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Abstract. We define Toeplitz operators on all Dirichlet spaces on the unit ball
of C

N and develop their basic properties. We characterize bounded, compact,
and Schatten-class Toeplitz operators with positive symbols in terms of Car-
leson measures and Berezin transforms. Our results naturally extend those
known for weighted Bergman spaces, a special case applies to the Arveson
space, and we recover the classical Hardy-space Toeplitz operators in a limit-
ing case; thus we unify the theory of Toeplitz operators on all these spaces. We
apply our operators to a characterization of bounded, compact, and Schatten-
class weighted composition operators on weighted Bergman spaces of the ball.
We lastly investigate some connections between Toeplitz and shift operators.
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1. Introduction

The theory of Toeplitz operators on Bergman spaces on the unit ball in one and
several variables is a well-established subject. Weighted Bergman spaces A2

q with
q > −1 are naturally imbedded in Lebesgue classes L2

q by the inclusion i, and there
are sufficiently many Bergman projections from Lebesgue classes onto Bergman
spaces. Then one defines the Toeplitz operator Tφ : A2

q → A2
q with symbol φ

by Tφ = PqMφi, where Mφ is the operator of multiplication by φ and Pq is the
orthogonal projection from L2

q onto A2
q , a Bergman projection. Investigating the

boundedness and compactness of these Toeplitz operators with symbols in various

The research of the second author is partially supported by a Fulbright grant.



2 Alpay and Kaptanoğlu IEOT

classes of functions has been an active area of research. A good source, especially
for positive φ, is [37, Chapter 6].

By contrast, there is not one single definition of a Toeplitz operator that
is agreed upon even on the classical Dirichlet space of the disc. The papers [11],
[12], [14], [20], [26], [32], [35], [36] discuss several different kinds of Toeplitz op-
erators on the Dirichlet space. The connections among them, and between them
and the Toeplitz operators on Bergman spaces are not clear. Only [26] deals with
the Dirichlet space on the ball, and only [32] and [35] can handle the more gen-
eral Dirichlet spaces Dq but for limited values of q, those between the Dirichlet
space and the Hardy space. To the best of our knowledge, there is no work on
Toeplitz operators on the Arveson space, not to mention one that can encompass
all Dirichlet spaces Dq on the unit ball.

There are some difficulties with Toeplitz operators on Dirichlet spaces that
are not Bergman spaces, and these are the causes for discrepancies in various
definitions used. The first is that inclusion does not imbed these spaces in the
most appropriate Lebesgue classes. The second is to decide which projections to
use from which Lebesgue classes. Thus one sees in literature Toeplitz operators
Tφf defined via an integral that involve f or its derivatives, or φ or its derivatives,
or the Bergman, Hardy, or Dirichlet kernels or their derivatives. A third difficulty
is that reproducing kernels of Dq for a large range of q are bounded and their
normalized forms are not weakly convergent. This makes them impossible to use
for obtaining a Berezin transform and perhaps explains why this range of q is never
touched upon.

The difficulties are resolved by recognizing Dirichlet spaces Dq on the ball
as the Besov spaces B2

q , where q ∈ R is adjusted so that Dq = A2
q when q > −1.

These spaces are defined by imbedding them into Lebesgue classes via the linear
maps Itsf(z) = (1 − |z|2)tDt

sf(z), where Dt
s is a radial differential operator of

sufficiently high order t with q+ 2t > −1. Extended Bergman projections Ps that
map Lebesgue classes boundedly onto Dirichlet spaces can be precisely identified
as in the case of weighted Bergman spaces by q + 1 < 2(s+ 1). Then Its is a right
inverse to Ps. This is all done in [22].

Now for all q ∈ R, we define the Toeplitz operator sTφ : Dq → Dq with
symbol φ by sTφ = PsMφI

−q+s
s . When q > −1, the case of weighted Bergman

spaces, s = q is classical, but when q ≤ −1, s must satisfy −q + 2s > −1, so
s �= q. It is possible to take s �= q also when q > −1. So we have more general
Toeplitz operators defined via I−q+ss strictly on Bergman spaces too. It turns out
that the properties of sTφ studied in this paper are independent of s and q. The
results we obtain on the boundedness, compactness, and membership in Schatten
classes of sTφ for φ ≥ 0 specialize to what is known for weighted Bergman spaces
when s = q. Our main tools are Carleson measures and Berezin transforms. The
first is defined via Its rather than i; the second is defined via weakly convergent
families in all Dq that are actually Bergman reproducing kernels with different
normalizations. These Carleson measures and weakly convergent families for all
Dq are studied first in [23].
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More is true. The space D−1 is the Hardy space H2. Now s > −1 must hold,
so s �= −1, and hence sTφ is not the classical Toeplitz operator on H2. However,
as s→ −1+, we indeed recover the classical Toeplitz operators on H2. We thereby
present a unified theory of Toeplitz operators on all Dirichlet and Bergman spaces,
the Arveson space, and the Hardy space.

The paper is organized as follows. The notation and some preliminary mate-
rial are summarized in Section 2. Section 3 is for groundwork on Dirichlet spaces,
Bergman projections on them, their imbeddings, and the differential operators be-
tween them, on which so much of this work rests. In Section 4, we define Toeplitz
operators on all Dq and develop several of their elementary properties. An in-
tertwining relation between Toeplitz operators on Dq and the classical ones on
weighted Bergman spaces turns out to be versatile. We introduce the Berezin trans-
forms in Section 5 and obtain some of their immediate consequences. We then ex-
plore the connection with the classical Hardy-space Toeplitz operators. Our main
results are in Section 6. We characterize bounded, compact, and Schatten-class
Toeplitz operators with positive symbols. We work more generally with Toeplitz
operators whose symbols are positive measures. The results in Sections 4, 5, and
6 attest to the fact that the Toeplitz operators on general Dq are natural exten-
sions of classical Bergman-space Toeplitz operators. Section 7 describes an im-
portant application of Toeplitz operators on Dq. We readily obtain characteriza-
tions of bounded, compact, and Schatten-class weighted composition operators on
weighted Bergman spaces on the ball in terms of Carleson measures and Berezin
transforms. The paper concludes with some remarks on the relationship between
Toeplitz and shift operators in Section 8.

2. Notation and Preliminaries

The unit ball of CN is denoted B, and the volume measure ν on it is normalized
with ν(B) = 1. When N = 1, it is the unit disc D. For c ∈ R, we define on B also
the measures

dνc(z) = (1 − |z|2)c dν(z),
which are finite only for c > −1, where |z|2 = 〈z, z〉 and 〈z, w〉 = z1w1+· · ·+zNwN .
In particular, we set τ = ν−(N+1). The associated Lebesgue classes are Lpc , and
L∞ simply is the class of bounded measurable functions on B.

If X is a set, then X denotes its closure and ∂X its boundary. We let C be
the space of continuous functions on B and C0 its subspace whose members vanish
on ∂B. If T is a Hilbert-space operator, then σ(T ) denotes its spectrum and σp(T )
its point spectrum.

In multi-index notation, α = (α1, . . . , αN ) ∈ NN is an N -tuple of nonnegative
integers, |α| = α1 + · · · + αN , α! = α1! · · ·αN !, zα = zα1

1 · · · zαN

N , and 00 = 1. The
symbol δnm denotes the Kronecker delta.
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Constants in formulas are all denoted by unadorned C although each might
have a different value. They might depend on certain parameters, but are always
independent of the functions that appear in the formulas.

We use the convenient Pochhammer symbol defined by

(a)b =
Γ(a+ b)

Γ(a)

when a and a+ b are off the pole set −N of the gamma function Γ. For fixed a, b,
Stirling formula gives

Γ(c+ a)
Γ(c+ b)

∼ ca−b and
(a)c
(b)c

∼ ca−b (c→ ∞), (2.1)

where x ∼ y means that both |x| ≤ C |y| and |y| ≤ C |x|, and above such C are
independent of c. The hypergeometric function is

2F1(a, b; c;x) =
∞∑

k=0

(a)k (b)k
(c)k

xk

k!
(|x| < 1).

The Bergman metric on B is

d(z, w) =
1
2

log
1 + |ϕz(w)|
1 − |ϕz(w)| = tanh−1 |ϕz(w)| (z, w ∈ B),

where ϕz(w) is the Möbius transformation on B that exchanges z and w; see [33,
§2.2]. The ball centered at w with radius 0 < r < ∞ in the Bergman metric
is denoted b(w, r). The Bergman ball b(0, r) is also the Euclidean ball with the
same center and radius 0 < tanh r < 1. The Bergman metric is invariant under
compositions with the automorphisms of B, hence ψ(b(w, r)) = b(ψ(w), r) for any
ψ ∈ Aut(B). Bergman balls have the following properties, whose proofs can be
found in [24, §2].

Lemma 2.1. Given c ∈ R and r, we have

νc(b(w, r)) ∼ (1 − |w|2)N+1+c (w ∈ B).

Given also w ∈ B, we have

1 − |z|2 ∼ 1 − |w|2 and |1 − 〈z, w〉| ∼ 1 − |w|2 (z ∈ b(w, r)).

Lemma 2.2. Given c ∈ R and r, there is a constant C such that for all 0 < p <∞,
g ∈ H(B), and w ∈ B, we have

|g(w)|p ≤ C

νc(b(w, r))

∫

b(w,r)

|g|p dνc.

Let’s note that the measure τ is also invariant under compositions with the
members of Aut(B); see [33, Theorem 2.2.6].

Given 0 < r < ∞, we call a sequence {an} of points in B an r-lattice in B

if the union of the balls {b(an, r)} cover B and d(an, am) ≥ r/2 for n �= m. The
second condition controls the amount of cover so that any point in B belongs to
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at most M of the balls {b(an, 2r)} for some M that does not depend on anything.
That r-lattices exist is proved for the unit disc in [7, Lemma 3.5].

