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Abstract

Palatini variational principle is implemented on a five dimensional
quadratic curvature gravity model, rendering two sets of equations
which can be interpreted as the field equations and the stress-energy
tensor. Unification of gravity with electromagnetism and the scalar
dilaton field is achieved through the Kaluza-Klein dimensional reduc-
tion mechanism. The reduced curvature invariant, field equations and
the stress-energy tensor in four dimensional spacetime are obtained.
The structure of the interactions among the constituent fields is ex-
hibited in detail. It is shown that the Lorentz force naturally emerges
from the reduced field equations and the equations of the standard
Kaluza-Klein theory is demonstrated to be intrinsically contained in
this model.

1 Introduction

Theories in dimensions higher than four seem to be promising candidates
for the ultimate unification of fundamental forces. The almost ninety years
old Kaluza-Klein (KK) theory unifying electromagnetism with gravity in
5D [1], currently appears as a part of more involved models [2, 3], may still
have some aspects that deserve to be investigated in their own right. As
is well known, the standard KK (SKK) theory is obtained by the metric
variations of the 5D Einstein-Hilbert (EH) action [4]. Since then there have
been many alternative approaches to the theory dealing with various types
of actions [5], including those that contain dimensionally extended Euler
densities [6, 7, 8, 9, 10]. Usually, the field equations are obtained by metric
variations of the action. In this work, we shall deviate from this common
practice and employ the Palatini variational principle which takes variations

1electronic address: baskal@newton.physics.metu.edu.tr
2electronic address: halil@metu.edu.tr

1

http://arxiv.org/abs/1004.1546v1


both with respect to the connection and to the metric by treating them as
independent variables [11].

If the requirement on the order of the derivatives of the metric in the
equations is released, then we can proceed with the simplest gravity model
and consider an action which is quadratic in the curvature. Motivations for
choosing such an action is more substantial than seeking for simplicity or
pursuing for analogy with other gauge theories whose field equations and
the stress-energy (SE) tensors are derived from an action quadratic in their
fields. In addition to its natural emergence as the leading term in string
generated gravity models in their low energy limit [12], when coupled to
matter its renormalizability problems become much less severe [13].

Here, we shall investigate the consequences of the KK reduction mecha-
nism on the 5D field equations and the SE tensor obtained from implement-
ing the Palatini variational principle to a quadratic curvature 5D gravity
model.

2 The quadratic curvature model in five dimen-

sions

The basic operating mechanism of the KK theory can safely be viewed as
a spontaneous compactification of the five dimensional spacetime M5 (with
coordinates (xa, y)) to M4 × S1 while the 5D Poincaré symmetry P4 of M5

is spontaneously broken to P5×U(1). Here, M4 is the actual spacetime and
S1 has the topology of a circle whose radius is assumed to be at the order
of the Plank length. The line element on M5 is written as

ds25 = ĝAB êA ⊗ êB , (1)

with its signature adopted as (-,+,+,+,+). The capital indices A,B, ... as-
sume the values 0, 1, 2, 3, 5 and the lower case indices j, k, ... run from 0 to 3.
We shall be working in the horizontal lift basis (HLB) which will prove to be
convenient for our purposes. An adequate amount of detail in the context
of the SKK theory coupled to the Dirac field can be found in [14]. In a more
general framework it is referred as an anholonomic basis and elucidated in
[15].

Then the metric ĝAB takes the form

(

gij 0
0 1

)

(2)

2



with the basis

êj(xa, y) = dxj , ê5(xa, y) = ϕ (xa)(dy +Ak(x
a)dxk). (3)

The SKK theory uses the 5D EH action

ŜEH =

∫

(−ĝ)
1

2 R̂ d5x (4)

where R̂ is the 5D curvature scalar. The field equations of the theory
R̂AB = 0, are obtained through metric variations. Using the KK reduc-
tion mechanism they are expressed as [16]:

K1ab ≡ Rab −
1
2ϕ

2FakFb
k + ϕ−1Daϕb = 0

K2k ≡ DjF
j
k + 3ϕ−1ϕjFjk = 0

K3 ≡ Djϕ
j −

1
4ϕ

3FjkF
jk = 0.

(5)

Here, Rab is the 4D Ricci tensor, Fab = ∂aAb − ∂bAa is the electromagnetic
(EM) field strength tensor and ϕ is the dilaton field. For convenience, we
also give the reduced forms of the 5D curvature tensor in HLB:

R̂abmn = Rabmn −
1
4ϕ

2(2FabFmn + FamFbn − FanFbm)

R̂5bmn = 1
2ϕDbFmn + 1

2 (2ϕbFmn + ϕmFbn − ϕnFbm)

R̂a5m5 = −ϕ−1Dmϕa −
1
4ϕ

2FajF
j
m.

