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1 Introduction

Semileptonic pseudoscalar Bq decays are crucial tools to restrict the Stan-

dard Model (SM) parameters and search for new physics beyond the SM.

These decays provide possibility to calculate the elements of the Cabbibo-

Kobayashi-Maskawa (CKM) matrix, leptonic decay constants as well as the

origin of the CP violation.

When LHC begins to operate, a large number of Bq mesons will be pro-

duced. This will provide experimental framework to check the Bq decay

channels. An important class of Bs and entire Bu,d decays occur via the

b quark decays. Among the b decays, b → c transition plays a significant

role, because this transition is the most dominant transition among b decays.

Some of the B decay channels could be Bq → D∗
q lν (q = s, d, u) via b → c

transition. These decays could give useful information about the structure

of the vector D∗
s mesons. The observation of two narrow resonances with

charm and strangeness, DsJ(2317) in the Dsπ
0 invariant mass distribution

[1]–[6], and DsJ(2460) in the D∗
sπ

0 and Dsγ mass distribution [2, 3, 4, 6, 7, 8],

has raised discussions about the nature of these states and their quark con-

tents [9, 10]. Analysis of the Ds0(2317) → D∗
sγ, DsJ(2460) → D∗

sγ and

DsJ(2460) → Ds0(2317)γ indicates that the quark content of these mesons

is probably cs [11].

Form factors are central objects in studying of the semileptonic Bq →
D∗

q lν decays. For the calculation of these form factors, we need reliable non-

perturbative approaches. Among all non-perturbative models, the QCD sum

rules has received especial attention since this model is based on the QCD

Lagrangian. QCD sum rules is a framework which connects hadronic pa-

rameters with QCD parameters. In this method, hadrons are represented

by their interpolating currents taken at large virtualities. The correlation
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function is calculated in hadrons and quark-gluon languages. The physical

quantities are determined by matching these two representations of correla-

tors . The application of sum rules has been extended remarkably during the

past twenty years and applied for wide variety of problems ( For review see

for example [12]).

The aim of this paper is to analyze the semileptonic Bq → D∗
q lν decays

using three point QCD sum rules method. Note that, this problem has been

studied for Bq → D∗
q lν (q = s, d, u) in constituent quark meson (CQM) model

in [13] and for q = d, u(B0, B±) cases in experiment [14]. The application

of subleading Isgur-Wise form factor for B → D∗lν at heavy quark effective

theory (HQET) is calculated in [15] (see also [16, 17]). Present work takes

into account the SU(3) symmetry breaking and could be considered as an

extension of the form factors of D → K∗eν presented in [18].

The paper is organized as fallow: In section II, sum rules expressions

for form factors relevant to these decays and their HQET limit and 1/mb

corrections are obtained. The numerical analysis for form factors and their

HQET limit at zero recoil and other values of y, conclusion and comparison

of our results with the other approaches are presented in section III.

2 Sum rules for the Bq → D∗
qℓν transition form

factors

The Bq → D∗
q transitions occur via the b → c transition at the quark level.

At this level, the matrix element for this transition is given by:

Mq =
GF√
2
Vcb ν γµ(1− γ5)l c γµ(1− γ5)b. (1)

To derive the matrix elements for Bq → D∗
q lν decays, it is necessary to

sandwich Eq. (1) between initial and final meson states. The amplitude of
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the Bq → D∗
q lν decays can be written as follows:

M =
GF√
2
Vcb ν γµ(1− γ5)l < D∗

q(p
′, ε) | c γµ(1− γ5)b | Bq(p) > . (2)

The aim is to calculate the matrix element < D∗
q(p

′, ε) | cγµ(1 − γ5)b |
Bq(p) > appearing in Eq. (2). Both the vector and the axial vector part of

c γµ(1 − γ5)b contribute to the matrix element stated above. Considering

Lorentz and parity invariances, this matrix element can be parameterized in

terms of the form factors below:

< D∗
q(p

′, ε) | cγµb | Bq(p) >= i
fV (q

2)

(mBq
+mD∗

q
)
εµναβε

∗νpαp′β , (3)

< D∗
q(p

′, ε) | cγµγ5b | Bq(p) > = i
[

f0(q
2)(mBq

+mD∗

q
)ε∗µ

− f+(q
2)

(mBq
+mD∗

q
)
(ε∗p)Pµ − f−(q

2)

(mBq
+mD∗

q
)
(ε∗p)qµ

]

, (4)

where fV (q
2), f0(q

2), f+(q
2) and f−(q

2) are the transition form factors and

Pµ = (p + p′)µ, qµ = (p − p′)µ. In order to calculate these form factors,

the QCD sum rules method is applied. Initially the following correlator is

considered:

ΠV ;A
µν (p2, p′2, q2) = i2

∫

d4xd4ye−ipxeip
′y < 0 | T [JνD∗

q
(y)JV ;A

µ (0)JBq
(x)] | 0 >,

(5)

where JνD∗

q
(y) = qγνc and JBq

(x) = bγ5q are the interpolating currents of D∗
q

and Bq mesons, respectively and JV
µ = cγµb and J

A
µ = cγµγ5b are vector and

axial vector transition currents . Two complete sets of intermediate states

with the same quantum numbers as the currents JD∗

q
and JBq

are inserted to

calculate the phenomenological part of the correlation function given in Eq.