A twice differentiable function f on B satisfying ∆(f ◦ ϕz)(0) = 0 for all
z ∈ B is called M-harmonic, where ∆ is the usual Laplacian on R2N , and ϕz is
the Möbius transformation of B mentioned above. If f is M-harmonic, so is f ◦ ψ
for any ψ ∈ Aut(B). If f is M-harmonic, then the mean value of f on a sphere
of radius less than 1 is equal to f(0); see [33, p. 52]. If additionally f ∈ L1

c for
c > −1, it follows that

f(ψ(0)) =
(1 + c)N
N !

∫

B

(f ◦ ψ) dνc (ψ ∈ Aut(B))

by polar coordinates. Now we pick ψ = ϕw, make a change of variables in the
integral using formula [33, Theorem 2.2.6 (6)] for the Jacobian of φw, and use
identity [33, Theorem 2.2.2 (iv)] to simplify. The result is

f(w) =
(1 + c)N
N !

(1 − |w|2)N+1+c

∫

B

(1 − |z|2)c
|1 − 〈z, w〉|(N+1+c)2

f(z) dν(z). (2.2)

The right hand side is seen to be a Berezin transform of f in Section 5.

3. Dirichlet Spaces

Dirichlet spaces are Hilbert spaces of holomorphic functions on B. We give three
equivalent definitions each of which has its use. The index q ∈ R is everywhere
unrestricted.
Definition 3.1a. The Dirichlet space Dq is the reproducing kernel Hilbert space on
B with reproducing kernel

Kq(z, w) =






1
(1 − 〈z, w〉)N+1+q

=
∞∑

k=0

(N + 1 + q)k
k!

〈z, w〉k, if q > −(N + 1);

2F1(1, 1; 1 −N − q; 〈z, w〉)
−N − q

=
∞∑

k=0

k! 〈z, w〉k
(−N − q)k+1

, if q ≤ −(N + 1).

Thus Dq for q > −1 are the weighted Bergman spaces A2
q, D−1 is the Hardy

space H2, D−N is the Arveson space A (see [1] and [4]), and D−(N+1) is the
classical Dirichlet space D since

K−(N+1)(z, w) =
1

〈z, w〉 log
1

1 − 〈z, w〉 .

The hypergeometric kernels appear in [10, p. 13]. The kernelsKq are complete
Nevanlinna-Pick kernels if and only if q ≤ −N as explained in [5]. Further, they
are bounded if and only if q < −(N + 1).
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The reproducing kernel Kq is sesqui-holomorphic, Dq consists of functions in
H(B), and monomials are dense in Dq. By (2.1), we have

Kq(z, w) ∼
∞∑

k=0

kN+q 〈z, w〉k =
∞∑

k=0

kN+q
∑

|α|=k

k!
α!
zαwα =

∑

α

|α|N+q |α|!
α!

zαwα

for any q. Thus

‖zα‖2
Dq

∼ α!
|α|N+q |α|! (α ∈ N

N) (3.1)

by [6, Theorem 3.3.1]. The norms (3.1) lead to the second equivalent definition of
Dirichlet spaces.
Definition 3.1b. The Dirichlet space Dq is the space of f(z) =

∑
α cα z

α in H(B)
for which ∑

α�=0

|cα|2 α!
|α|N+q |α|! <∞.

If N = 1, the growth rate of the norms in (3.1) is ‖zn‖Dq ∼ n−(1+q)/2. For
this reason, the Dq defined here is often named D−(1+q) or D−(1+q)/2 elsewhere.

The third equivalent definition recognizes that the Dirichlet space Dq as the
Besov space B2

q as described in [21] and [22]. For comparison, it is also the holo-
morphic Sobolev space A2

1+q+2t,t of [10], but this must not be confused with the
Bergman-space notation A2

q of ours. But we need to introduce some radial deriva-
tives first.

Let f ∈ H(B) be given by its homogeneous expansion f =
∑∞

k=0 fk, where
fk is a homogeneous polynomial of degree k. Then its radial derivative at z is
Rf(z) =

∑∞
k=1 k fk(z). In [22, Definition 3.1], for any s, t, the radial differential

operator Dt
s is defined on H(B) by Dt

sf =
∑∞
k=0 ( tsdk)fk, where

t
sdk =






(N + 1 + s+ t)k
(N + 1 + s)k

, if s > −(N+1), s+t > −(N+1);

(N+1+s+t)k (−(N+s))k+1

(k!)2
, if s ≤ −(N+1), s+t > −(N+1);

(k!)2

(N+1+s)k (−(N+s+t))k+1
, if s > −(N+1), s+t ≤ −(N+1);

(−(N + s))k+1

(−(N + s+ t))k+1
, if s ≤ −(N+1), s+t ≤ −(N+1).

What is important is that
t
sdk �= 0 (k = 0, 1, 2, . . .) and t

sdk ∼ kt (k → ∞)

for any s, t. Clearly D0
s is the identity for any s,

Du
s+tD

t
s = Du+t

s , and Dt
s(1) = t

sd0 (3.2)

for any s, t, u. It turns out that each Dt
s is a continuous invertible operator of order

t on H(B) with two-sided inverse

(Dt
s)

−1 = D−t
s+t. (3.3)
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Other useful properties are that D1
−N = I +R and Dt

s(z
β) = t

sd|β|z
β. The param-

eters s and t can be complex numbers too; then we just need to replace them with
their real parts in inequalities as done in [22].

A script Dq with only a lower index represents a Dirichlet space while an
upper case Dt

s with a lower and an upper index represents a radial differential
operator. They should not be confused.

Another property of Dt
s we use without further mention is that it always acts

on the holomorphic variable. Hence the series expansion of Kq shows that always

Dt
qKq(z, w) = Kq+t(z, w). (3.4)

Now we define the linear transformations Its that are essential to this work
by

Itsf(z) = (1 − |z|2)tDt
sf(z) (f ∈ H(B)).

Definition 3.1c. The Dirichlet space Dq is the space of f ∈ H(B) for which the
function Itsf belongs to L2

q for some s and t satisfying

q + 2t > −1. (3.5)

The L2
q norm of any such Itsf is an equivalent Dq norm of f .

It is shown in [10, Theorem 5.12 (i)] and [22, Theorem 4.1] that Definition
3.1c is independent of s, t, and that the L2

q norms of Itsf and It1s1f are equivalent,
both as long as (3.5) is satisfied by t and t1. To obtain the equivalence of this
definition to the first two definitions of Dq, it suffices to compute the norm of zα

in Dq in Definition 3.1c and to observe that it has the same growth rate as that
of (3.1) as |α| → ∞; see also [10, pp. 13–14]. We use [22, Proposition 2.1] in such
norm computations.

Thus Its : Dq → L2
q with t satisfying (3.5) is an isometric imbedding modulo

the equivalences of norms in Dq.
Definition 3.1c yields explicit equivalent forms for the inner product of Dq as

q[f, g]ts =
∫

B

Itsf I
t
sg dνq = [Itsf, I

t
sg]L2

q
(f, g ∈ Dq)

with t satisfying (3.5). The reproducing property q[f,Kq(·, w)]ts = C f(w) written
explicitly takes the form

∫

B

Dt
sf(z)Dt

sKq(z, w) dνq+2t(z) = C f(w)

for the same t, which can be further simplified for s = q using (3.4). We need a
constant C in order to accomodate the variation due to s, t. Let’s show the norm
on Dq associated to q[·, ·]ts by q‖ · ‖ts.

The following is easy to show, but a proof can be found in [25, §3].

Proposition 3.2. For any q, s, t, Dt
s(Dq) = Dq+2t is an isometric isomorphism with

appropriate norms on the two spaces; for example, when Dq has q‖ · ‖us and Dq+2t

has q+2t‖ · ‖u−ts+t while (3.5) is satisfied with u in place of t.
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We would like to know the adjoint ofDt
s : Dq → Dq+2t. Because each Dirichlet

space has several equivalent inner products, let’s state it explicitly by showing the
particular inner products used. It is the operator (Dt

s)∗ : Dq+2t → Dq satisfying
q+2t[Dt

sf, g]
u−t
s+t = q[f, (Dt

s)
∗g]us with q + 2u > −1 for f ∈ Dq and g ∈ Dq+2t.

Writing this out in integrals, by the uniqueness of the adjoint and using (3.3) and
(3.2), we obtain the somewhat surprising result that

(Dt
s)

∗ = D−t
s+t = (Dt

s)
−1. (3.6)

Bergman projections, as extended in [22], are the linear transformations

Psf(z) =
∫

B

Ks(z, w) f(w) dνs(w) (z ∈ B)

defined for all s with suitable f . The next result is contained in [22, Theorem 1.2].

Theorem 3.3. The operator Ps : L2
q → Dq is bounded if and only if

−q + 2s > −1. (3.7)

Given an s satisfying (3.7), if t satisfies (3.5), then

PsI
t
sf =

N !
(1 + s+ t)N

f =:
1

Cs+t
f (f ∈ Dq).

The second statement clearly shows that Ps is onto whenever it is bounded.
Note that (3.7) and (3.5) together imply s+ t > −1 so that 1 + s+ t does not hit
a pole of Γ and Cs+t > 0. If q > −1, we can take t = 0, then I0

s = i, and Theorem
3.3 reduces to the classical result on Bergman spaces. The next result is proved in
[25, §5].

Proposition 3.4. If Ps : L2
q → Dq is bounded and the norm on Dq is q‖ · ‖ts, then

‖Ps‖ =
N !

√
Γ(1 − q + 2s) Γ(1 + q + 2t)

Γ(N + 1 + s+ t)
.

We often write the inequalities (3.7) and (3.5) in the form q + 1 < p(s + 1)
and q + pt > −1 when we consider the general family of Bpq or Apq spaces and
Lebesgue classes Lpq .

Theorem 3.3 states that the composition PsIts : Dq → Dq is a constant times
the identity with s, t satisfying (3.7) and (3.5). The composition ItsPs : L2

q → L2
q in

reverse order is also important in our analysis of Toeplitz operators. Starting with
differentiation under the integral sign and (3.4), the following result is compiled
from [22, §5] and [19, Theorem 1.9].

