
193

1. Introduction

Carbon dioxide emissions, a global burden, have become a global 
concern as a result of increasing population, increasing energy 
demand, increasing economic growth and increasing agriculture 
production to achieve food security [1-4]. The growth-rate of carbon 
dioxide has increased from 1979-2014, “averaging about 1.4 ppm 
per year before 1995 and 2.0 ppm per year thereafter” [5, 6]. This 
global burden has triggered global actions through the 2030 Agenda 
known as the Sustainable Development Goals in order to transform 
the world into achieving Sustainable Development [7]. Access 
to energy either from electricity or food plays a role in socio-
economic development. This essential benefit of human develop-
ment led to the formation of the Sustainable Development Goals 
[8, 9]. Sustainable Development Goals (SDGs) 2 and 13 are motiva-
tional factors in the study. SDG 2 focuses on ending hunger, achiev-

ing food security, improving nutrition and promoting sustainable 
agriculture while SDG 13 focuses on taking urgent action towards 
climate change mitigation and its impacts [7]. 

The motivation of the study follows the food waste campaign 
by Save Food Initiative. According to Think.Eat.Save [10], the 
global carbon footprint excluding land use change, has been esti-
mated at 3.3 Giga tons of carbon dioxide equivalent in 2007. The 
overall volume of food waste in 2007 cost an estimated US$750 
billion, which was equivalent to Switzerland's gross domestic prod-
uct (GDP) in 2011. Moreover, meat production and consumption 
generates 21% of total food waste carbon footprint globally. This 
is because wastage of meat generates a substantial impact on the 
environment in terms of land, occupation and carbon footprint, 
especially in a higher income region that waste about 67% of meat. 
Cereals account for about one-third of the total carbon footprint 
of food waste, due to nitrogen fertilizers used in crop production, 
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diesel use for ploughing and transporting harvested crops, harvest-
ing and drying cereals all results in carbon dioxide emissions. 
Exclusively, rice production takes a big share of the aforementioned 
impacts since rice paddies are the major emitters of methane [10].

Since agriculture (crop and livestock production) takes a huge 
share of Ghana’s GDP, the study estimates the relationship between 
carbon dioxide, crop and food production index in Ghana: by 
estimating the long-run elasticities and variance decomposition. 
In order to meet the goal of the study, the following objectives 
are followed; to ascertain the relationship between carbon dioxide, 
crop and livestock production index, to estimate the long-run equili-
brium relationship between carbon dioxide, crop and livestock 
production index and estimate the carbon footprint using the var-
iance decomposition between carbon dioxide, crop and livestock 
production index.

The remainder of the study comprises of; Section 2: “Literature 
Review”, Section 3: “Methodology”, Section 4: “Results and Discussions”, 
Section 5: “Policy Recommendations” and Section 6: “Conclusions”.

2. Literature Review

There are growing scientific research on carbon dioxide emissions 
using traditional estimation method or modern econometric 
techniques. The traditional estimation method tries to estimate 
the carbon footprint. Carbon footprint estimates the cumulated 
carbon dioxide emissions produced by an individual, livestock, 
crops, organization or a country. Hauggaard-Nielsen et al. [11] 
estimated the carbon footprint of perennial crops using the life 
cycle analysis. Their study revealed that low-input nitrogen crops 
have a lower carbon footprint in the life cycle analysis than crops 
with higher nitrogen input. Persson et al [12] developed a new 
method for the life cycle analysis of carbon footprint evaluation 
of agricultural commodities in Brazil.

Using traditional estimation methods like life cycle analysis 
for carbon footprint analysis is useful in examining how the lifestyle 
of an individual, livestock, crops, organization or a country affect 
climate change. Moreover, life cycle analysis of carbon footprint 
investigations provide guidelines to identify systems, technologies, 
or processes that the lifestyle of an individual, livestock, crops, 
organization or a country can be improved towards climate change 
mitigation. Nevertheless, using life cycle analysis for carbon foot-
print evaluation has some limitations regarding different metrics 
leading to different results and different policy recommendations. 
According to Picasso et al. [13], there is a significant quid pro 
quo existing between carbon footprint and other pertinent environ-
mental variables. Laurent et al [14] revealed the limitations of 
carbon footprint as environmental sustainability indicator and fur-
ther suggested a broader technique for environmental sustainability 
assessment and management. Apart from quantifying carbon foot-
print, there is a limitation in estimating the long-run equilibrium 
and the Granger-causality between carbon dioxide emissions and 
other relevant econometric variables using life cycle analysis. In 
this way, using modern econometric approaches is more valuable 
in the presence of either panel data or time series data.