(5). After standard calculations, the following equation is obtained:

ΠV,A
µν (p2, p′2, q2) =
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< 0 | Jν
D∗

q
| D∗

q(p
′, ε) >< D∗

q(p
′, ε) | JV,A

µ | Bq(p) >< Bq(p) | JBq
| 0 >

(p′2 −m2
D∗

q
)(p2 −m2

Bq)
+ · · ·

(6)

where · · · represents contributions coming from higher states and continuum.

The matrix elements in Eq. (6) are defined as:

< 0 | Jν
D∗

q
| D∗

q (p
′, ε) >= fD∗

q
mD∗

q
εν , < Bq(p) | JBq

| 0 >= −i
fBq

m2
Bq

mb +mq
,

(7)

where fD∗

q
and fBq

are the leptonic decay constants of D∗
q and Bq mesons,

respectively. Using Eq. (3), Eq. (4) and Eq. (7) and performing summation

over the polarization of the D∗
q meson in Eq. (6) the equation below are

derived:

ΠA
µν(p

2, p′2, q2) =
fBq

m2
Bq

(mb +mq)

fD∗

q
mD∗

q

(p′2 −m2
D∗

q
)(p2 −m2

Bq
)

× [−f0gµν(mBq
+mD∗

q
) +

f+Pµpν
(mBq

+mD∗

q
)
+

f−qµpν
(mBq

+mD∗

q
)
]

+ excited states,

ΠV
µν(p

2, p′2, q2) = −εαβµνpαp′β
fBq

m2
Bq

(mb +ms)(mBq
+mD∗

q
)

fD∗

q
mD∗

q

(p′2 −m2
D∗

q
)(p2 −m2

Bq
)
fV

+ excited states. (8)

From the QCD (theoretical) sides, Πµν(p
2, p′2, q2) can also be calculated

by the help of OPE in the deep space-like region where p2 ≪ (mb + mq)
2

and p′2 ≪ (mc + mq)
2. The theoretical part of the correlation function is

calculated by means of OPE, and up to operators having dimension d = 6,

it is determined by the bare-loop (Fig. 1 a) and the power corrections (Fig.

1 b, c, d) from the operators with d = 3, < ψψ >, d = 4, ms < ψψ >,

d = 5, m2
0 < ψψ > and d = 6, < ψψψ̄ψ >. The d = 6 operator is

ignored in the calculations. To calculate the bare-loop contribution, the
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Figure 1: Feynman diagrams for Bq → D∗
q lν (q = s, d, u) transitions.

double dispersion representation for the coefficients of corresponding Lorentz

structures appearing in the correlation function are used:

Πper
i = − 1

(2π)2

∫

ds′
∫

ds
ρi(s, s

′, q2)

(s− p2)(s′ − p′2)
+ subtraction terms. (9)

The spectral densities ρi(s, s
′, q2) can be calculated from the usual Feynman

integral with the help of Cutkosky rules, i.e., by replacing the quark prop-

agators with Dirac delta functions: 1
p2−m2 → −2πδ(p2 −m2), which implies

that all quarks are real. After long and straightforward calculations for the

corresponding spectral densities the following expressions are obtained:

ρV (s, s
′, q2) = 4NcI0(s, s

′, q2) [(mb −mq)A+ (mc −mq)B −mq] ,

ρ0(s, s
′, q2) = −2NcI0(s, s

′, q2)

[

2m3
q − 2m2

q(mc +mb)

+ mq(q
2 + s+ s′ − 2mbmc) + [q2(mb −mq)

5



+ s(3mq − 2mc −mb) + s′(mq −mb)]A+ [q2(mc −mq)

+ s(mq −mc) + s′(3mq − 2mb −mc)]B + 4(mb −ms)C

]

,

ρ+(s, s
′, q2) = 2NcI0(s, s

′, q2)

[

mq + (3mq −mb)A+ (mq −mc)B

+ 2(mq +mb)D + 2(mq −mb)E

]

,

ρ−(s, s
′, q2) = 2NcI0(s, s

′, q2)

[

−mq + (mq +mb)A− (mq +mc)B

+ 2(mq −mb)D + 2(mb −mq)E

]

,

(10)

where

I0(s, s
′, q2) =

1

4λ1/2(s, s′, q2)
,

λ(a, b, c) = a2 + b2 + c2 − 2ac− 2bc− 2ab,

A =
1

(s′ + s− q2)2 − 4ss′

[

(−2m2
b + q

2

+ s− s′)s′

+ m2
q(q

2 − s+ s′) +m2
c(−q

2

+ s+ s′)

]

,

B =
1

(s′ + s− q2)2 − 4ss′

[

m2
q(q

2

+ s− s′)