(6)

In this article, we shall consider an alternative 5D action

Ŝ =

∫

L d5x (7)

where
L = (−ĝ)

1

2 R̂JKMNR̂JKMN (8)

which is quadratic in the 5D curvature tensor. To reduce the quadratic
invariant Îq into the actual 4D spacetime, it is expanded as

Îq = R̂JKMNR̂JKMN = R̂jkmnR̂jkmn + 4R̂jkm5R̂jkm5 + 4R̂k5m5R̂k5m5

(9)
and the substitution of (6) into above is sufficient.

We adopt the Palatini approach, where the metric and the connection
variations are considered to be independent, thus producing two sets of
equations.
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Variations of the action (7) with respect to the connection δL/δΓA
BC =

0 renders

D̂KR̂K
BMN = 0 (10)

and we interpret it as the field equations of the model. Varying with respect
to the 5D metric

(−ĝ)−1/2

2

δL

δĝAB
≡ T̂AB (11)

gives

T̂AB = R̂AKMNR̂B
KMN

−
1

4
ĝABR̂JKMNR̂JKMN (12)

and interpreted as the SE tensor of the model which is symmetric and due
to the field equations (10) is covariantly conserved

D̂K T̂K
B = 0. (13)

This approach is quite similar to that of the gauge theories whose the
field equations are obtained by varying with respect to the gauge potentials,
while the SE tensor is obtained through the metric variations of the action.
The gauge structure of gravity with an appropriate choice of the gauge group
is well established [17, 18, 19], where the Riemann tensor and the connec-
tion are behaving like the curvature and the gauge potential, respectively.
Therefore, the implementation of the Palatini method on the action (7) can
be regarded as a natural extension of a familiar approach to gravity.

3 The Kaluza-Klein Reduction

The reduced form of the quadratic invariant in (9) becomes

Îq = RjkmnRjkmn −
3
2ϕ

2RjkmnF
jkFmn + 3

8ϕ
4FjkF

jkFmnF
mn

+5
8ϕ

4FjkF
kmFmnF

nj + ϕ2(DkFmn)(D
kFmn)

+6(ϕkϕ
kFmnF

mn + ϕmϕnF
mkFn

k)

+4ϕ(ϕmF kn + ϕkF
mn)(DkFmn)

+4ϕ−2DmϕnD
mϕn − 2ϕDmϕnF

mkFn
k,

(14)

which has also been earlier evaluated in [9] using differential forms, and
appears to be different from above due to our contingent use of gauge and
gravitational Bianchi identities:

D[kFmn] = 0, D[kRmn]ij = 0. (15)
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In the sequel, we shall also be using

(DmDn −DnDm)F i
j = Ri

kmnF
k
j −Rk

jmnF
i
k (16)

and

2RjkmnF
jmF kn = RjkmnF

jkFmn

whenever they happen to be useful for our purposes.

3.1 The Reduction of the Field Equations

The field equations (10) comprises four equations to be reduced

D̂KR̂K
bmn = 0, D̂KR̂K

5mn = 0, D̂KR̂K
b5n = 0, D̂KR̂K

5m5 = 0. (17)

The first of the above equations becomes

DkR
k
bmn + ϕ2

{

1
4

[

FbmDkF
k
n − FbnDkF

k
m

]

1
2

[

FnkDmF k
b − FmkDnF

k
b −Dk(F

k
bFmn)

]}

+ϕ−1ϕkR
k
bmn

+ϕ−2(ϕmDnϕb − ϕnDmϕb)

−
3
4ϕϕk(2F

k
bFmn + F k

mFbn − F k
nFbm)

+ϕ(ϕmFbkF
k
n − ϕnFbkF

k
m) = 0

(18)

and the second equation is reduced as

−
1
2ϕ(F

jkRjkmn +DkD
kFmn) +

1
4ϕ

3F jk(FjkFmn + 2FjmFkn)

+(Fn
kDmϕk − Fm

kDnϕk)

+1
2(ϕnDkF

k
m − ϕmDkF

k
n)

−
3
2ϕ

kDkFmn − FmnDkϕ
k = 0.

