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Abstract. In this paper, we utilize the teleparallel gravity analogs of the energy

and momentum definitions of Bergmann-Thomson and Landau-Lifshitz in order to

explicitly evaluate the energy distribution(due to matter and fields including gravity)

based on the Bonnor space-time. it is shown that for a stationary beam of light, these

energy-momentum definitions give the same result. Furthermore, this result supports

the viewpoint of Cooperstock and also agree with the previous works by Bringley and

Gad.
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1. Introduction

Einstein’s theory of general relativity is a superb theory of space-time and gravitation

but some of its features are not without difficulties. For example; the localization of

energy and momentum has been a problematic issue since the outset of this theory[1].

Recently; some researchers have moved this problem in the direction of an alternative

theory, namely teleparallel gravity[2, 3].

In general theory of relativity, many physicist have devoted considerable attention

to the problem of obtaining the conserved quantities such as energy-momentum that

include the contribution from gravity. This has been applied to cosmological models

as well. Einstein used the principle of equivalence and the conservation laws of energy-

momentum to formulate the covariant field equations[4]. He defined the energy and

momentum conservation law in the form given below.

∂

∂xµ
[
√
−g(T µ

ν + tµν )] = 0 (1)

where µ, ν = 0, 1, 2, 3 and T µ
ν is the stress energy density of matter. Einstein identified

tµν as representing the stress energy density of gravitational fields. He also noted that

tµν was not a tensor, but concluded that the equations given above hold good in all

coordinate systems since they were directly obtained from the principle of general
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relativity. Bondi[5] expressed that a non-localizable form of energy is inadmissible

in relativity and its location can in principle be found. Cooperstock[6] hypothesized

that in a curved space-time energy-momentum is/are confined to the region of non-

vanishing energy-momentum tensor Tµν and consequently the gravitational waves are

not carriers of energy and/or momentum in vacuum space-times. This hypothesis has

neither been proved nor disproved. After pioneering work by Einstein, many energy-

momentum definitions have been introduced in the literature. For instance; Møller[7],

Papapetrou[8], Landau-Liftshitz[9], Tolman[10], Weinberg[11] and Qadir-Sharif’s[12].

The energy and momentum prescriptions cited above give the meaningful results when

the line-element is transformed to the cartesian coordinates. However for the Møller’s

prescriptions it is not necessary to use of Cartesian coordinates. In the literature,

Virbhadra and his collaborators have considered many space-times and have shown that

several energy-momentum complexes give the same and acceptable results[13, 14, 15].

Aguirregabiria et. al.[16] showed that several energy-momentum complexes give

the same result for any Kerr-Shild class metric. This results derives from the Gürses-

Gürsey discovery[17] that the energy-momentum pseudo-tensor vanishes globally for all

Kerr-Schild metrics and hence the distribution of energy-momentum becomes tensorially

significant. Gürses and Gürsey pointed out that for all Kerr-Schild class metrics the

pseudo-tensors of Einstein and Landau-Lifshitz coincide. Recently, Chang et. al.[18]

showed that every energy-momentum complex can be associated with a particular

Hamilton boundary term, therefore the energy-momentum complexes may also be

considered as quasi-local which provides a connection of the different complexes with

a Hamiltonian aspect. It does not direct one to a preferred choice of complex. In

Gen. Relat. Gravit. 36, 1255(2004); Vargas, using the definitions of Einstein and

Landau-Lifshitz in teleparallel gravity, found that the total energy is zero in Friedmann-

Robertson-Walker space-times. Therefore his result is the same as calculated in general

relativity[19, 20, 21]. After these work, there some papers that show different energy-

momentum complexes give the same energy-momentum for a given geometry in both

general relativity and teleparallel gravity[22, 23, 24].

The paper is organized as follow: In section 2 and 3, we introduce the Kerr-

Schild class and the Bonnor space-times, respectively. In section 4, firstly, we give the

teleparallel gravity analog of the energy-momentum definitions of Bergmann-Thomson

and Landau-Lifshitz and then obtain energy-momentum distributions associated with

the Bonnor metric. Finally, in section 5 we discussed our results. Throughout this paper

we use the convention that the indices take the values from 0 to 3 and G = 1, c = 1

units.

