in the group theory sense.We
have derived the local first-order equations for a generic non-split coset by
using the coset map of [1,2].We have also obtained the first order equations
for the scalar fields which are defined through a more conventional coset map
by using the explicit transformation defined in section three and by applying
a separate dualisation on the later coset map.

In section five we have discussed a possible field of application of our
results namely we have presented the link between the abstract formulation
of the symmetric space sigma model in section three and four and the scalar
coset realizations of [4] which arise in the Kaluza-Klein reduction of the ten
dimensional simple supergravity coupled to N Abelian gauge multiplets on
T 10−D.In particular N = 16 case corresponds to the T 10−D-compactification
of the ten-dimensional low-energy effective heterotic string theory.A trans-
formation between the scalar field definitions given in section three and the
original scalar fields used in [4] can be explored by using the transformation of
the generators given in section five and by considering the coset parametriza-
tions.This would enable a direct construction of the first-order formulation
of the scalar cosets presented in [4].

The dualisation and the local first order formulation of section four is
an extension of [3].This work improves the application of the dualisation
method of [1,2] from the split-coset case of [3] to the entire set of non-compact
symmetric space scalar cosets of supergravities.The results presented here are
powerful since they would be the starting point and an essential part of the
first order formulations of the pure and the matter coupled supergravities
which are not studied in [1,2].
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In summary besides studying the field equations and different parametriza-
tions of the non-split coset,this work completes the dual formulation of the
symmetric space sigma model when the rigid symmetry group is a real form
of a non-compact semisimple Lie group.It extends the construction in [3]
which is performed for the special split case.
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[2] E.Cremmer,B.Julia,H.Lū and C.N.Pope, “Dualisation of Dualities II:
Twisted Self-Duality of Doubled Fields and Superdualities”, Nucl. Phys.
B535 (1998) 242, hep-th/9806106.

[3] N.T.Yılmaz, “Dualisation of the General Scalar Coset in Supergravity
Theories”, Nucl.Phys. B664 (2003) 357, hep-th/0301236.

[4] H.Lu,C.N.Pope and K.S.Stelle, “M-theory/heterotic duality: A Kaluza-
Klein perspective”, Nucl.Phys.B548 (1999) 87, hep-th/9810159.

[5] L.Andrianopoli,R.D’Auria,S.Ferrara,P.Fre,M.Trigiante,“R-R Scalars,U-
Duality and Solvable Lie Algebras”, Nucl.Phys. B496 (1997) 617,
hep-th/9611014.

[6] A.Keurentjes, “The Group Theory of Oxidation II:Cosets of Non-Split
Groups”, Nucl.Phys. B658 (2003) 348, hep-th/0212024.

[7] S.Helgason, “Differential Geometry ,Lie Groups and Sym-

metric Spaces”,(Graduate Studies in Mathematics 34,Ameri-
can Mathematical Society Providence R.I.2001); A.L.Onishchik

25

http://arxiv.org/abs/hep-th/9710119
http://arxiv.org/abs/hep-th/9806106
http://arxiv.org/abs/hep-th/0301236
http://arxiv.org/abs/hep-th/9810159
http://arxiv.org/abs/hep-th/9611014
http://arxiv.org/abs/hep-th/0212024


(Ed.),V.V.Gorbatsevich,E.B.Vinberg, “Lie Groups and Lie Algebras

I”,(Springer-Verlag New York Inc.1993); R.Carter,G.Segal,I.Macdonald,
“Lectures on Lie Groups and Lie Algebras”,(London Mathe-
matical Society Student Texts 32,Cambridge University Press 1995);
D.H.Sattinger,O.L.Weaver, “Lie Groups and Algebras with Ap-

plications to Physics,Geometry and Mechanics”,(Springer-Verlag
New York Inc.1986).

[8] P.C.West, “Supergravity Brane Dynamics and String Duality”,
hep-th/9811101.

[9] Y.Tanii, “Introduction to Supergravities in Diverse Dimensions”,
hep-th/9802138.

[10] A.Keurentjes, “The Group Theory of Oxidation”, Nucl.Phys. B658

(2003) 303, hep-th/0210178.

26

http://arxiv.org/abs/hep-th/9811101
http://arxiv.org/abs/hep-th/9802138
http://arxiv.org/abs/hep-th/0210178

	Introduction
	The Scalar Coset Manifold
	The Sigma Model
	Dualisation and the First Order Formulation
	The O(p,q)/(O(p)O(q)) Scalar Cosets of the T10-D-Compactified Heterotic String Theory
	Conclusion
	Acknowledgements

