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Abstract

Recent measurements of the branching ratios for the decays ω → π0π0γ and
ρ0 → π0π0γ lead to coupling constants of the V σγ-interaction (V is a vector meson)
one order of magnitude smaller than previously assumed to describe the threshold
cross section of γ + p → p + ρ0 and the HERMES effect. The new g2V σγ couplings
are in contradiction with the predictions of the QCD sum rules, but are in good
agreement with VDM-estimation of the σ → γγ-width.

1 Introduction

The coupling constants gV σγ , V = ρ or ω are important ingredients for the
theoretical analysis of many different hadronic electromagnetic processes. If
mσ < mV , the decays V → σ + γ can occur directly-with radiation of electric
dipole photons. In this respect, these decays are essentially different from the
decays V → P + γ, P = π, η, η′ -with radiation of magnetic dipole photons.
In the quark models, these last decays are induced by the quark magnetic
moment, with transition S = 1 → S = 0, where S is the total spin of the
qq-system (in the corresponding meson), whereas the decays V → σ + γ are
induced by the internal motion of quarks, with transition S = 1 → S = 1 [1].

Let us mention the main applications of the gV σγ-coupling constants:
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• The σ-exchange for the vector meson production [2–6] γ+ p → p+ ρ0, near
threshold.

• The electromagnetic transition γ∗ → σ + ω, in the space-like region of the
virtual photon γ∗four-momenta, enters in the calculation of meson exchange
currents, in particular in the analysis of the deuteron electromagnetic form
factors at large momentum transfer [7–9].

• The branching ratio of rare radiative decays of vector mesons as ρ0 → π0π0γ
and ω → π0π0γ are controlled by the gV σγ-coupling constants [10,11].

• The HERMES effect [12], concerning the inclusive electroproduction cross
section on light nuclei can be explained under specific assumptions [13]
about the absolute value of the gρσγ and gωσγ coupling constants and the
corresponding electromagnetic form factors.

• The coupling constant of the σ → γγ-vertex, which can be calculated on
the basis of the gV σγ couplings, is important for the analysis of real and
virtual Compton scattering on nucleons [14–16].

• The exact value of the gV σγ coupling constant, in principle, allows one to
constrain the gσNN -coupling, which describes the scalar exchange in the
NN -potential [17].

• Finally, the gV σγ coupling constants have an implicit theoretical interest,
being fundamental coupling constants of hadron electrodynamics.

Attempts to estimate these coupling constants from QCD-sum rules, give rel-
atively large absolute values [18]. Phenomenological methods based on the
existing experimental data about different electromagnetic processes need se-
rious additional assumptions. For example, in the framework of σ-exchange
for γ + p → p+ ρ0, it is possible to estimate the product gρσγgσNN , assuming
a definite form of the phenomenological form factors, which insure the correct
behavior of the differential cross section dσ/dt, in the near-threshold region,
and depend on ad-hoc cut-off parameters. Taking g2σNN/4π = 8, one obtains
gρσγ = 2.71 [2]. Considering only σ-exchange in γ + p → p + ρ0, the sign of
this constant can not be determined, but some polarization observables are
sensitive to this sign [19]. Other possible contributions to the matrix element
for the process γ + p → p + ρ0, such as N∗-excitation, N -exchange in s- and
u-channel are neglected in such oversimplified consideration [2].

Also the estimation of the discussed coupling constants done in framework of
the HERMES effect [13] can not be considered as direct and model indepen-
dent.

Another source of information about the ρσγ-vertex is the radiative decay
ρ0 → π+π−γ-with relatively large branching ratio [20]. Namely this decay has
been considered to favor large values of gρσγ in comparison with gωσγ , because
of the corresponding widths Γ(ω → π+π−γ) ≪ Γ(ρ → π+π−γ) [2]. However it
is necessary to point out that for the decay ρ0 → π+π−γ the bremsstrahlung
mechanism dominates, therefore the σ-contribution, being of the order of the
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error bars, can not give the gρσγ with good accuracy. Note also that the precise
determination of gρσγ depends essentially on the mass and the width of the
σ-meson. In [11] different values of gρσγ could been found, with the general
conclusion that the gρσγ value from ρ0 → π+π−γ is not in contradiction with
the estimation done in [2].

