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On the Universality of Low-energy String Model
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Abstract

The low-energy (bosonic “heterotic”) string theory is interpreted as a uni-

versal limit of the Kaluza-Klein reduction when the dimension of an internal

space goes to infinity. We show that such an approach is helpful in obtaining

classical solutions of the string model. As a particular application, we ob-

tain new exact static solutions for the two-dimensional effective string model.

They turn out to be in agreement with the generalized no-hair conjecture,

in complete analogy with the four and higher dimensional Einstein theory of

gravity.
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I. INTRODUCTION

In this paper we demonstrate that the low-energy string action in a spacetime Md of an

arbitrary dimension d arises naturally in the framework of the Kaluza-Klein reduction from

an infinite-dimensional spacetime. Such a reduction is constructed as a limit of n → ∞ for

the dimension n of the internal space. We show that this limit exists and is universal in the

sense that it does not depend on Md: for any d the reduced action always turns out to be

the string model in Md.

Although it is at the moment unclear to us, whether this universality property has a deep

physical meaning, one can use this fact as a technical tool for the study of both the string

theories in an arbitrary dimension and the very higher dimensional Kaluza-Klein theories,

propagating the knowledge from one model to another.

As a first example we can mention a possibility of obtaining new exact solutions for the

low-energy string models from the exact solutions of the higher dimensional Einstein field

equations. This method works for a string theory in any Md, and below we illustrate it

for the case d = 2. On the other hand, in the study of d + n-dimensional configurations

one can use the underlying d-dimensional string action as a leading approximation and

the specific features of the higher dimensions will be taken into account perturbatively as

corrections proportional to the powers of 1/n. For example, one can obtain in this way the

position of horizons, temperature, entropy and other physical and geometrical parameters

of the higher-dimensional black holes, grasping the essential features coming from the string

action.

II. KALUZA-KLEIN THEORY IN INFINITE DIMENSIONS

Let us consider the Kaluza-Klein reduction of a d+n-dimensional manifold to the physical

d-dimensional Riemannian spacetime Md with an n-dimensional internal space of constant

curvature. Denote the components of the higher dimensional curvature two-form RAB with
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respect to a local orthonormal frame EA. The dual coframe one-forms are denoted ϑA, and

the indices run A,B, ... = 0, 1, . . . , d + n. The general Kaluza-Klein decomposition of the

metric reads:

(d+n)
g =

(d)
g + e−

4

n
Φ (n)
g , (2.1)

where Φ is the Kaluza-Klein scalar field which depends only on the coordinates of Md, and

(d)
g = gαβ ϑ

α ⊗ ϑβ , (2.2)

(n)
g = gab ϑ

a ⊗ ϑb, (2.3)

describe, respectively, the metric of the physical spacetime [with gαβ = diag(−1, 1, . . . , 1)

as a d-dimensional Minkowski metric] and the internal space [with gab = δab] of a constant

curvature Rab = −λϑa ∧ ϑb. The constant λ = +1 for an n-sphere of a unit radius, λ = 0

for flat space (e.g., hyperplane, cylinder or n-torus), and λ = −1 for a hyperbolic space.

The (local frame) indices clearly run: α, β, . . . = 0, 1, . . . , d− 1, and a, b, . . . = 1, . . . , n.

Consider now, for concreteness, the Einstein-Maxwell-Klein-Gordon theory (with a cos-

mological term) in d+ n dimensions. The Lagrangian (d+ n)-form reads

L = − 1

2
RAB ∧ ηAB − 1

2
F ∧ #F − 1

2
dφ ∧ #dφ− Λη. (2.4)

Here F = dA is the Maxwell field strength two-form and φ is the scalar field. For simplicity,

we limit ourselves to the case of one massless real scalar field, however the whole scheme

works in the same way also for an arbitrary multiplet of fields with different masses, as well

as for the other types of matter (say, for fluids). We are using the general notations and

conventions of [7]. In particular, the Trautman’s η-basis of exterior forms is defined by the

Hodge duals of the products of coframe one-forms ϑA: given the volume (d+n)-form η, one

has ηA = #ϑA = EA⌋η, ηAB = #(ϑA ∧ ϑB) = EA⌋ηB, etc. Same notation is used for the

lower-dimensional counterparts in Md.

