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Abstract

Starting from the generting functional of the theory of relativistic spinors in 2 + 1

dimensions interacting through the pure Chern−Simons gauge field,the S−matrix is

constructed and seen to be formally the same as that of spinor quantum electrodynam-

ics in 2+1 dimensions with Feynman diagrams having external photon lines excluded,

and with the propagator of the topological Chern-Simons photon substituted for the

Maxwell photon propagator.It is shown that the absence of real topological photons

in the complete set of vector states of the total Hilbert space leads in a given order of

perturbation theory to topological unitarity identities that demand the vanishing of

the gauge-invariant sum of the imaginary parts of the Feynman diagrams with a given

number of internal on-shell free toplogical photon lines. It is also shown, that these

identities can be derived outside the framework of perturbation theory.The identities

are verified explicitly for the scattering of a fermion-antifermion pair in one-loop order.
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I Introduction

In the recent years there has been considerable progress in the understanding of

theories of charged scalar or spinor particles interacting through the topological Chern-

Simons (CS) gauge field .It has been shown that the addition of the abelian1CS kinetic

term to the Lagrangian of quantum electrodynamics (QED) in 2 + 1 dimensions, leads to

the appearance of an induced mass of the photon[1].In the work [2], the important sym-

metry properties of theories with this topological term have been investigated,and some

one-loop radiative corrections have been calculatedted.The radiative corrections that the

stochastic parameter,i.e the coefficient multiplying the CS term acquires in the framework

of perturbation theory have been extensively investigated,and it has been found that for

massive matter,one has only finite corrections at one-loop order,and that the two-loop

β-function vanishes[3].Later,a theorem was set which states that there are no corrections

to this parameter to all orders of perturbation theory beyond the finite one-loop one [4].

On the non- relativstic domain,it was first proposed by Wilczek that non-relativistic

charged particles interacting through the topological CS gauge field can be considered as

composite vertices (rigidly bound to a solenoid which is moving along with them) and

were named anyons (particles with fractional spin and exotic statistics ). This idea found

wide application,and several attempts to apply it to the Fractional Quantum Hall Ef-

fect,superfluidity and high temperature superconductivity were made (See the reviews [5]

and references therein for details).

In this paper,we are going to consider the theory of relativistic spinor charged particles

coupled to the pure topological CS gauge field. This theory has the peculiar property

that the propagator and many-particle Green’s function of the gauge field are non-zero

although real free particles of the gauge field do not exist 2.

We note that if we consider from the beginning the theory of spinor charged particles

1In this paper the term CS field will be understood to mean the abelian CS field unless otherwise stated.
2The abscence of the topological photons can be seen most generally from the fact that the CS term

does not contribute to the Hamiltonian because of its independence of the metric tensor gµν in curved

space-time.
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coupled to pure CS gauge field,then the appearance of the parity-conserving radiative

corrections to the CS propagator,being finite, does not require the introduction of the

Maxwell kinetic counter-term for renormalization.This means that in the framework of

perturbation theory,no real photon appears in this theory.This assertion can be proved by

starting from a Lagrangian that has in addition to the pure CS term ,the Maxwell term;

1

4γ

∫

(FµνF
µν)d3x (1)

If one carries out the calculations of any Feynman diagrams of such a theory and then

after renormalization goes to the limit γ → ∞, then one gets the same perturbative results

as in the theory with only pure CS term (see also part VI ).

Our main aim in this paper is to show that the absence of the real topological photons

in the complete set of vector states of the total Hilbert space of the model,leads to very

remarkable topological unitarity identities.These identities demand that in each order

of perturbation theory, the gauge-invariant sum of the imaginary parts of all Feynman

diagrams with a given number of on-shell internal topological photon lines is equal to

zero. Such identities can also be deduced outside the framework of perturbation theory.

In part II we introduce the generating functional of the theory.In part III we construct

the S-matrix operator.Part IV demonstrates how to deduce the unitarity identities from

the unitarity condition of the theory,and in part V these identities are verified explicitly

for the specific case of the scattering of a fermion-antifermion pair in one-loop order.Part

VI is devoted to conclusions and discussion.