Many studies have employed econometric techniques to inves-
tigate the causal nexus between carbon dioxide, energy pro-

duction/consumption, economic growth and environmental pollu-
tants by either testing the validity of the Environmental Kuznets 
Curve (EKC) hypothesis or not [15-21] nevertheless, using econo-
metric techniques for investigating agricultural commodities are 
sporadic and limited especially in Ghana. Asumadu-Sarkodie and 
Owusu [22] examined the Kaya factors (carbon dioxide emissions, 
energy consumption, population and economic growth) in Ghana 
using the vector error correction model by employing a data span-
ning from 1980-2012. There was evidence of bidirectional causality 
between carbon dioxide emissions and energy consumption, and 
economic growth and energy consumption. Wang et al. [17] inves-
tigated the causal relationship between carbon dioxide emissions, 
economic growth and energy consumption in China by using a 
data spanning from 1990-2012. There was evidence of bi-directional 
causality between energy consumption and economic growth. 
Asumadu-Sarkodie and Owusu [16] estimated the relationship 
between carbon dioxide emissions and agriculture in Ghana by 
comparing vector error correction model and autoregressive dis-
tributed lag (ARDL) model using a data spanning from 1961-2012. 
Both models employed in the study showed evidence of a causal 
relationship between carbon dioxide emissions and agriculture, 
however, they argue that the relationship dies over-time.

Our study is in line with Bildirici [23] who estimated biomass 
consumption and GDP by employing the ARDL bound test. Their 
study revealed that biomass energy consumption has a positive 
effect on GDP. In contrast to their study using a panel data, our 
study uses a time series data on carbon dioxide, crop and livestock 
production index to estimate the long-run elasticities using the 
ARDL approach and the variance decomposition based on vector 
error correction model (VECM).

To the best of our knowledge, it is the first time the scope 
of the study has been proposed in Ghana. The study will increase 
the global debate on climate change mitigation through the reduc-
tion of the carbon footprint from the perspective of a developing 
country like Ghana. Significantly, the study contributes to the 
existing literature by quantifying the rate of Ghana’s carbon foot-
print using the long-run elasticities and Cholesky’s variance decom-
position technique to highlight and analyze the effect of Ghana’s 
carbon footprint. Moreover, the study proposes some policies that 
will boost Ghana’s national food production and consumption 
policies, agricultural strategies and planning towards climate 
change mitigation and sustainable development.

3. Methodology

The study estimates the relationship between carbon dioxide, crop 
and food production index in Ghana: By estimating the long-run 
elasticities using the ARDL model and variance decomposition.

3.1. Data

The study employs a time series data spanning from 1960-2013, 
obtained from the World Bank database [24]. Data includes; 
CO2-Carbon dioxide emissions (kt), CP_index-Crop production in-
dex (2004-2006 = 100), LP_index-Livestock production index 
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Fig. 1. Trend of variables.

(2004-2006 = 100). The World Bank [24] defines Crop production 
index as the “agricultural production for each year relative  to 
the base period 2004-2006, which includes all crops except fodder 
crops”. In contrast, The World Bank [24] defines Livestock pro-
duction index as the agricultural production that “includes meat 
and milk from all sources, dairy product such as cheese, and 

eggs, honey, raw silk, wool, and hides and skins”. Fig. 1 shows 
the trend of the time series variables. Evidence from Fig. 1 shows 
that carbon dioxide emissions, crop and livestock production index 
show an upward trend across time.

3.2. Econometric Model

The long-run elasticities and variance decomposition estimate be-
tween carbon dioxide emissions, crop and livestock production index 
in Ghana can be represented in a linear function expressed as:


 _

 _
 (1)

A natural logarithmic transformation was applied to the study 
variables in order to have a more stable data variance. Let lnCO2, 
lnCP_index and lnLP_index represent a natural logarithmic trans-
formation of CO2, CP_index and LP_index. The fit regression model 
is used to examine the relationship between lnCO2, lnCP_index 
and lnLP_index which is expressed as:


 

 _
_

 (2)

Where 
 is the response variable while  _  and  

_  are the predictor variables in year  ,  is the error 
and  ,   and   are the coefficients that estimates the change 
in the mean response for each unit change in the predictor value.

