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Abstract. The energy (due to matter plus fields including gravity) distribution of

the Reissner-Nordström anti-de Sitter (RN AdS) black holes is studied by using the

Møller energy-momentum definition in general relativity. This result is compered with

the energy expression obtained by using the Einstein and Tolman complexes. Total

energy depends on the black hole mass M and charge Q and cosmological constant Λ.

Energy distribution of the RN AdS is also calculated by using the Møller prescription

in teleparallel gravity. We get the same result for both of these different gravitation

theories. The energy obtained is also independent of the teleparallel dimensionless cou-

pling constant, which means that it is valid not only in the teleparallel equivalent of

general relativity, but also in any teleparallel model. Under special cases of our model,

we also discuss the energy distributions associated with the Schwarzschild AdS, RN

and Schwarzschild black holes, respectively.

Keywords: Reissner-Nordström anti-de Sitter; black hole; energy; Møller; prescrip-
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1. Introduction

The localization of gravitational energy-momentum still remains one of the distinguished

problems and this subject continuous to be one of the most active areas of research

in both general relativity and teleparallel gravity (the tetrad theory of gravity).

Many attempts have been performed to obtain local or quasi-local energy-momentum.

However, there is no generally accepted definition. Meisner, Thorne and Wheler [1]

claimed that the energy is localizable only for spherical systems. But, Cooperstock and

Sarracino [2] argued that if the energy is localizable in spherical systems, it is localizable

in all systems. To solve this problem, several researcher have proposed different energy-

momentum definitions [3, 4, 5, 6, 7, 8, 9, 10]. The fundamental difficulty with these

definitions is that they are coordinate dependent. Therefore, if the calculations are

carried out in ”Cartesian” coordinates, these complexes can give a reasonable and

meaningful result. Several researcher supposed that energy-momentum complexes

‡ Eur. Phys. J. C 47, 247 (2006).
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weren’t well-defined measures because of variety of such once. Recently, however, the

subject of the energy-momentum definition has been re-opened by Virbhadra and his

collogues [11, 12, 13].

The Møller energy-momentum prescription does not necessitate carrying out

calculation in ”Cartesian” coordinates, while the others do. Therefore, we can calculate

the energy density in any coordinate system. Lessner [14] argued that the Møller

prescription is a powerful concept of energy-momentum in general relativity. Teleparallel

version of this complex was obtained by Mikhail et al [15]. In his recent paper, Vargas

[16] using the Einstein and Landau-Lifshitz complexes, calculated the energy-momentum

density of the Friedman-Robertson-Walker space-time. Recently, Saltı, Aydogdu and

their collaborators [17, 18, 19, 20] have calculated energy-momentum density using

different complexes for a given space-time in the teleparallel gravity.

Since the RN AdS black holes is a standard example to study the AdS/CFT

correspondence [21] and some striking resemblance of the RN AdS phase structure

to that of the Van der Waals-Maxwell liquid-gas system has been observed and some

classical critical phenomena has also been uncovered [22], the study of this black hole

model is appealing.

The solution of the RN AdS black holes for free space with a negative cosmological

constant Λ = −3/l2 is defined by the line-element given below.

ds2 = gµνdxµdxν = χdtr − χ−1dr2 − r2(dθ2 + sin2 θdϕ2) (1)

where

χ = 1 − 2M

r
+

Q2

r2
+

r2

l2
. (2)

The asymptotic form of this line-element is AdS. There is an outer horizon located at

r = r+. The mass of the black hole is given by

2M = r+ +
r3
+

l2
+

Q2

r+

. (3)

The Hawking temperature is

TH =
1

4πr+

(1 − Q2

r2
+

+
3r2

+

l2
) (4)

and the potential is

φ =
Q

r+

. (5)

In the extreme case r+ and Q satisfy the following relation.

1 − Q2

r2
+

+
3r2

+

l2
= 0. (6)

For the RN AdS black holes, the non-vanishing components of the Einstein tensor

Gµν (≡ 8πTµν , where Tµν is the energy-momentum tensor for the matter field described

by a perfect fluid of density ρ and pressure p) are

G11 =
1

r2χ
[χ + rχ′ − 1], (7)
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G22 =
r

2
[rχ′′ + 2χ′], (8)

G33 =
1

2
rsin2θ[rχ′′ + 2χ′], (9)

G00 =
−χ

r2
[χ + rχ′ − 1], (10)

where the prime represents differentiation with respect to r.