Theorem 3.5. The operator ItsPs : L2
q → L2

q is bounded if and only if s, t satisfy
(3.7) and (3.5), and in that case, it is the operator

V ts f(z) = (1 − |z|2)t
∫

B

(1 − |w|2)s
(1 − 〈z, w〉)N+1+s+t

f(w) dν(w) (f ∈ L2
q).
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Note again that (3.7) and (3.5) together imply s + t > −1 so that Ks+t is
binomial. Now we have the operator equalities

Cs+tPsI
t
s = I, ItsPs = V ts , Cs+tV

t
s I

t
s = Its, and Cs+tPsV

t
s = Ps. (3.8)

Analogous equalities appear, for example, in [38, Lemma 20] for q > −1.
The adjoint (V ts )∗ : L2

q → L2
q of V ts is computed using Fubini theorem and is

(V ts )∗ = V −q+s
q+t . (3.9)

Hence V ts is self-adjoint on L2
q if and only if

s− t = q. (3.10)

Let q be given. If s satisfies (3.7), then the value of t obtained from (3.10) satisfies
(3.5). Conversely, if t satisfies (3.5), then the value of s obtained from (3.10)
satisfies (3.7).

Notation 3.6. Henceforth given a q, we select s so as to satisfy (3.7), and put

Q = −q + 2s and u = −q + s. (3.11)

in the remaining part of the paper. Note that

Q = s+ u = q + 2u > −1

so that DQ = A2
Q. We use only the self-adjoint V us in order to have Toeplitz

operators that are direct extensions of classical Bergman-space Toeplitz operators
and to have exact equalities as much as possible. Also we use only the inner product
[·, ·]Dq = q[·, ·]us and the corresponding norm

‖f‖2
Dq

= [f, f ]Dq = [Ius f, I
u
s f ]L2

q
= ‖Ius f‖2

L2
q

= ‖Du
s f‖2

L2
Q

=
∫

B

|Du
s f |2 dνQ (3.12)

in Dq. This is a genuine norm, that is, the only function whose norm is 0 is the
one that is identically 0. If q > −1, it is standard to use u = 0. Finally, we redefine
the Bergman projections Ps : L2

q → Dq by multiplying them by CQ as done in [16,
(7)]. Then (3.8) takes the form

PsI
u
s = I, Ius Ps = CQV

u
s , CQV

u
s I

u
s = Ius , and CQPsV

u
s = Ps. (3.13)

Lastly ‖Ps‖ = 1 now by Proposition 3.4.

The adjoint P ∗
s : Dq → L2

q of Ps can now be computed. If g ∈ L2
q and f ∈ Dq,

then

[Psg, f ]Dq = [Ius Psg, I
u
s f ]L2

q
= CQ [V us g, I

u
s f ]L2

q
= CQ [g, V us I

u
s f ]L2

q
= [g, Ius f ]L2

q

by (3.12), (3.13), (3.9), and (3.10). Thus P ∗
s = Ius . The same computation read

backwards shows that the adjoint (Ius )∗ : L2
q → Dq of Ius is (Ius )∗ = Ps. More gener-

ally, the Banach space adjoints of Ps : Lpq → Bpq are computed with respect to more
general asymmetric pairings in Besov spaces in [22, Theorem 5.3]. Summarizing,

(V us )∗ = V us , P ∗
s = Ius , and (Ius )∗ = Ps. (3.14)
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In particular, with the inclusion i = I0
s : A2

Q → L2
Q, we have

P ∗
Q = i and i∗ = PQ. (3.15)

This might seem unusual, but we remind that the target space of PQ here is A2
Q,

and not L2
Q as it is commonly taken.

Let Mφ : L2
q → L2

q be the operator of multiplication by a suitable measurable,
say L∞, function φ on B. Its adjoint M∗

φ : L2
q → L2

q is clearly M∗
φ = Mφ. What

is more interesting is that the adjoint M∗
(1−|z|2)u : L2

q → L2
Q of the particular

multiplication operator M(1−|z|2)u : L2
Q → L2

q turns out to be

M∗
(1−|z|2)u = M(1−|z|2)−u

simply by writing out the definition of the adjoint. Now we have one more way to
compute the adjoint of Ius = M(1−|z|2)u iDu

s : Dq → L2
q, where Du

s : Dq → A2
Q, i

is the inclusion i : A2
Q → L2

Q, and the multiplication is as just discussed. Then by
(3.6), (3.15), the above remarks, differentiating under the integral sign, and (3.4),
we reobtain that

(Ius )∗f(z) = (Du
s )∗i∗M∗

(1−|z|2)uf(z) = D−u
Q PQM(1−|z|2)−uf(z)

= CQD
−u
Q

∫

B

(1 − |w|2)Q−u

(1 − 〈z, w〉)N+1+Q
f(w) dν(w)

= CQ

∫

B

Ks(z, w) f(w) dνs(w) = Psf(z).

Example 3.7. We repeat [24, Remark 4.8] in our notation. We need it when we
define Berezin transforms in Section 5. Given a q, pick an s satisfying (3.7), recall
that Q > −1, let w ∈ B, and put

qgw(z) =
Ks(z, w)

‖Ks(·, w)‖Dq

=
√
CQ (1 − |w|2)(N+1+Q)/2Ks(z, w) (z ∈ B).

Then obviously ‖qgw‖Dq = 1 for all w ∈ B. Thus qgw is essentially a normalized
reproducing kernel; but although the kernel Ks is that of Ds, the normalization is
done with respect to the norm of Dq.

The kernels Kq(·, w) and Ks(·, w) have the reproducing properties

[f,Kq(·, w)]Dq = C f(w) and [f,Ks(·, w)]Dq =
1
CQ

Du
s f(w)

in Dq. The second property parallels the fact that qgw → 0 weakly in Dq by [24,
Theorems 4.3 and 4.4], which relate weak convergence in Dq to convergence of
certain derivatives. This relationship is further mirrored in

Du
s (qgw)(z) =

√
CQ

(1 − |w|2)(N+1+Q)/2

(1 − 〈z, w〉)N+1+Q
=

KQ(z, w)
‖KQ(·, w)‖DQ

=: Qkw(z),

which defines Qkw ∈ A2
Q.
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When q > −1, then s = q satisfies (3.7), and qgw(z) is nothing but the
normalized reproducing kernel of the Bergman space A2

q . When q ≤ −1, we can
use s = 0 or Q = 0 for simplicity in qgw(z).

4. Toeplitz Operators

In this section, we define the Toeplitz operators on all Dq and obtain their sev-
eral elementary properties. The main theme is that they extend and preserve the
character of classical Toeplitz operators on weighted Bergman spaces. Theorem
3.3 forces us to define them as follows.

Definition 4.1. Let q, an s satisfying (3.7), and a measurable function φ on B

be given. We define the Toeplitz operator sTφ : Dq → Dq with symbol φ as the
composition sTφ = PsMφI

u
s of linear operators, where u is as in (3.11).

When q > −1, a value of s satisfying (3.7) is s = q, whence u = 0. Then
I0
q is inclusion, and sTφ reduces to the classical Toeplitz operator qTφ = PqMφi

on the Bergman space A2
q = Dq. We use the term classical to mean a Toeplitz

operator with i = I0
q . The value s = q does not work when q ≤ −1, but we can

use s = 0 or Q = 0 for simplicity for any such q, and for the latter C0 = 1. So
by introducing sTφ in Definition 4.1, we not only are able to handle all Dirichlet
spaces, but also study several generalized Toeplitz operators indexed by s even
on a single Bergman space. One of our aims below is to show that the essential
features of sTφ are unaffected by any s satisfying (3.7).

Hankel-Toeplitz operators with analytic symbols on weighted Bergman spaces
of the unit disc that employ Cauchy-Riemann operators resembling Ius are inves-
tigated in [36].

Explicitly,

sTφf(z) = CQ

∫

B

Ks(z, w)φ(w) (1 − |w|2)2uDu
s f(w) dνq(w)

= CQ

∫

B

Ks(z, w)φ(w)Du
s f(w) dνQ(w) (f ∈ Dq).

We see that sTφf makes sense if φ ∈ L1
Q and f is a polynomial. Hence sTφ is a

densely defined possibly unbounded operator on Dq for such φ, because polyno-
mials are dense in each Dq. It is also clear that the map φ �→ sTφ is linear.

Proposition 4.2. If φ ∈ L∞, then sTφ is bounded with ‖sTφ‖ ≤ ‖φ‖L∞.

Proof. Taking f ∈ Dq and using ‖Ps‖ = 1,

‖sTφf‖Dq = ‖PsMφI
u
s f‖Dq ≤ ‖φ Ius f‖L2

q
≤ ‖φ‖L∞ ‖Ius f‖L2

q
= ‖φ‖L∞ ‖f‖Dq ,

as desired. �
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Remark 4.3. If f ∈ Dq, then Du
s f ∈ DQ = A2

Q ⊂ L2
Q by Proposition 3.2. If

φ ∈ L∞, from its integral form, we surmise that sTφf makes sense even when Du
s f

belongs to the larger space L1
Q since also φDu

s f ∈ L1
Q. This is typical of objects

defined through Bergman projections, because Ks(z, ·) is bounded for each z for
any s.

Having obtained the integral form for sTφ, we can now define Toeplitz oper-
ators on Dq with symbols that are measures on B. If µ is Borel measure on B and
u is as in (3.11), we let

dκ(w) = (1 − |w|2)2u dµ(w),

and define

sTµf(z) = CQ

∫

B

Ks(z, w) (1 − |w|2)2uDu
s f(w) dµ(w)

= CQ

∫

B

Ks(z, w)Du
s f(w) dκ(w) (f ∈ Dq).

The operator sTµ is more general and reduces to sTφ when dµ = φdνq. It makes
sense when κ is finite and f is a polynomial. Like sTφ, it is a densely defined
possibly unbounded operator on Dq for finite κ. Note that µ need not be finite in
conformity with that q is unrestricted.

We develop basic properties of sTφ and sTµ in this section. We can assume
φ and µ are such that the corresponding Toeplitz operators are bounded. First, if
φ ≡ λ, then sTλ = λ I for any s by (3.13). Next,

sT
∗
φ = (Ius )∗M∗

φP
∗
s = PsMφI

u
s = sTφ

by (3.14). So sTφ is self-adjoint if φ is real-valued a.e. in B.
By (3.14) again,

[sTφf, f ]Dq = [PsMφI
u
s f, f ]Dq = [MφI

u
s f, I

u
s f ]L2

q

=
∫

B

φ |Du
s f |2 dνQ (f ∈ Dq).