II The Generating Functional

We start from the 2 + 1 dimensional classical action of spinors coupled to a gauge field

whose action is given by the topological pure CS term

S = Sm + Scs, (2)

Sm =

∫

d3x(ψ̄(i∂/+ eA/−m)ψ), (3)

Scs =
µ

2

∫

d3x(εµνλA
µ∂νAλ), (4)
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Here ψ and ψ†,(ψ̄ = ψ†γ0) are two dimensional Grassmann spinor fields,and the Dirac

matrices in 2 + 1 dimensions are taken as[6],

γo = σo , γi = iσi i = 1, 2; (5)

with the σ′s being the Pauli spin matrices.These γ-matrices satisfy

{γµ, γν}+ = 2gµν ; γµγν = gµν − iεµνλγ
λ, (6)

the metric gµν is defined as

AµA
µ = Aµg

µνAν , gµν = diag.(1,−1,−1) (7)

µ and e are two dimensionless coupling constants.A transformation of the gauge field of

the form:

Aµ → A′
µ =

√
µAµ ,

e√
µ
→ g, (8)

allows us to have only one coupling constant; g in our theory. Then

S =

∫

d3x(ψ̄(i∂/+ gA/−m)ψ +
1

2
εµνλA

µ∂νAλ) (9)

where we have dropped the prime on Aµ. Such a transformation is possible on the quan-

tum level due to the finite renormalization of the stochastic parameter µ [3].

In order to carry out the path integral quantization of the model,we have to handle

the constraints.Noting that we have both first and second class constraints,then gen-

erally we have to apply the Batalian-Fradkin-Vilkovisky (BFV) method of quantiza-

tion[7].However,the triviality of the algebra of the constraints,i.e the fact that the Poisson

Brackets of the second class constraints are independent of the fields of the theory,and

those of the first class ones are zero,allows us to use the simpler De-Witt-Fadeev -Popov

method[8],which will give the same result as that of BFV method[9] 3 The generating

functional will then assume the following form

Z[η, η̄, Jµ] = (const .)

∫

DAµ(x)Dψ(x)Dψ̄(x) exp{iSm+iScs+iSg+i

∫

d3x(η̄ψ+ψ̄η+JµA
µ)},

(10)

3The details of this proof will be published in another paper.
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Jµ (η, η̄) are external bosonic (fermionic) sources. The action in the above expression

differs from the classical one only by the appearence of the gauge-fixing action Sg;

Sg =

∫

d3x(
−1

2α
(∂µA

µ)2), (11)

where we have adopted a covariant gauge condition.Integrating Eq.(10) over the gauge

field Aµ,we get4

Z[η, η̄, Jµ] = const .

∫

DψDψ̄ × exp{−i
2

∫

d3xd3x′(Iµ(x)Dµν(x− x′)Iν(x′))

+

∫

d3x(ψ̄(i∂/−m)ψ) + η̄ψ + ψ̄η)}, (12)

where

Iµ(x) = Jµ(x) + gψ̄(x)γµψ(x), (13)

and Dµν(x− x′) is the free CS propagator,

Dµν(x− x′) = (−εµνλ∂λx +
α∂µ∂ν
✷

)

∫

d3k

(2π)3
eik(x−y)

k2 + iǫ
(14)

Following the general rules,one can determine from the above generating functional all one

and many-particle Green’s functions of the theory,and use them to construct perturbatively

the scattering amplitude for on-shell processes.

Formally,the generating functional (12) is the same as that of QED if one replaces the

CS photon propagator by the Maxwell propagator.On the other hand,however,inspite of

the existence of nonzero Green’s function with two and more external topological photon

lines,the corresponding on-shell matrix elements should be zero (!) due to the absence of

real topological photons.The consequences of this observation will be investigated in detail

in part IV.