+ (−2m2
c + q

2 − s+ s′)s+m2
b(−q

2

+ s+ s′)

]

,

C =
1

2[(s′ + s− q2)2 − 4ss′]

[

m4
cs+m4

bs
′

+ q2[m4
q +m2

q(q
2 − s− s′) + ss′] +m2

bm
2
c(q

2 − s− s′)

− (q
2

+ s− s′)s′ −m2
q(q

2 − s+ s′)

− m2
cm

2
q(q

2

+ s− s′) + s(q
2 − s+ s′)

]

,
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D =
1

[(s′ + s− q2)2 − 4ss′]2

[

m4
q [q

4 − 2q2(s− 2s′) + (s− s′)2]

+ [6m4
b + q

4

+ q
2

(4s− 2s′) + (s− s′)2 − 6m2
b(q

2

+ s− s′)]s′2

+ m4
c [q

4

+ s2 + 4ss′ + s′2 − 2q
2

(s+ s′)]

− 2m2
qs

′[−2q
4

+ (s− s′)2 + 3m2
b(q

2 − s+ s′) + q
2

(s+ s′)]

− 2m2
cm

2
q(q

2

+ s2 + ss′ − 2s′2 + q
2

(−2s+ s′))

+ s′[q
4

+ q
2

s− 2s2 − 2q
2

s′ + ss′ + s′2 + 3m2
b(−q

2

+ s+ s′)]

]

,

E =
1

[s′ + s− q2)2 − 4ss′]2

[

2m4
qq

4 +m2
qq

6 −m4
qq

2s−m2
qq

4s−m4
qs

2

− m2
qq

2

s2 +m2
qs

3 −m4
qq

2

s′ −m2
qq

4

s′ + 2m4
qss

′

+ 6m2
qq

2

ss′ + 2q
2

ss′ −m2
qs

2s′ − q
2

s2s′ − s3s′

+ 3m4
b(q

2 − s+ s′)s′ −m4
qs

′2 −m2
qq

2

s′2 −m2
qss

′2

− q
2

ss′2 + 2s2s′2 +m2
qs

′3 − ss′3 − 3m4
cs(−q

2

+ s + s′)

− 2m2
cm

2
q [q

4 − 2s2 + q
2

(s− 2s′) + ss′ + s′2)]

+ s[q
2

+ s2 + ss′ − 2s′2 + q
2

(−2s+ s′)]

+ 2m2
b{−m2

q(q
4 − 2q

2

s+ s2 + q
2

s′ + ss′ − 2s′2)

− s′(q
4

+ q
2

s− 2s2 − q
2

s′ + ss′ + s′2)

+ m2
c [q

4

+ s2 + 4ss′ + s′2 − 2q
2

(s+ s′)]}
]

.

(11)

The subscripts V, 0 and ± correspond to the coefficients of the structures

proportional to iεµναβp
′αpβ, gµν and 1

2
(pµpν±p′µpν), respectively. In Eq. (10)

Nc = 3 is the number of colors.

The integration region for the perturbative contribution in Eq. (9) is

determined from the condition that arguments of the three δ functions must

vanish simultaneously. The physical region in s and s′ plane is described by
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the following inequalities:

− 1 ≤ 2ss′ + (s+ s′ − q2)(m2
b − s−m2

q) + (m2
q −m2

c)2s

λ1/2(m2
b , s,m

2
q)λ

1/2(s, s′, q2)
≤ +1. (12)

From this inequalities, we calculate s in terms of s′ in order to put to the

lower limit of integration over s. For the contribution of power corrections,

i.e., the contributions of operators with dimensions d = 3, 4 and 5, the

following results were derived:

f
(3)
V + f

(4)
V + f

(5)
V =

1

2
< qq >

[

− 1

rr′3
m2

c(m
2
0 − 2m2

q)

− 1

3r2r′2
[−3m2

q(m
2
b +m2

c − q2)

+ m2
0(m

2
b +mbmc +m2

c − q2)]

− 1

rr′2
mcmq −

1

r3r′
m2

b(m
2
0 − 2m2

q)

+
1

3r2r′
(2m2

0 − 3mbmq) +
2

rr′

]

,

f
(3)
0 + f

(4)
0 + f

(5)
0 =

1

4
< qq >

[

− 1

rr′3
m2

c(m
2
0 − 2m2

q)

× (m2
b + 2mbmc +m2

c − q2)

− 1

3r2r′2
(m2

b + 2mbmc +m2
c − q2)

× [−3m2
q(m

2
b +m2

c − q2) +m2
0(m

2
b +mbmc +m2

c − q2)]

− 1

3rr′2
[m2

0(m
2
b + 3mbmc − q2)

+ 3(mc −mq)mq(m
2
b + 2mbmc +m2

c − q2)]

− 1

r3r′
m2

b(m
2
0 − 2m2

q)(m
2
b + 2mbmc +m2

c − q2)

+
1

3r2r′
[−3(mb −mq)mq(m

2
b + 2mbmc +m2

c − q2)