Finally, having a definite value of gρσγ , it is possible to estimate the branching
ratio for ρ → π0π0γ, in framework of the effective Lagrangian approach. In
this case, the absence of the bremsstrahlung mechanism results in the fact
that the σ-exchange mechanism is important. But the predicted BR(ρ0 →
π0π0γ) ≃ (45 − 200) · 10−5, with gρσγ = 3 ÷ 5, were too large in comparison
with other theoretical expectations for this decay [21].

Moreover, and this will be the important background of this paper, large values
of gρσγ contradict essentially the recent experimental results from Novosibirsk,
concerning the direct measurement of the decay ρ0 → π0π0γ [22]:

Br(ρ → π0π0γ) = (4.1+1.0
−0.9 ± 0.3) · 10−5,

Br(ρ → σγ → π0π0γ) = (1.9+0.9
−0.8 ± 0.4) · 10−5.

The main aim of this paper is to estimate the coupling constant gρσγ on the
basis of these new important experimental data, which is, in our opinion, the
most straightforward way.

2 The σ-contribution to the ρ → π0 + π0 + γ-decay

A crude estimation of the gρσγ coupling constant can be easily obtained from
the experimental data about ρ0 → σγ → π0π0γ [22], under the assumption
that the σ-mass is smaller than the ρ-meson mass, so that the decay ρ → σ+γ
is allowed.

Neglecting for a moment the σ-width (which is an evident oversimplification
of reality, as Γσ = (0.6÷ 1) GeV [20]), we can find:

Γ(ρ0 → σγ → π0π0γ) =
1

3
Γ(ρ0 → σγ), (1)

taking into account the identity of the neutral π0-mesons, produced in ρ0 →
π0π0γ, and the isotopic relation: g(σ → π0π0) = g(σ → π+π−).

The matrix element of the decay V → σ + γ can be written in the following
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form:

M =
egV σγ

M
(ǫ∗ · U k · p− ǫ∗ · p U · k) , (2)

where ǫµ(k) and Uµ(p) are the four-vectors describing the vector polarization
(four-momenta) of the photon and of the V−meson.

Averaging over the V -meson polarizations and summing over the photon po-
larizations, one can find for the width of the decay V → σ+γ (still considering
the σ-meson as a stable particle):

Γ(V → σγ) = α
g2V σγ

24
M

(

1−
m2

σ

M2

)3

≃ 231g2V σγ

(

1−
m2

σ

M2

)3

keV, (3)

where M(mσ) is the mass of the V (σ)-meson. The numerical estimation (3)
is done for M=0.77 GeV (ρ-meson). Evidently, at a given value of the gV σγ-
coupling constant, the value of Γ(V → σγ) depends essentially on the value
taken for the σ-meson mass, which can be in a wide range: mσ = (0.4 ÷ 1.2)
GeV [20]. In Table 1 we report the values of Γ(ρ0 → σγ) and Γ(ρ0 → σγ →
π0π0γ), calculated for the values of the gρσγ-constant and mσ from Refs. [2]
and [13]. Such estimations for Γ(ρ0 → σγ → π0π0γ) are almost two orders of
magnitude larger than the value given by the experiment [22]:

Γ(ρ0 → σγ → π0π0γ) = (2.85+1.4
−1.2 ± 0.6) keV. (4)

Note that the predictions of QCD sum rules [18] are also in serious disagree-
ment with the direct experimental estimation (4).

mσ gρσγ Γ(ρ0 → σγ) Γ(ρ0 → π0π0γ) Ref.

[GeV] [keV] [keV]

0.5 3 379 126 [2]

0.6 5-6 308-444 103-148 [13]

Table 1
Radiative widths for different masses of σ-meson, mσ and coupling constant gρσγ .

