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Non-commutative Geometry and the Higgs Masses

Aybike Çatal∗ and Tekin Dereli†

Department of Physics, Middle East Technical University , 06531 Ankara, Turkey

We study a non-commutative generalization of the standard electroweak model proposed by
Balakrishna, Gürsey and Wali [Phys. Lett. B254(1991)430] that is formulated in terms of the
derivations Der2(M3) of a three-dimensional representation of the su(2) Lie algebra of weak isospin.
The linearized Higgs field equations and the scalar boson mass eigenvalues are explicitly given.
A light Higgs boson with mass around 130 GeV together with four very heavy scalar bosons are
predicted.

PACS no.: 12.60.-i, 12.60.Fr, 14.80.Cp

I. INTRODUCTION

In spite of its observational successes, the standard model of electroweak interactions cannot yet be considered as
a fundamental theory because the scalar boson sector, unlike the gauge sector involving the fermions and the gauge
bosons, has to be written down in an ad hoc way and not by gauge principles. Furthermore, the unavoidable Higgs
scalar has not been observed and there is no way to predict its mass. In this connection a remarkable attempt at
unifying gauge fields and Higgs scalars was suggested by A. Connes [1], making use of the tools of non-commutative
differential geometry. The formalism involves three steps: First, a spectral triplet (D,H,A) is introduced, consisting
of the (generalized) Dirac operator D that acts on a Hilbert space of states H, together with an associative C∗-
algebra A also acting on H. Next, A is related with the algebra of complex valued functions on space-time in the
commutative case, whereas in more complicated settings in which the gauge groups are non-Abelian, A has to be
replaced by the tensor product A = C∞(V ) ⊗Mn with an appropriate matrix algebra. Finally, the construction of
Yang-Mills Lagrangian is done by replacing the Dixmier trace instead of integration. Within the above scheme, a
generalization of the standard electroweak model in non-commutative geometry can be given as a gauge theory with a
built in spontaneous symmetry breakdown mechanism. This way, it is not only the Higgs sector that arises naturally,
but also the correct hypercharge
assignments acquire a natural meaning. The earliest model along these lines is due to Connes and Lott [2]. Several

other attempts followed since then [3] , [4], [5]. Here we wish to re-examine the Higgs masses in a model proposed by
Balakrishna, Gürsey and Wali (BGW) [6]. In this approach the Yang-Mills and Higgs fields occur on equal footing
and the Higgs potential consisting of a sum of complete squares, appears already shifted onto an absolute minimum.
Thus, both the gauge boson and Higgs boson masses can be predicted in terms of two mass scales, each related with
one of the SU(2)I × U(1)Y gauge symmetry groups.

II. MATHEMATICAL FRAMEWORK

In order to study the bosonic sector alone it is enough to deal with the
tensor product space A = C∞(V ) ⊗ Mn so that A can be regarded as the set of matrix valued functions on the

space-time manifold V and is itself a C∗-algebra. The differential calculus of this space has been studied in [7]. It is
also possible to identify the vector fields of A with a restricted set of derivations of Mn rather than the algebra of all
derivations of Mn. We have this extra freedom because Der(Mn) is not a module over Mn. Here the Lie subalgebra
Der2(M3) generated by a three dimensional representation of su(2) is used rather than the Lie algebra Der(M3) of
all derivations of M3. Exterior derivation, connection, curvature are defined as in [6], but with some modifications
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[7]. The dimension of Der2(M3) is 2
2 − 1 = 3. Hence we may take as the generators of M3, the first three Gell-Mann

matrices τ1, τ2, τ3 and the generators of the U-spin and V-spin subalgebras along with the identity τ0 which we identify
with Y + 2

3
where Y is the hypercharge τ8/

√
3. The generators of the U-spin and V-spin subalgebras are

U± =
1

2
(τ6 ± iτ7) , U3 =

1

2
[U+, U−] , (2.1)

V± =
1

2
(τ4 ± iτ5) , V3 =

1

2
[V+, V−] .

The choice of derivations is dictated by which symmetries we want unbroken at the end. In electroweak theory
electromagnetic Uem(1) whose generator is τ0+τ3 is unbroken. Among the above generators of M3 only the generators
of the U-spin subalgebra commute with τ0 + τ3 so we define our derivations as

ea(f) = ma[λa, f ], f ∈ M3 (2.2)

where a runs through the indices (+, -, 3) and

λ± =
U±√
2

, λ3 = U3 , (2.3)

m± = m , m3 =
m2

M
.