(19)

The third equation becomes

1
2ϕ(F

jkRkbjn +DkDnF
k
b) +

1
8ϕ

3F jk(FjkFbn + 2FjbFkn)

−Fb
kDkϕn −

1
2FbnDkϕ

k

+3
2ϕ

−1ϕk(ϕnF
k
b + ϕbF

k
n)

+3
2ϕkDnF

k
b + ϕnDkF

k
b +

1
2ϕbDkF

k
n = 0.

(20)
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Similarly, through the reduction recipe last equation takes the following form

1
4ϕ

2
[

FmjDkF
kj +Dm(F jkFjk)

]

+ϕ−2ϕjDmϕj − ϕ−1DjD
jϕm

−
5
4ϕϕjF

jkFkm −
3
4ϕϕmF jkFkj = 0.

(21)

Considering the special case ϕ = constant, the equation above simplifies as:

FmjDkF
kj +Dm(F jkFjk) = 0. (22)

Introducing F 2 = F jkFjk and J j = DkF
kj, and interpreting the latter as

the current density, it can be expressed as

FmjJ
j = −DmF 2 (23)

where, it can safely be interpreted as the ”Lorentz force”, which is derived
from a scalar F 2. Lorentz force within the context of the 5D geodesic equa-
tion has been presented earlier in [20].

We shall reorganize the field equations from (18) to (21) by freely using
identities. Then (18) becomes

Dn(Rbm − 1
2ϕ

2FbkFm
k − ϕ−1Dmϕb)

−Dm(Rbn −
1
2ϕ

2FbkFn
k − ϕ−1Dnϕb)

+1
4 [Fbn(DkF

k
m + 3ϕ−1ϕkF

k
m)− Fbm(DkF

k
n + 3ϕ−1ϕkF

k
n)

+2Fmn(DkF
k
b + 3ϕ−1ϕkF

k
b)] = 0

(24)

and equation (19) is organized as

Dm(DkF
k
n + 3ϕ−1ϕkF

k
n)−Dn(DkF

k
m + 3ϕ−1ϕkF

k
m)

+Fm
k(Rkn −

1
2ϕ

2FkjFn
j − ϕ−1Dkϕn)

−Fn
k(Rkm −

1
2ϕ

2FkjFm
j − ϕ−1Dkϕm)

+2ϕ−1Fmn(Djϕ
j −

1
4ϕ

3FjkF
jk) = 0.

(25)

The third equation (20) is similarly rearranged as

ϕDn(DkF
k
b + 3ϕ−1ϕkF

k
b)

+ϕb(DkF
k
n + 3ϕ−1ϕkF

k
n) + 2ϕn(DkF

k
b + 3ϕ−1ϕkF

k
b)

+Fnb(Dkϕ
k −

1
4ϕ

3FjkF
jk)

−ϕFb
k(Rkn −

1
2ϕ

2FkjFn
j − ϕ−1Dkϕn) = 0

(26)
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and the last equation (21) takes the form

Dm(Dkϕ
k − 1

4ϕ
3FjkF

jk)

−
1
4ϕ

3Fm
j(DkF

k
j + 3ϕ−1ϕkF

k
j)

+ϕj(Rjm −
1
2ϕ

2FjkFm
k − ϕ−1Djϕm) = 0.

(27)

Looking closely into the above four equations, it is now possible to recognize
the patterns of the SKK equations in (5). Equation (24) contains the co-
variant derivative of K1ab and particular couplings of K2a and K3 with the
EM field strength tensor. Similarly, (25) and (26) govern Fmn containing
the covariant derivative of K2a and have couplings of Fmn and ϕ with the
whole K-set of (5). The last equation (27), includes the covariant deriva-
tive of K3, basically governs the dilaton field and has couplings of K2a and
K1ab with Fmn and ϕ. It can be seen that neither Rjkmn nor Rab has any
couplings with the K-set. Therefore, any solution to the SKK equations
also solves the field equations (24)-(27).

