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Abstract

It is not always possible to diagonalize the optical ABCD ma-

trix, but it can be brought into one of the four Wigner matrices by a

similarity transformation. It is shown that the four Wigner matrices

can be combined into one matrix with four branches. This result is

illustrated in terms of optical activities, laser cavities, and multilayer

optics.
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1 Introduction

The two-by-two ABCD matrix plays a central role in optical sciences. The
four elements of this matrix are all real, and its determinant is one. Thus, it
has three independent parameters. Yet, it has a rich mathematical content
which could lead interesting results in physics.

It is generally assumed that this matrix can be diagonalized by a rota-
tion, but this is not the case as shown in our previous paper [1]. We have
shown there that this matrix can be brought to an equi-diagonal matrix by a
rotation, and then by a squeeze to one of the following four Wigner matrices.

(

cos θ − sin θ
sin θ cos θ

)

,
(

coshλ sinh λ
sinh λ coshλ

)

,
(

1 −γ
0 1

)

,
(

1 0
γ 1

)

. (1)

This squeeze portion of the similarity transformation is not yet widely known.
Thus the similarity transformation which brings the ABCD matrix to one
of the Wigner matrices is a rotation followed by a squeeze. Even though the
two triangular matrices in Eq.(1) can be similarity-transformed from each
other, it is convenient to work with the four branches of the ABCD matrix.

The purpose of this paper is to reduce these four matrices into one analytic
matrix with four different branches. First of all, each of the matrices in Eq.(1)
is generated by

1

2

(

0 −i
i 0

)

,
1

2

(

0 i
i 0

)

,
1

2

(

0 −i
0 0

)

,
1

2

(

0 0
i 0

)

, (2)

respectively. The last two matrices can be obtained from a linear combina-
tion of the first two, with two independent coefficients. We can then study
the general property of the ABCD matrix by exponentiating the linear com-
bination of the two matrices

(

0 −i
i 0

)

and
(

0 i
i 0

)

, (3)

and making Taylor expansions.
One of the present authors noted this aspect of the ABCD matrix while

studying optical activities [2]. He then concluded that the asymmetric optical
activity can lead to the study of the fundamental space-time symmetries of
elementary particles [3, 4].

In this paper, we study the resulting exponential form more systemati-
cally. We first exponentiate the linear combination of these two independent
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matrices. While the exponent is a fully analytic function, the Taylor expan-
sion of the exponential form leads to complications, leading to four separate
branches.

Again in this paper, we use the same optical activity to study the ori-
gin of this branching property. We note then that the exponential form is
convenient for repeated applications of the ABCD matrix, such as periodic
systems including laser cavities and multi-layer optics.

In Sec. 2, we discuss how the ABCD matrix can be written as an expo-
nential function of one analytic matrix, with four branches. In Sec. 3, we use
optical activities to study the physics of the mathematics of Sec. 2. Section 4
is devoted to application of this methods to periodic systems. Laser cavities
and multilayer optics are discussed in detail.

2 Exponential Form and Branches

Let us start with the ABCD matrix as a rotated equi-diagonal abcd matrix:

[ABCD] = R(α)[abcd]R(−α), (4)

where R(α) is a rotation matrix

R(α) =
(

cos(α/2) − sin(α/2)
sin(α/2) cos(α/2)

)

, (5)

and [abcd] is an equi-diagonal matrix

[abcd] =
(

a b
c d

)

, (6)

with

tanα =
D −A

B + C
,

a = d =
A+B

2
,

b =
(B − C) +

√

(A−D)2 + (B + C)2

2
,

c =
(C −B) +

√

(A−D)2 + (B + C)2

2
. (7)
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Since the determinant of the ABCD matrix is assumed to be one, this
matrix has three independent parameters. One of those parameters is the an-
gle α. Thus, the abcd matrix has two independent parameters. Since the two
diagonal elements of the abcd matrix are the same, it can be exponentiated
as

[abcd] = exp {rM(θ)}, (8)

with

M(θ) =
(

0 − cos θ + sin θ
cos θ + sin θ 0

)

. (9)

Here the two independent parameters are r and θ. Thus, we are led to study
in detail this M(θ) matrix which can also be written as

M(θ) =
(

0 −1
1 0

)

cos θ +
(

0 1
1 0

)

sin θ. (10)

Other than the factor of (i/2), this expression becomes the four generators
given in Eq.(2) when θ = 0, π/2, π/4,−π/4 respectively.