Assuming that the matter fields (Maxwell and Klein-Gordon, in our present case) are

independent of the internal space coordinates, we straightforwardly obtain from (2.4) a

dimensionally reduced Lagrangian d-form:
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L = e−2Φ

(
− 1

2
Rαβ ∧ ηαβ + 2

n− 1

n
dΦ ∧ ∗dΦ+

1

2

(n)

R e
4

n
Φ η

− 1

2
F ∧ ∗F − 1

2
dφ ∧ ∗dφ− Λη

)
. (2.5)

Here:
(n)

R = λn(n − 1) is the curvature scalar of the internal space, and from now on η

denotes the volume d-form and ∗ is the d-dimensional Hodge operator on Md.

Now we can immediately see that the formal limit n → ∞ exists and it yields exactly

the low-energy string model in an arbitrary dimension d:

L =
1

2
e−2Φ

(
−Rαβ ∧ ηαβ + 4 dΦ ∧ ∗dΦ+ c η − F ∧ ∗F − dφ ∧ ∗dφ

)
. (2.6)

The Kaluza-Klein field Φ becomes an effective dilaton with the correct kinetic term, whereas

the constant c comes as a combination from Λ and
(n)

R terms. In the simplest case for a

compactification on a torus, Md × T n, the latter contribution is absent completely. When

the internal space has a nontrivial curvature, there is a subtlety though: the naive limit will

yield a formally infinite result because
(n)

R ∼ n2 for large n. However one can easily cure this

by assuming that the constant λ ∼ 1/n2 which is always possible to arrange with the help

of a simple rescaling of the local coordinates. We will always assume this “regularization”

to be performed before taking the limit.

It is worthwhile to note that the limit n → ∞ effectively provides a complete decoupling

of the physical and internal spaces, leaving us exactly on Md, since the second term in the

Kaluza-Klein line-element (2.1) is always trivial in that limit.

III. SOLUTIONS OF A TWO-DIMENSIONAL STRING THEORY FROM

HIGHER DIMENSIONS

In order to demonstrate how one can use the n → ∞ limit, we will obtain a family of

new exact solutions of a two-dimensional string model from the Kaluza-Klein solutions.

¿From now on, let us put d = 2 and consider the case of positive λ. The Kaluza-Klein

reduced Lagrangian (2.5) then describes the general 2+n-dimensional spherically symmetric
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configurations of the metric-matter coupled system.

Till now analytic solutions of the Einstein–Maxwell–Klein-Gordon field system with a

non-trivial cosmological constant are unknown either in four or in higher dimensions. How-

ever, for the vanishing Λ the general solution is available for an arbitrary dimension [11].

[It directly generalises the solutions [1–6,10], and is most conveniently obtained with the

help of the effective two-dimensional Poincaré gauge theory [8,9]]. In our notation, this

2 + n-dimensional spherically symmetric solution reads:

g = − f dt2 +
q h−(n−2

n−1
)

λ(n− 1)2
dr2 + h

1

n−1 dΩ2
λ, (3.1)

where dΩ2
λ is the line element on the n-dimensional space of constant curvature λ, and the

functions f = f(r), q = q(r), h = h(r) are given by

f =
(x2 − 1)2

D2
, q = D2, h = D2 r2. (3.2)

Here the function

D(x) :=
k2 (x+ 1)2µ − (x− 1)2µ

(x2 − 1)µ−1
(3.3)

depends on r via the auxiliary variable

x := − M

r
, (3.4)

and M , k2 and µ are arbitrary integration constants.

