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The Momentum 4-Vector in Bulk Viscous Bianchi Type-V Space-time
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Using the Einstein and Bergmann-Thomson prescriptions, the energy and momentum distribu-
tions for the Bianchi type-V bulk viscous space-time are evaluated in both general relativity and
the teleparallel gravity (the tetrad theory of gravity). It is shown that for the Bianchi type-V bulk
viscous solution, the energy and momentum due to matter and fields including gravity are the same
in both the methods used. This paper indicates an important point that these energy-momentum
definitions agree with each other not only in general relativity but also in teleparallel gravity and
sustains the results obtained by some physicist who show that the energy-momentum definitions of
Einstein, Landau-Lifshitz, Papapetrou, Weinberg, Penrose and Bergmann-Thomson complexes give
the same energy expression in general relativity.
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I. INTRODUCTION

The conserved quantities such as energy and momen-
tum play a important role as they provide the first inte-
grals of equations of motions, helping one to solve oth-
erwise intractable problems [1]. Furthermore the energy
content in a sphere of radius R in a given space-time gives
a taste of the effective gravitational mass that a test par-
ticle situated at the same distance from the gravitating
object experiences. A large number of researchers have
devoted considerable attention to the problem of finding
the energy as well as momentum and angular momentum
associated with various space-times.

The problem of calculating the energy is considered
for general relativity and also the teleparallel theory of
gravity. Since the advents of these different gravitation
theories various calculation methods have been proposed
to deduce the conservation laws that characterize the
gravitational systems. The first of such attempts was
made by Einstein [2] who proposed an expression for
the energy-momentum distribution of the gravitational
field. There are many attempts to resolve the energy-
momentum problem [3, 4, 5, 6, 7, 8, 9, 10, 11]. There ex-
ists an opinion that the energy-momentum definitions are
not useful to get finite and meaningful results in a given
geometry. Virbhadra and his collaborators re-opened the
problem of calculating energy-momentum by using the
energy-momentum prescriptions. The Einstein energy-
momentum formulation, used for calculating the energy
in general relativistic systems, was followed by many def-
initions: e.g. Tolman, Papapetrou, Bergmann-Thomson,
Møller, Landau-Liftshitz, Weinberg, Qadir-Sharif and
the teleparallel gravity versions of the Einstein, Landau-
Lifshitz, Bergmann-Thomson and Møller’s. The energy-
momentum formulations give meaningful results when
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we transform the line element in quasi-Cartesian coor-
dinates. The energy and momentum complex of Møller
gives the possibility to perform the calculations in any
coordinate system [12]. To this end Virbhadra and his
collaborators have considered many space-time models
and have shown that several energy-momentum com-
plexes give the same and acceptable results for a given
space-time [13, 14, 15, 16, 17, 18, 19, 21]. Virb-
hadra [17], using the energy and momentum complexes
of Einstein, Landau-Lifshitz, Papapetrou and Weinberg
for a general non-static spherically symmetric metric of
the Kerr-Schild class, showed that all of these energy-
momentum formulations give the same energy distribu-
tion as in the Penrose energy-momentum formulation.
Later, Xulu [22], Radinschi [23] and Saltı-Havare [24]
considered the Bergmann-Thomson energy and/or mo-
mentum formulation for different space-time model and
showed that the definition of Bergmann-Thomson agree
with the other energy-momentum complexes. Xulu made
the calculations using the Kerr-Schild cartesian coordi-
nates and the Bergmann-Thomson definition provides
for the given metric the same energy expression for the
energy-momentum distributions as the Einstein, Landau-
Lisfhitz, Papapetrou and Weinberg energy-momentum
definitions.

Recently, this problem has also been studied in telepar-
allel gravity. Vargas [11] using the definitions of Einstein
and Landau-Lifshitz in teleparallel gravity, found that
the total energy is zero in Friedmann-Robertson-Walker
space-times. This results agree with the previous works
by Rosen [25] and Johri [26]. Saltı et al. [24, 27, 28, 29]
considered different space-times for various definitions in
teleparallel gravity and obtained the energy-momentum
distributions in a given model. Firstly, Saltı and Havare
[24] considered Bergmann-Thomson’s complex in both
general relativity and teleparallel gravity for the Viscous
Kasner-type metric and in another work, Saltı [27] using
the Einstein and Landau-Lifshitz’s complexes associated
with the same metric in teleparallel gravity, found that
total energy and momentum are zero. At the last, We
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[28] used Møller’s definition in teleparallel gravity for the
Bianchi-I type metric and found that the total energy
is zero, so the result is the same as obtained in general
relativity.