Energy distributions of a charged dilaton black hole and Schwarzschild black hole

in a magnetic universe are obtained by Xulu [13]. Radinschi [13], using Tolman’s

prescription, obtained the energy distribution of a dilaton dyonic black hole and her

result is also the same as the result found by I-Ching Yang et al. [35]. It is of interest

to investigate the energy distribution associated with RN AdS black hole model. We

hope to find the same and an acceptable energy distribution in both general relativity

and teleparallel gravity.

2. Gravitational Energy

The matrix form of the metric tensor gµν for the line-element (1) is defined by














(1 − 2M
r

+ Q2

r2 + r2

l2
) 0 0 0

0 − 1

1− 2M
r

+
Q2

r2
+ r2

l2

0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ















(11)

and its inverse matrix gµν is














1

1− 2M
r

+
Q2

r2
+ r2

l2

0 0 0

0 −(1 − 2M
r

+ Q2

r2 + r2

l2
) 0 0

0 0 − 1

r2 0

0 0 0 − 1

r2 sin2 θ
.















(12)

The general form of the tetrad, eµ
i , having spherical symmetry, was given by Robertson

[23]. In the Cartesian form it can be written as

e0
0 = iΥ, e0

a = κxa, eα
0 = iΠxα, eα

a = ζδα
a + Ψxaxα + ǫaαβ∆xβ (13)

where Υ, ζ, κ, Π, Ψ, and ∆ are functions of t and r =
√

xaxa, and the zeroth vector

eµ
0 has the factor i =

√
−1 to preserve Lorentz signature. We impose the boundary

condition that in the case of r → ∞ the tetrad given above approaches the tetrad of

Minkowski space-time, eµ
a = diag(i, δµ

a ) (where a = 1, 2, 3). In the spherical, static

and isotropic coordinate system X1 = r sin θ cos φ, X2 = r sin θ sin φ, X3 = r cos θ, the
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tetrad components of the RN AdS space-time can be obtained from the line-element

given in the Eq. (1), using the general coordinate transformation eaµ = ∂X
ν

∂X
µ eaν .



















i
√

1− 2M
r

+
Q2

r2
+ r2

l2

0 0 0

0
√

1 − 2M
r

+ Q2

r2 + r2

l2
sin θ cos φ 1

r
cos θ cos φ − sinφ

r sin θ

0
√

1 − 2M
r

+ Q2

r2 + r2

l2
sin θ sin φ 1

r
cos θ sin φ cos φ

r sin θ

0
√

1 − 2M
r

+ Q2

r2 + r2

l2
cos θ −1

r
sin θ 0



















. (14)

2.1. The Møller Energy in General Relativity

In general relativity, the energy-momentum complex of Møller [9] is given by

Mν
µ =

1

8π
Σνα

µ,α (15)

satisfying the local conservation laws

∂Mν
µ

∂xν
= 0 (16)

where the antisymmetric super-potential Σνα
µ is

Σνα
µ =

√
−g[gµβ,γ − gµγ,β]gνγgαβ. (17)

The locally conserved energy-momentum complex Mν
µ contains contributions from the

matter, non-gravitational and gravitational fields. M0
0 is the energy density and M0

a are

the momentum density components. The momentum four-vector of Møller is given by

Pµ =
∫ ∫ ∫

M0
µdxdydz. (18)

Using Gauss’s theorem, this definition transforms into

Pµ =
1

8π

∫ ∫

Σ0a
µ µadS. (19)

where µa (where a = 1, 2, 3) is the outward unit normal vector over the infinitesimal

surface element dS. Pi give momentum components P1, P2, P3 and P0 gives the energy.

Using the matrices given Eqs. (11) and (12), the required non-vanishing component

of Σνα
µ is

Σ01
0 = 2 sin θ

[

M − Q2

r
+

r3

l2

]

. (20)

From this point of view, the energy of the RN AdS black holes in general relativity is

found as given below.