In this way, we can combine the four Wigner matrices into an exponen-
tial function of one analytic matrix. The problem is how to compute the
exponential form of Eq.(8). Its Taylor expansion is

[abcd] =
∑

n

rn

n!
[M(θ)]n. (11)

This is an infinite series except at θ = ±π/4. If θ = 45o, the M matrix
becomes

M =
(

0 0√
2 0

)

. (12)

Since M2 = 0, the series truncates. The abcd matrix becomes

[abcd] =
(

1 0
r
√
2 1

)

. (13)

Likewise, when θ = −π/4,

[abcd] =
(

1 −r
√
2

0 1

)

. (14)

This aspect is illustrated in Fig. 1. The Taylor series truncates at θ =
±π/4. In the circular regions 1 and 2, (sin θ)2 is smaller than (cos θ)2. In the
hyperbolic regions 1 and 2, (cos θ)2 is smaller than (sin θ)2.
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Circular 1

π/2

π

−π/2

Hyperbolic 1

Hyperbolic 2

Circular 2 0

Redundant

Redundant
−π/4

π/4

Figure 1: Forms of the ABCD matrix depending on the angle θ.

Also in Fig. 1, the symmetry of trigonometry tells us the region π/2 <
θ < 3π/2 is redundant if we allow both positive and negative values of r in
Eq.(8). In this way, we restrict cos θ to positive values. In circular region 1,
sin θ can be both positive or negative.

In the region (cos θ)2 > (sin θ)2, and |θ| < π/4, if sin θ is positive, we can
write the M matrix as

M(θ) =
√

cos(2θ)
(

0 − exp (−η)
exp (η) 0

)

. (15)

with

exp(−η) =

√

cos θ − sin θ

cos θ + sin θ
, (16)
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where η is positive. This formula is valid also when sin θ is negative, but η
is also negative. We now write M(θ) as

M(θ) =
√

cos(2θ)
(

e−η/2 0
0 eη/2

)(

0 −1
1 0

)(

eη/2 0
0 e−η/2

)

. (17)

Then

(M(θ))n = (cos(2θ))n/2
(

e−η/2 0
0 eη/2

)(

0 −1
1 0

)n (

eη/2 0
0 e−η/2

)

. (18)

Thus

[abcd] =
(

e−η/2 0
0 eη/2

)(

cosφ − sin φ
sinφ cosφ

)(

eη/2 0
0 e−η/2

)

, (19)

which is

[abcd] =
(

cos φ −e−η sinφ
eη sinφ cosφ

)

(20)

with
φ = r

√

cos(2θ). (21)

In terms of the four parameters of the ABCD matrix,

cosφ =
A+B

2
,

e−2η =
−b

c
=

C − B −
√

(B + C)2 + (A−D)2

C − B +
√

(B + C)2 + (A−D)2
. (22)

where cosφ is smaller than one, and b is negative.
If (sin θ)2 > (cos θ)2, or π/4 < |θ| < π/2, we have to consider two separate

regions in Fig. 1, where cos θ is positive, while sin θ can take both positive
and negative signs. cos(2θ) is negative. The M matrix should becomes

M(θ) =
√

− cos(2θ)
(

0 exp (−η)
exp (η) 0

)

. (23)

with

exp(−η) =

√

sin θ − cos θ

sin θ + cos θ
, (24)

for both positive and negative values sin θ, but η is positive and is negative
respectively.
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Then the Taylor expansion leads to

[abcd] =
(

coshχ e−η sinhχ
eη sinhχ coshχ

)

, (25)

with
χ = r

√

− cos(2θ). (26)

In terms of the parameters of the original ABCD matrix,

coshχ =
A+B

2
,

e−2η =
b

c
=

B − C +
√

(B + C)2 + (A−D)2

C −B +
√

(B + C)2 + (A−D)2
. (27)

Here coshχ is greater than one, and both b and c are positive.
We can now go back to Eq.(16) and Eq.(24), and write tan θ in terms of