This crude preliminary estimation leads to a conclusion which is inconsistent
with the suggested interpretation of the HERMES effect [13] and the descrip-
tion of threshold behavior of the cross section for γ+p → p+ρ0 [2]. Therefore
let us estimate more precisely the gρσγ coupling constant on the basis of the
decay ρ0 → σγ → π0π0γ, removing the hypothesis taken above, i.e. taking
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into account the finite value of the σ-width, and the possibility that in some
cases it is possible to have mσ > M .

Considering the sequence of decays ρ0 → σ+γ → π0+π0+γ, one can find, for
the effective π0 + π0-mass distribution, the following formula (see Appendix):

dΓ

dw2
=

e2g2ρσγ
288π2

M

(

1−
w2

M2

)3
βw

βσ

mσΓσ

(w2 −m2
σ)

2 + Γ2
σm

2
σ

, (5)

where Γσ is the total width for the σ-meson, and:

βσ =

√

√

√

√1−
4m2

π

m2
σ

, βw =

√

1−
4m2

π

w2
.

For the estimation of the coupling constant g2ρσγ on the basis of Γ(ρ0 → σγ →
π0π0γ) the following formula can be used:

g2ρσγ =
Γ(ρ0 → σγ → π0π0γ)72π

Mα

1

r1r2f(r1, r2)
(6)

with

f(r1, r2) =

1
∫

a

dx
(1− x)3

(x− r21)
2 + r21r

2
2

(

1− a/x

1− a/r21

)1/2

, r1 =
mσ

M
, r2 =

Γσ

M
, a =

4m2
π

M2
.

Using the experimental information for the branching ratio for the radiative
decay ρ0 → σγ → π0 + π0 + γ [22], with the help of Eq. (6), one can deduce
the constant gρσγ as a function of the σ-meson parameters, its mass and its
width (Fig. 1). One can see a strong dependence of the value of gρσγ on the
two coordinates r1 and r2, which vary in the wide interval suggested by [20].
Moreover, in the whole region of parameters r1 and r2 one can see that g2ρσγ ≤
2.5; for example, for mσ = 0.5 GeV and Γσ = 0.6 GeV, we find g2ρσγ = 0.196.

3 Estimation of gV σγ couplings from σ → 2γ

Another source for an independent estimation of the gρσγ coupling constant,
which confirms our previous finding, is the radiative decay σ → 2γ. In principle
it is possible to estimate the width of this decay analyzing the σ-contribution
in the amplitude of the elastic scattering of photons by nucleons, in the frame-
work of the t−channel exchange, Fig. 2a, or in the two-photon production of
a π+π− or π0π0-pair in γγ-collisions, Fig. 2b, in the corresponding region of
the ππ-effective mass [24].
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Fig. 1. Two-dimensional plot of the coupling constant g2ρσγ as a function of r1 =
mσ

M

and r2 =
Γσ

M
.

Fig. 2. Feynman diagrams for σ-meson contribution to nucleon Compton scattering
(a) and to π+π−-production in γγ-collisions (b).

Following the VDM approach, (Fig. 3), the matrix element for σ → 2γ can be
written in terms of the gV σγ coupling constants, as follows:

M(σ → 2γ) = e2(gρgρσγ + gωgωσγ)~e1 · ~e2m
2

σ/M, (7)

where ~e1 and ~e2 are the three-vectors of polarization for the two produced pho-
tons. The coupling constant gV determines the width of the V -meson leptonic
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Fig. 3. Feynman diagrams for σ → 2γ-decay in the VDM.

decay V → e+e− (through one-photon exchange): Γ(V → e+e−) = α2g2VM
4π

3
.

Note that this formula holds for zero lepton mass. The existing data about
ρ(ω) → e+e− decays [20] allow to estimate gρ and gω with good accuracy:
g2ρ ≃ 0.04, g2ω ≃ 0.09g2ρ.