E(r) = M − Q2

r
+

r3

l2
. (21)
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2.2. The Møller Energy in Teleparallel Gravity

The teleparallel theory of gravity (the tetrad theory of gravitation) is an alternative

approach to gravitation and corresponds to a gauge theory for the translation group

based on Weitzenböck geometry [24]. In the theory of teleparallel gravity, gravitation is

attributed to torsion [25], which plays the role of a force [26], and the curvature tensor

vanishes identically. The essential field is acted by a nontrivial tetrad field, which gives

rise to the metric as a by-product. The translational gauge potentials appear as the

nontrivial item of the tetrad field, so induces on space-time a teleparallel structure

which is directly related to the presence of the gravitational field. The interesting place

of teleparallel theory is that, due to its gauge structure, it can reveal a more appropriate

approach to consider some specific problem. This is the situation, for example, in the

energy and momentum problem, which becomes more transparent.

Møller modified general relativity by constructing a new field theory in teleparallel

space. The aim of this theory was to overcome the problem of the energy-momentum

complex that appears in Riemannian Space [27]. The field equations in this new theory

were derived from a Lagrangian which is not invariant under local tetrad rotation. Saez

[28] generalized Møller theory into a scalar tetrad theory of gravitation. Meyer [29]

showed that Møller theory is a special case of Poincare gauge theory [30, 31].

In teleparallel gravity, the super-potential of Møller is given by Mikhail et al. [15]

as

Uνβ
µ =

(−g)1/2

2κ
P τνβ

χρσ [Φρgσχgµτ − λgτµξ
χρσ − (1 − 2λ)gτµξ

σρχ] (22)

where ξαβµ = eiαei
β;µ is the con-torsion tensor and e µ

i is the tetrad field and defined

uniquely by gαβ = eα
i eβ

j η
ij (here ηij is the Minkowski space-time). κ is the Einstein

constant and λ is free-dimensionless coupling parameter of teleparallel gravity. For the

teleparallel equivalent of general relativity, there is a specific choice of this constant.

Φµ is the basic vector field given by

Φµ = ξρ
µρ (23)

and P τνβ
χρσ can be found by

P τνβ
χρσ = δτ

χgνβ
ρσ + δτ

ρgνβ
σχ − δτ

σgνβ
χρ (24)

with gνβ
ρσ being a tensor defined by

gνβ
ρσ = δν

ρδβ
σ − δν

σδβ
ρ . (25)

The energy-momentum density is defined by

Ξβ
α = Uβλ

α,λ (26)

where comma denotes ordinary differentiation. The energy is expressed by the surface

integral;

E = lim
r→∞

∫

r=constant
U0ζ

0 ηζdS (27)
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where ηζ is the unit three-vector normal to surface element dS. Now, we are interested

in to find the total energy distribution. Since the intermediary mathematical exposition

are length, we give only the final result. To find the super-potential of Møller, first we

can calculate the required non-vanishing the basic vector field Φµ and the con-torsion

tensor ξαβµ. After making the some calculations [32, 33], the required non-vanishing

components of ξαβµ and Φµ are obtained as following

ξ0
01 = −ξ1

11 =



ln

√

1 − 2M

r
+

Q2

r2
+

r2

l2





r

, (28)

ξ1
22 = −r





√

1 − 2M

r
+

Q2

r2
+

r2

l2



 , (29)

ξ1
33 = ξ1

22 sin2 θ, (30)

ξ2
21 = ξ3

31 = r−1, (31)

ξ3
32 = ξ3

23 = cot θ, (32)

ξ2
33 = − sin θ cos θ, (33)

ξ2
12 = ξ3

13 =



r





√

1 − 2M

r
+

Q2

r2
+

r2

l2









−1

, (34)

Φ1 = −


ln

√

1 − 2M

r
+

Q2

r2
+

r2

l2





r

+ 2



r





√

1 − 2M

r
+

Q2

r2
+

r2

l2









−1

(35)

Φ2 = cot θ. (36)

Substituting this results into Eq. (22), we obtain the non-vanishing required Møller’s

super-potential Uνβ
µ as following

U01
0 =

2 sin θ

κ

[

M − Q2

r
+

r3

l2

]

. (37)

Using above result in energy integral, we find the following energy for the RN Ads black

hole

E(r) = M − Q2

r
+

r3

l2
. (38)

We can easily see that the energy depends on the mass M and charge Q of the RN AdS

black hole and cosmological constant Λ.