η. Then tan θ becomes

tan θ =
b+ c

c− b
=

√

(A−D)2 + (B + C)2

C − B
, (28)

for all values of θ between −π/2 and π/2. The parameter r is

r =

[

b2 + c2

−2bc

]1/2

φ,

r =

[

b2 + c2

2bc

]1/2

χ, (29)

for (sin θ)2 < (cos θ)2 and (sin θ)2 > (cos θ)2 respectively, with

[

b2 + c2

2bc

]1/2

=

[

2 (B2 + C2) + (A−D)2

4BC + (A−D)2

]1/2

. (30)

Let us now look at how the transition of the abcd from Eq. (20) to Eq. (25).
This is a puzzling question because the matrix M(θ) remains analytic in the
neighborhood of θ = π/4 (see Fig. 1. In order to tackle this problem, we
write M(θ) of Eq.(9) as

M(θ) = (cos θ)
(

0 −(1− tan θ)
1 + tan θ 0

)

. (31)
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In the neighborhood of θ = π/4, we can set cos θ = 1/
√
2 and (1+tan θ) = 2,

and

M(θ) =
1√
2

(

0 −(1 − tan θ)
2 0

)

. (32)

Then up to r2, the Taylor leads to

[abcd] ==
(

1− r2(1− tan θ)/2 −r(1− tan θ)/
√
2

r
√
2 1− r2(1− tan θ)/2

)

. (33)

If θ is smaller than π/4, the diagonal elements of this matrix are smaller
than 1, like cosφ in Eq.(20). If θ becomes greater than π/4, the diagonal
element becomes greater than 1 like coshχ in Eq.(25). If tan θ = 1, the result
becomes that of Eq.(13).

We can give a similar reasoning for the neighborhood of tan θ = −1. The
Taylor expansion leads to

[abcd] =
(

1− r2(1 + tan θ)/2 −r
√
2

r(1 + tan θ)/
√
2 1− r2(1 + tan θ)/2

)

. (34)

leading to Eq.(14) for θ = −π/4.
The exponential form given in Eq.(8) is very convenient when we study

periodic systems where the ABCD matrix is applied repeatedly. We shall
return to this problem in Sec. 4.

3 Optical Activities

In his recent paper [2], one of the present authors used the two-by-two matrix
formulation of optical activities applicable to the transverse electric field of an
optical wave. The direction of the electric component rotates as the optical
wave propagates. In the real world, the medium causes also an attenuation
of the transverse components. This does not interfere with the rotational
character. However, there is a problem if the dissipation coefficients are
different for two perpendicular directions.

Let us start from a circularly polarized light wave which can be decom-
posed into the right-polarized and left polarized components. If they have
different indexes of refraction, we can write the light wave as

(

Ex

Ey

)

=
1

2

(

1
i

)

exp {i (k1z − ωt)}+ 1

2

(

1
−i

)

exp {i (k2z − ωt)} (35)
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This two terms can be combined into
(

Ex

Ey

)

=
(

cos(γz)
sin(γz)

)

exp {i (kz − ωt)}, (36)

with

k =
1

2
(k1 + k2) , γ =

k1 − k2
2

. (37)

If we start with a polarized light wave taking the form

(

Ex

Ey

)

=
(

A exp {i(kz − ωt)}
0

)

, (38)

the optical activity is carried out by the rotation matrix

R(γz) =
(

cos(γz) − sin(γz)
sin(γz) cos(γz)

)

. (39)

The optical ray is expected to be attenuated due to absorption by the
medium. The attenuation coefficient in one transverse direction could be
different from the coefficient along the other direction. Thus, if the rate of
attenuation along the x direction is different from that along y axis, this
asymmetric attenuation can be described by

(

exp (−µ1z) 0
0 exp (−µ2z)

)

= e−λz
(

exp (µz) 0
0 exp (−µz)

)

, (40)

with

λ =
µ2 + µ1

2
, µ =

µ2 − µ1

2
. (41)

The exponential factor exp (−λz) is for the overall attenuation, and the ma-
trix

(

exp (µz) 0
0 exp (−µz)

)

(42)

performs a squeeze transformation. This matrix expands the x component
of the polarization, while contracting the y component. We shall call this
the squeeze along the x direction.

The squeeze does not have to be along the x and ydirections For con-
venience, let us rotate the squeeze axis by 45o. Then the squeeze matrix
becomes

S(µz) =
(

cosh(µz) sinh(µz)
sinh(µz) cosh(µz)

)

. (43)
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If this squeeze is followed by the rotation of Eq.(39), the net effect is

e−λz
(

cos(γz) − sin(γz)
sin(γz) cos(γz)

)(

cosh(µz) sinh(µz)
sinh(µz) cosh(µz)

)

, (44)

where z is in a macroscopic scale, perhaps measured in centimeters. However,
this is not an accurate description of the optical process.