In order to the long-run elasticities and variance decomposition 
of Ghana’s carbon footprint, the study employs the ARDL method 
of cointegration by Pesaran and Shin [25] owing to the relatively 
small sample size used. ARDL method of cointegration was selected 
owing to its unbiased estimates and efficiency than the other co-
integration methods if applied to small-sample-size [26]. The ARDL 
model for the study is expressed as:

∆
 


_  

_  


            
 ∆

  
 ∆_  



            
 ∆_  

 (3)

Where  is the intercept term, ’s are the parameters to be 
estimated,  is the lag order,   is the white noise term and ∆ 
is the first difference operator. In order to test the existence of 
long-run equilibrium relationship between lnCO2, lnCP_index and 
lnLP_index, the study employs the Fisher’s (F) test. The Null hypoth-
esis of no cointegration between lnCO2, lnCP_index and lnLP_index 
is: 

 
 

 
  contrary to the Alternative hypothesis 


  ≠ ≠ ≠. The computed F-statistic is compared with 

the first critical value known as the lower bound and the second 
critical value known as an upper bound [26]. The outcome of 
the comparison is based on three scenarios; if the computed F-sta-
tistic goes further than the upper bound then, the null hypothesis 
of no co-integration between lnCO2, lnCP_index and lnLP_index 
is rejected, if the computed F-statistic goes below the lower bound 
then, the null hypothesis of no co-integration between lnCO2, 
lnCP_index and lnLP_index cannot be rejected.
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4. Results and Discussion

This section presents and discusses on the descriptive statistical 
analysis and empirical findings vis-à-vis unit root test, Fit regression 
model, ARDL method of co-integration test, ARDL model selection, 
long-run elasticities, Granger-causality findings, variance decom-
position, diagnostic and stability test results.

4.1. Descriptive Analysis

Descriptive statistical analysis is very essential because it describes 
the basic characteristics of the raw time series data. Table 1 presents 
the descriptive statistical analysis and the unit root test results 
of the study variables. While lnCO2 and lnCP_index are positively 
skewed, lnLP_index is negatively skewed. Nevertheless, lnCO2, 
lnCP_index and lnLP_index show a leptokurtic distribution. Based 
on 5% significance level, the null hypothesis of normal distribution 
by the Jarque-Bera statistic cannot be rejected thus, lnCO2, lnCP_in

Table 1. Descriptive Statistical Analysis
lnCO2 lnCP_INDEX lnLP_INDEX

 Mean 8.236 3.8797 4.1852
 Median 8.1122 3.6028 4.3094
 Maximum 9.2203 4.9698 4.9127
 Minimum 7.2079 3.2229 3.3069
 Std. Dev. 0.6189 0.5547 0.4477
 Skewness 0.0746 0.5725 -0.3985
 Kurtosis 1.8514 1.8517 2.1447
 Jarque-Bera 3.0184 5.9162 3.0752
 Probability 0.2211 0.0519 0.2149
Correlation
lnCO2 1
lnCP_INDEX 0.9204 1
lnLP_INDEX 0.9452 0.8228 1

dex and lnLP_index are normally distributed. Evidence from the 
correlation statistics shows that lnCP_index and lnLP_index have 
a positive monotonic relationship with lnCO2.

4.2. Unit Root Test

Unit root test is employed to ascertain whether a time series variable 
is stationary or not [27]. As a pre-requisite for most of the co-integration 
techniques, the economic variables must be non-stationary at level 
and stationary at first difference. Augmented Dickey-Fuller (ADF) 
and Kwiatkowski-Phillips-Schmidt-Shin test statistic are employed 
in the study as shown in Table 2. Results from the ADF test statistic 
shows that the null hypothesis of unit root cannot be rejected at 
the 5% significance level. At level, KPSS test statistic shows that 
the null hypothesis of stationarity is rejected at the 5% significance 
level. On the other hand, ADF test statistic shows that the null 
hypothesis of unit root at their first difference is rejected at the 
5% significance level. While KPSS test statistic cannot reject the 
null hypothesis of stationarity at the 5% significance level. Mutatis 
mutandis, lnCO2, lnCP_index and lnLP_index are integrated at I(1).