(4.1)

Also
∣∣[sTφf, f ]Dq

∣∣ ≤ ‖φ‖L∞ ‖f‖2
Dq

if φ ∈ L∞. Similarly,

[sTµf, f ]Dq =
∫

B

|Du
s f |2 dκ (f ∈ Dq). (4.2)

Proposition 4.4. If φ ≥ 0 a.e. in B, then sTφ is a positive operator. If µ is a
positive measure, then sTµ is a positive operator.

We now present a very useful intertwining relation for transforming certain
problems for Toeplitz operators on Besov spaces to similar problems for classical
Toeplitz operators on Bergman spaces.
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Theorem 4.5. We have Du
s (sTφ) = (QTφ)Du

s and Du
s (sTµ) = (QTκ)Du

s , where
QTφ = PQMφi and QTκ = CQ

∫
B
KQ(z, w) f(w) dκ(w) are classical Toeplitz oper-

ators on A2
Q. Consequently

sTφ = D−u
Q (QTφ)Du

s , sTµ = D−u
Q (QTκ)Du

s ,

and

QTφ = Du
s (sTφ)D−u

Q , QTκ = Du
s (sTµ)D

−u
Q ,

where
D−u
Q = (Du

s )−1 = (Du
s )

∗

by (3.6). In other words, sTφ : Dq → Dq and QTφ : A2
Q → A2

Q are unitarily equiv-
alent, and so are sTµ and QTκ. Said differently, the following diagrams commute:

A2
Q

QTφ−−−−→ A2
Q

Du
s

�
�Du

s

Dq sTφ−−−−→ Dq

A2
Q

QTκ−−−−→ A2
Q

Du
s

�
�Du

s

Dq sTµ−−−−→ Dq
Proof. By differentiation under the integral sign and (3.4), if φ ∈ L∞, then

Du
s (sTφf)(z) = CQ

∫

B

φ(w)
(1 − 〈z, w〉)N+1+Q

Du
s f(w) dνQ(w)

= PQMφ(Du
s f)(z) (f ∈ Dq),

because Q > −1 so that KQ is binomial. But Du
s f ∈ A2

Q by Proposition 3.2,
where t = u, which means that A2

Q has norm ‖ · ‖L2
Q
. This is the first intertwining

relation; the second is identical.
For the second assertion, we note that (Du

s )−1 = D−u
Q by (3.3). The third

assertion follows from Proposition 3.2. �

Similar relations can be found in [36, §1] and [12, Lemma 3.1]. They are more
limited than ours since N = 1 for both, the first is only for Bergman spaces, and
the second is only with first-order derivatives.

One property of classical Toeplitz operators on Bergman spaces is that if
φ is holomorphic, then QTφ = Mφ. Theorem 4.5 shows that the corresponding
relationship for Toeplitz operators on Besov spaces is not so simple; we have instead
sTφ = D−u

Q MφD
u
s when φ is holomorphic. These are related to Cesàro operators

and considered in [24, §11].
Here is an interesting consequence of Theorem 4.5. Recall sTφ = (Ius )∗MφI

u
s

by definition, where Ius : Dq → L2
q. A similar relationship holds for sTµ too when

the target space of Ius is chosen appropriately.

Theorem 4.6. Let Ĭus be the operator Ĭus : Dq → L2(µ) defined by the same formula
as Ius . Then sTµ = (Ĭus )∗Ĭus .
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Proof. Let f, g ∈ Dq. Then [(Ĭus )∗Ĭus f, g]Dq = [Ĭus f, Ĭ
u
s g]L2(µ), and Du

s g ∈ A2
Q

by Proposition 3.2. On the other hand, Theorem 4.5, (3.7), Fubini theorem, and
Theorem 3.3 with t = 0 yield

[sTµf, g]Dq = [D−u
Q (QTκ)Du

s f, g]Dq = [(QTκ)Du
s f,D

u
s g]L2

Q

=
∫

B

CQ

∫

B

Du
s f(w)

(1 − 〈z, w〉)N+1+Q
dκ(w)Du

s g(z)dνQ(z)

=
∫

B

Du
s f(w)CQ

∫

B

Du
s g(z)

(1 − 〈w, z〉)N+1+Q
dνQ(z) dκ(w)

=
∫

B

Du
s f(w)Du

s g(w) dκ(w) = [Ĭus f, Ĭ
u
s g]L2(µ).

By the uniqueness of the adjoint, we are done. �

As a matter of fact, Carleson measures on Dq are defined in [23] using this
Ĭus : Dq → L2(µ), and we use those Carleson measures to characterize sTµ with
positive µ in Section 6. The classical Bergman-space version of Theorem 4.6 is in
[27, §1], where the inclusion R : A2

0 → L2(µ) is used in place of Ĭus .
The effects of the choice for u are evident in the results obtained so far. Other

t would not yield these expected properties. We see more effects below.
Every property of Toeplitz operators obtained above can also be derived from

Theorem 4.5 and the corresponding property of classical Bergman-space Toeplitz
operators. We prove several other properties employing the same instrument.

Proposition 4.7. If ψ ∈ H(B), then (sTφ)(sTψ) = sTφψ and (sTψ)(sTφ) = sTψφ.

Proof. By Theorem 4.5, a similar result on Bergman-space Toeplitz operators, and
Theorem 4.5 again,

sTφ(sTψ) = D−u
Q (QTφ)Du

sD
−u
Q (QTψ)Du

s = D−u
Q (QTφψ)Du

s = sTφψ.

The second identity follows by taking adjoints. �

It also follows that (sTψ)(sTψ) = sTψ2 for ψ ∈ H(B) or ψ ∈ H(B). We are
now in a position to prove a result about the commutants of Toeplitz operators
with holomorphic symbols on the disc.

Theorem 4.8. Suppose N = 1. If φ ∈ L∞, ψ ∈ H∞ is nonconstant, and sTφ and
sTψ commute on Dq, then φ ∈ H∞.

Proof. Let PQ(φ) = f ; then f ∈ A2
Q ∩H∞ and φ = f + g with g in the orthogonal

complement of A2
Q in L2

Q. We let k = 0, 1, 2, . . . and compute the successive actions
of the given Toeplitz operators on 1 ∈ Dq ordered in two ways. By Theorem 4.5,
(3.2), and the proof of [8, Theorem] which is equally valid for weighted Bergman
spaces, we obtain

sTψk(sTφ)1 = D−u
Q (QTψk)(QTφ)Du

s 1 = D−u
Q (f ψk)
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and
sTφ(sTψk)1 = D−u

Q (QTφψk)1 = D−u
Q (f ψk) +D−u

Q PQ(g ψk).

Thus PQ(g ψk) = 0 by (3.3). Let h ∈ Dq. Then again by the proof of [8, Theorem],
we have g = 0 and φ = f ∈ H∞. �

Obviously, if f ≡ 0, then sTφf = 0. And it is clear from the integral form of
sTφ that if φ = 0 a.e. in B, then sTφ is the zero operator. The converses are also
true.

Proposition 4.9. If φ ∈ H(B) and φ �≡ 0, then sTφ is one-to-one on Dq. The map
φ �→ sTφ is one-to-one.

Proof. These follow from their classical Bergman-space counterparts, which are in
[3], and Theorem 4.5. �

We have already shown that a bounded φ gives rise to a bounded sTφ. It is
reasonable to expect that a more restricted φ gives rise to a compact sTφ.

Proposition 4.10. If φ ∈ L∞ has compact support in B, then sTφ is compact.
Similarly, if µ is finite and has compact support in B, then sTµ is compact. If
φ ∈ C, then sTφ is compact if and only if φ ∈ C0.

Proof. These all follow from the same classical Bergman-space results (see [37,
§6.1], for example), Theorem 4.5, and the fact that a composition of a compact
operator with a bounded one is compact. �

5. Berezin Transforms

To develop the theory of Toeplitz operators further, we need to introduce the
Berezin transforms.

Definition 5.1. Let {qgw} be the family of functions in Dq described in Example
3.7, and let T be a linear operator on Dq. We define the Berezin transform of T
as the function T̃ (w) = [T (qgw), qgw]Dq on B.

It is clear that T̃ ∗(w) = T̃ (w), that |T̃ (w)| ≤ ‖T ‖ for all w ∈ B if T is
bounded, and that T̃ (w) is a continuous function of w since qgw depends on w
continuously.

When T is a Toeplitz operator, we also use the common notation sφ̃q for sT̃φ
and sµ̃q for sT̃µ, and call them the Berezin transforms of φ and µ. Equation (4.1),
Example 3.7, and Theorem 4.5 yield the explicit forms

sφ̃q(w) =
∫

B

φ(z) |Qkw(z)|2 dνQ(z)

= CQ (1 − |w|2)N+1+Q

∫

B

(1 − |z|2)2u
|1 − 〈z, w〉|(N+1+Q)2

φ(z) dνq(z)

= [QTφ(Qkw),Qkw]L2
Q

= φ̃Q(w) (w ∈ B),
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which is valid for any φ ∈ L1
Q, where φ̃Q is the classical Bergman-space Berezin

transform of φ. Hence, when N = 1, sφ̃q = CQBQφ of [19, §2.1] since Q > −1.
Analogously, by (4.2),

sµ̃q(w) =
∫

B

|Qkw(z)|2 dκ(z)

= CQ (1 − |w|2)N+1+Q

∫

B

(1 − |z|2)2u
|1 − 〈z, w〉|(N+1+Q)2

dµ(z)

= [QTκ(Qkw),Qkw]L2
Q

= κ̃Q(w) (w ∈ B)

(5.1)

for those µ for which the integral converges. Hence sµ̃q = CQBQ
q µ of [24, §5]. It is

now clear that if φ ≥ 0 a.e. in B, then sφ̃q ≥ 0 on B, and if µ is a positive measure,
then sµ̃q ≥ 0 on B.