2. The Kerr-Schild Class Space-times

The Kerr-Schild class space-times are defined by the metric gij which are given below.

gij = ηij − Rlilj (2)
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where ηij = diag(1,−1,−1,−1) is the Minkowski metric, R is the scalar field and li

is a null, geodesic and shear-free vector field in the Minkowski space-time, which are

respectively expressed as

ηijlili = 0 (3)

ηijla,ili = 0 (4)

(li,j + lj,i)l
i
,aη

ja − (li,i)
2 = 0 (5)

An interesting characteristic of the Kerr-Schild class metric gij in equation (2)

is that the vector field li remains null, geodesic and shear-free with the metric gij.

Equations (3), (4) and (5) lead to

gijlili = 0 (6)

gijla,ili = 0 (7)

(li,j + lj,i)l
i
,ag

ja − (li,i)
2 = 0 (8)

There are various well-known space-time models of the Kerr-Schild Class, for instance,

Schwarzschild, Reisner-Nordsröm, Kerr, Kerr-Newman, Vaidya, Dybney, Kinnersley,

Bonnor-Vaidya, and Vaidya-Patel. The energy momentum complexes of Einstein Θc
a,

Landau-Lifshitz Lac, Papapetrou Ωac, and Weinberg W ac ”coincide” for any Kerr-Schild

class metric[16].

These energy and/or momentum complexes for any Kerr-Schild class metric are

defined by

Θc
a = ηabL

bc (9)

Lac = Ωac = W ac =
1

16π
Λacbd

,bd (10)

where

Λacbd = 2R(ηaclbld + ηbdlalc − ηablcld − ηcdlalb) (11)

here Θ0

0
, L00, Ω00, and W 00 represent energy distribution(due to matter plus

gravitational fields) and Θ0

β, L
0β , Ω0β, and W 0β represent momentum density in the

xβ direction. The energy momentum components are:

P a =
1

16π

∫ ∫

Λa0bd
,dτbdS (12)

3. The Bonnor Space-time

The Bonnor space-time which is describe a stationary beam of light flowing in the z

direction is defined by the line element[25]

ds2 = −dx2 − dy2 − (1− ξ)dz2 − 2ξdtdz + (1 + ξ)dt2 (13)

where ξ is a function of x and y,

∇2ξ = 16πρ (14)
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ρ = −T 3

3
= −T 0

3
= T 3

0
= T 0

0
(15)

here T a
b is describe the energy and momentum tensor. The line-element which is describe

the Bonnor space-time can be written as

ds2 = dt2 − dx2 − dy2 − dz2 − ξ(dt− dz)2 (16)

which is the required form of a Kerr-Schild class space-times with

R =
ξ

2
, l0 = 1, l3 = −1. (17)

Both components of l0 and l3 are constant so l is trivially geodesic and shear-free. It can

be easily shown to be null which proves that the Bonnor space-time is of Kerr-Schild

class[26].

The contravariant components of the metric tensor:

gµν = (1− ξ)δµ0 δ
ν
0
− δ

µ
1 δ

ν
1
− δ

µ
2 δ

ν
2
− (1− ξ)δµ3 δ

ν
3
− ξ(δµ3 δ

ν
0
+ δ

µ
0 δ

ν
3
) (18)

The non-trivial tetrad field induces a teleparallel structure on space-time which is

directly related to the presence of the gravitational field, and the Riemannian metric

arises as

gµν = ηabh
a
µh

b
ν (19)

Using this relation, we obtain the tetrad components:

hi
µ = (1 + ξ)

1

2 δi
0
δ0µ + δi

1
δ1µ + δi

2
δ2µ + (1 + ξ)−

1

2 δi
3
δ3µ − ξ(1 + ξ)−

1

2 δi
0
δ3µ (20)

and its inverse is

h
µ

i = (1 + ξ)−
1

2 δ0i δ
µ
0 + δ1i δ

µ
1 + δ2i δ

µ
2 + (1 + ξ)

1

2 δ3i δ
µ
3 + ξ(1 + ξ)−

1

2 δ3i δ
µ
0 (21)

4. Energy and Momentum Associated with the Bonnor Metric in the

Teleparallel Gravity

An alternative approach to gravitation is the so-called teleparallel gravity [27] which

corresponds to a gauge theory for the translation group based on the Weitzenböck

geometry[28]. In this theory gravitation is attributed to torsion[29], which plays the

role of a force[30], whereas the curvature tensor vanishes identically. The fundamental

field is represented by a nontrivial tetrad field, which gives rise to the metric as a by-

product. The last translational gauge potentials appear as the nontrivial part of the

tetrad field, thus induces on space-time a teleparallel structure which is directly related

to the presence of the gravitational field. The interesting point of teleparallel gravity

is that, due to gauge structure, it can reveal a more appropriate approach to consider

same specific problem. This is the case, for example, of the energy-momentum problem,

which becomes more transparent when considered from teleparallel point of view.