Here m and M are two mass scales that have to be introduced into the theory to keep the dimensions correct. In
defining the derivations we use the fact that all derivations ofMn are inner and hence they are in the form ea = ad(λa).
They obey the commutation relations

[ea, eb] =
mamb

mc

Cc
ab ec (2.4)

where the structure constants Cc
ab are

C3
+− = −C3

−+ = 1, C−
3+ = −C−

+3 = 1, C+

−3 = −C+

3− = 1 (2.5)

and all others are zero.
We can now define the exterior derivative exactly as in [8], but with the set of derivations in Der2(M3) ⊆Der(M3):

df(ea) = ea(f). (2.6)

This means in particular that

dλa(eb) = mb [λb, λ
a], (2.7)

where the indices are lowered and raised by the group metric

gab = −Tr(λaλb). (2.8)

We define the set of one forms Ω 1
2 (M3) to be the set of all elements of the form f dg or dg f with f and g in A subject

to the relations d(fg) = dfg + fdg. Here the subindex 2 refers to the fact that we are using the derivation algebra
Der2(M3). The set dλa forms a system of generators of Ω 1

2 (M3) as a left or right module but it is not a convenient
one since λadλb 6= dλbλa. However there is another system of generators completely characterised by the equations

θ±(e∓) = 1 , θ±(e3) = 0 , (2.9)

θ3(e∓) = 0 , θ3(e3) = 1 .

They are related to dλa by the equations

dλa = mb C a
bc θb λc (2.10)

and they satisfy the structure equations

dθa = C a
bc

mbmc

ma

θb ∧ θc . (2.11)
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The θa’s commute with all elements of M3.
Let us choose a basis θαβ dxβ of Ω1(V ) over V and suppose eα be the pfaffian derivations dual to θα. Set i =

(α, a), 1 ≤ i ≤ 4 + 3 = 7 and introduce θi = (θα, θa) as generators of Ω1(A) as a left or right A-module and
ei = (eα, ea) as a basis of Der2(A) as a direct sum

Ω1(A) = Ω1
h ⊕ Ω1

v (2.12)

where

Ω1
h = Ω1(V )⊗Mn , Ω1

v = C∞(V )⊗ Ω1(Mn) . (2.13)

Thus the exterior derivative df of an element f of A can be written as the sum of its vertical and horizontal parts:

df = dhf + dvf . (2.14)

From the basis elements θa we can construct a 1-form θ in Ω1
v, that is

θ = −ma λa (2.15)

which satisfies the zero-curvature condition

dθ + θ2 = 0. (2.16)

III. GAUGE FIELDS

The gauge potential, which is an element of Ω1(V ) for a trivial U(1)-bundle can be generalised to the noncom-
mutative case as an anti-Hermitian element of Ω1(A). Let ω be such an element of Ω1(A). We can write it then
as

ω = A+ θ +Φ (3.1)

where

A = −igAαθ
α ∈ Ω1

h(A) (3.2)

Φ = gφaθ
a ∈ Ω1

v(A)

and θ as in (2.15). g is the coupling constant of the theory. φa here are interpreted as Higgs fields.
The gauge transformations of the trivial U(1)-bundle over V are the unitary elements of C∞(V ). In analogy, we

will choose the group of local gauge transformations as the group of unitary elements U of A, that is the group of
invertible elements u ∈ A satisfying uu∗ = 1. Here * is the *-product induced in A and A is considered as the set of
functions on V with values in GLn. An element of U defines a map of Ω1(A) into itself of the form

ω
′

= g−1ωg + g−1dg. (3.3)

We define

θ
′

= g−1θg + g−1dvg (3.4)

A
′

= g−1Ag + g−1dhg (3.5)

and so φ transforms under the adjoint action of U :

φ
′

= g−1φg . (3.6)

θ is invariant under the gauge transformations and hence ω
′

is again of the form (3.1). The curvature 2-form Ω and
the field strength F are defined as usual
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Ω = dω + ω2 F = dhA+A2 (3.7)

with components

Ω =
1

2
Ωijθ

i ∧ θj , F =
1

2
Fαβθ

α ∧ θβ . (3.8)

We find

Ωαβ = Fαβ , (3.9)

Ωαa = gDαφa = g(∂αφa − ig [Aα, φa]) ,

Ωab = g2[φa, φb]− g
mamb

mc

C c
ab φc.

As we shall see the term Ωab is responsible for the Higgs potential.
Given the curvature 2-form, we can write down the usual gauge invariant Yang-Mills Lagrangian density 4-form:

L = − 1

2g2
Tr(ΩijΩ

ij) (3.10)

In terms of the components of Ω, L becomes

L = − 1

2g2
Tr(FαβF

αβ)− Tr(Dαφa Dαφa) + V (φ) (3.11)

where the Higgs potential V (φ) is given by

V (φ) = − 1

2g2
Tr(ΩabΩ

ab). (3.12)

From the form of Ωab in (3.9) we see that V (φ) vanishes for values

φa = 0, φa =
ma

g
λa. (3.13)

For the second vacuum configuration above, the second term on the right hand side of (3.11) becomes

g2 Tr([Aα,maλa][A
α,maλ

a]). (3.14)

This expression is quadratic in the potential and hence it gives a mass to the vector bosons. This means we have a
naturally built-in Higgs mechanism.