This happens in a microscopic scale of z/N , and becomes accumulated
into the macroscopic scale of z after the N repetitions, where N is a very
large number. We are thus led to the transformation matrix of the form

Z(γ, µ, z) =
[

e−λz/NS(µz/N)R(γz/N)
]N

. (45)

In the limit of large N , this quantity becomes

e−λz
[(

1 µz/N
µz/N 1

)(

1 −γz/N
γz/N 1

)]N

. (46)

Since γz/N and µz/N are very small,

Z(γ, µ, z) = e−λz
[(

1 0
0 1

)

+
(

0 −γ + µ
γ + µ 0

)

z

N

]N

. (47)

For large N , we can write this matrix as [2]

Z(γ, µ, z) = e−λz exp {kzM(θ)}, (48)

where the M matrix is

M(θ) =
(

0 − cos θ + sin θ
cos θ + sin θ 0

)

, (49)

with

k =
√

γ2 + µ2,

cos θ =
γ√

γ2 + µ2
,

sin θ =
µ√

γ2 + µ2
. (50)
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We note here that the M(θ) matrix of Eq.(49) is the same as that of Eq.(9)
which determines the branch property of the ABCD matrix. At this point,
it is more convenient to work with kM(θ).

kM(θ) =
(

0 −γ + µ
γ + µ 0

)

. (51)

If γ > µ, the rM matrix can then be written as

kM =
√

γ2 − µ2

(

0 −e−η

eη 0

)

, (52)

where η of Eq.(16) becomes

e−2η =

√

γ − µ

γ + µ
=

√

cos θ − sin θ

cos θ + sin θ
. (53)

Thus, the exponential function in Eq.(48) can be evaluated according to the
procedure defined in Sec. 2. This expression is the same as that of Eq.(16).

The exponential form exp (kzM) in of Eq.(48) becomes

(

e−η/2 0
0 eη/2

)(

cos(γ′z) − sin(γ′z)
sin(γ′z) cos(γ′z)

)(

eη/2 0
0 e−η/2

)

, (54)

where
γ′ =

√

γ2 − µ2. (55)

The transformation matrix of Eq.(48) takes the form

Z(γ, µ, z) = e−λz
(

cos(γ′z) −e−η sin(γ′z)
eη sin(γ′z) cos(γ′z)

)

, (56)

If µ > γ, the rM matrix becomes

kM =
√

µ2 − γ2

(

0 e−η

eη 0

)

, (57)

where η of Eq.(24) takes the form

e−2η =

√

µ− γ

µ+ γ
=

√

sin θ − cos θ

cos θ + sin θ
, (58)
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and Z becomes

Z(γ, µ, z) = e−λz
(

cosh(µ′z) e−η sinh(µ′z)
eη sinh(µ′z) cosh(µ′z)

)

, (59)

where
µ′ =

√

µ2 − γ2. (60)

In this section, we discussed a system of optical activities with asymmetric
dissipation as a physical illustration of the mathematical procedure discussed
in Sec. 2. We have already seen that M(θ) of Eq.(49) has the same form as
that of Eq.(9), and that angle θ can be defined in terms of the parameters γ
and µ, as shown in Eq.(50). The parameter η can also be defined in terms
of γ and µ, and its expression is the same as the one given in terms of the
angle θ.

As for the branches, we note that both γ and µ can be negative and
positive. Thus, the angle θ can cover the entire range from zero to 2π. We
can write γ′ and µ′ as

γ′ = k
√

cos2 θ − sin2 θ, µ′ = k
√

sin2 θ − cos2 θ. (61)

Since cos2 θ− sin2 θ = cos(2θ), γ′z and µ′z correspond to φ and χ of Eq.(21)
and Eq.(26) respectively.

If we start with µ = 0, it is simply a rotation of the transverse component
of the electric field and the overall attenuation factor is exp (−λz). The rate
of this rotation decreased as µ increases, and the rotation stops at γ = µ.
For µ > γ, there are no rotations. It would be very interesting to test these
effects experimentally.