4.3. Regression Analysis

The study employs the fit regression model to determine how 
carbon dioxide emissions changes as crop production index or 
livestock production index changes with time. Using equation 
(2), the resultant regression equation is lnCO2 = 2.958 + 0.4927 
lnCP_index + 0.8044 lnLP_index + 0.1316, where 

 , 
  , 

 ,    and 
 ,    as shown in 

Table 2. Evidence from Table 2 shows that the regression (  ) 
and the interaction effect between lnCO2, lnCP_index and lnLP_in-
dex are significant at 1%. The policy implications from the fit 
regression model shows that; when crop production index increases 
by 1%, carbon dioxide emissions increases by 0.49%, when live-
stock production index increases by 1%, carbon dioxide emissions 
increases by 0.80% and when both crop and livestock production 

Table 2. Unit Root Test
ADF Level t-Stat P-Val KPSS Level t-Stat P-Val
Intercept Intercept

lnCO2 -0.1842 0.9333 0.8221 0.4630
lnCP_INDEX 0.9543 0.9955 0.8601 0.4630
LP_INDEX -1.4216 0.5649 0.9900 0.4630

Intercept and Trend Intercept and Trend
lnCO2 -2.5361 0.3103 0.2465 0.1460
lnCP_INDEX -1.2013 0.8997 0.2566 0.1460
lnLP_INDEX -1.8146 0.6836 0.2110 0.1460

ADF 1st Diff. KPSS 1st Diff.
Intercept Intercept

lnCO2 -3.2269 0.0244 0.3236 0.4630
lnCP_INDEX -9.4560 0.0000 0.1961 0.4630
lnLP_INDEX -7.2558 0.0000 0.2856 0.4630

Intercept and Trend Intercept and Trend
lnCO2 -3.1933 0.0979 0.1081 0.1460
lnCP_INDEX -9.7522 0.0000 0.0954 0.1460
lnLP_INDEX -7.4296 0.0000 0.1179 0.1460
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index are zero, carbon dioxide emissions increases by 2.96%.
In order to validate and verify the robustness of the fit regression 

model, the study estimates the lack-of-fit, standard deviation of 
the error term in the model, R-squared, R-squared of predictor 
(pred) variable and the variance inflation factor (VIF). Evidence 
from Table 3 shows that the null hypothesis of lack-of-fit (  ) 
is rejected at 5% significance level, the standard deviation of the 
error term (  ) is lower than 1, the R-squared (R-sq=95.65%) 
and the R-squared of predictor (R-sq(pred)=95.12%) are more than 
95% showing how the dependent variable is explained in the 
model and predicts future data. Since multi-collinearity effect in-
creases the variances of the regression coefficient and makes the 
prediction erroneous, the study estimates the VIF in the fit re-
gression model. Evidence from Table 3 shows that the VIF of 
lnCP_ index and lnLP_index is 3.10, Rule of thumb: VIF < 10 
implies no existence of multicollinearity.

4.4. Co-integration Test and Model Selection

Cointegration test is employed to ascertain the long-run equilibrium 
relationship between lnCO2, lnCP_index and lnLP_index. Table 4 
presents the ARDL bounds test results. Evidence from Table 4 
shows that the F-statistic goes beyond the critical value of the 
upper bound at 1% significance level, showing a co-integration 
between lnCO2, lnCP_index and lnLP_index.

Fig. 2 depicts the ARDL model selection using the Schwarz 
Information Criterion. The study employs the Schwarz in-
formation criterion (SC) to select the optimal model [ARDL (1, 
1, 0)] to estimate the long-run and the short-run equilibrium rela-
tionship between the variables. Using the optimal model [ARDL 
(1, 1, 0)], the normalized co-integration equation for the ARDL 
regression analysis is expressed as:

       ×_×

             _ (4)

Table 4. ARDL Bounds Test
Test Statistic Value k

F-statistic 7.28 2
Critical Value Bounds

Significance I0 Bound I1 Bound

10% 2.63 3.35
5% 3.10 3.87

2.50% 3.55 4.38

1% 4.13 5.00

Fig. 2. ARDL model selection criterion.

Based on Eq. (4), the results of the long-run and the short-run 
equilibrium relationship between lnCO2, lnCP_index and lnLP_index 
are presented in Table 5. The speed of adjustment (  

) 
which correct deviations in the long-run and the short-run relation

Table 3. Linear Regression Analysis
Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Regression 2 19.4159 9.7080 560.5600 0.0000
lnCP_INDEX 1 1.2787 1.2787 73.84 0.0000

lnLP_INDEX 1 2.2200 2.2200 128.19 0.0000

Error 51 0.8832 0.0173
Lack-of-Fit 50 0.8802 0.0176 5.74 0.3220

Pure Error 1 0.0031 0.0031

Total 53 20.2992
Model Summary

S R-sq R-sq(adj) R-sq(pred)