The paper is organized as follows: In the next section,
we introduce the Bianchi type-V cosmological model.
In section III, using Einstein and Bergmann-Thomson’s
energy-momentum complexes in general relativity, we
calculate the total energy due to matter plus fields in-
cluding gravitation for a given space-time. Section IV
gives us, the energy-momentum formulations of Einstein
and Bergmann-Thomson, and the total energy distribu-
tion for the same metric in teleparallel gravity. At the
last, we summarize and discuss our results. Throughout
this paper, All indices run from 0 to 3 otherwise instead
and we use the convention that G = 1, c = 1 units.

II. THE BIANCHI TYPE-V BULK VISCOUS

SPACE-TIME

The study of Bianchi type-V cosmological models cre-
ate more interest as these models contain isotropic spe-
cial cases and permit arbitrarily small anisotropy lev-
els at some instant of cosmic time. This property make
them suitable as model of our universe. Also Bianchi
type-V models are more complicated than the simplest
Bianchi type models e.g. the Einstein tensor has off-
diagonal terms so that it is more natural to include
tilt and heat conduction. Space-time model od Bianchi
type I, V and IX universes are the generalizations of
Friedmann-Robertson-Walker models and it will be in-
teresting to construct cosmological models of the types
which are of class one. Roy and Prasad [30] have inves-
tigated the Bianchi type-V universes which are locally
rotationally symmetric and are of embedding class one
filled with perfect fluid with heat conduction and radi-
ation. Bianchi type-V cosmological models have consid-
ered by some other researchers [31, 32, 33, 34, 35, 36].

We consider the Bianchi type-V space-time in the form
given below.

ds2 = −dt2 + A2dx2 + B2e2x[dy2 + dz2] (1)

where A and B are function of t only.
The matrix form of the metric tensor gµν is defined by

respectively by







−1 0 0 0
0 A2 0 0
0 0 B2e2x 0
0 0 0 B2e2x






(2)

and its inverse matrix gµν is







−1 0 0 0
0 A−2 0 0
0 0 B−2e−2x 0
0 0 0 B−2e−2x






(3)

The non-trivial tetrad field induces a teleparallel struc-
ture on space-time which is directly related to the pres-
ence of the gravitational field, and the Riemannian metric
arises as

gµν = ηabh
a

µhb
ν , ηab = diag(−1, 1, 1, 1) (4)

Using this relation, we obtain the tetrad components ha
µ

as follow:

ha
µ =







1 0 0 0
0 A 0 0
0 0 Bex 0
0 0 0 Bex






(5)

and its inverse

h µ
a =







1 0 0 0
0 A−1 0 0
0 0 B−1e−x 0
0 0 0 B−1e−x






(6)

The Einstein field equations read as

Rν
µ −

1

2
Rgν

µ = −8πT ν
µ (7)

where Rν
µ is the Ricci tensor, R = gµνRµν is the Ricci

scalar, and T ν
µ is the stress energy tensor. For the Bianchi

type-V bulk viscous metric, the non-vanishing compo-
nents of the Einstein tensor are

G11 =
B2

− A2(Ḃ2 + 2BḂ)

B2
(8)

G22 = G33 = −
Be2x

A2

(

B(AÄ − 1) + A(ȦḂ + AB̈)
)

(9)

G00 =
Ḃ2

B2
−

3

A2
+

2ȦḂ

AB
(10)

G01 = 2

(

Ȧ

A
−

Ḃ

B

)

(11)

III. THE MOMENTUM 4-VECTOR IN

GENERAL RELATIVITY

A. Formulations

The energy-momentum prescription of Einstein [2] is
given by

Θν
µ =

1

16π
Hνα

µ,α (12)

where

Hνα
µ =

gµβ
√

−g

[

−g(gνβgαξ
− gαβgνξ)

]