We should not forget the fact that the equi-diagonal [abcd] matrix is a
rotated ABCD matrix. The rotation matrix is given in Eq.(5). This rotation
changes the optical ray of Eq.(36) to

(

Ex

Ey

)

=
(

cos(γz + α/2)
sin(γz + α/2)

)

exp {i (kz − ωt)}. (62)

This is also an observable effect.
We have seen in this section that the asymmetric optical activity can

serve as an analog computer for the mathematical procedure given in Sec. 2
which is in fact an alternative to the diagonalization of the ABCD matrix.
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4 Periodic Systems in Optics

Let us summarize what we can do about the ABCD matrix.

1. We should first rootate to an equi-diagonal matrix [abcd].

2. If the diagonal elements of this equi-diagonal matrix are smaller than
one, it can be written as

(

cos φ −e−η sinφ
eη sinφ cosφ

)

, (63)

with exp (−η) = −b/c, which can also be written in terms of the ele-
ments of the original ABCD matrix, as shown in Eq. (21).

3. If the diagonal elements of the equi-diagonal matrix are greater than
than one, the matrix can be written as

(

coshχ e−η sinhχ
eη sinhχ coshχ

)

, (64)

with exp (−η) = b/c, which takes the form of Eq.(26) in terms of the
elements of the ABCD Matrix.

4. If one of the off-diagonal elements vanish, the diagonal elements have
to be one.

5. It is possible to combine all these cases into one exponential function
of one analytic matrix. It can be written as

[abcd] = exp
{

r
(

0 − cos θ + sin θ
cos θ + sin θ 0

)}

. (65)

6. When θ = ±π/4, the Taylor series truncates, and

[abcd] =
(

1 −r(1∓ 1)/
√
2

r(1± 1)/
√
2 1

)

. (66)
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 The cycle starts at the midway between 

 the lenses when [ABCD] is equi-diagonal 

 

The cycle can start anywhere 

 between the lenses.
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Figure (a)

Figure (b)

(x)

midway

Figure 2: Optical rays in a laser cavity. (a) Multiple cycles in a laser cavity
are equivalent to the beam going through multiple lenses, for which one cavity
cycle corresponds to the propagation of light through a sub-system of two
lenses. The ABCD matrix becomes equi-diagonal when the cycle begins at
the midway between the lenses. (b) A laser cavity consisting of two concave
mirrors with separation s.

4.1 Laser Cavities

A laser cavity consists of two concave mirrors separated by distance s as
illustrated in Fig. 2. The mirror matrix takes the form

(

1 0
−2/R 1

)

, (67)

where R is the radius of the concave mirror. The separation matrix is

(

1 s
0 1

)

. (68)
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If we start the cycle from one of the two mirrors one complete cycle consists
of

(

1 0
−2/R 1

)(

1 s
0 1

)(

1 0
−2/R 1

)(

1 s
0 1

)

. (69)

If we start the beam at the position x from the mirror, then one complete
cycle becomes

(

1 x
0 1

)(

1 0
−2/R 1

)(

1 s− x
0 1

)

×
(

1 x
0 1

)(

1 0
−2/R 1

)(

1 s− x
0 1

)

. (70)

This cycle consist of two identical half cycles.
Thus, we shall use the half-cycle matrix as our starting point. Then the

half-cycle ABCD matrix becomes

[ABCD] =
(

1 x
0 1

)(

1 0
−2/R 1

)(

1 s− x
0 1

)

, (71)

It is now possible to replace replace R and x and by R/s and x/s respectively
and set s = 1 [1]. Then

[ABCD] =
(

1− 2xf 1− 2xf(1− x)
−2f 1− 2f(1− x)

)

, (72)

where f = s/R, and is expected to be a small number because the mirror
radius R is much larger than the separation of the mirrors.

It can be brought to an equi-diagonal form by a rotation as given in
Eq.(4). According to Eq.(7), the rotation angle is

tanα =
2f(2x− 1)

1− 2f (1 + x− x2)
. (73)

This angle is zero when x = 1/2. In this case, the laser cycle starts at the
midway between the lenses [1]. Then the ABCD matrix becomes

[abcd] =
(

1− f 1− f/2
−2f 1− f

)

, (74)

This matrix can then be written as

[abcd] =
(

cosφ eη sinφ
−e−η sinφ cosφ

)

. (75)
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with

cosφ = 1− f, e2η =
2− f

4f
. (76)

This is the result we obtained in our earlier paper on laser cavities [5], where
the cycle starts from the midway between the lenses. The signs of φ and
η are opposite to those given in Eq.(20), but this is purely for convenience.
There are no fundamental problems.