+ m2
0(m

2
c + 3mbmc − q2)]

+
1

3rr′
(4m2

0 + 6m2
b + 12mbmc + 6m2

c

8



− 3mbmq + 3mcmq − 6m2
q − 6q2)

]

,

f
(3)
+ + f

(4)
+ + f

(5)
+ =

1

4
< qq >

[

− 1

rr′3
m2

c(m
2
0 − 2m2

q)

+
1

3r2r′2
[−3m2

q(m
2
b +m2

c − q2)

+ m2
0(m

2
b +mbmc +m2

c − q2)]

+
1

rr′2
mcmq < qq > +

1

4r3r′
m2

b(m
2
0 − 2m2

q)

+
1

3r2r′
[−4m2

0 + 3mq(mb + 2mq)]−
1

3rr′

]

,

f
(3)
− + f

(4)
− + f

(5)
− =

1

4
< qq >

[

− 1

rr′3
m2

c(m
2
0 − 2m2

q)

− 1

3r2r′2
[−3m2

q(m
2
b +m2

c − q2)

+ m2
0(m

2
b +mbmc +m2

c − q2)]

− 1

rr′2
mcmq −

1

r3r′
m2

b(m
2
0 − 2m2

q)

+
1

r2r′
mq(−mb + 2mq) +

2

rr′

]

, (13)

where r = p2 − m2
b and r′ = p′2 − m2

c . Here we should mentioned

that, considering the definition of double dispersion relation in Eq. (9) and

parametrization of the form factors and the coefficient of selected structures,

with the changes: 1) b → c and c → s, 2) set the mq → 0 and 3) ignore

the terms ∼ m2
s, the Eqs. (10, 13) reduce to the expressions for the spectral

densities and quark condensate contributions up to 5 mass dimensions for

the form factors fV , f0 and f+ presented in the appendix A of [18] which

describes the form factors of D → K∗eν.

By equating the phenomenological expression given in Eq. (8) and the

OPE expression given by Eqs. (10-13), and applying double Borel transfor-

mations with respect to the variables p2 and p′2 (p2 → M2
1 , p

′2 → M2
2 ) in

order to suppress the contributions of higher states and continuum, the QCD

9



sum rules for the form factors fV , f0, f+ and f− are obtained:

fi(q
2) = κ

(mb +mq)

fBq
m2

Bq

η

fD∗

q
mD∗

q

e
m2

Bq
/M2

1+m2
D∗

q
/M2

2

×[
1

(2π)2

∫ s′0

(mc+ms)2
ds′

∫ s0

f(s′)
dsρi(s, s

′, q2)e−s/M2
1−s′/M2

2

+B̂(f
(3)
i + f

(4)
i + f

(5)
i )],

(14)

where i = V, 0 and ±, and B̂ denotes the double Borel transformation op-

erator and η = mBq
+ mD∗

q
for i = V,± and η = 1

mBq+mD∗

q

for i = 0 are

considered. Here κ = +1 for i = ± and κ = −1 for i = 0 and V . In Eq. (14),

in order to subtract the contributions of the higher states and the continuum,

the quark-hadron duality assumption is used, i.e., it is assumed that

ρhigherstates(s, s′) = ρOPE(s, s′)θ(s− s0)θ(s
′ − s′0). (15)

In calculations the following rule for the double Borel transformations is used:

B̂
1

rm
1

r′n
→ (−1)m+n 1

Γ(m)

1

Γ(n)
e−m2

b
/M2

1 e−m2
c/M

2
2

1

(M2
1 )

m−1(M2
2 )

n−1
. (16)

Here, we should mention that the contribution of higher dimensions are

proportional to the powers of the inverse of the heavy quark masses, so this

contributions are suppressed.

Next, we present the infinite heavy quark mass limit of the form factors

for Bq → D∗
q lν transitions. In HQET, the following procedure are used (see

[19, 20, 21]). First, we use the following parametrization:

y = νν ′ =
m2

Bq
+m2

D∗

q
− q2

2mBq
mD∗

q

(17)

10



where ν and ν ′ are the four-velocities of the initial and final meson states,

respectively and y = 1 is so called zero recoil limit. Next, we try to find the

y dependent expressions of the form factors by taking mb → ∞, mc = mb√
z
,

where z is given by
√
z = y +

√
y2 − 1 and setting the mass of light quarks

to zero. In this limit the Borel parameters take the form M2
1 = 2T1mb and

M2
2 = 2T2mc where T1 and T2 are the new Borel parameters.