3. Discussion

The localization of energy-momentum in general relativity has been debated since the

beginning of relativity. The energy-momentum pseudotensors are not tensorial object

and one is forced to use ”Cartesian” coordinates. Because of these reasons, this topic was

not considered exactly for a long time. However, after Virbhadra, Rosen, Chamorro and

Aguirregabiria’s works [11], this subject was re-opened. In addition to this, Virbhadra

[12] underlined that although the energy-momentum prescriptions are not tensorial
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objects, they do not disturb the principle of general covariance as the equations defining

the local conservation laws with these objects are covariant. In another study, Chang,

Nester and Chen [36] obtained that there exists a direct relationship between quasilocal

and pseudotensor expressions; since every energy-momentum pseudotensor is associated

with a legitimate Hamiltonian boundary term.

In general relativity, several studies have been devoted to calculate the energy(due

to matter plus fields) distribution for a given space-time. For example; Chamorro-

Virbhadra [11] and Xulu [13] showed, considering the general relativity analogs of

Einstein and Møller’s definitions, that the energy of a charged dilation black hole

depends on the value h which controls the coupling between the dilation and the Maxwell

fields.

EEinstein = M − Q2

2r
(1 − h2), EMoller = M − Q2

r
(1 − h2). (39)

Also, Virbhadra[12] and Xulu[13] obtained that the energy distribution in the sense

of Einstein and Møller disagree in general. Next, Lessner[14] showed that the Møller

energy-momentum complex is a powerful concept of energy and momentum.

In this paper, to calculate the energy distribution(due to matter plus fields)

associated with the RN AdS black holes, we investigated the Møller energy-momentum

definition in both general relativity and teleparallel gravity. We obtained that the energy

is the same in both of these different gravitation theories and also found that the energy

depends on the mass M and charge Q of the RN AdS black hole and cosmological

constant Λ. According to the Cooperstock hypothesis [2], the energy is confined to the

region of non-vanishing energy-momentum tensor of matter and all non-gravitational

fields. Radinschi [13] found that Einstein and Tolman prescriptions give the same energy

for the RN AdS black hole which is given by

ET (r) = EE(r) = M − Q2

2r
+

r3

2l2
. (40)

Using Møller complex, we found the energy of the RN AdS black hole in both general

relativity and teleparallel gravity and showed that both of them give same result which

is given by

EM(r) = M − Q2

r
+

r3

l2
(41)

The result support that the energy distribution in the sense of Einstein and Møller

disagree in general. Difference between these two definitions is given by

EE(r) − EM(r) = ∆(E) =
Q2

2r
− r3

2l2
. (42)

The limiting of Λ → 0 and Q → 0, Einstein and Møller definitions give the same energy

which is obtained as EE(r) = EM(r) = M .

In some special cases, RN AdS black hole is reduced to the black holes known whose

energies have been already calculated.

1. Schwarzschild AdS limit
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We first consider the Schwarzschild AdS case. In this case, the RN AdS black hole

is easily reduced to the Schwarzschild AdS black hole in the limiting of Q → 0 (or

without charge). From Eq. (21), the total energy becomes

E(r) = M +
r3

l2
. (43)

The result is the same as that obtained by Salti and Aydogdu [34] for the Schwarzschild

AdS black hole.

2. RN limit

The other limit is Λ → 0 (or without cosmological constant). In this limit, the line-

element (1) describes spherical symmetric solutions. From Eq. (21), the total energy

becomes

E(r) = M − Q2

r
. (44)

This result is also calculated by Chamorro and Virbhadra [11] for a charged dilaton

black hole.

3. Schwarzschild limit

When Λ → 0 and Q → 0, the line-element (1) describes the Schwarzschild space.

In this limit, the total energy is found as

E(r) = M. (45)

Moreover, this paper sustains (a) the importance of the energy-momentum

definitions in the evaluation of the energy distribution of a given space-time, (b) the

viewpoint of Lessner [14], (c) the energy distribution in the sense of Einstein and Møller

disagree in general and d) the Møller energy-momentum definition allows to make

calculations in any coordinate system. Finally, the energy obtained is also independent

of the teleparallel dimensionless coupling constant, which means that it is valid not only

in the teleparallel equivalent of general relativity, but also in any teleparallel model..
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