As both couplings gρσγ and gωσγ enter in Eq. (7), we assume, for simplicity,
the validity of the SU(3) relation: gρσγ/gωσγ ≃ 3. The width Γ(σ → 2γ) can
be written as:

Γ(σ → 2γ) = πα2m
3
σ

M2
g2ρg

2

ρσγ

(

1 +
gω
3gρ

)2

≃ 13.7g2ρσγ

(

mσ

1 GeV

)3

keV. (8)

Taking gρσγ ≃ 3 [2], one finds

Γ(σ → 2γ) = 123 keV, for mσ = 1 GeV. (9)

The same or even larger numbers for Γ(σ → 2γ) follow from the QCD-sum rule
estimation for gρσγ [18] or from the value deduced from the analysis of ρ0 →
π+π−γ-decays [11]. These numbers contradict the corresponding experimental
estimations:

Γ(σ → 2γ) = 10.6 keV [20], Γ(σ → 2γ) = (3.8± 1.5) keV [24]. (10)

And, again, the discrepancy is large, up to one order magnitude. The situation
is even worse, taking the value of gρσγ from Ref. [13], which leads to

Γ(σ → 2γ) = (340÷ 490) keV. (11)

On the other hand, taking the experimental data about the σ → 2γ-decay,
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(10), one can deduce directly a value

0.28 ≤ g2ρσγ

(

mσ

1 GeV

)3

≤ 0.78, (12)

in evident contradiction with the previous large gρσγ values [2,11,13,18], but
in good agreement with the present estimation, based on the new data about
the decay ρ → π0π0γ [22].

4 Discussion and conclusions

Let us discuss the possible consequences of a smaller value of the gρσγ coupling
constant; more precisely, let us consider the case g2ρσγ ≤ 1. Here this range is
derived from two independent sources: the radiative decay of the ρ0-meson,
ρ0 → σγ → π0 + π0 + γ, on one side, and the radiative decay of the σ-meson:
σ → 2γ, from another side. Both these decays can be described in a relative
simple and transparent theoretical framework: the σ-dominance for the first
one and the VDM approach for the second one. Note that the VDM model
gives a good description of the different numerous radiative decays involving
vector and pseudoscalar mesons. The coupling constants gρ and gω (for the γ →
V 0-transition), which enter in our consideration of the decay σ → 2γ, are well
known from the experimental data about the decays V → ℓ+ℓ−, which have
quite good accuracy. Therefore, the main uncertainty in the determination of
gρσγ on the basis of the existing data on σ → 2γ, derives from the relatively
large interval for Γ(σ → 2γ). The parameters of the σ-meson also do not affect
very much this estimation: there is no dependence on the σ-width, and only
a cubic dependence on the σ−meson mass, so that:

g2ρσγ = (g2ρσγ)0

(

mσ

1 GeV

)

−3

, (13)

where(g2ρσγ)0 is the value of the considered coupling constant for mσ=1 GeV.
From this scaling law it follows the gρσγ constant gets smaller for higher σ-
masses.

The estimation of g2ρσγ on the basis of the decay ρ0 → σ + γ → π0 + π0 + γ
depends essentially on the mass and width of the σ-meson, only, without
additional unknown coupling constants. We can build a two-dimensional rep-
resentation on g2ρσγ , with non trivial dependence on mσ and Γσ. It turns out
that, for the ’standard’ value mσ =0.5 GeV, in the interval 0.6 ≤ Γσ ≤ 1 GeV,
one has the following limits:

0.19 ≤ g2ρσγ ≤ 0.30, (14)
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definitely smaller than the values used in [2] and [13,18]. On the other hand,
the interval (14) is in agreement with the interval (12). We must stress that
the value g2ρσγ = 9 in the consideration of the process γ + p → p + ρ0 [2],
has been found for mσ=0.5 GeV, which has been chosen quite arbitrarily.
The σ-exchange amplitude and the corresponding estimation of gρσγ depend
essentially on mσ. For example, in the near-threshold conditions for γ + p →
p+ ρ0, another scaling law holds for gρσγ :

g2ρσγ
(m2

σ + a)2
= const, (15)

where a = M2mN/(mN + M) ≃ 0.32 GeV2 (mN is the nucleon mass). This
relation shows a large correlation between gρσγ deduced from the data about
γ+p → p+ρ0 and the σ-mass, in such a way that larger value ofmσ correspond
to larger value of the coupling constant.