The dilaton Φ, scalar φ and the Maxwell field strength 2-form F are, respectively:

Φ = − 1

4

(
n

n− 1

)
log h, (3.5)

φ =

√

(1− µ2)
(

n

n− 1

)
log

∣∣∣∣
x− 1

x+ 1

∣∣∣∣ , (3.6)

F = dA = 4M µ

√

k2

(
n

n− 1

)
x2 − 1

h
dt ∧ dr, (3.7)

For the case when k2 6= 1, the electromagnetic potential, A = A0 dt, is obtained form (3.7)

in the form:
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A0 =

√

k2

(
n

n− 1

)
1

1− k2

(x+ 1)2µ − (x− 1)2µ

k2 (x+ 1)2µ − (x− 1)2µ
, (3.8)

When k2 = 1, we have a different expression,

A0 =

√(
n

n− 1

)
(x+ 1)2µ

(x+ 1)2µ − (x− 1)2µ
. (3.9)

The difference between the two cases (3.8) and (3.9) is revealed when we analyse the

configurations with the vanishing scalar field which arise for µ = ±1. Then it is easy

to see that the parameter M is proportional to the total mass of a source, whereas k2 is

related to the charge Q2 of a solution. The family (3.1)-(3.3) embraces all possible spherically

symmetric charged configurations: The particular case k2 = 1 yields the (higher-dimensional

generalisation of) the Bertotti-Robinson solution [16], whereas for k2 6= 1 one has a (cf.

Tangherlini [15]) Reissner-Nordstrom type solution.

Taking the limit n → ∞ is straightforward. As we mentioned above, one must only be

careful about the formally infinite limit of the curvature of internal space. Taking this into

account, we immediately obtain from Kaluza-Klein solution (3.1) and (3.5)-(3.7) the exact

solution of the two-dimensional string model by putting n → ∞:

g = − f dt2 +
1

c r2
dr2, (3.10)

Φ = − 1

4
log h, (3.11)

φ =
√
(1− µ2) log

∣∣∣∣
x− 1

x+ 1

∣∣∣∣ , (3.12)

F = dA = 4Mµk
x2 − 1

h
dt ∧ dr. (3.13)

One can prove directly that (3.10)-(3.13) satisfy the field equations for the effective low-

energy string Lagrangian (2.6).

This new solution is generalising the uncharged [12] and charged [13,14] black holes for

the case when a massless scalar field is present.

In two dimensions, the curvature two-form has only one component, and its invariant

description is given by the curvature scalar, R = eα⌋eβ⌋Rαβ. For the metric (3.10), one

finds:
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R = 2µc

{
1− 32µk2x2

D2
+

4(1− µ)x2

(x2 − 1)2
− (x2 + 1)

k2 (x+ 1)2µ−2 − (x− 1)2µ−2

k2 (x+ 1)2µ − (x− 1)2µ

}
. (3.14)

It is interesting to note that the solution with µ = 0 describes a flat spacetime with nontrivial

dilaton and scalar field configurations. Solutions with µ > 0 and µ < 0 are related by the

coordinate transformation x → −x. Consequently, we can limit our attention to the case of

µ > 0.

As wee see, for k2 6= 1 the spacetime has three asymptotically flat regions which are

obtained in the limit of x → 0 (r → ∞), and in the limit of x → ±∞ (r → ∓0). The matter

fields, Maxwell F and scalar φ, vanish in these regions. When k2 = 1, the spacetime is not

asymptoically flat. Instead, the curvature and the Maxwell field are approaching constant

values, R → −2c and F → −√
c η (independent of µ), in the above asymptotic regions.

For µ 6= 0, the curvature (3.14) displays several singular points in a spacetime. Namely,

there are singularities located at the roots of the function [k2 (x+1)2µ− (x−1)2µ], that is at

x =
(
1∓ k1/µ

)
/
(
1± k1/µ

)
, and at the points x = 1 and x = −1. Comparing this with the

matter field configurations (3.12)-(3.13), we find that these singularities of the curvature are

naturally coming from the blowing up of the Maxwell field at x =
(
1∓ k1/µ

)
/
(
1± k1/µ

)

and from the divergences of the scalar field at x = ±1.