III The S-matrix Operator

Although the generating functional Eq.(15) contains all the information of the theory

and can be used to derive the scattering amplitudes,it is actually more convenient to
4We emphasize that strictly speaking, it is necessary to introduce in the exponent of (10) a regularization

term,for instance, the Maxwell term Eq.(1), and then take the limit γ → ∞ after integration over Aµ.
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introduce the S-matrix operator in the theory and use it for this purpose. The S-matrix

operator of scalar charged particles coupled to CS gauge field has been constructed in the

work [10].In our case we have

Ŝ = T exp iSint(ψ̂,
ˆ̄ψ, Âµ) (15)

where

Sint(ψ̂,
ˆ̄ψ, Âµ) =:

∫

d3x(gÂµ ˆ̄ψγµψ̂): , (16)

”: :” means normal ordering, and ψ̂ and ˆ̄ψ are now field operators in the interation picture:

ψ̂(x) =

∫

d3p

(2π)

√

m

Ep

[b†(p)u(p)e−ipx + d†(p)v(p)eipx] (17)

ˆ̄ψ(x) =

∫

d3p

(2π)

√

m

Ep

[b†(p)ū(p)eipx + d(p)v̄(p)e−ipx] (18)

where Ep =
√

p2 +m2,and b(p) (d(p)) and b†(p) (d†(p)) are the annihilation and creation

operators of particles(antiparticles) respectively,satisfying the usual anticommutation re-

lations

{b(p), b†(p′)}+ = {d(p), d†(p′)}+ = δ(p − p′). (19)

The orthogonal two-component spinors u(p) and v(p),are respectively the spinors of the

positive and negative energy solutions of the free Dirac equation in 2 + 1 dimensions, and

have the properties:

u(p)ū(p) =
p/+m

2m

v(p)v̄(p) =
p/−m

2m
(20)

Obviously,the operatr Âµ(x) can not be expanded in terms of the creation and annihilation

operators in a manner similar to ψ̂(x) and ˆ̄ψ(x).We can bring it into use only symbolically

with the following property : Only the vacuum expectation value of the product and

the T-product of an even number of the operators Âµ is nonvanishing,and reduces to the

vacuum expectation value of terms with the products and the T-products of two field

operators defined as:

〈0| T (Âµ(x)Âν(y)) |0〉 = −iDµν(x− y) (21)
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〈0| (Âµ(x)Âν(y)) |0〉 = −iD†
µν(x− y)

= −i
∫

d3k

(2π)3
(εµνλik

λ +
αkµkν

(k2 + iǫ)
)δ(k2)θ(k0)e

−ik(x−y) (22)

All the matrix elements of the normal product of any number of the the field operators

Âµ(x) is equal to zero (by definition !).

We now make a key observation: The expression (16) of the S-matrix is formally identical

to that of QED.Therefore,we make the following remarkable statement : All the Feynman

diagrams of our theory are identical to those in QED, if we replace the Maxwell pho-

ton propagator by the topological CS propogator and exclude all diagrams with on-shell

external photon lines.

IV The Toplogical Unitarity Identities

Here, we are going to use the S-matrix operator introduced in the previous section

to deduce the unitarity identities. However, strictly speaking , we have to consider the

S-matrix operator with the counter-terms introduced for the renormalization procedure

in each order of perturbation theory(see for example reference [2] for the counter-terms).

To avoid additional complications, we will assume that all the matrix elements that we

consider have been renormalized.

As we have mentioned above, the absence of the real CS photons means that the complete

set of vector states in the total Hilbert space of the system does not contain these topo-

logical particles.To investigate the consequences of this fact,we introduce the T̂ -matrix,

Ŝ = 1− iT̂ (23)

where Ŝ is the S-matrix operator (the energy-momentum conserving δ-function has been

suppressed).The unitarity of the S-operator leads to the well-known relation:

i(T̂ † − T̂ ) = T̂ T̂ † = 2ImT̂ . (24)

For arbitrary non-diagonal (|i〉 6= |f〉) matrix elements on mass-shell,we can write the two

equivalent relations:

〈f | 2ImT̂ |i〉 = 〈f | T̂ T̂ † |i〉, (25)
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〈f | 2ImT̂ |i〉 =
∑

n

〈f | T |n〉 〈n| T † |i〉. (26)

where in Eq.(26) we have inserted the complete set of physical states { |n〉 } which does

not contain the states of the topological photon, but only those of the charged particles.