Clearly, if sTφ = 0 or φ = 0 a.e. in B, then sT̃φ = sφ̃q = 0 on B. The converse
of this property justifies Definition 5.1.

Proposition 5.2. The maps sTφ �→ sT̃φ and φ �→ sφ̃q are one-to-one.

Proof. The first claim is an obvious consequence of the second, which can be
proved, because Q > −1, as in [19, Proposition 2.6] by taking more partial deriva-
tives since now N is arbitrary. �

Definition 4.1, Example 3.7, and Definition 5.1 depend on the action on Dq
of the reproducing kernel Ks with s satifying (3.7), which can be chosen as Kq if
and only if q > −1. In other words, in many instances on Toeplitz operators on
general Dq, the parameter s replaces the parameter q. Here’s one more result in
this direction.

Proposition 5.3. If φ ∈ H(B), then sT
∗
φ(qgw) = φ(w) qgw.

Proof. We have

sTφ(qgw)(z) = D−u
Q (QTφ)D

u
s (qgw)(z)

=
√
CQ (1 − |w|2)(N+1+Q)/2D−u

Q (QTφ)KQ(z, w)

= φ(w)
√
CQ (1 − |w|2)(N+1+Q)/2D−u

Q KQ(z, w)

= φ(w)
√
CQ (1 − |w|2)(N+1+Q)/2Ks(z, w) = φ(w) qgw(z)

by Theorem 4.5, Example 3.7, the classical Bergman-space result, and (3.4). �

Therefore if φ ≡ λ, then λ is an eigenvalue for sTλ with eigenvector qgw. As
expected, this is the only possibility for the point spectrum of sTφ as we show
next, where we also determine the spectrum of sTφ.

Theorem 5.4. If φ ∈ H∞, then σ(sTφ) = φ(B), and σp(sTφ) = ∅ unless φ is
identically constant.
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Proof. Again this is a straightforward consequence of the unitary equivalence
stated in Theorem 4.5 and the well-known Bergman-space result which can be
found in [37, Chapter 6]. �

We do not pursue spectral theory any further in this work. Let’s finally give
some general equivalent conditions for the boundedness and compactness of sTφ.

Proposition 5.5. Suppose φ ∈ L1
Q is M-harmonic. Then sTφ is bounded if and only

φ is bounded. And sTφ is compact if and only if φ = 0 on B.

Proof. The if part of the first statement is Proposition 4.2, and the if part of the
second statement is obvious. If sTφ is bounded, then by (2.2) and Example 3.7,

|φ(w)| = |sφ̃q(w)| =
∣∣[sTφ(qgw), qgw]Dq

∣∣ ≤ ‖sTφ(qgw)‖Dq ‖qgw‖Dq ≤ ‖sTφ‖
for all w ∈ B. Hence φ is bounded. If sTφ is compact, then

|φ(w)| ≤ ‖sTφ(qgw)‖Dq → 0 as |w| → 1.

That is, the restriction of φ to ∂B vanishes. By the maximum principle, φ vanishes
on all of B. �

We summarize the basic formulas for the Arveson space A = D−N . The
parameter s is chosen so that Q = N+2s > −1. Then s > −(N+1)/2 > −(N+1)
and the kernel Ks is always binomial. Also u = N + s > 0, and thus a strictly
positive-order derivative is required in all definitions and formulas. If f ∈ A, then

‖f‖2
D−N

=
∫

B

(1 − |z|2)N+2s |DN+s
s f(z)|2 dν(z).

We write only those formulas in which the symbol of the Toeplitz operator is a
function; for the formulas when the symbol is a measure, we just substitute dµ(w)
for (1 − |w|2)−N dν(w). The Toeplitz operator is

sTφf(z) =
(N + 1 + 2s)N

N !

∫

B

φ(w) (1 − |w|2)N+2s

(1 − 〈z, w〉)N+1+s
DN+s
s f(w) dν(w).

The weakly convergent family in A we use in defining the Berezin transform is

qgw(z) =

√
(N + 1 + 2s)N

N !
(1 − |w|2)(2N+1+2s)/2

(1 − 〈z, w〉)N+1+s
.

The Berezin transform is

sφ̃−N (w) =
(N + 1 + 2s)N

N !
(1− |w|2)2N+1+2s

∫

B

(1 − |z|2)N+2s

|1 − 〈z, w〉|(2N+1+2s)2
φ(z) dν(z).

A value of Q that gives simpler formulas is Q = N + 2s = 0, because the factors
(1 − | · |2)N+2s disappear, and then s = −N/2 and u = N/2. Another case that
might be of interest is s = 0 in which Q = u = N .

When N = 1, the Arveson space becomes one with the Hardy space H2.
SettingN = 1 above, it is clear that the Toeplitz operators studied in this paper are
not the classical Toeplitz operators on H2. The ones here depend on an imbedding
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of H2 in L2
−1 by way of Ius rather than its usual imbedding in L2(∂D) by way of

inclusion, and require a radial derivative of positive order u.

Remark 5.6. However, let’s take the limits as u → 0+, that is, as s → −1+, of
the formulas for H2 when N = 1. Let’s assume φ has boundary values on ∂D,
also called φ, so that Hardy-space expressions make sense; f ∈ H2 clearly has
boundary values. It is known by weak-∗ convergence of measures that

lim
s→−1+

√
2(1 + s) ‖f‖D−1 = ‖f‖H2 (f ∈ H2),

where ‖ · ‖H2 is the classical norm on H2. For a detailed proof, [25, §3] can be
consulted. With the same computation, we obtain

lim
s→−1+

1√
2(1 + s)

qgw(z) = kw(z),

where kw is the classical normalized reproducing kernel of H2. Next we obtain

lim
s→−1+

sTφf(z) = Tφf(z) (f ∈ H2),

where Tφf = P(φ f) is the classical Toeplitz operator on H2 defined via the Szegő
projection P. We also obtain

lim
s→−1+

(sφ̃−1)(w) = Φ̃(w),

where Φ̃ is the classical Berezin transform on H2, which is the Poisson transform
of the boundary values of φ. No extra factor is required for sTφ or sφ̃−1, because
the factor CQ = 2(1 + s) is built into them.

The same conclusions hold on D−1 also when N > 1; no change is necessary
for sTφ or sφ̃−1; in ‖ · ‖D−1 and qgw we just replace 2(1 + s) by (2(1 + s))N/N !.
Therefore the classical Toeplitz operators on H2 are limiting cases of the Toeplitz
operators on D−1 studied in this paper as the order of the radial derivative in their
definition tends to 0.

6. Toeplitz Operators with Positive Symbols

Throughout this section we assume φ ≥ 0 and µ ≥ 0 so that the resulting Toeplitz
operators sTφ and sTµ on Dq are positive. We then give equivalent conditions
for the boundedness, compactness, and membership in Schatten classes of these
Toeplitz operators. Our main tools are the Berezin transform and Carleson mea-
sures. The only exception to positivity is Theorem 6.7, where φ is bounded instead.

Definition 6.1. A positive Borel measure µ on B is called a q-Carleson measure if
the ratio

qµ̂r(w) =
µ(b(w, r))
νq(b(w, r))

is bounded for w ∈ B for some 0 < r < ∞. The measure µ is called a vanishing
q-Carleson measure if the same ratio tends to 0 as |w| → 1 for some 0 < r <∞.
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The following characterization of q-Carleson and vanishing q-Carleson mea-
sures is given in [24, Theorem 5.9], actually in slightly more general form. Its
corollary also appears in the same source.

Theorem 6.2. Fix q. Let r, an r-lattice {an}, and s satisfying (3.7) be given. The
following conditions are equivalent for a positive Borel measure µ on B.

(i) The measure µ is a q-Carleson (resp. vanishing q-Carleson) measure.
(ii) The sequence {qµ̂r(an)} is bounded (resp. has limit 0).
(iii) The imbedding Ĭus : Dq → L2(µ) is bounded (resp. compact).
(iv) The Berezin transform sµ̃q is bounded on B (resp. in C0).

Thus the property of being a (vanishing) q-Carleson measure is independent
of r, {an}, and s under (3.7), but depends on q. In accordance with that q is
unrestricted, a (vanishing) q-Carleson measure need not be finite.

Corollary 6.3. A positive Borel measure µ on B is a q-Carleson (resp. vanishing
q-Carleson) measure if and only if κ is a Q-Carleson (resp. vanishing Q-Carleson)
measure.

Now we can state our main theorem.

Theorem 6.4. Suppose µ is a positive Borel measure on B. Then sTµ is bounded
(resp. compact) on Dq if and only if µ is a q-Carleson (resp. vanishing q-Carleson)
measure.

Proof. With all the preparation done in earlier sections, we give two related very
short proofs.

By Theorem 4.6, sTµ is bounded or compact on Dq if and only if Ĭus has
the same property. By Theorem 6.2, either property is equivalent to a q-Carleson-
measure property for µ.

Or, by Theorem 4.5, sTµ is bounded or compact if and only if QTκ has the
same property. By [37, Theorems 6.4.4 and 6.4.5], either property translates to a
Q-Carleson-measure property for κ. By Corollary 6.3, we fall back to a q-Carleson-
measure property for µ. �

It is among the consequences of Theorem 6.2 that if µ is a q-Carleson measure,
then κ is finite; see [24, §1]. In the light of Theorem 6.4, the finiteness of κ, which
is stated for sTµ to make sense when it is first defined in Section 4, is as natural
a condition as possible.

Corollary 6.5. Suppose φ ≥ 0 is a measurable function on B. Then sTφ is bounded
(resp. compact) on Dq if and only if φdνq is a q-Carleson (resp. vanishing q-
Carleson) measure.

It is clear from Theorem 6.2 that the results of Theorem 6.4 and Corollary 6.5
are independent of the particular value of s used in the definition of the Toeplitz
operator or the particular weakly convergent family {qgw} used in the definition of
its Berezin transform or the particular value of the radius r used in the definition



20 Alpay and Kaptanoğlu IEOT

of qµ̂r. We next show that the results are also independent of the Dirichlet space
Dq that the Toeplitz operator acts on when the operator in question is sTφ. So
suppose dµ(z) = φ(z) dνq(z). Then by Lemma 2.1,

qµ̂r(w) ∼ 1
(1 − |w|2)N+1+q

∫

b(w,r)

φ(z) (1 − |z|2)q dν(z)

∼ 1
ν(b(w, r))

∫

b(w,r)

φ(z) dν(z) =: φ̂r(w),

which defines the averaging function φ̂r on Bergman balls independently of q.