We can now write this expression in an exponential form

[abcd] = exp
{

r
(

0 cos θ + sin θ
− cos θ + sin θ 0

)}

, (77)

with

tan θ =
2− 5f

2 + 3f
,

r =

[

13f − 17f 2

8− 17f 2

]1/2

φ, (78)

where φ is given in Eq.(76). Since the radius of the mirror is much larger
than the mirror separation, f is a small number, and tan θ is close to one
and r is a small number.

The N -cycle laser consists of 2N half-cycles, and its abcd matrix is

[abcd]2N = exp
{

2Nr
(

0 cos θ + sin θ
− sin θ + cos θ 0

)}

. (79)

This section is a straight-forward application of the procedure given in
Sec. 2. We know that sin(rθ)2N is not sin(2Nrθ), but the exponential form
gives us the convenience of [exp (irθ)]2N = exp (i2Nrθ). We have given a
two-by-two matrix formulation of this convenience applicable to the ABCD
matrix.

4.2 Multilayer Optics

From the physical concept of Wigner’s little group whose transformations
leave the four-momentum of a given particle invariant [3, 4], it has been
established in the literature that [6]

S(η)WS(−η) = R(ξ)B(−2λ)R(ξ), (80)
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where W is one of the four Wigner matrices given in Eq.(1), R(ξ) is the
rotation matrix of the form of Eq.(5), and

S(η) =
(

eη/2 0
0 e−η/2

)

,

B(λ) =
(

cosh(λ/2) sinh(λ/2)
sinh(λ/2) cosh(λ/2)

)

, (81)

and the continuous parameters ξ and λ take care of the four different Wigner
parameters. These parameters can be written in terms of η and the parameter
of the Wigner matrix, as shown in Ref. [1, 6].

Since the left side of Eq.(80) can be written as an exponential form, we
can write

R(ξ)B(−2λ)R(ξ) = exp
{

r
(

0 − cos θ + sin θ
cos θ + sin θ 0

)}

, (82)

where r and θ are also continuous variables.

2 1 2 1

Beam

z

Medim 1 2

   Cycle starts at the boundary 

between medium 2 and medium 1.

Figure 3: Multilayer consisting of two different refractive indices. One com-
plete cycle starts at the boundary between medium 2 and medium 1.

With this mathematical preparation, let us study multilayer optics. In
this branch of optics, we have to consider the ABCD matrix applicable to
two beams moving in opposite directions, one which is the incident beam
and the other is the reflected beam [7]. We can represent them as a two
component column matrix

(

E+e
ikz

E−e
−ikz

)

, (83)

where the upper and lower components correspond to the incoming and re-
flected beams respectively. For a given frequency, the wave number depends
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on the index of the refraction. Thus, if the beam travels along the distance
d, the column matrix should be multiplied by the two-by-two matrix [7]

P (βj) =
(

eiβj/2 0
0 e−iβj/2

)

, (84)

where βj/2 = kjd and j is denoting each different medium. If the beam prop-
agates along the first medium and meets the boundary at the second medium,
it will be partially reflected and partially transmitted. The boundary matrix
is [7]

B(ν) =
(

cosh(ν/2) sinh(ν/2)
sinh(ν/2) cosh(ν/2)

)

, (85)

with
cosh(ν/2) = 1/t12, sinh(ν/2) = r12/t12, (86)

where t12 and r12 are the transmission and reflection coefficients respectively,
and they satisfy (r212 + t212) = 1. The boundary matrix for the second to first
medium is the inverse of the above matrix. Therefore, one complete cycle,
starting from the second medium, consists of

B(ν)P (β1)B(−ν)P (β2), (87)

as illustrated in Fig. 3. This complex-valued matrix can be cast into a real
matrix by a similarity transformation with the transformation matrix

C =
1√
2

(

eiπ/4 eiπ/4

−e−iπ/4 e−iπ/4

)

, (88)

This transforms the boundary matrix B(ν) of Eq.(85) to a squeeze matrix
S(ν) of Eq.(81), and the phase shift matrices P (βj) of Eq.(84) to rotation
matrices R(βj) of the form given in Eq.(5). We are thus led to consider the
ABCD matrix of the form