The new continuum thresholds ν0, and ν
′
0 take the following forms in this

limit

ν0 =
s0 −m2

b

mb
, ν ′0 =

s′0 −m2
c

mc
, (18)

and the new integration variables are defined as:

ν =
s−m2

b

mb

, ν ′ =
s′ −m2

c

mc

. (19)

The leptonic decay constants are rescaled:

f̂Bq
=

√
mbfBq

, f̂D∗

q
=

√
mcfD∗

q
. (20)

After the standard calculations, we obtain the y-dependent expressions of

the form factors as follows:

fV =
(1 +

√
z)

48f̂D∗

q
f̂Bq

z1/4
e
( Λ
T1

+ Λ
T2

)

{

3

π2(y + 1)
√
y2 − 1

∫ ν0

0
dν
∫ ν′0

0
dν ′(ν + ν ′)e

− ν
2T1

− ν′

2T2 θ(2yνν ′ − ν2 − ν ′2)

+ 16 < qq >

[

1− m2
0

8

(

1

2T 2
1

+
1

2T 2
2

+
1

3T1T2
(1 +

1√
z
+

1

z
)

)]}

, (21)

f0 =
z1/4

16f̂D∗

q
f̂Bq

(1 +
√
z)
e
( Λ
T1

+ Λ
T2

)

{

3

π2
√
y2 − 1

∫ ν0

0
dν
∫ ν′0

0
dν ′(ν + ν ′)e

− ν
2T1

− ν′

2T2

θ(2yνν ′ − ν2 − ν ′2) +
< qq >

√
z

3

[(

1

2
+

1

2z
+

1√
z

)

(

16−m2
0(

1

T 2
1

+
1

T 2
1

)

)

− m2
0

T1T2

(

1 +
1

3z
3
2

+
4

3
√
z
+

1

z
+

√
z

3

)]}

, (22)
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f+ =
(1 +

√
z)

96f̂D∗

q
f̂Bq

z1/4
e
( Λ
T1

+ Λ
T2

)

{

9

π2(y + 1)
√
y2 − 1

∫ ν0

0
dν
∫ ν′0

0
dν ′(ν + ν ′)e

− ν
2T1

− ν′

2T2 θ(2yνν ′ − ν2 − ν ′2)

− 16 < qq >

[

1 +
m2

0

8

(

1

2T 2
1

+
1

2T 2
2

+
1

3T1T2
(1 +

1√
z
+

1

z
)

)]}

, (23)

f− = − (1 +
√
z)

96f̂D∗

q
f̂Bq

z1/4
e
( Λ
T1

+ Λ
T2

)

{

9

π2(y + 1)
√
y2 − 1

∫ ν0

0
dν
∫ ν′0

0
dν ′(ν + ν ′)e

− ν
2T1

− ν′

2T2 θ(2yνν ′ − ν2 − ν ′2)

+ 16 < qq >

[

1− m2
0

8

(

1

2T 2
1

+
1

2T 2
2

+
1

3T1T2
(1 +

1√
z
+

1

z
)

)]}

, (24)

where Λ = mBq
−mb and Λ̄ = mD∗

q
−mc.

At the end of this section, we would like to present 1
mb

corrections for

the form factors in Eqs. (21)-(24) using subleading Isgur-Wise form factors

similar to [15] (see also [20, 22]). These corrections are given as:

f
(1/mb)
V =

mB +m∗
D√

mBm
∗
D

{

Λ

2mb

+
Λ

mb

[ρ1(y)− ρ4(y)]

}

,

f
(1/mb)
0 =

(y + 1)
√
mBm∗

D

mB +m∗
D

{

Λ

2mb

y − 1

y + 1
+

Λ

mb
[ρ1(y)−

y − 1

y + 1
ρ4(y)]

}

,

f
(1/mb)
+ =

1

2
f
(1/mb)
V ,

f
(1/mb)
− = −f (1/mb)

+ , (25)

where the explicit expressions for ρi(y) functions are given in [15]. The value

of those functions at zero recoil limit (y = 1) are given as

ρ1(1) = ρ2(1) = 0, ρ3(1) ≃ 0, ρ4(1) ≃
1

3
. (26)
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3 Numerical analysis

This section is devoted by numerical analysis for the form factors fV (q
2),

f0(q
2), f+(q

2) and f−(q
2). From sum rule expressions of these form factors it

is clear that the condensates, leptonic decay constants of Bq and D
∗
q mesons,

continuum thresholds s0 and s′0 and Borel parameters M2
1 and M2

2 are the

main input parameters. In the numerical analysis the values of the con-

densates are chosen at a fixed renormalization scale of about 1 GeV. The

values of the condensates are[23] : < uu >=< dd >= −(240 ± 10 MeV )3,

< ss >= (0.8 ± 0.2) < uu > and m2
0 = 0.8 GeV 2. The quark masses

are taken to be mc(µ = mc) = 1.275 ± 0.015 GeV , ms = 95 ± 25 MeV ,

mu = (1.5 − 3) MeV , md ≃ (3 − 5) MeV [14] and mb = (4.7 ± 0.1) GeV

[23]. The mesons masses are chosen to be mD∗

s
= 2.112 GeV , mD∗

u
=

2.007 GeV , mD∗

d
= 2.010 GeV , mBs

= 5.3 GeV , mBd
= 5.2794 GeV and

mBu
= 5.2790 GeV [14]. For the values of the leptonic decay constants of Bq

and D∗
q mesons the results obtained from two-point QCD analysis are used:

fBs
= 0.209 ± 38 GeV [12], fD∗

s
= 0.266 ± 0.032 GeV [11]. For the others

fBd(u)
= 0.14± 0.01 GeV and fD∗

d(u)
= 0.23± 0.02 GeV [14] are selected. The

threshold parameters s0 and s
′
0 are also determined from the two-point QCD

sum rules: s0 = (35±2) GeV 2 [24] and s′0 = (6−8) GeV 2 [11]. The Borel pa-

rameters M2
1 and M2

2 are not physical quantities, hence form factors should

not depend on them. The reliable regions for the Borel parameters M2
1 and

M2
2 can be determined by requiring that both the continuum contribution

and the contribution of the operator with the highest dimension be small.