Corollary 6.6. Suppose φ ≥ 0 is a measurable function on B. Let r, an r-lattice
{an}, and s satisfying (3.7) be given. The following are equivalent.

(i) The Toeplitz operator sTφ : Dq → Dq is bounded (resp. compact).
(ii) The Berezin transform sφ̃q is bounded on B (resp. in C0).
(iii) The averaging function φ̂r is bounded on B (resp. in C0).
(iv) The sequence {φ̂r(an)} is bounded (resp. has limit 0).

We make an excursion from our main line of development to insert a result on
the compactness of Toeplitz operators whose symbols are not necessarily positive.

Theorem 6.7. Let N = 1 and φ ∈ L∞. Then sTφ on Dq is compact if and only if
sφ̃q lies in C0.

Proof. Pick u so that Q = 0. By Theorem 4.5, sTφ is compact if and only if the
classical Toeplitz operator 0Tφ on A2

0 is compact, which in turn holds if and only
if 0φ̃0 is in C0 by [9, Corollary 2.5]. But sφ̃q = 0φ̃0 by our choice of Q. �

Unfortunately, the methods of [9] do not immediately generalize to dimen-
sions N > 1 or to classical Toeplitz operators qTφ = PqMφi on weighted Bergman
spaces A2

q with q �= 0. There are some extensions to non-Hilbert Bergman spaces
Ap0 with p > 1 in [29], but with extra assumptions.

Example 6.8. Let’s illustrate Corollaries 6.5 and 6.6 and Theorem 6.7 by picking
Q = 0 and φ(z) = (1− |z|2)c when N = 1. By Corollary 6.5, sTφ is compact if and
only if c > 0. Its Berezin transform is

qφ̃s(w) = (1 − |w|2)2
∫

D

(1 − |z|2)c
|1 − 〈z, w〉|4 dν(z).

By [33, Proposition 1.4.10], qφ̃s(w) ∼ (1− |w|2)b, where the power b depends on c
but is always positive so that qφ̃s ∈ C0 in all cases. This is as predicted by Corollary
6.6 or Theorem 6.7.

We return to positive symbols and now investigate the conditions under which
the operators sTφ or sTµ belong to the Schatten-von Neumann ideal Sp of Dq. For
0 < p <∞, a compact operator T on a Hilbert space H with inner product [·, ·] is
said to belong to to Sp of H if its sequence of singular values lies in �p. We refer to



Vol. 58 (2007) Toeplitz Operators on Arveson and Dirichlet Spaces 21

[18, Chapter III] for relevant definitions and basic properties of Schatten ideals. If
T is a compact operator or an operator in S1, then the value of the sum

∑
j [Tej, ej ]

is the same for any orthonormal basis {ej}j∈J in H , and is called the trace tr(T )
of T . The sum is finite in the latter case whence we call T a trace-class operator.
If T is a positive compact operator on H , then T p is uniquely defined, and T ∈ Sp
if and only if T p ∈ S1. An operator in S2 is called a Hilbert-Schmidt operator. A
compact operator T belongs to Sp if and only if |T |p defined as (T ∗T )p/2 belongs
to S1, which holds if and only if T ∗T belongs to Sp/2. We have S1 ⊂ Sp ⊂ S∞ for
1 < p < ∞. Further, for operators on H , T1 ≤ T2 means that [T1f, f ] ≤ [T2f, f ]
for all f ∈ H .

We are interested in H = Dq for any q ∈ R. We need a few lemmas before
we characterize the Toeplitz operators with positive symbols that are in Schatten
ideals Sp of Dq for 1 ≤ p < ∞. Recall that φ, µ, sTφ, and sTµ are all positive in
this section.

Lemma 6.9. If T is a positive or a trace-class operator on Dq, then

tr(T ) = tr(Du
s TD

−u
Q ) = CQ

∫

B

(Du
s TD

−u
Q )∼ dτ,

where (Du
s TD

−u
Q )∼ is the classical Bergman-space Berezin transform of the oper-

ator Du
s TD

−u
Q : A2

Q → A2
Q.

Proof. Let { eα : α ∈ N
N } be an orthonormal basis for Dq with respect to the

inner product [·, ·]Dq . Put fα = Du
s eα. Then { fα : α ∈ NN } is an orthonormal

basis for DQ = A2
Q with respect to the inner product [·, ·]L2

Q
by Proposition 3.2.

Then

tr(T ) =
∑

α

[Teα, eα]Dq =
∑

α

[Du
s Teα, D

u
s eα]L2

Q
=

∑

α

[
(Du

s TD
−u
Q )fα, fα

]
L2

Q

,

which proves the first equality. The second equality follows by modifying the proof
of [37, Proposition 6.3.2] for the ball and for weighted Bergman spaces. �
Lemma 6.10. We have

tr(sTµ) = CQ

∫

B

sµ̃q dτ = CQ

∫

B

KQ(z, z) dκ(z) = CQ

∫

B

dµ(z)
(1 − |z|2)N+1+q

and

tr(sTφ) = CQ

∫

B

sφ̃q dτ = CQ

∫

B

φ(z)KQ(z, z) dνQ(z) = CQ

∫

B

φdτ.

Proof. By Lemma 6.9 and (5.1), we have

tr(sTµ) = CQ

∫

B

QT̃κ dτ = CQ

∫

B

sµ̃q dτ.

The rest now follows by modifying the proof of the Corollary to [37, Proposition
6.3.2] to suit the weighted Bergman spaces and the ball. �
Lemma 6.11. If 1 ≤ p <∞ and φ ∈ Lp(τ), then sTφ ∈ Sp.
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Proof. Let {eα} be any orthonormal basis for Dq. By Lemma 6.9, we have

tr(sTφ) =
∑

α

[sTφeα, eα]Dq =
∑

α

[QTφfα, fα]L2
Q

= tr(QTφ),

where QTφ is a classical Bergman-space Toeplitz operator. So sTφ ∈ Sp if and only
if QTφ ∈ Sp. We are done by [37, Lemma 6.3.4]. �

Lemma 6.12. Given r, there is a C such that sTµ ≤ C (sTqµ̂r
).

Proof. Let f ∈ Dq. We compute using (4.1), Lemma 2.1, Fubini theorem, Lemma
2.2, (4.2), and obtain

[sTqµ̂r
f, f ]Dq =

∫

B

µ(b(z, r))
νq(b(z, r))

|Du
s f(z)|2 dνQ(z)

∼
∫

B

|Du
s f(z)|2

(1 − |z|2)N+1−2u

∫

B

χb(z,r)(w) dµ(w) dν(z)

=
∫

B

∫

b(w,r)

|Du
s f(z)|2

(1 − |z|2)N+1−2u
dν(z) dµ(w)

∼
∫

B

1
νq(b(w, r))

∫

b(w,r)

(1 − |z|2)2u |Du
s f(z)|2 dνq(z) dµ(w)

≥ C

∫

B

(1 − |w|2)2u |Du
s f(w)|2 dµ(w) = [sTµf, f ]Dq ,

which is what is wanted. �

The classical Bergman-space versions of Lemmas 6.9–6.12 can be found in
[37, §6.3].

Now we are ready for a characterization of Toeplitz operators in Sp.

Theorem 6.13. Suppose µ is a positive Borel measure on B. Let 1 ≤ p <∞, r, an
r-lattice {an}, and s satisfying (3.7) be given. The following are equivalent.

(i) The Toeplitz operator sTµ : Dq → Dq belongs to Sp.
(ii) The Berezin transform sµ̃q belongs to Lp(τ).
(iii) The averaging function qµ̂r belongs to Lp(τ).
(iv) The sequence {qµ̂r(an)} belongs to �p.

Proof. (i) =⇒ (ii): By positivity, if sTµ is in Sp, then sT
p
µ is in S1 so that tr(sT pµ)

is finite. Now by definition and [37, Proposition 6.3.3],
∫

B

sµ̃q
p dτ =

∫

B

[sTµ(qgw), qgw]pDq
dτ(w) ≤

∫

B

[sT pµ(qgw), qgw]Dq dτ(w).

But the last term is just tr(sT pµ).
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(ii) =⇒ (iii): Lemma 2.1 shows that

qµ̂r(w) ∼ 1
(1 − |w|2)N+1+q

∫

b(w,r)

dµ

∼ (1 − |w|2)N+1+Q

∫

b(w,r)

(1 − |z|2)2u
|1 − 〈z, w〉|(N+1+Q)2

dµ(z)

≤ (1 − |w|2)N+1+Q

∫

B

dκ(z)
|1 − 〈z, w〉|(N+1+Q)2

= sµ̃q(w).

(iii) =⇒ (i): Suppose qµ̂r ∈ Lp(τ). Then sTqµ̂r
∈ Sp by Lemma 6.11. By

positivity and [37, Theorem 1.4.7],
∑
α [sTqµ̂r

eα, eα]pDq
< ∞ for any orthonormal

set {eα} in Dq. Then
∑
α [sTµeα, eα]pDq

<∞ too by Lemma 6.12. We are done by
applying [37, Theorem 1.4.7] again.

(iii) ⇐⇒ (iv): This is in [24, §5] and has an independent proof. �

As observed above, the conclusions of Theorem 6.13 do not depend on s, r,
{an}, or {qgw}, but do depend on q. When we specialize to sTφ, that dependence
disappears too in the same way as in Corollary 6.6.

Corollary 6.14. Suppose φ ≥ 0 is a measurable function on B. Let 1 ≤ p < ∞, r,
an r-lattice {an}, and s satisfying (3.7) be given. The following are equivalent.

(i) The Toeplitz operator sTφ : Dq → Dq belongs to Sp.
(ii) The Berezin transform sφ̃q belongs to Lp(τ).
(iii) The averaging function φ̂r belongs to Lp(τ).
(iv) The sequence {φ̂r(an)} belongs to �p.