From Eq.(26) we see that in a given order of perturbation theory,the Feynman diagrams

that contribute to the imaginary part on the l.h.s can not have internal on-shell topological

photon lines because { |n〉 } are physical states. On the other hand,however,investigating

Eq.(25) in the framework of perturbation theory shows that diagrams with internal on-

shell photon lines do appear.This is because the vacuum expectation value of the product

of an even number of the symbolic operator Âµ does not vanish due to the non-zero value

of the imaginary part of the photon propagator(see Eq.(22)).Therefore,demanding the

consistency of Eqs.(25) and (26) leads to the important conclusion that in a given order

of perturbation theory,the gauge-invariant sum of the imaginary parts of the Feynman

diagrams with a given number of on-shell free topological photon lines is equal to zero.The

vanishing of this sum of the imaginary parts does not mean the vanishing of the sum of

the real parts.As a rule the sum of such Feynman diagrams does not vanish,and will

give contribution to the process involved. Each diagram in this sum will be an analytic

function of invariant variables. It is also important to underline the fact that,although the

gauge-invariant sum of the imaginary parts of the diagrams with a given number of on-

shell internal photon lines vanishes, the imaginary part of each diagram will not generally

vanish. It will vanish only if a diagram is gauge-invariant. This will be demonstrated

when we consider a specific example below.

The above arguments give us novel topological unitarity identities which relate the

imaginary parts of Feynman diagrams with a given number of internal on-shell free photon

lines,whose sum is gauge-invariant. That these identities can be also deduced outside the

framework of perturbation theory will be discussed in part VI.
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V One-Loop Fermion-Antifermion Scattering

Now,we illustrate the unitarity identities in the case of scattering of a fermion-antifermion

pair in one-loop order.This example is of interest also in the non-relativistic approximation

in connection with the perturbative Aharonov- Bohm scattering amplitude.The gauge-

invariant digrams with internal photon lines that contribute to the process are shown in

figure 1 below. The analytic expression for the imaginary part of each of these diagrams

is:

Aa =
2g4

(2π)3

∫

d3kd3k′
(

δ+(k2)δ+(k′2)δ(p + q − k − k′)Gµλ(k)Gνσ(k
′)

× v̄(q)γν(p/− k/+m)γµu(p)ū(p′)γλ(p′/− k/ +m)γσv(q′)

((p − k)2 −m2 + iǫ)((p′ − k)2 −m2 + iǫ)((p′ − k)2 −m2 + iǫ)
) , (27)

Ab =
2g4

(2π)3

∫

d3kd3k′
(

δ+(k2)δ+(k′2)δ(p + q − k − k′)Gµλ(k)Gνσ(k
′)

× v̄(q)γ
ν(k/ − q/+m)γµu(p)ū(p′)γσ(p′/− k/+m)γλv(q′)

((k − q)2 −m2 + iǫ)((p′ − k)2 −m2 + iǫ)
) . (28)

where Gµν(k) = εµνα
kα

(k2+iǫ) (α = 0 gauge), and δ+(k2) = δ(k2)θ(k0). We for simplic-

ity,restrict ourselves to the case of forward scattering,in which case the imaginary parts

of these diagrams give contribution to the total scattering cross-section of the two parti-

cles.So,we have now in the center of mass frame for forward scattering (we hereon suppress

the irrelevant overall constant):

Aa =

∫

d3kd3k′
(

δ+(k2)δ+(k′2)δ(p + q − k − k′) Gµλ(k)Gνσ(k
′)

×(γν(p/− k/ +m)γµ)qp(γ
λ(p/− k/ +m)γσ)pq

4(p.k)2
) (29)

Ab =

∫

d3kd3k′
(

δ+(k2)δ+(k′2)δ(p + q − k − k′) Gµλ(k)Gνσ(k
′)

×(γν(p/− k/+m)γµ)qp(γ
σ(p/− k/′ +m)γλ)pq

4(p.k)(p.k′)
) . (30)

where (...)qp = v̄(q)(...)u(p) . Noting the symmetry of the integrand in k and k′, using the

identities (20), and taking traces over the γ-matrices as we proceed,we get after somewhat

lengthy calculations :

Aa = −
∫

d3kδ+(k2)(1 +
p.k

m2
+
q.k

p.k
), (31)
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Ab =

∫

d3kδ+(k2)(1 +
p.k

m2
+
q.k

p.k
). (32)

Then Aa = −Ab, or;

Aa +Ab = 0 (33)

The same result can be obtained for non-forward scattering too5.This result verifies the

unitarity identities in one-loop oder for the scattering of a fermion-antifermion pair.