The energy-momentum definitons of Bergmann-Thomson and Landau-Lifshitz in

teleparallel gravity[3] are given by the following equations respectively:

hBµν =
1

4π
∂λ(g

µβU νλ
β ) (22)
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hLµν =
1

4π
∂λ(hg

µβU νλ
β ) (23)

where h = det(ha
µ) and U νλ

β is the Freud’s super-potential, which is given by:

U νλ
β = hS νλ

β . (24)

Here Sµνλ is the tensor

Sµνλ = m1T
µνλ +

m2

2
(T νµλ − T λµν) +

m3

2
(gµλT βν

β − gνµT
βλ

β) (25)

with m1, m2 and m3 the three dimensionless coupling constants of teleparallel

gravity[29]. For the teleparallel equivalent of general relativity the specific choice of

these three constants are:

m1 =
1

4
, m2 =

1

2
, m3 = −1 (26)

To calculate this tensor firstly we must calculate Weitzenböck connection:

Γα
µν = h α

a ∂νh
a
µ (27)

and after this calculation we get torsion of the Weitzenböck connection:

T
µ
νλ = Γµ

λν − Γµ
νλ (28)

For the Bergmann-Thomson and Landau-Lifshitz complexes, we have the relations,

PB
µ =

∫

Σ

hB0

µdxdydz (29)

PL
µ =

∫

Σ

hL0

µdxdydz (30)

where Pi give momentum components P1, P2, P3 while P0 gives the energy and the

integration hyper-surface Σ is described by x0 = t =constant.

Considering equations (20) and (21), we find following non-vanishing Weitzenböck

connection components:

Γ0

01
=

ξ̇

2(1 + ξ)
Γ0

02
=

ξ′

2(1 + ξ)
Γ0

31
= − ξ̇

1 + ξ
(31)

Γ0

32
= − ξ′

1 + ξ
Γ3

31
= − ξ̇

2(1 + ξ)
Γ3

32
= − ξ′

2(1 + ξ)
(32)

where dot and prime indicates derivative with respect to x and y, respectively. The

corresponding non-vanishing torsion components are found

T 001 = −T 010 = T 331 = −T 313 =
ξ̇

2
(33)

T 002 = −T 020 = T 332 = −T 323 =
ξ′

2
(34)

T 031 = −T 013 =
ξ̇(2 + ξ)

2(1 + ξ)
(35)

T 032 = −T 023 =
ξ′(2 + ξ)

2(1 + ξ)
(36)
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Using these results into equation (25), the non-vanishing components of the tensor S νλ
µ

are found as:

S001 = −S313 = − ξ̇

4
, S002 = −S002 = −ξ′

4
(37)

S301 = −S103 = −S013 =
ξ̇(2 + ξ)

8(1 + ξ)
(38)

S302 = −S203 = −S023 =
ξ′(2 + ξ)

8(1 + ξ)
(39)

From equation (23) with (24) we obtain following energy-momentum distributions:

hB00 = hB30 = hL00 = hL30 =
1

16π

[

ξ̈ + ξ′′
]

(40)

Then, from equations (14) and (15)

hB00 = hB30 = hL00 = hL30 = ρ = T 0

0
= T 3

0
(41)

taking these results into equations (29) and (30) we get the energy associated with a

stationary beam of light as

PB
0

= PL
0
= PB

3
= PL

3
= M (42)

these results are exactly the same as obtained by Bringley[26] and Gad[31].

5. Discussion

The energy and momentum distribution associated with the Bonnor space-time found

from the teleparallel analog of Bergmann-Thomson and Landau-Lifshitz definitions.

The common result props the Cooperstock hypothesis which states that energy

localized to the region where the energy-momentum tensor is non-vanishing. This

hypothesis states that there is no energy-momentum contribution from ”vacuum”

regions of space-time. If true, this hypothesis would have broad implications. For

example, this hypothesis suggests that gravitational waves have no energy and that

current attempts to detect these waves are doomed to failure.

In this paper, we have obtained the energy and momentum for a stationary beam

of light found that the results are physically meaningful, exactly the same as the results

which are obtained by Bringley and Gad and props the viewpoint of Cooperstock.

Surely, the questions of energy-momentum localization in gravitation theories as well as

the Cooperstock hypothesis are far from resolved, but the Bonnor space-time provides

one more example where the teleparallel analog of the energy-momentum definitions of

Bergmann-Thomson and Landau-Lifshitz.
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