The classical Bergman-space versions (q > −1 with i = I0
q ) of Theorems 6.4

and 6.13 on D can be found in [37, Chapter 6]. What is new here are that the
results now hold for all Dirichlet spaces (q ∈ R), that they hold although Toeplitz
operators here are defined via Ius for all q rather than i, and thus they give a unified
picture of Toeplitz operators on weighted Bergman and other Dirichlet spaces.

Thus, when φ ≥ 0, the Toeplitz operator sTφ on the Arveson space is
bounded, compact, or in Sp precisely when the classical Toeplitz operator 0Tφ
on the Bergman space A2

0 is bounded, compact, or in Sp, which occurs precisely
when the averaging function φ̂r is bounded, in C0, or in Lp(τ), respectively.

Remark 6.15. We continue Remark 5.6 by letting q = −1 and taking limits as
s → −1+ in Corollary 6.5. We take N = 1 for simplicity, and recall that φ ≥ 0.
We know sTφ becomes the classical Toeplitz operator Tφ on H2 in the limit.

By Theorem 6.2 (iii), the condition that φdν−1 is a (−1)-Carleson measure
means

∫

D

(1 − |z|2)1+2s |D1+s
s f(z)|2 φ(z) dν(z) ≤ C ‖f‖2

D−1
(f ∈ H2).
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After multiplying both sides by 2(1 + s), as s→ −1+, it takes the form
∫ 2π

0

|f(eiθ)|2 φ(eiθ)
dθ

2π
≤ C

∫ 2π

0

|f(eiθ)|2 dθ
2π

(f ∈ H2)

in the same way as in Remark 5.6. Since this is true for all f ∈ H2, it is equivalent
to that φ is bounded by C a.e. on ∂D. By Theorem 6.2 (iv), the condition that
φdν−1 is a vanishing (−1)-Carleson measure means that sφ̃q is in C0. This is the
same as having 2(1 + s) (sφ̃q) in C0. As s → −1+, by Remark 5.6, it is equivalent
to having Φ̃, the Poisson transform of the boundary values of φ, in C0. This holds
if and only if φ = 0 a.e. in D, or equivalently, φ = 0 a.e. on ∂D.

As in Remark 5.6, when N > 1, 2(1 + s) is replaced by (2(1 + s))N/N ! in
intermediate steps with no effect on conclusions.

Thus we recover the characterizations of the boundedness and compactness
of the classical Tφ on H2 (see [37, Propositions 9.1.2 and 9.1.3]) in the limiting
case s→ −1+ of sTφ on D−1, supplying further evidence that sTφ unifies Toeplitz
operators on Hardy, weighted Bergman, and Dirichlet spaces.

7. Weighted Composition Operators on Weighted Bergman Spaces

Definition 7.1. Let f, η, ϕ ∈ H(B) and ϕ have range in B. The operator MηCϕ
defined by MηCϕf = η(f ◦ ϕ) is called a weighted composition operator.

We are interested in weighted composition operators MηCϕ : A2
Q → A2

Q for
Q > −1. Suppose Q, q, and s are related as in (3.11). Consider Du

s : Dq → A2
Q

which is an isometry. We also know (Du
s )−1 = D−u

Q . If f, g ∈ D2
q , then F = Du

s f

and G = Du
s g are in A2

Q. We now define ηEϕ : Dq → Dq by ηEϕ = D−u
Q MηCϕD

u
s .

Operators resembling ηEϕ are used in [28] and [39] in similar contexts. Then
[
(ηEϕ)∗(ηEϕ)f, g

]
Dq

=
[
(ηEϕ)f, (ηEϕ)g

]
Dq

= [Du
sD

−u
Q MηCϕD

u
s f,D

u
sD

−u
Q MηCϕD

u
s g]L2

Q

= [MηCϕF,MηCϕG]L2
Q

=
∫

B

F (ϕ(z))G(ϕ(z)) |η(z)|2 (1 − |z|2)Q dν(z)

=
∫

B

F (ϕ(z))G(ϕ(z)) d(ηνQ)(z)

=
∫

B

F (ζ)G(ζ) d(ηνQ ◦ ϕ−1)(ζ)

=
∫

B

(Du
s f)(ζ) (Du

s g)(ζ) dκ(ζ) = [sTµf, g]Dq ,
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as in the proof of Theorem 4.6. Thus sTµ = (ηEϕ)∗(ηEϕ). Here κ = ηνQ ◦ ϕ−1 is
the pull-back measure that assigns the value

κ(Ω) =
∫

ϕ−1(Ω)

|η(z)|2 (1 − |z|2)Q dν(z)

to each Borel subset Ω of B. As in Section 4, dµ(ζ) = (1 − |ζ|2)q−Q dκ(ζ). Note
that both κ and µ are positive Borel measures.

Theorem 7.2. The weighted composition operator MηCϕ is bounded (resp. compact)
on the weighted Bergman space A2

Q of B if and only if the Berezin transform sµ̃q
is bounded on B (resp. in C0).

Proof. For compactness, we use the fact that a composition of a bounded operator
and a compact one is compact. The operator MηCϕ is bounded (resp. compact)
on A2

Q if and only if ηEϕ is bounded (resp. compact) on Dq if and only if sTµ
is bounded (resp. compact) on Dq if and only if µ is a q-Carleson (resp. vanish-
ing q-Carleson) measure by Theorem 6.4. By Theorem 6.2, these conditions are
equivalent to the stated conditions on the Berezin transform.

We can restate the equivalent conditions more explicitly in terms of the pa-
rameters η and ϕ of the operator MηCϕ. By (5.1) and the definition of µ above,

sµ̃q(w) = CQ (1 − |w|2)N+1+Q

∫

B

1
|1 − 〈ζ, w〉|(N+1+Q)2

d(ηνQ ◦ ϕ−1)(ζ)

= CQ (1 − |w|2)N+1+Q

∫

B

|η(z)|2
|1 − 〈ϕ(z), w〉|(N+1+Q)2

dνQ(z). (7.1)

Thus MηCϕ is bounded (resp. compact) if and only if the quantity in (7.1) as a
function of w is bounded in B (resp. in C0). �

When N = 1, this theorem is proved in [13, Proposition 2] using a charac-
terization of Carleson measures via a derivative of disc automorphisms, a tool not
readily available for N > 1. (Incidentally, the so-called weighted ϕ-Berezin trans-
form Bϕ,α in [13] should have the measure dAα instead of dA in its definition.)
Yet we are able to prove Theorem 7.2 with great ease once the theory of Carleson
measures on Besov and Toeplitz operators on Dirichlet spaces are developed.

Our next result on the Schatten-ideal membership of MηCϕ follows from
Theorem 6.13 with a proof very similar to that of Theorem 7.2.

Theorem 7.3. Let 2 ≤ p < ∞. The weighted composition operator MηCϕ belongs
to Sp of the weighted Bergman space A2

Q of B if and only if the Berezin transform

sµ̃q lies in Lp/2(τ).

For N = 1 and Q = 0, Theorem 7.3 is contained in [13, Theorem 3] with a
similar proof. The following corollary follows similarly too.
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Corollary 7.4. The weighted composition operator MηCϕ : A2
Q → A2

Q on the ball
is Hilbert-Schmidt if and only if

∫

B

|η(z)|2
(1 − |ϕ(z)|2)N+1+Q

dνQ(z) <∞.

8. Shift Operators

In this section, we always take N = 1, so our operators act on function spaces on
the disc D, and the constant CQ is equal to 1 +Q.

We need explicit orthonormal bases for Dq. Definition 3.1a and [6, Theorem
3.3.1] imply the following. On each Dq, there is an inner product [[·, ·]]Dq with
respect to which {zk}k∈N is a complete orthogonal set, and the corresponding
norm |‖zk|‖Dq of zk is the square root of the reciprocal of the coefficient of (zw)k

in the Taylor expansion ofKq(z, w). This inner product and its norm are equivalent
to the ones in (3.12). Explicitly,

|‖zk|‖2
Dq

= [[zk, zk]]Dq =






k!
(2 + q)k

, if q > −2;

(−1 − q)k+1

k!
, if q ≤ −2.

(8.1)

On the other hand, by (3.12) and [22, Proposition 2.1],

‖zk‖2
Dq

=






(2 +Q)k k!
(1 +Q) (2 + s)2k

, if s > −2;

(2 +Q)k (−1 − s)2k+1

(1 +Q) (k!)3
, if s ≤ −2.

(8.2)

In either case, none of the norms are 0 and the norm of zk is ∼ k(−1−q)/2 as
k → ∞. Consequently, { qek(z) = zk/‖zk‖Dq : k ∈ N } is an orthonormal basis
for Dq with respect to the norm ‖ · ‖Dq , and { qEk(z) = zk/|‖zk|‖Dq : k ∈ N } is
an orthonormal basis for Dq with respect to the norm |‖ · |‖Dq . Note also that if
q > −1 and u = 0, then Q = q = s and

|‖zk|‖A2
Q

=
√
CQ ‖zk‖A2

Q
(k = 0, 1, . . .). (8.3)

Definition 8.1. We call Mz : Dq → Dq the q-shift.

So the (−1)-shift is the unilateral shift on the Hardy space H2, the 0-shift
is the Bergman shift, and the (−2)-shift is the Dirichlet shift. There are intimate
connections between Toeplitz operators, multiplication operators, and shift oper-
ators.

Recall that QTφ is the classical Toeplitz operator (u = 0) on the weighted
Bergman space A2

Q, and for that, QTz = Mz. For the general Toeplitz operators
defined via Ius with u �= 0 on general Dq considered in this paper, sTz is not a
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fixed multiple of Mz any more. To see how sTz behaves on Dq, it suffices to check
its action on zk. By [22, Proposition 2.1],

sTz(zk) =






2 + s+ k

2 +Q+ k
zk+1, if s > −2;

(1 + k)2

(2 +Q+ k)(−s+ k)
zk+1, if s ≤ −2;

(k = 0, 1, 2, . . .).