IV. THE HIGGS MASSES

In what follows we assume a Minkowskian space-time and work in Cartesian
coordinates. Therefore we take eα = ∂α and θα = dxα. Hence we have

dh = dxα∂α (4.1)

In this model there are three independent Higgs fields:

φ+ =
H†

√
2
, φ− =

H√
2
, φ3 = △+

m2

2Mg
(2τ0 − 1). (4.2)

where

H = H+V+ +H0U+ , (4.3)

△ =
1

2
(△0λ0 +△aλa).
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By using the metric components (2.8) we see that

φ+ = −2φ−, φ− = −2φ+, φ3 = −2φ3. (4.4)

For the gauge potential we will write

A = −igAµdx
µ = −ig

1

2
(Bµλ0 +Wµaλa)dx

µ, (4.5)

where B and W ’s are going to be identified as the weak gauge bosons.
Using the field components above we can write the connection 1-form directly from (3.1):

ω = A+
g√
2
Hθ− +

g√
2
H∗θ+ + g△θ3 (4.6)

− m√
2
U+θ− − m√

2
U−θ+ +

m2

4M
(λ0 + λ3)θ3.

The next step is to construct the curvature 2-form

Ω =
1

2
Ωµνdx

µdxν +Ωµ+dx
µθ− +Ωµ−dx

µθ+ +Ωµ3dx
µθ3 (4.7)

+Ω+−θ−θ+ +Ω+3θ−θ3 +Ω3−θ3θ+.

From (3.9) we can see that

Ωµν = Fµν , (4.8)

Ωµ+ =
g√
2
DµH , Ωµ− = Ω∗

µ+ ,

Ωµ3 = gDµ△

where

Dµ = ∂µ − ig[Aµ, ] (4.9)

and the remaining three terms are

Ω+− =
g2

2
[H,H∗]− gM△−m2λ0 +

m2

2
, (4.10)

Ω+3 = − g2√
2
△H , Ω3− = Ω∗

+3.

These can also be found directly from (3.9) and the definitions (4.2) and (4.4). We write down the Lagrangian as
before and obtain

L = − 1

2g2
Tr(FαβF

αβ) + 2Tr(DαH DαH†) + 2Tr(Dα∆ Dα∆†) + V (H,△), (4.11)

where the Higgs potential is

1

8g2
V (H,△) =

1

8

[

H†H − m2

g2

]2

(4.12)

+
1

4

[

1

2
H†H − M

g
△0 −

m2

g2

]2

+
1

4

[

1

2
H†σaH − M

g
△a

]2

+
1

8
H†(△0 +△aσa)

2H.

Above H is written as a two-component column vector with complex entries H+ and H0 and σa are the Pauli spin
matrices. The vacuum configuration can be determined either directly from the minimum of the above potential
which is a sum of squares, or from (3.13), to be
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H0 =
m

g
H+ = 0 △0 = △3 = − m2

2Mg
△1,2 = 0 (4.13)

where only the electromagnetism survives symmetry breaking.
In this model we have considered our structure group SU(2)I × U(1)Y as a subgroup of U(3) and hence their

coupling constants g and g′ merge to the same value . As a consequence, the Weinberg angle is obtained from the
standard relation

sin2 θw =
g2

g2 + g′2
=

1

2
.

The mass spectrum of the model can be found easily. The masses of the W and Z bosons are found from (3.14) to be

MW = m

√

1 +
m2

2M2
MZ =

√
2m

To find the mass spectrum of the Higgs sector on the other hand, we first write down the linearized field equations
[9]:

d ⋆ dH1 + 2m2

(

1 +
m2

2M2

)

H1 − 2Mm

(

1 +
m2

2M2

)

△1 = 0 (4.14)

d ⋆ dH2 + 2m2

(

1 +
m2

2M2

)

H2 + 2Mm

(

1 +
m2

2M2

)

△2 = 0

d ⋆ dH3 + 8m2H3 − 2Mm (△0 −△3) = 0

d ⋆ dH4 = 0

d ⋆ d△0 − 2Mm H3 + 2M2

(

1 +
m2

2M2

)

△0 −m2△3 = 0

d ⋆ d△3 + 2Mm H3 + 2M2

(

1 +
m2

2M2

)

△3 −m2 △0 = 0

d ⋆ d△1 + 2M2

(

1 +
m2

2M2

)

△1 − 2Mm

(

1 +
m2

2M2

)

H1 = 0

d ⋆ d△2 + 2M2

(

1 +
m2

2M2

)

△2 + 2Mm

(

1 +
m2

2M2

)

H2 = 0

where

H1 = H+ +H∗
+, H2 = (H+ −H∗

+)/i,

H3 = H0 +H∗
0 , H4 = (H0 −H∗

0 )/i.