As a result of the above-mentioned requirements, the working regions are

determined to be 10 GeV 2 < M2
1 < 25 GeV 2 and 4 GeV 2 < M2

2 < 10 GeV 2.

To determine the decay width of Bq → D∗
q lν, the q

2 dependence of the

form factors fV (q
2), f0(q

2), f+(q
2) and f−(q

2) in the whole physical region

13



m2
l ≤ q2 ≤ (mBq

−mD∗

q
)2 are needed. The value of the form factors at q2 = 0

are given in Table 1.

fi(0) Bs → D∗
sℓν Bd → D∗

dℓν Bu → D∗
uℓν

fV (0) 0.36± 0.08 0.47± 0.13 0.46± 0.13
f0(0) 0.17± 0.03 0.24± 0.05 0.24± 0.05
f+(0) 0.11± 0.02 0.14± 0.025 0.13± 0.025
f−(0) −0.13± 0.03 −0.16± 0.04 −0.15± 0.04

Table 1: The value of the form factors at q2 = 0
.

The q2 dependence of the form factors can be calculated from QCD sum

rules (for details, see [18, 25]). To obtain the q2 dependent expressions of the

form factors from QCD sum rules, q2 should be stay approximately 1 GeV 2

below the perturbative cut, i.e., up to 10 GeV 2. Our sum rules, also, are

truncated at ≃ 10 GeV 2, but in the interval 0 ≤ q2 ≤ 10 GeV 2 we can

trust the sum rules. For the reliability of the sum rules in the full physical

region, the parametrization of the form factors were identified such that in

the region 0 ≤ q2 ≤ 10 GeV 2, these parameterizations coincide with the sum

rules prediction. Figs. 2, 3, 4 and 5 show the dependence of the form factors

fV (q
2), f0(q

2), f+(q
2) and f−(q

2) on q2. To find the extrapolation of the form

factors, we choose the following two fit functions.

i)

fi(q
2) =

fi(0)

1 + αq̂ + βq̂2 + γq̂3 + λq̂4
, (27)

where q̂ = q2/m2
Bq
. The values of the parameters fi(0), α, β, γ, and λ are

given in Tables 2, 3 and 4.

ii)

fi(q
2) =

a

(q2 −m2
B∗)

+
b

(q2 −m2
fit)

. (28)
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The values for a, b and m2
fit are given in Tables 5, 6 and 7. For details about

the fit parametrization (ii) which is theoretically more reliable and some other

fit functions see [26, 27]. These two parameterizations coincide well with the

sum rules predictions in the whole physical region 0 ≤ q2 ≤ 10 GeV 2 and also

for q2 < 0 region. For higher q2, starting from the upper limit of the physical

region the two fit functions deviate from each other and this behavior is

almost the same for all form factors. As an example, we present the deviation

of above mentioned fit functions in Fig. 6. From this figure, we see that in

the outside of the physical region the fit (i) growthes more rapidly than fit

(ii). The fit parametrization (ii) depicts that the mB∗ pole exists outside the

allowed physical region and related to that one could calculate the hadronic

parameters such as gBB∗D∗ (see [26, 28]).

f(0) α β γ λ

fV 0.38 -2.53 2.77 -2.41 0.03
f0 0.18 -1.77 0.98 -0.23 -3.50
f+ 0.12 -2.90 3.66 -3.72 -1.69
f− -0.15 -2.63 2.72 -0.99 -6.48

Table 2: Parameters appearing in the fit function (i) for form factors of the
Bs → D∗

s(2112)ℓν at M2
1 = 19 GeV 2, M2

2 = 5 GeV 2.

f(0) α β γ λ

fV 0.46 -2.90 2.99 0.67 -5.04
f0 0.24 -0.21 2.19 -1.68 -2.15
f+ 0.13 -4.21 9.52 -16.86 12.97
f− -0.15 -3.93 -8.03 -13.48 9.15

Table 3: Parameters appearing in the fit function (i) for form factors of the
Bu → D∗

u(2007)ℓν at M2
1 = 19 GeV 2, M2

2 = 5 GeV 2.
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f(0) α β γ λ

fV 0.47 -3.08 4.83 -5.95 2.95
f0 0.24 -2.20 2.18 -1.83 -1.90
f+ 0.14 -4.13 8.99 -15.10 10.65
f− -0.16 -3.87 7.73 -12.71 8.26

Table 4: Parameters appearing in the fit function (i) for form factors of the
Bd → D∗

d(2010)ℓν at M2
1 = 19 GeV 2, M2

2 = 5 GeV 2.

a b m2
fit

fV 55.03 -54.30 23.18
f0 1.43 -4.32 18.80
f+ 1.14 -2.57 14.88
f− -2.80 3.43 14.60

Table 5: Parameters appearing in the fit function (ii) for form factors of the
Bs → D∗

s(2112)ℓν at M2
1 = 19 GeV 2, M2

2 = 5 GeV 2.