0.1316 95.65% 95.48% 95.12%
Coded Coefficients

Term Coef SE Coef T-Value P-Value VIF

Constant 2.9580 0.0171 17.26 0.0000
lnCP_INDEX 0.4927 0.0573 8.59 0.0000 3.1

lnLP_INDEX 0.8044 0.0711 11.32 0.0000 3.1
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Table 5. Long-run and Short-run Relationship Estimation
Variable Coefficient Std. Error t-Statistic Prob.   

lnCP_INDEX -0.1557 0.1435 -1.0853 0.2832
lnLP_INDEX 0.4465 0.3309 1.3496 0.1835

ECT (-1) -0.5803 0.1102 -5.2658 0.0000

Long-Run
Variable Coefficient Std. Error t-Statistic Prob.   

lnCP_INDEX 0.5240 0.0857 6.1129 0.0000

lnhLP_INDEX 0.8101 0.1077 7.5192 0.0000
C 2.8633 0.2638 10.8557 0.0000

ship between lnCO2, lnCP_index and lnLP_index near equilibrium 
is negative and significant at the 1% level. Table 4 shows an 
evidence of a long-run equilibrium relationship running from 
lnCP_index and lnLP_index to lnCO2. However, there is no sig-
nificant short-run relationship between lnCO2, lnCP_index and 
lnLP_index.

4.5. Diagnostic and Stability Checks

The ARDL model was validated and verified using a series of 
diagnostic and stability checks to scrutinize the independence 
of the residuals from the fitted model. For a robust ARDL model, 
the residuals must exhibit the required independence during 
the diagnostic and stability checks, if not, the model is un-
acceptable statistically and requires further model modification 
before additional diagnostic and stability checks. In this way, 
the ARDL model becomes unbiased and robust to make the correct 
statistical inferences. Table 6 presents the diagnostic test for the 
ARDL model.

Diagnostic tests employed to validate the ARDL model include; 
Heteroskedasticity Test, Breusch-Godfrey Serial Correlation LM 
Test, Jarque-Bera Test and Ramsey RESET Test as presented in 
Table 6. ARDL residual heteroskedasticity was tested with 
Breusch-Pagan-Godfrey Test statistic. Evidence from Table 6 shows 
that the ARDL residual Heteroskedasticity Test cannot reject the 
null hypothesis of no conditional heteroskedasticity at the 5% 
significance level. Meaning that, no conditional heteroskedasticity 
exists in the residuals of the ARDL model. The ARDL residual 
serial correlation was tested with Breusch-Godfrey Serial 
Correlation LM Test statistic. Evidence from Table 5 shows that 
the null hypothesis of no serial correlation at lag order h cannot 
be rejected at the 5% significance level. Meaning that, no serial 
correlation exists at lag order h. ARDL functional misspecification 
was estimated with Ramsey RESET Test statistic. Evidence from 
Table 6 shows that the null hypothesis of functional form cannot 
be rejected at the 5% significance level. Meaning that, there the 
ARDL model is in its functional form. ARDL residual normal 
distribution was tested with Jarque-Bera test statistic. Evidence 
from Table 6 shows that the null hypothesis of multivariate normal 
distribution cannot be rejected at the 5% significance level. 
Meaning that, the ARDL residuals are normally distributed.

In order to estimate the structural stability of the equation in 
the ARDL model, the study employed the CUSUM and CUSUM 
of Squares residual tests. Fig. 3 shows the CUSUM and CUSUM 
of Squares residual tests of the ARDL Model. Evidence from Fig. 3 

Table 6. ARDL Model Diagnostic Tests
Diagnostic Tests

Heteroskedasticity Test: Breusch-Pagan-Godfrey

F-statistic 1.5591 Prob. F(8,42) 0.1665

Breusch-Godfrey Serial Correlation LM Test

F-statistic 0.49029 Prob. F(2,40) 0.6161
Jarque-Bera Test

Jarque-Bera 0.507432 Probability 0.7759

Ramsey RESET Test

Value df p-value

F-statistic 2.0928 (1, 41) 0.1556

a

b

Fig. 3. Stability test based on (a) CUSUM and (b) CUSUM of Squares.

shows that all the plots in CUSUM and CUSUM of Squares residual 
tests lie within the 5% significance level. Meaning that, the esti-
mated parameters of the equation in the ARDL model are constant 
and stable to verify and validate the evidence of ARDL cointegration 
bound test, the long-run and short-run causality, Granger-causality 
and Cholesky technique of variance decomposition in the study. 
In other words, the ARDL model is robust and meets stability 
conditions to make unbiased statistical inferences.
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4.6. Granger-causality