Thus

sTz(qek) =

√
1 + k

2 +Q+ k
(qek+1)

and sTz on Dq is a weighted shift operator with weight sequence
{
Wk =

√
1+k

2+Q+k

}

with respect to the orthonormal basis {qek}. NoWk is 0, {Wk} is bounded, but does
not tend to 0; hence sTz is one-to-one, bounded, but not compact. Noncompactness
of sTz can also be deduced via Theorem 6.7 by a laborious computation of sz̃q using
the methods of [33, Proposition 1.4.10]. Hence by [34, Theorem 2 (b)], sTz and
Mz with respect to either orthonormal basis are similar operators. Moreover, by
[34, Proposition 7], sTz on Dq with respect to {qek} is unitarily equivalent to Mz

acting on the space of holomorphic functions on D in which the norm of zk is
W0 · · ·Wk−1 =

√
k!

(2+Q)k
. Recalling (8.1) and that Q = −q + 2s > −1, this space

is familiar. Moreover, we have (8.3). Let’s sum up.

Theorem 8.2. The operator sTz on the Dirichlet space Dq with respect to the or-
thonormal basis {qek} is unitarily equivalent to the Q-shift Mz on the weighted
Bergman space A2

Q with the norm |‖ · |‖DQ or the norm ‖ · ‖DQ.

This theorem also follows from Theorem 4.5 and the discussion following it.
Let’s note that sTz with respect to {qEk} and Mz with respect to either orthonor-
mal basis are also weighted shifts.

The unilateral shift Mz has a special place for the classical Toeplitz operators
Tφ = PMφ on H2, where P : L2(∂D) → H2 is the Szegő projection. An operator
T : H2 → H2 is the classical Toeplitz operator Tφ for some φ ∈ L∞(∂D) if
and only if M∗

z TMz = T . This property fails for classical Toeplitz operators on
Bergman spaces.

With sTφ, the more relevant equation is (sT ∗
z )T (sTz) = T . If T = sTφ satisfies

this equation, then (sT ∗
z )(sTφ)(sTz) = sTφ|z|2 = sTφ by Proposition 4.7. Then by

linearity sTφ(1−|z|2) = 0, and by Proposition 4.9, φ(z)(1 − |z|2) = 0 for almost
every z ∈ D. Thus φ = 0 a.e. in D and sTφ = 0. (We have promised to have N = 1
in this section, but this last result clearly holds for all N .) More is true.

Theorem 8.3. The equation (sT ∗
z )T (sTz) = T has no bounded nonzero solution

T : Dq → Dq.
Proof. We adapt the proofs of [17, Theorems 3 and 5 (a)] to our situation and
sketch the parts that are different only in the case s > −2. The B and wk of [17]
correspond to our T and |‖zk|‖2

Dq
.
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We set

hk(z) =
1 + s+ k

1 +Q+ k

zk
|‖zk|‖2

DQ

∈ Dq,

and define T on Dq by

T (zk) =
1 +Q+ k

1 + s+ k
hk(z),

with the understanding that h0 = 1 and T (1) = 1. Also

sT
∗
z (hk+1) =

1 +Q+ k

1 + s+ k
hk.

Combining these with the sTz(zk) computed above, we see that T satisfies the
operator equation in the statement of the theorem. However, T is bounded if and
only if

∞∑

k=0

1
|‖zk|‖2

Dq

∣∣∣∣∣

[[
1 +Q+ k

1 + s+ k
hk, g

]]

Dq

∣∣∣∣∣

2

≤ C |‖g|‖2
Dq

for any g ∈ Dq. Substituting in the details of the norm and the inner product
yields that T is bounded if and only if {|‖zk|‖−4

DQ
∼ k(1+Q)2} is bounded. But

since Q > −1, this is impossible. �

Theorem 8.3 is a little surprising, because it is proved in [17, Theorem 5
(a)] that the similar operator equation M∗

z TMz = T has bounded solutions on
Dq with q ≤ −1, that is, if Dq is not a Bergman space, and some solutions are
of the form T (zk) = k1+q zk. However, sTz is not a constant multiple of Mz on
Dq with q ≤ −1, and the fact that a derivative is used within Ius in defining sTz
effectively sends the case into the Bergman space DQ. Note the |‖zk|‖2

DQ
in the

definition of hk(z), for example. We do not know whether the solutions given above
to M∗

z TMz = T are Toeplitz operators, but such an equation cannot be satisfied
by all Toeplitz operators sTφ on Dq, as our next result implies.

Theorem 8.4. Let L,N be nonzero bounded operators on Dq. If L(sTφ)N = sTφ
for all φ ∈ L∞, then L and N are both scalar multiples of the identity.

Proof. This time, we adapt the proof in [15] to our situation, and again give only
a sketch in the case s > −2.

Initially proceeding as in [15], and using additionally (3.14) and that Du
s is

invertible, we conclude that N commutes with sTz.
Next let h = N(1) =

∑∞
k=0 hkz

k ∈ Dq and H = Du
s h ∈ A2

Q; then h = D−u
Q H .

We compute N(sTmz 1) in two ways. First, by Theorem 4.5,

N(sTmz 1) = N(sTmz )D−u
Q 1 = ND−u

Q Mzm1 =
(2 + s)m
(2 +Q)m

N(zm).
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Second, by the commutativity just stated and Theorem 4.5,

N(sTmz 1) = sT
m
z N1 = sT

m
z h = sT

m
z D

−u
Q H = D−u

Q MzmH = D−u
Q (zmH)

=
∞∑

k=0

hk
(2 +Q)k
(2 + s)k

D−u
Q Mzk(zm) =

∞∑

k=0

hk
(2 +Q)k
(2 + s)k

sTzkD−u
Q (zm)

=
(2 + s)m
(2 +Q)m

∞∑

k=0

hk
(2 +Q)k
(2 + s)k

sTzk(zm).

Thus

N(zm) =
∞∑

k=0

hk
(2 +Q)k
(2 + s)k

sTzk(zm) = sTH(zm)

at each z ∈ D. By the density of polynomials in Dq, we have N = sTH . That
L = sTG for some G ∈ A2

Q follows by taking adjoints.
The rest of the proof is identical to that in [15] and omitted. �
The characterization by M∗

z TMz = T of the classical Toeplitz operators on
H2 and its failure on A2

q rely on the fact that Mz is an isometry on H2 = D−1

while it is not on A2
q , all with respect to the classical norms of the spaces. There

is also the following weaker notion; see [2].

Definition 8.5. Let m be a positive integer. A bounded linear operator T on a
Hilbert space H with norm ‖ · ‖ is called an m-isometry if it satisfies either of the
equivalent conditions

m∑

j=0

(−1)j
(
m

j

)
(T ∗)j T j = 0 or

m∑

j=0

(−1)j
(
m

j

)
‖T jf‖2 = 0,

the second for all f ∈ H .

A 1-isometry is an isometry, and an (m− 1)-isometry is also an m-isometry.
It is shown in [31, Theorem 3.7] that the Dirichlet shift, which is not an isometry,
is a 2-isometry with respect to some norm on D−2. Our last aim in this paper is to
extend this result to other Dirichlet spaces Dq with q a negative integer and thus
give concrete examples of natural spaces and norms for which the shift operator
is an m-isometry and not an (m− 1)-isometry.

Theorem 8.6. For a positive integer m, the (−m)-shift Mz on D−m is an m-
isometry with respect to the norm |‖ · |‖D−m , but not an (m− 1)-isometry.

Proof. Considering the orthogonality of monomials and the series expansion of f in
D−m, it suffices to check the second equality defining an m-isometry only on {zk}.
Here q = −m and M j

z z
k = Mzjzk = zk+j . If m = 1, (8.1) gives |‖zk+j|‖D−1 = 1

for any k and j, and this means nothing but that Mz is an isometry on H2. If
m = 2, 3, . . ., (8.1) gives

|‖zk|‖2
D−m

=
(m− 1)k+1

k!
= (m− 1)

(
m− 1 + k

m− 1

)
.
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Thus we need to know the value of
n∑

j=0

(−1)j
(
n

j

)(
m− 1 + k + j

m− 1

)
(8.4)

for all k when n = m and n = m−1. The formula [30, 4.2.5 (47)] with a = m−1+k
and b = 1 says that (8.4) is equal to (−1)n δn,m−1 for 0 ≤ m− 1 ≤ n and for any
k, which is 0 if n = m and nonzero if n = m − 1. This proves both assertions of
the theorem. �

We have another similar partial result with ‖ · ‖Dq . This time let q = −2m
with m = 1, 2, . . . and Q = 0. Then s = −m, and (8.2) gives ‖zk‖2

D−2
= k + 1 and

‖zk‖2
D−2m

= (m− 1)2 (k + 1)
(
m− 1 + k

m− 1

)2

= (m− 1)2 (k + 1) (k + 1)2m

for m = 2, 3, . . .. If

2m∑

j=0

(−1)j
(

2m
j

)
(k + j + 1)

(
m− 1 + k + j

m− 1

)2

= 0 (8.5)

for all k, then Mz is a 2m-isometry on D−2m with respect to the norm ‖·‖D−2m . We
have checked that it is true for q = −2,−4,−6,−8, and a computation of random
cases on a computer algebra software gives results in the desired direction, but we
do not know if (8.5) is true in general, nor do we know if Mz is not a (2m − 1)-
isometry. The corresponding result for q odd and negative seems to be wrong; for
example, there is no Q for q = −1 or −3 that can make it true.

Comparing the cases q = −2 of Theorem 8.6 and of the above computation
with the case µ = ν of [31, Theorem 3.7], we see that if f is in the classical Dirichlet
space D−2, then |‖f |‖2

D−2
= ‖f‖2

D−2
= ‖f‖2

H2 +
∫

D
|f ′|2 dν, where ‖ · ‖D−2 is with

Q = 0.
As a final remark, we have considered whetherMz on, say, the Bergman space

A2
1 or the Dirichlet space D−3/2, could be a (−1)-isometry or a (3/2)-isometry with

respect to one of the norms considered, where a c-isometry for c ∈ R is defined
appropriately through the infinite binomial expansion of (1−x)c, but the few cases
we have checked have not yielded a positive answer.
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