In deriving the numerical values for the ratio of the form factors at HQET

limit, we take the value of the Λ and Λ obtained from two point sum rules,

Λ = 0.62GeV [29] and Λ = 0.86GeV [30]. The following relations are defined

for the ratio of the form factors,

R1(2)[3] =

[

1− q2

(mB +mD∗)2

]

fV (+)[−](y)

f0(y)
,

R4(5) =

[

1− q2

(mB +mD∗)2

]

f+(−)(y)

fV (y)
,

R6 =

[

1− q2

(mB +mD∗)2

]

f−(y)

f+(y)
,

(29)

The numerical values of the above mentioned ratios and a comparison

of our results with the predictions of [15] which presents the application of
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a b m2
fit

fV 118.69 -108.48 23.43
f0 4.54 -5.12 20.74
f+ 7.79 -5.84 14.57
f− -6.72 5.46 14.02

Table 6: Parameters appearing in the fit function (ii) for form factors of the
Bu → D∗

u(2007)ℓν at M2
1 = 19 GeV 2, M2

2 = 5 GeV 2.

a b m2
fit

fV 115.74 -106.73 23.41
f0 10.43 -12.85 20.66
f+ 5.50 -5.07 14.58
f− -5.36 4.90 14.03

Table 7: Parameters appearing in the fit function (ii) for form factors of the
Bd → D∗

d(2010)ℓν at M2
1 = 19 GeV 2, M2

2 = 5 GeV 2.

the subleading Isgur-Wise form factors for B → D∗ℓν are shown in Table

8. Note that the values in this Table are obtained with T1 = T2 = 2 GeV

correspond to M2
1 = 19 GeV 2 and M2

2 = 5 GeV 2 which are used in Tables

[2-7].

Table 8 shows a good consistency between our results and the prediction

of [15] for R1 at zero recoil limit, y = 1.1 and 1.2, but for the other values

of y, the changes in present work results are little greater. The values for

R2 shows an approximate agreement between two predictions, however the

changes in the value of R2 in our work is also a bit more then [15]. For both

R1 and R2, our study and [15] predictions have the same behavior, i.e., R1

decreases when the value of y is increased and increasing in the value of y

causes the increasing in the value of R2. From this Table, we also see that the
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y 1 (zero recoil) 1.1 1.2 1.3 1.4 1.5
q2(GeV 2) 10.69 8.57 6.45 4.33 2.20 0.08

R1 1.34 1.31 1.25 1.19 1.10 0.95
R2 0.80 0.99 1.10 1.22 1.30 1.41
R3 -0.80 -0.79 -0.80 -0.81 -0.80 -0.80
R4 0.50 0.64 0.77 0.94 1.20 1.46
R5 -0.50 -0.51 -0.56 -0.62 -0.71 -0.89
R6 -0.80 -0.67 -0.64 -0.61 -0.55 -0.53

R1 [15] 1.31 1.30 1.29 1.28 1.27 1.26
R2 [15] 0.90 0.90 0.91 0.92 0.92 0.93

Table 8: The values for the Ri and comparison of R1,2 values with the pre-
dictions of [15].

R4 is sensitive to the changes in the value of y. However, the results of R3,

R5 and R6 vary slowly with respect to y. Our numerical analysis for 1/mb

corrections of form factors in Eq. (25) shows that this correction increase the

HQET limit of the form factors fV and f+ about 7.10/0 and 60/0, respectively,

however it doesn’t change the f0 and decrease the f− about 6.50/0.

The next step is to calculate the differential decay width in terms of the

form factors. After some calculations for differential decay rate

dΓ

dq2
=

1

8π4m2
Bq

| −→p′ | G2
F | Vcb |2 {(2A1 + A2q

2)[| f ′
V |2 (4m2

Bq
| −→p′ |2)+ | f ′

0 |2]}

+
1

16π4m2
Bq

|−→p′ |G2
F |Vcb|2

{

(2A1 + A2q
2)