The study employs the Granger-causality test based on VECM 
to estimate the direction of causality between lnCO2, lnCP_index 
and lnLP_index. Table 7 presents the results of the Granger-cau-
sality tests. The null hypothesis that lnCP_INDEX does not Granger 
Cause lnCO2, lnCO2 does not Granger Cause lnCP_INDEX and 
lnLP_INDEX does not Granger Cause lnCO2 is rejected at the 5 
% significance level. Meaning that, there is a bidirectional causality 
between crop production index and carbon dioxide emissions 
(lnCP_INDEX ↔ lnCO2). As some echelon of carbon dioxide is 
required by crops for photosynthesis, certain crops like cereals 
releases methane, carbon dioxide and nitrous oxide into the atmos-
phere during pre-harvest and post-harvest crop production. 

Table 6 shows evidence of a unidirectional causality from live-
stock production index to carbon dioxide (lnLP_INDEX → lnCO2) 
however, the reverse is invalid. The results from Table 7 confirm 
the long-run elasticity estimates that livestock production index 
increases carbon dioxide emissions. 

4.7. Variance Decomposition

This section estimates the response of lnCO2, lnCP_index and 
lnLP_index to each other in one standard deviation innovations 
using the vector autoregression (VAR). The variance decom-
position provides evidence on the relative importance of each 
random innovation in affecting lnCO2, lnCP_index and lnLP_in-
dex in the VAR. Table 8 presents the variance decomposition 
of lnCO2, lnCP_index and lnLP_index within a 10-period horizon. 
From Table 8, almost 37% of future fluctuations in lnCO2 are 
due to shocks in lnCP_index while 18% of future fluctuations 
in lnCO2 are due to shocks in lnLP_index. According to 
Think.Eat.Save [10], the nitrogen fertilizers use in crop pro-
duction, diesel use for ploughing the agricultural land, harvesting 
and drying of crops like cereals all results in carbon dioxide 
emissions. Exclusively, rice production takes a big share of climate 
change and its impacts. Rice paddies are the major emitters of 
methane. Nevertheless, the crop production index will reduce 
carbon dioxide emissions in Ghana more than the livestock pro-
duction index in the long-run, if sustainable agriculture measures 
are taken into consideration.

Furthermore, 9% of future fluctuations in lnCP_index are due 
to shocks in lnCO2 while 7% of future fluctuations in lnCP_index 
are due to shocks in lnLP_index. Meaning that carbon dioxide 
emissions will affect the crop production index either positively 
or negatively in the future more than the livestock production 

Table 8. Variance Decomposition of lnCO2, lnCP_INDEX and lnLP_INDEX

Variance Decomposition

Variance Decomposition of lnCO2:

 Period S.E. lnCO2 lnCP_INDEX lnLP_INDEX

1 0.1086 100 0 0

2 0.1129 96.0414 0.0469 3.9117

3 0.1145 95.4097 0.7179 3.8724

4 0.1191 88.4388 6.8778 4.6833

5 0.1242 81.6574 12.0366 6.3060

6 0.1315 72.7554 18.1389 9.1057

7 0.1397 64.6302 23.6844 11.6854

8 0.1492 56.7426 28.9596 14.2979

9 0.1593 50.0793 33.5116 16.4092

10 0.1698 44.3892 37.4562 18.1546

Variance Decomposition of lnCP_INDEX:

 Period S.E. lnCO2 lnCP_INDEX lnLP_INDEX

1 0.1011 4.7474 95.2526 0

2 0.1267 3.0457 96.9409 0.0133

3 0.1557 3.4913 95.2203 1.2884

4 0.1829 5.8177 92.1813 2.0010

5 0.2125 6.5447 89.9153 3.5400

6 0.2396 7.3850 88.0824 4.5326

7 0.2658 7.9775 86.5515 5.4710

8 0.2910 8.5910 85.2512 6.1578

9 0.3154 9.0455 84.2289 6.7255

10 0.3388 9.4427 83.3928 7.1645

Variance Decomposition of lnLP_INDEX:

 Period S.E. lnCO2 lnCP_INDEX lnLP_INDEX

1 0.0342 0.4361 1.0069 98.5570

2 0.0462 0.8129 4.6826 94.5045

3 0.0554 3.9304 4.6161 91.4534

4 0.0613 6.1807 5.6603 88.1589

5 0.0664 8.3291 6.3223 85.3486

6 0.0703 9.8256 6.7356 83.4388

7 0.0738 11.2196 6.8650 81.9154

8 0.0768 12.3051 6.8198 80.8751

9 0.0795 13.1600 6.6528 80.1872

10 0.0819 13.7898 6.4004 79.8098

Table 7. Granger-causality Tests
Null Hypothesis: F-Statistic Prob. 

lnCP_INDEX does not Granger Cause lnCO2 5.8990 0.0188*

lnCO2 does not Granger Cause lnCP_INDEX 5.2350 0.0264*
lnLP_INDEX does not Granger Cause lnCO2 5.0349 0.0293*

lnCO2 does not Granger Cause lnLP_INDEX 1.2153 0.2756*

lnLP_INDEX does not Granger Cause lnCP_INDEX 2.8534 0.0974*
lnCP_INDEX does not Granger Cause lnLP_INDEX 0.2669 0.6077*

*rejection of the null hypothesis at 5% significance level
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index in Ghana. In other words, certain echelons of carbon dioxide 
are required to increase yield and productivity, however, the 
extreme echelons of carbon dioxide emissions are dangerous 
to cropping patterns, yield and adaptability to pest and disease 
control.

Finally, almost 14% of future fluctuations in lnLP_index are 
due to shocks in lnCO2 while 6% of future fluctuations in lnLP_in-
dex are due to shocks in lnCP_index. Meaning that carbon dioxide 
emissions will affect livestock production index either positively 
or negatively in the future more than the crop production index 
in Ghana. Increasing levels of carbon dioxide emissions in Ghana 
will in the long-run affect livestock production index due to changes 
in weather patterns that will affect their survival, which will gradu-
ally lead to their extinction.

4.8. Carbon Footprint

Carbon footprint estimates the cumulated carbon dioxide emissions 
produced by an individual, organization or a country. According 
to Think.Eat.Save [10], if food waste were a country, it will be 
the third largest emitter of greenhouse gas, after the USA and 
China. Quantitatively, Think.Eat.Save [10] revealed that the major 
contributors to the carbon footprint of food wastage are cereals 
(34%), followed by meat (21%) and vegetables (21%). Products 
of animal origin account for about 33% of the total carbon footprint. 
Among all food commodities, meat and milk have the biggest 
food waste footprint, in terms of land occupation. Meat and milk 
contribute 78%, more than three-fourth of the total food waste 
surface.

As explained, the time series data employed from the World 
Bank factored cereals, meat and vegetables in the data for crop 
and livestock production index. Therefore, the results of long-run 
elasticity estimates can be used to explain Ghana’s carbon footprint. 
Evidence from the long-run elasticities will provide a direction 
for Ghana’s future crop and livestock production towards achieving 
sustainable agriculture while reducing its carbon footprint and 
mitigating climate change and its impacts. Fig. 4 depicts the analysis 
of Ghana’s carbon footprint using the Granger-causality, ARDL 
long-run elasticities and variance decomposition. The ARDL 
long-run elasticities in Table 4 confirm the results from the fit 
regression model. 

Evidence from Table 4 shows that a 1% increase in crop pro-
duction index (lnCP_index) will increase (elastic) carbon dioxide 
emissions by 0.52%, while a 1% increase in livestock production 
index (lnLP_index) will increase (elastic) carbon dioxide emissions 
by 0.81% in the long-run as depicted in Fig. 4. According to 
Asumadu-Sarkodie and Owusu [16], “Ghana’s GDP as in 2010 
from crop production accounted for 66.2%, forestry accounted 
for 12.2%, fisheries accounted for 7.3%, cocoa production ac-
counted for 8.2% and livestock production accounted for 6.1% 
respectively”. Even though, crop production accounted for 66.2% 
of Ghana’s GDP, yet 1% increase will increase carbon dioxide 
emissions by 0.52% compared to livestock production that ac-
counted for only 8.2% of Ghana’s GDP yet increases carbon dioxide 
emissions by 0.81%. Asumadu-Sarkodie and Owusu [16] revealed 
that, Ghana’s “livestock production has been increasing from 1999 
to 2010. Cattle production rose from 1,288,000 heads to 1,454,000 

Fig. 4. Analysis of Ghana's carbon footprint.

heads, sheep production rose from 2,658,000 heads to 3,779,000 
heads, goat production rose from 2,931,000 heads to 4,855,000 
heads, pig production rose from 332,000 heads to 536,000 heads, 
and poultry production rose from 18,810,000 birds to 43,320,000 
birds”. Increasing carbon dioxide emissions in Ghana from live-
stock production can be associated with enteric fermentation of 
ruminants, feed production, livestock production, manure manage-
ment, livestock transportation, and livestock processing. Another 
reason is due to poor agricultural practices since the majority 
of the farmers in Ghana lives in rural areas without access to 
productive resources, knowledge and financial services toward 
sustainable agricultural practices.