The diagonalization of the mass matrix that is read from linearized Higgs field equations yields the mass eigenvalues

0, 0, 0, 2M2, (3m2 +
m4

M2
+ 2M2), (3m2 +

m4

M2
+ 2M2),

(5m2 +M2 +
√

9m4 + 2m2M2 +M4), (5m2 +M2 −
√

9m4 + 2m2M2 +M4).

corresponding to the Higgs scalars

H+ ±H∗
+, H0 ±H∗

0 , △1 ± i△2, △0 ±△3.

The value of the Weinberg angle and the above masses imply that the ρ parameter

ρ =
M2

W

M2
Z cos2 θW

= 1 +
m2

2M2
.
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Experimentally ρ is very close to one so we must have M ≫ m. Thus at the mass scale M we obtain three zero mass
eigenvalues that refer to Goldstone modes which would be absorbed by weak intermediate bosons to become massive,
one light Higgs boson with mass

√
2m, and all the remaining scalar masses converge to

√
2M as we take M ≫ m.

It is now possible to predict the values of these masses at the electroweak scale EZ ∼ m by considering the
renormalization flow of the coupling constants g, g′ and the Higgs

self-coupling constant λ down from the scale M to the scale m and also using the fact that λ = g2

4
from the Higgs

potential (4.12) [6]. The relevant renormalisation group equations are given by [10]

16π2 dg

dt
= −19

6
g3, (4.15)

16π2 dg
′

dt
=

41

6
g′3, (4.16)

16π2 dλ

dt
= 24λ2 − 3λ(3g2 + g′2) +

3

8
[2g4 + (g2 + g′2)2]. (4.17)

We solve (4.15) and (4.16) and set g = g′ and λ = 1

4
g2 at the scale M . This implies

1

g2(µ)
− 1

g′2(µ)
=

60

48π2
ln

µ

M
(4.18)

at an arbitrary mass scale µ. We fix g and g′ at the scale µ = EZ = 91GeV by their measured values g(EZ) = 0.4234
and g′(EZ) = 0.1278. This choice drives the Weinberg angle to its experimental value 0.23 at the scale µ = EZ . We
also find that we should have M ∼ 5 × 1020GeV to start with. Inserting what we found back into (4.15) and (4.16)
we obtain

g2(M) = g′2(M) = 4λ(M) = 0.49. (4.19)

The remaining equation (4.17) can be solved numerically by feeding in the solutions of (4.15) and (4.16) yielding the
result λ(EZ ) = 0.14. From the standard model

m2
H(µ)

m2
Z(µ)

=
8λ(µ)

g2(µ) + g′2(µ)
(4.20)

which is already satisfied at scale M . This relation gives the mass of the Higgs particle at the electroweak scale as
mH(Ez) = 130GeV . However, the actual determination of the physical mass should take into consideration radiative
corrections. But it is well known that [11]

mH(µ) = mpole
H (1 + δ(µ)) (4.21)

where δ(µ) referring to the radiative corrections are very small at the scale µ = EZ . Therefore we may conclude

mpole
H ∼ mH(EZ) ∼ 130GeV .

V. CONCLUDING COMMENTS

The non-commutative extension of the electroweak model proposed by Balakrishna, Gürsey and Wali [6] where
the space-time is extended by the Pauli matrices themselves is both intiutive and comparatively simple to study. It
predicts a light Higgs boson with a mass around 130GeV together with four very heavy Higgs bosons.
The model may be generalized in several directions. In fact a supersymmetric generalization [12] as well as a grand

unification scheme [13] had already been discussed. We think it wouldn’t be unreasonable to contemplate an effective
field theory approach to the non-commutative electroweak models. In a first attempt, we consider to the lowest
possible order, the following cubic term in the Higgs potential:

α

3!g3
Tr(Ωab Ωbc Ωcd gad) (5.1)
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which contributes as

αg3

4
([

3
∑

i=0

△i(H
†σiH)]2 +H†H [H†(

3
∑

i=0

△iσi)
2H ]) (5.2)

+
αg2

4
M (H†(

3
∑

i=0

△iσi)
3H)− αg

2
m2H†(

3
∑

i=0

△iσi)
2H.

It can be checked that the vacuum configuration (4.13) makes the above expression vanish. This doesn’t necessarily
mean that with the inclusion of effective terms, the complete Higgs potential
cannot acquire a distinct set of vacuum expectation values. The possibility remains open at present.
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