Moreover, the differential cross section for γ+p → p+ρ0, calculated in frame-
work of σ-exchange, contains a strong dependence on the σ-mass, through the
phenomenological form factor, which has to be introduced here to improve the
t−behavior of the differential cross section dσ(γp → pρ0)/dt at large |t|. To
deduce a definite value of the gρσγ coupling constant from a fit of the differ-
ential cross section data, it is also necessary to assume a definite value for the
gσNN -coupling. Typically this value is determined from the NN -potential.

The estimation of gρσγ from the data about ρ0 → π++π−+ γ, which suggests
the large value: g2ρσγ > 10, can not be considered very precise, as the possible
σ-exchange is hidden by the large contribution of bremsstrahlung (photon
radiation by charged pions). Therefore the coupling gρσγ derived by this decay,
results in a very large width for Γ(ρ0 → π0 + π0 + γ), in strong contradiction
with the experiment and and with the other theoretical estimations of this
width.

The HERMES-effect can not be considered a reliable source of information
about the gρσγ-coupling constant. It is more correct to say, that, in order to
explain this effect in the framework of the model [13], one needs large values,
which are difficult to justify on the basis of what is known from the radiative
decays V → ππγ. For example, the large value of gωσγ was justified in [13] by
taking the lower limit for ω → π+π−γ from [20], instead of a much smaller
and more precise value from ω → π0π0γ. Following selection rules, the relation
Γ(ω → π+π−γ) = 2Γ(ω → π0π0γ) [23] is correct independently on the decay
mechanism. One deduces, for gωσγ , a value which is two orders of magnitude
lower then in Ref. [13].

If the small values for the gρσγ-coupling constant, as we suggest in the present
paper are correct, the interpretation of the following different electromagnetic
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processes has to be revised:

• The explanation of the near-threshold cross section for γ + p → p + ρ0

in frame of the σ-model can not work, because the σ-contribution has to
be small. The σ-contribution, taking g2ρσγ ≤ 1, turns out to be one order of
magnitude smaller than necessary for the explanation of the existing data. In
principle, one can recover by increasing correspondingly the gσNN -coupling
constant, but this would seriously modify the NN -potential. Moreover, such
increase would change the scale of the σ-contribution to the differential cross
section of γ + p → p + ω, in the near threshold region, making the σ and
π-exchanges of the same order. So other contributions, such as Pomeron
and (or) f2-exchanges, which have been extrapolated up to threshold, have
to be taken into account. This allows to decrease gρσγ up to unity [5].

• The explanation of the HERMES effect, in terms of coherent contribution
of mesons, does not hold anymore.

• The predictions of these constants in the framework of the QCD-sum rules
do not hold.
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6 Appendix

In this Appendix we discuss the effect of the σ-width on the decay ρ →
π + π + γ.

The matrix element, corresponding to this diagram (Fig. 4) can be written as:

M = M(V σ∗γ)
1

w2 −m2
σ

mσgσππ, (16)

where M(V σ∗γ) is the matrix element for the decay V → σ∗ + γ, with pro-
duction of a virtual σ-meson, which mass w (different from the mass of the
σ-meson, mσ), coincides here with the effective mass of the produced π+π−-
system, mσ → mσ − iΓσ/2, Γσ is the total width of the σ-meson.

Taking the expression for M(V σ∗γ), Eq.(2), (where the gV σ∗γ coupling con-
stant does not depend, following our assumption, on the virtuality of the
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Fig. 4. Feynman diagrams for V → π++π−+γ decay through σ-meson production.

σ-meson), one can find, after summing over the photon polarizations and
summing over the polarization of the V−meson:

|M(V σ∗γ)|2 = e2
g2V σ∗γ

6

(M2 − w2)2

M2
. (17)

We are interested here in the dΓ/dw2-distribution (integrated over the effective
π+π−-mass) for the decay V 0 → π+ + π− + γ (we are considering here π+π−-
production to have different final pions):

dΓ =
|M|2

2M
(2π)4

d3k

(2π)32Eγ

∫

d3k1
(2π)32E1

d3k2
(2π)32E2

δ(q − k − k1 − k2).