[ABCD] = S(ν)R(β1)S(−ν)R(β2). (89)

If W in Eq.(80) is a rotation matrix, we can write

S(ν)R(β1)S(−ν) = R(ξ1)B(−2λ)R(ξ1) (90)

where

cosh λ = (cosh ν)
√

1− cos2(β1/2) tanh
2 ν, (91)

cos ξ1 =
cos(β1)

(cosh ν)
√

1− cos2(β1/2) tanh
2 ν

. (92)
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The ABCD matrix can then be simplified to

[ABCD] = R(ξ1)B(−2λ)R(ξ2) (93)

with
ξ2 = ξ1 + β2 (94)

It is now possible to write the above form as

[ABCD] = R(α)[R(ξ)B(−2λ)R(ξ)]R(−α), (95)

with

ξ =
1

2
(ξ1 + ξ2) , α =

1

2
(ξ1 − ξ2) .

The role of the rotation matrix R(α) matrix is clearly defined in Sec. 2. Thus
R(ξ)B(−2λ)R(ξ) is the equi-diagonal matrix, and

R(ξ)B(−2λ)R(ξ) =
(

coshλ cos ξ −(sin ξ coshλ+ sinh λ)
sin ξ coshλ− sinh λ coshλ cos ξ

)

.

(96)
Thus, if (cosh λ cos ξ) is smaller than one, we can write this matrix as

(

cosφ −eη sinφ
e−η sinφ cosφ

)

, (97)

with

cosφ = (coshλ) cos ξ, e2η =
(cosh λ) sin ξ + sinh λ

(coshλ) sin ξ − sinhλ
. (98)

Thus, if (coshλ cos ξ) is greater than one, we should write the equi-diagonal
matrix as

(

coshχ −eη sinhχ
−e−η sinhχ coshχ

)

, (99)

with

coshχ = (cosh λ) cos ξ, e2η =
sinh λ+ (coshλ) sin ξ

sinh λ− (coshλ) sin ξ
. (100)

We are now interested in the exponential form

R(ξ)B(−2λ)R(ξ) = exp
{

r
(

0 −(cos θ + sin θ)
cos θ − sin θ 0

)}

. (101)
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with

tan θ =
tanhλ

sin ξ
. (102)

As for the r parameter,

r =

[

sin2 ξ + tanh2 λ

sin2 ξ − tanh2 λ

]1/2

φ, r =

[

sin2 ξ + tanh2 λ

tanh2 λ− sin2 ξ

]1/2

χ, (103)

for (coshλ cos ξ) < 1, and for (coshλ cos ξ) > 1, respectively.
In this section, we started with two media with two different indexes of

refraction, corresponding to two rotation matrices R (β1) and R (β2) given
in Eq.(89) respectively. However, the combined effect in not necessarily a
rotation matrix. It can be analytically continued to the hyperbolic branch
through the exponent of the ABCD matrix.

When (coshλ cos ξ)2 = 1, one of the off-diagonal elements in Eq.(101)
vanishes, and this case was repeatedly discussed in the literature [1, 6], also
in the present paper.

Concluding Remarks

In this paper, we noted first that the two-by-two ABCD matrix can be
represented as a similarity transformation of one of the four matrices which
we choose to call the Wigner matrices. We then combined these Wigner
matrices into one exponential form of an analytic matrix.

While cosφ and coshχ correspond to a circle and a hyperbola respec-
tively, the lines in Fig. 1 correspond parabolas in the four-dimensional repre-
sentation of the Lorentz group [3, 8]. Ancient Greeks used a circular cone to
combine these curves into one. This is the reason why we call them conic sec-
tions. It is gratifying to note that the optical devices we discussed in Secs. 3
and 4 can play the role of a conic section. Instead of three-dimensional cone,
we used a two-dimensional plane in Fig. 1.

We have seen in this paper that Taylor expansion of this analytic form
results in four branches. How does this happen? Let us go to the Taylor
expansion of Eq.(11). This infinite series truncates at (sin θ)2 = (cos θ)2

or along the two lines in Fig. 1. We are not familiar with mathematical
singularities resulting from the truncation of the infinite Taylor series. This
appears to be an interesting problem in mathematics, but it is beyond the
scope of this paper.
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