The cases µ = ±1 are special in the sense that the scalar field (3.12) vanishes then. Let

us consider this case in more detail because it is closely related to the Reissner-Nordstrom

solution in four dimensions. For µ = 1 the curvature (3.14) simplifies to

R = 2c

{
1− (k2 − 1)(x2 + 1)

k2 (x+ 1)2 − (x− 1)2
− 32k2x2

[k2 (x+ 1)2 − (x− 1)2]2

}
. (3.15)

[For µ = −1 one should interchange (x + 1) and (x − 1) in denominators.] Note that for

k2 = 1 we find R = −2c, i.e. the spacetime is a hyperbolic two-dimensional de Sitter

manifold, Rαβ = c ϑα∧ϑβ. The local coordinate transformation x̃ = 1
2
(x+x−1), t̃ = t/(2

√
c)

brings the metric (3.10) with µ = k2 = 1 to

g = −c(x̃2 − 1) dt̃2 +
dx̃2

c(x̃2 − 1)
, (3.16)
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This is the two-dimensional Bertotti-Robinson [16] type solution, see the relevant discussion

[17] in the context of the effective string theory. Along with the curvature, Maxwell field is

constant: A = (x̃+ 1)
√
c dt̃, F = −√

c η.

For k2 6= 1, the function [k2 (x+1)2 − (x− 1)2] is a quadratic polynomial which has two

roots, reciprocal to each other,

x1 =
1− k

1 + k
, x2 =

1 + k

1− k
. (3.17)

These are the positions of the two electric charges which create the Maxwell field configura-

tion (3.13).

Let us assume, for definiteness, that k ≥ 0. Then for k < 1 we have 0 < x1 ≤ 1 ≤ x2,

whereas for k > 1, one finds x2 ≤ −1 ≤ x1 < 0. The case k = 0 describes a solution with

the zero charge, then x1 = x2 = 1, whereas k = 1 is a special case of the Bertotti-Robinson

type solution with constant curvature and electric field.

We can establish a direct correspondence with the Reissner-Nordstrom type solution by

means of an appropriate coordinate transformations. Namely, let us introduce a new spatial

coordinate ρ via

e
√
c(ρ+ρ0) :=

k2 (x+ 1)2 − (x− 1)2

4x
, (3.18)

and a new time coordinate τ = t/(1− k2). Then the metric reads:

g = −f(ρ) dτ 2 + f(ρ)−1 dρ2, (3.19)

where

f(ρ) =
(
1− e−

√
c(ρ+ρ0)

) (
1− k2e−

√
c(ρ+ρ0)

)
. (3.20)

As one can straightforwardly see, the ratio of charge to mass of the solution (3.20) is equal

2k/(1 + k2) ≤ 1. Note however, that although in (3.19)-(3.20) one can formally take the

limit of k → 1, thus obtaining the extremal charged black hole, such a configuration is not

related to the Bertotti-Robinson type solution (3.16) by any coordinate transformation.
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Turning to the general case µ2 6= 1, we find that the exact solutions (3.10)-(3.13) are

no black holes. The points x = ±1, which descibe regular horizons for µ2 = 1, are true

singularities now. This is completely analogous to the Einstein–Maxwell–Klein-Gordon so-

lutions in four [1–5] and in higher [6] dimensions. Thus, one can conlcude that the no-hair

conjecture is supported by our results for the two-dimensionsional effective string theory.

IV. CONCLUSION

We have shown that the low-energy action on an arbitrary spacetime Md can be treated

as a Kaluza-Klein reduction in the infinite-dimensional manifold, Md+n, n → ∞.

We apply this observation to the study of exact solutions of the effective string models.

For d = 2 we obtain new static solutions (3.10)-(3.13) on the basis of the n → ∞ limit.

Recently, the model with a slightly more general than (2.6) action has been analysed in [13].

There, the exact analytic solutions were reported for the trivial scalar field φ = const, and

some general arguments were put in favour of the no-hair conjecture in string theory. Our

new solutions provide an explicit support of this conjecture.

The authors are grateful to TUBITAK for the support of this research. Y. N. O. is also

grateful to the Department of Physics, Middle East Technical University, for hospitality.
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