VI Conclusions and Discussion

In conclusion,we first note that the fact that the topological unitarity identities do not

require the vanishing of the imaginary part of each Feynman diagram with internal on-shell

photon lines,can be easily understood for the diagrams in figure 1.First of all,each of these

diagrams is not gauge-invariant by itself,only their sum is.Moreover, the three diagrams

that are the variations of the diagram in figure 1.a, are the different boundary values of a

single analytical function of the two invariant variables s = (p + q)2 and t = (p− p′)2 for

different values of these variables(i.e in different channels).

The topological unitarity identities give additional possibility to check the self-consistency

of the Chern-Simons theories, and to simplify the calculation of Feynman diagrams in

perturbative analysis of the theory; in particular the coefficients multiplying these dia-

grams.They also provide additional criteria for correctness and gauge- invariance of the

diagrams that resemble the Ward identities.

We have carried out some analogous calculations in the theory of scalar charged particles

interacting through pure CS gauge field.In this case there are four one-loop diagrams with

two internal photon lines that contribute to the scattering amplitude of two opposittely

charged particles. The sum of the imaginary parts of these diagrams (which is gauge-

invariant) vanishes too. We also note that the generalization to the non-abelian case

should not be difficult.

It is necessary to undeline that the S-matrix operator of the theory of charged parti-

cles interacting through the CS gauge field (see for example Eq. (15)) contains non-zero

5The calcualtions for non-forward scattering will be reported in another work.
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normal-ordered products terms of the on-shell topological photon operators. However, all

the matrix elements of the normal-ordered products of the topological photon operator

are ”by definition” equal to zero. Due to this property, the matrix elements 〈f |T †T |i〉 in
Eq.(25) contain terms with internal topological D+

µν(x) functions (See Eq.(30) ). Thus,

a comparative analysis of Eqs.(25) and (26) non-perturbatively shows that the only dif-

ference between them comes from these terms. So, we come to the conclusion that these

two equations will be consistent only in the case when each exact matrix element with a

given number of internal topological lines in Eq.(25) vanishes. This statement is a direct

generalization of the topological unitarity identities in CS theories to the non-perturbative

case.

Moreover, the same arguments are also applicable in the non-relativistic case, and anal-

ogous identities can be deduced there too.

Finally, we note that if we introduce into the action in (10) the Maxwell term (1), then

we get (We do not perform the transformation (7) here) formally the same generating

functional Eq.(12) except that the Dµν propagator is replaced by (in momentum space)

Dµν(p) = γ

(

gµν − pµpν/p
2

p2 − µ2γ2 + iǫ
+

iµγεµνλp
λ

(p2 + iǫ)(p2 − µ2γ2 + iǫ)

)

+ α
pµpν

(p2 + iǫ)2
(34)

In the above propagator, the photon acquires the mass µγ as we have mentioned in the

introduction. The Maxwell term also plays the role of a regularization term and the the-

ory becomes superrenormalizable [6]. Since the stochastic parameter µ and the charge e

acquire only finite corrections due to the superrenormalizability of the theory, then it is

possible to consider two limiting procedures (in each order of perturbation theory after

renormalization). In the case γ → ∞ the propagator (34) reduces to the pure CS prop-

agator, and we get a renormalizable theory. Thus, in this case the topological unitarity

identities hold. In the case µ → 0, γ finite, we obtain pure 2+1 dimensional QED prop-

agator, and the unitarity identities no longer hold. In the intermediate cases, one can

show that the total operator of the gauge field in the S-matrix consists of two parts: the

operator of the real massive photon, and that of the massless topological photon that does

not give real radiation. Thus, the topological unitarity identities still hold in the sense

that the gauge-invariant sum of the imaginary parts of the Feynman diagrams with at

11



least one on-shell internal topological line vanishes.
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