As |M|2 depends only on the variable w2, it can be taken outside the integra-
tion, so that:

dΓ =
|M|2

29π5M

d3k

Eγ
I, (18)

where I is the result of an invariant integration (which has to be done in the
CMS of the produced π+π−-system):

I =
∫

d3k1
E1

d3k2
E2

δ(q − k1 − k2) = 2π
p∗

E∗
, E∗ =

w

2
, p∗ =

√

w2

4
−m2

π (19)

So I = 2πβw, where βw =
p∗

E∗
=
√

1− 4m2
π/w

2 is the velocity of the pion

produced in the decay of the virtual σ-meson, σ∗ → π+ + π−, with mass w. It
is the energy of the photon, produced in the decay V → π+ + π− + γ, which
determines the effective mass of the produced π+ + π−-system, through the
following relation:

M2 = w2 + 2MEγ (20)

11



which holds in the rest system of the decaying V−meson. Therefore we can
write:

d3k

Eγ
→ 4πEγdEγ = −π

(

1−
w2

M2

)

dw2. (21)

Substituting Eqs. (19) and (21) in (17) one can find:

dΓ

dw
=

|M|2

28π3M

(

1−
w2

M2

)

√

1− 4
m2

π

w2

=
e2gV σ∗γ

3π329
M

(

1−
w2

M2

)3
√

1− 4
m2

π

w2
g2σ∗π+π−

m2
σ

(w2 −m2
σ)

2
(22)

The coupling constant gσπ+π− can be related to the total width Γσ of the σ-
meson, assuming that σ → 2π is its main decay: Γσ = Γ(σ → π+π−)+Γ(σ →
π0π0). In terms of the coupling constant g = gσπ+π− = gσπ0π0 (on the basis of
isotopic invariance), one can write:

Γ(σ → π+π−) =
|M(σ → π+π−)|2

8πmσ

q =
g2

16π
mσβσ, (23)

where βσ =
√

1− 4m2
π/m

2
σ is the velocity of the pion produced in the decay

of the real σ-meson, with mass mσ. Taking into account the relation: Γ(σ →
π+π−) = 2Γ(σ → π0π0), due to the identity of the two neutral pions in the
decay σ → π0π0, one can write:

Γσ =
3

2
Γ(σ → π+π−) =

3

32

g2

π
mσβσ, (24)

Substituting Eq. (24) in (22) one obtains:

dΓ

dw2
=

e2gV σ∗γ

144π2
M

(

1−
w2

M2

)3
βw

βσ

mπΓσ

(w2 −m2
σ)

2 + Γ2
σm

2
σ

(25)

So, for the full width of the decay V → π+ + π− + γ, the following formula
holds:

Γ(V → π+π−γ) =

M2
∫

4m2
π

dΓ

dw2
dw2. (26)
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For the decay V → π0 + π0 + γ, Eq. (26) holds, divided by a coefficient 2 -
due to the identity of pions in the final state.

Let us test the validity of these formulas, considering the limit of zero width,
Γσ → 0, i.e. considering the σ-meson as a stable particle. We use the following
symbolic relation:

∣

∣

∣

∣

∣

1

(w2 −m2
σ)− iΓσmσ

∣

∣

∣

∣

∣

2

=
1

(w2 −m2
σ) + iΓσmσ

1

(w2 −m2
σ)− iΓσmσ

Γσ→0
→

=
1

(w2 −m2
σ) + iΓσmσ

[

1

w2 −m2
σ

+ iπδ(w2 −m2
σ)

]

→
π

mσΓσ
δ(w2 −m2

σ)

This δ-function allows one to integrated easily Eq. (26), getting the following
result:

Γ(V → σγ → π+π−γ) =
α

36
g2V σγM

(

1−
m2

σ

M2

)3

. (27)

To find the radiative width for the radiative decay V → σγ, taking into
account both possibilities, σ → π++π− and σ → π0+π0, we have to introduce
a factor 3/2, so that:

Γ(V → σγ) =
α

24
g2V σγM

(

1−
m2

σ

M2

)3

in agreement with the direct calculation, see Eq. (3).
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