,ξ
(13)
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Θ0
0

is the energy density, Θ0
α are the momentum density

components, and Θα
0

are the components of energy cur-
rent density. The Einstein energy and momentum den-
sity satisfies the local conservation laws

∂Θν
µ

∂xν
= 0. (14)

and energy and momentum components are given by

Pµ =

∫ ∫ ∫

Θ0

µdxdydz. (15)

Further Gauss’s theorem furnishes

Pµ =
1

16π

∫ ∫

H0λ
µ ηλdS. (16)

ηλ (where λ = 1, 2, 3) stands for the 3-components of
unit vector over an infinitesimal surface element dS =
r2 sin θdθdφ. Pi give momentum(energy current) compo-
nents P1, P2, P3 and P0 gives the energy.

The energy-momentum prescription of Bergmann-
Thomson [5, 6] is given by

Λµν =
1

16π
Πµνα

,α (17)

where

Πµνα = gµβV να
β (18)

with

V να
β = −V αν

β =
gβξ
√

−g

[

−g
(

gνξgαρ
− gαξgνρ

)]

,ρ
. (19)

The Bergmann-Thomson energy-momentum prescription
satisfies the following local conservation laws

∂Λµν

∂xν
= 0 (20)

in any coordinate system. The energy and momen-
tum(energy current) density components are respectively
represented by Λ00 and Λa0. The energy and momentum
components are given by

Pµ =

∫ ∫ ∫

Λµ0dxdydz (21)

For the time-independent metric one has

Pµ =
1

16π

∫ ∫

Πµ0aκadS. (22)

here κβ is the outward unit normal vector over the in-
finitesimal surface element dS. P i give momentum com-
ponents P 1, P 2, P 3 and P 0 gives the energy.

B. Calculations

To calculate Einstein’s energy and momentum, using
equation (13), the non-vanishing components of Hνα

µ are
found as

H01

0
=

4B2

A
e2x, H01

1
= 4AḂe2x (23)

Next, considering these results with equation (12), the
energy and momentum densities of Einstein are found as

Θ0

0
=

1

2π

B2

A
e2x (24)

Θ0

1 =
1

2π
ABḂe2x, Θ0

2 = 0 Θ0

3 = 0 (25)

To obtain the energy and momentum of Bergmann-
Thomson, using equations (18) and (19), the required
non-vanishing components of Πµνα are found as

Π001 = −
4B2

A
e2x, Π101 = −

4B

A
Ḃe2x (26)

taking these results into equation (17), the energy and
momentum distributions of Bergmann-Thomson are cal-
culated as

Λ0

0
=

1

2π

B2

A
e2x (27)

Λ0

1 =
1

2π
ABḂe2x, Λ0

2 = 0 Λ0

3 = 0 (28)

IV. THE MOMENTUM 4-VECTOR IN

TELEPARALLEL GRAVITY

Teleparallel gravity is an alternative approach to grav-
itation [37] which corresponds to a gauge theory for the
translation group based on the Weitzenböck geometry
[38]. In this theory, gravitation is attributed to torsion
[45], which plays the role of a force [40], whereas the cur-
vature tensor vanishes identically. The fundamental field
is represented by a nontrivial tetrad field, which gives
rise to the metric as a by-product. The last transla-
tional gauge potentials appear as the nontrivial part of
the tetrad field, thus induces on space-time a teleparallel
structure which is directly related to the presence of the
gravitational field. The interesting point of teleparallel
gravity is that, due to gauge structure, it can reveal a
more appropriate approach to consider the same specific
problem. This is the case, for example, of the energy-
momentum problem, which becomes more transparent
when considered from the teleparallel point of view.

Mφller modified general relativity by constructing a
new field theory in teleparallel space [41]. The aim of
this theory was to overcome the problem of the energy-
momentum complex that appears in Riemannian Space
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[42]. The field equations in this new theory were de-
rived from a Lagrangian which is not invariant under
local tetrad rotation. Saez [43] generalized Mφller the-
ory into a scalar tetrad theory of gravitation. Meyer [44]
showed that Mφller theory is a special case of Poincare
gauge theory [45, 46].