3.2 The Reduction of the SE-Tensor

The T̂ab component of the reduced stress-energy tensor in (12) can be sep-
arated into its trace-free and a non-vanishing trace part. Its trace-free part
is:

T̂
(tracefree)
ab = RakmnRb

kmn
−

1

4
gabRjkmnR

jkmn

−
3

2
ϕ2Fmn

{

1

2
(Fa

kRbkmn + Fb
kRakmn)−

1

4
gabF

jkRjkmn

}

+
3

8
ϕ4F 2

(

FakFb
k
−

1

4
gabFjkF

jk
)

+
5

8
ϕ4
(

FamFmkFknF
n
b −

1

4
gab(FjkF

kmFmnF
nj)

)

+ϕ2
{

(DaFmn)(DbF
mn)−

1

4
gab(DkFmn)(D

kFmn)

}

+4ϕ−2
{

(Daϕm)(Dbϕ
m)−

1

4
gab(Dnϕm)(Dnϕm)

}

+3ϕmϕm
(

FakFb
k
−

1

4
gabFjkF

jk
)

+3F 2
(

ϕaϕb −
1

4
gabϕkϕ

k
)

(28)

+3ϕjϕk
(

FajFbk −
1

4
gabFnjF

n
k

)
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+3

{

ϕkF
kj
[1

2
(ϕaFbj + ϕbFaj)−

1

4
gabϕmFm

j

]

}

−4ϕ

{

F jk
[1

2
(ϕaDjFkb + ϕbDjFka)−

1

4
gabϕ

nDjFkn

]

}

+4ϕ

{

ϕk
[1

2

(

Fa
nDkFbn + Fb

nDkFan

)

−
1

4
gabF

jkDmFjk

]

}

+2ϕ

{

1

2

[

(Daϕm)FbjF
jm + (Dbϕm)FajF

jm
]

−
1

4
gab(Dnϕm)FnkFk

m
}

and the part with a non-vanishing trace is:

T̂
(ta)
ab = −

1

8
ϕ4FamFmkFknF

n
b +

1

2
ϕ2(DmFak)(D

mFb
k)−

3

4
ϕ2(DaFmn)(DbF

mn)

−2ϕ−2(Daϕm)(Dbϕ
m)−

3

2
F 2ϕaϕb −

3

2
ϕjϕkFa

jFb
k

−
1

2
ϕF jm(FajDbϕm + FbjDaϕm) +

1

2
ϕ(ϕaDmFnb + ϕbD

mFna)

−
1

2
ϕϕkFak(DmFb

k + Fb
kDmFak). (29)

The reduced T̂a5 component of the SE tensor can be written as:

T̂a5 = 3ϕ−1Fm
aϕ

kDmϕk

+(Dmϕk)D
mF k

a +Rakmn(ϕ
kFmn + ϕmF kn)

+
1

2
ϕRakmnD

kFmn +
3

4
ϕ2F 2ϕkF

k
a

+
1

4
ϕ3(3Fa

kFmnDmFnk + F k
nF

nmDmFka). (30)

And the last component T̂55 is reduced in the following manner:

T̂55 = ϕ−2(Dmϕn)D
mϕn

−
1

4
RjkmnR

jkmn +
1

2
ϕFm

nF
nkDkϕm

+
3

8
ϕ2RjkmnF

jkFmn
−

1

32
ϕ4(3F 4 + FjkF

kmFmnF
nj). (31)

The trace of the T̂AB can be written as

T̂ = ĝABTAB = T̂ a
a + T̂ 5

5 = −
1

4
Îq. (32)

Therefore, the SE tensor is trace-free only when the invariant Îq vanishes.
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4 Conclusion

As one would expect the dimensionally reduced 4D field equations are more
involved than those of the usual Kilmister-Yang (KY) type of gravity, con-
taining non-minimal couplings of Ricci tensor and the field tensor of EM
along with a scalar dilaton field. We have explicitly shown that our field
equations are some specific combinations of the equations of the SKK theory.

It is found out that the set of field equations also contain the Lorentz
force in addition to some particular couplings with Maxwell’s equations. As
is well known, the theory of EM is only complete when the Lorentz force is
also taken into account.

The stress energy tensor contains particular non-minimal couplings with
the well known SE tensors of the KY type of gravity, EM and the dilaton
field. Although they appear to be more complicated than the standard SE
tensors of those fields when considered separately, it seems to be the price
we have to pay for unification and thus for mutual interactions. We have
also analyzed the trace of the SE tensor and its conservation properties and
provided the conditions for trace-freedom.

It is known that the KY pure gravity equations contain non-physical
solutions. In dimensions higher than four, the introduction of the Gauss-
Bonnet action seemed to provide some relief. In the context of the KK
theory, couplings with the EM and the dilaton field requires more equations
governing the fields that may alleviate the problem. A through analysis on
this matter and on the existence of any further possible remedies is left to
a later study.

Finally we conclude that this model turned out to be more complete by
accommodating the Lorentz force and an intrinsic inclusion of the solutions
of the SKK model[21].
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