[

| f ′
V |2 (4m2

Bq
| −→p′ |2

+ m2
Bq

| −→p′ |2
m2

D∗

q

(m2
Bq

−m2
D∗

q
− q2))+ | f ′

0 |2

− | f ′
+ |2

m2
Bq

| −→p′ |2
m2

D∗

q

(2m2
Bq

+ 2m2
D∗

q
− q2)− | f ′

− |2
m2

Bq
| −→p′ |2

m2
D∗

q

q2

− 2
m2

Bq
| −→p′ |2

m2
D∗

q

(Re(f ′
0f

′∗
+ + f ′

0f
′∗
− + (m2

Bq
−m2

D∗

q
)f ′

+f
′∗
− ))
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− 2A2

m2
Bq

| −→p′ |2
m2

D∗

q

[

| f ′
0 |2 +(m2

Bq
−m2

D∗

q
)2 | f ′

+ |2 +q4 | f ′
− |2

+ 2(m2
Bq

−m2
D∗

q
)Re(f ′

0f
′∗
+ ) + 2q2f ′

0f
′∗
− + 2q2(m2

Bq
−m2

D∗

q
)Re(f ′

+f
′∗
− )

]}

,

(30)

is obtained, where

| −→p′ | =
λ1/2(m2

Bq
, m2

D∗

q
, q2)

2mBq

,

A1 =
1

12q2
(q2 −m2

l )
2I0,

A2 =
1

6q4
(q2 −m2

l )(q
2 + 2m2

l )I0,

I0 =
π

2
(1− m2

l

q2
),

f ′
0 = f0(mD∗

q
+mBq

),

f ′
V =

fV
(mD∗

q
+mBq

)
,

f ′
+ =

f+
(mD∗

q
+mBq

)
,

f ′
− =

f−
(mD∗

q
+mBq

)
. (31)

The following part presents evaluation of the value of the branching ratio

of these decays. Taking into account the q2 dependence of the form factors

and performing integration over q2 in the interval m2
l ≤ q2 ≤ (mBq

−mD∗

q
)2

and using the total life-times τBu
= 1.638× 10−12s , τBd

= 1.53× 10−12s [14]

and τBs
= 1.46 × 10−12s [31], the branching ratios which are the same for

both fit functions are obtained as:

B(Bs → D∗
s(2112)ℓν) = (1.89− 6.61)× 10−2,
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B(Bd → D∗
d(2010)ℓν) = (4.36− 8.94)× 10−2,

B(Bu → D∗
u(2007)ℓν) = (4.57− 9.12)× 10−2. (32)

The ranges appearing in the above equations are related to the different

lepton masses (me, mµ, mτ ) as well as the errors in the value of input param-

eters. Finally, we would like to compare our results of the branching ratios

with the predictions of CQM model [13] and existing experimental data in

Table 9. From this Table, we see a good agreement among the phenomeno-

logical models and the experiment for u and d cases. However for s case our

results are about 1.7 times smaller than that of the CQM model. Also, there

is a same behavior between present work results and the experiment. In the

experiment, the value for branching ratios decreases from u to d. In our

results also, this value decreases from u to s cases. The order of the branch-

ing fraction in present work for Bs → D∗
sℓν decay shows that this transition

could also be detected at LHC in the near future. For the present and fu-

ture experiments about the semileptonic b→ clν based decays see [32]–[37]

and references therein. The comparison of results from the experiments and

phenomenological models like QCD sum rules could give useful information

about the strong interaction inside the D∗
s and its structure.

In conclusion, the form factors related to the Bq → D∗
qℓν decays were

calculated using QCD sum rules approach. The HQET limit of the form

factors as well as 1/mb corrections to those limits were also obtained. A

comparison of the results of form factors in HQET limit with the application

of the subleading Isgur-Wise form factors at zero recoil limit and others

values of y was presented. Taking into account the q2 dependencies of the

form factors, the total decay width and branching ratio for these decays were

evaluated. Our results are in good agreement with that of the CQM model

and existing experimental data. The result of Bs → D∗
sℓν case shows a
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possibility to detect this decay channel at LHC in the near future.

Bs → D∗
sℓν Bd → D∗

dℓν Bu → D∗
uℓν

Present study (1.89− 6.61)× 10−2 (4.36− 8.94)× 10−2 (4.57− 9.12)× 10−2

CQM model (7.49− 7.66)× 10−2 (5.9− 7.6)× 10−2 (5.9− 7.6)× 10−2

Experiment - (5.35± 0.20)× 10−2 (6.5± 0.5)× 10−2

Table 9: Comparison of the branching ratio of the Bq → D∗
qℓν

decays in present study, the CQM model [13] and the experiment [14].
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Figure 2: The dependence of fV on q2 at M2
1 = 19 GeV 2, M2

2 = 5 GeV 2,
s0 = 35 GeV 2 and s′0 = 6 GeV 2.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

f 0
(q

2 )

q2 (GeV2)

Bs→D*s lν
Bu→D*u lν
Bd→D*d lν

Figure 3: The dependence of f0 on q2 at M2
1 = 19 GeV 2, M2

2 = 5 GeV 2,
s0 = 35 GeV 2 and s′0 = 6 GeV 2.
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1 = 19 GeV 2, M2

2 = 5 GeV 2,
s0 = 35 GeV 2 and s′0 = 6 GeV 2.
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2 = 5 GeV 2,
s0 = 35 GeV 2 and s′0 = 6 GeV 2.
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