A. Formulations

The teleparallel gravity analog of Einstein energy-
momentum complex [11] is given by

hEµ
ν =

1

4π
∂λ(U µλ

ν ) (29)

hBµν =
1

4π
∂λ(gµβU νλ

β ) (30)

where h = det(ha
µ) and U νλ

β is the Freud’s super-
potential, which is given by:

U νλ
β = hS νλ

β . (31)

Here Sµνλ is the tensor

Sµνλ = k1T
µνλ +

k2

2
(T νµλ

− T λµν)

+
k3

2
(gµλT

βν
β − gνµT

βλ
β) (32)

with k1, k2 and k3 the three dimensionless coupling con-
stants of teleparallel gravity [45]. For the teleparallel
equivalent of general relativity the specific choice of these
three constants are:

k1 =
1

4
, k2 =

1

2
, k3 = −1 (33)

To calculate this tensor firstly we must calculate
Weitzenböck connection:

Γα
µν = h α

a ∂νha
µ (34)

and after this calculation we get torsion of the
Weitzenböck connection:

T
µ
νλ = Γµ

λν − Γµ
νλ (35)

For the Einstein complex, we have the relation,

Pµ =

∫

Σ

hE0

µdxdydz (36)

where Pi give momentum components P1, P2, P3 while
P0 gives the energy and the integration hyper-surface Σ
is described by x0 = t =constant.

B. Calculations

For the Bianchi type-V bulk viscous space-time, the
non-vanishing components of the Weitzenböck connec-
tion are obtained as:

Γ1

10
=

Ȧ

A
, Γ2

20
= Γ3

30
=

Ḃ

B
(37)

Γ2

21
= Γ3

31
= 1 (38)

The corresponding non-vanishing torsion components are
found:

T 110 = −T 101 =
Ȧ

A3
, (39)

T 220 = −T 202 = T 330 = −T 303 =
Ḃ

B3
e−2x (40)

T 212 = −T 221 = T 313 = −T 331 =
1

A2B2
e−2x (41)

Taking these results into equation (32), the required non-
vanishing components of the tensor S νλ

µ are calculated
as:

S010 = −S001 =
1

A2
(42)

S101 =
Ḃ

BA2
(43)

S202 = S303 =
Ȧ

2AB2
e−2x (44)

S212 = S313 = −

1

2A2B2
e−2x (45)

Now, using equation (31) the non-vanishing components
of Freud’s super-potential are found as

U01

0
=

B2

A
e2x, U01

1
=

B

A
Ḃe2x (46)

Using equations (29) and (30) with these results respec-
tively, Einstein and Bergmann-Thomson’s energy and
momentum distributions due to matter plus fields includ-
ing gravitation in teleparallel gravity are calculated as
given below.

hE0

0
= hB0

0
=

1

2π

B2

A
e2x (47)

hE0

1
= hB0

1
=

1

2π
ABḂe2x (48)

hE0

2 = hB0

2 = 0 (49)

hE0

3
= hB0

3
= 0 (50)

From this point of view this result are the same as ob-
tained in general relativity.
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V. CONCLUSIONS

The main object of this paper is to show that it is possi-
ble to evaluate the energy and momentum (due to matter
and fields including gravitation) distributions by using
the energy-momentum formulations not only in general
relativity but also in the teleparallel gravity (the tetrad
theory of gravity). To compute the energy and momen-
tum densities (due to matter and fields including gravita-
tion), we considered two different approaches of the Ein-
stein and Bergmann-Thomson energy and/or momentum
definitions.

We found that the energy and momentum distributions
associated with the Bianchi type-V bulk viscous space-
time are the same in both general relativity and teleparal-
lel gravity. Next, our results advocate the importance of
energy-momentum complexes (opposes the against that
different complexes could give different meaningless re-
sults for a given metric).

The components of Einstein energy-momentum tensor

are different from our result, because the energy momen-
tum densities obtained in this paper involve the matter
and field including gravity inside arbitrary two surfaces.

Virbhadra [14], Xulu [22] and Radinschi [23] show that
the energy momentum definitions of Einstein, Landau-
Lifshitz, Papapetrou, Weinberg, Penrose and Bergmann-
Thomson complexes give the same energy expression in
general relativity. This paper indicates an important
point that these energy momentum definitions agree with
each other not only in general relativity but also in
teleparallel gravity and sustains the results of the au-
thors.
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