5. Policy Recommendations

The Sustainable Development Goal 2 [7] seeks to “end hunger, 
achieve food security, improve nutrition and promote sustainable 
agriculture”. Following the evidence from the study, the following 
recommendations are made:

It is highly appreciable the role of agriculture as a backbone 
in feeding every nation towards achieving healthy living and in-
creasing economic growth. Nevertheless, Government’s effort to-
wards ensuring sustainable agricultural know-how of farmers with-
in the rural areas in Ghana will be a first step towards climate 
change mitigation.

Government of Ghana’s effort towards integrating climate change 
mitigation options and plans into agricultural sectoral policies 
is essential towards achieving sustainable agriculture.

Efforts towards reducing pre-production, production, trans-
portation, processing and post-harvest losses are essential to re-
ducing food wastage which affects Ghana’s carbon footprint.

Finally, Government of Ghana’s effort towards investing and 
promoting scientific research in technological advancement in 
crop yield, crop adaptation to carbon dioxide emissions, reduced 
methane emissions from ruminants, etc. will be essential to achiev-
ing a sustainable agriculture.
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6. Conclusions

Joining the global campaign to reduce our carbon footprint 
is one option to help combat climate change and its impacts. 
As a result, the study estimated the relationship between carbon 
dioxide, crop and food production index in Ghana: Estimating 
the long-run elasticities and variance decomposition. In order 
to meet the goal; the study investigated the relationship be-
tween carbon dioxide, crop and livestock production index, 
the study estimated the long-run equilibrium relationship be-
tween carbon dioxide, crop and livestock production index 
and estimated the variance decomposition between carbon 
dioxide, crop and livestock production index using Cholesky’s 
technique.

The study employed a time series data spanning from 1960-2013, 
obtained from the World Bank database. The methodology em-
ployed in the study included fit regression model, ARDL model, 
Granger-causality tests and variance decomposition. Diagnostic 
and stability tests in the study revealed that the fit regression 
and the ARDL models are robust and meets stability conditions 
to make unbiased statistical inferences.

There was a significant evidence of a long-run equilibrium rela-
tionship between carbon dioxide emissions, crop production index 
and livestock production index at 1% significance level. Using 
a Wald test of linear restrictions on the joint coefficients based 
of the ARDL model, there was evidence of the short-run equilibrium 
relation from crop and livestock production index to carbon dioxide 
emissions. The results of long-run elasticity estimates were used 
to explain Ghana’s carbon footprint. Evidence from the study shows 
that a 1% increase in crop production index will increase (elastic) 
carbon dioxide emissions by 0.52%, while a 1% increase in livestock 
production index will increase (elastic) carbon dioxide emissions 
by 0.81% in the long-run.

There was evidence of a bidirectional causality between crop 
production index and Carbon dioxide emissions (lnCP_INDEX ↔ 
lnCO2) and a unidirectional causality exists from livestock pro-
duction index to Carbon dioxide emissions (lnLP_INDEX → lnCO2) 
however, the reverse was invalid.

Evidence from the variance decomposition analysis shows that; 
almost 37% of future fluctuations in Carbon dioxide emissions 
are due to shocks in the crop production index while 18% of 
future fluctuations in Carbon dioxide emissions are due to shocks 
in the livestock production index. Furthermore, 9% of future fluctu-
ations in crop production index are due to shocks in Carbon dioxide 
emissions while 7% of future fluctuations in crop production index 
are due to shocks in the livestock production index. Moreover, 
almost 14% of future fluctuations in the livestock production index 
are due to shocks in Carbon dioxide emissions while 6% of future 
fluctuations in the livestock production index are due to shocks 
in the crop production index.

As a recommendation, Government’s effort towards integrating 
climate change mitigation options and plans into agricultural sec-
toral policies in Ghana is essential towards achieving sustainable 
agriculture. Future research should focus on how each of the animal 
species or livestock production contributes to Carbon dioxide 
emissions.
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