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The differential structure of operator bases used in various forms of theWeyl-Wigner-Groenewold-
Moyal (WWGM) quantization is analyzed and a derivative-based approach, alternative to the con-
ventional integral-based one is developed. Thus the fundamental quantum relations follow in a
simpler and unified manner. An explicit formula for the ordered products of the Heisenberg-Weyl
algebra is obtained. The W∞ -covariance of the WWGM-quantization in its most general form is
established. It is shown that the group action of W∞ that is realized in the classical phase space
induces on bases operators in the corresponding Hilbert space a similarity transformation generated
by the corresponding quantum W∞ which provides a projective representation of the former W∞.
Explicit expressions for the algebra generators in the classical phase space and in the Hilbert space
are given. It is made manifest that this W∞-covariance of the WWGM-quantization is a genuine
property of the operator bases.

I. INTRODUCTION

The Weyl-Wigner-Groenewold-Moyal (WWGM) quantization [1] that is usually called the phase space formulation
of quantum mechanics has gained a wide popularity in many different areas of physics including statistical mechanics
[2], quantum optics [3], collission theory [4] , and classically chaotic nonlinear systems [5,6]. This quantization scheme
can be simply stated as an association between classical observables (c -number functions defined on a classical
phase space) and quantum observables (operators acting in the corresponding Hilbert space H). In the mathematical
literature it is developed as the theory of pseudodifferential operators where the c-number functions determined by
the WWGM-quantization are referred as the symbols of the corresponding Hilbert space operators [7]. In fact all the
existing methods of quantization can be seen as association processes obeying certain rules [8]. Therefore, the search
for possible covariances and hence the invariance properties that these associations may posses are of fundamental
importance. That is to say, when a member of the associated pair is transformed, determination of the transformation
rule of the other one in a well defined manner must be the first step of a systematic investigation. In the context
of WWGM-quantization it is unfortunate that only a very restricted class of covariance properties are specified so
far. The main goal of the present paper is to uncover the covariance properties of the WWGM-quantization in its as
general form as possible.
The WWGM-quantization associates the usual product of two operators F̂1F̂2, not with the usual commutative

product of functions f1f2 , but rather with an associative star product f1 ⋆ f2 that is in general noncommutative,
where f1 and f2 are the c-number functions corresponding under the WWGM-quantization to the operators F̂1 and
F̂2, respectively. Henceforth operators and functions of operators will be denoted by hatˆover letters. Associativity
of the ⋆ product is inherited from the associativity of usual product of the operators. This in turn means that it is
not the Poisson brackets (PB), but its unique h̄ (Planck’s constant) deformation [9]

(ih̄)−1{f1, f2}MB = (ih̄)−1(f1 ⋆ f2 − f2 ⋆ f1)

= {f1, f2}PB +O(h̄) (1)

called the Moyal brackets (MB) that corresponds to the Lie bracket of operators under the WWGM-association. Due
to the associativity of the ⋆ product MB obeys Jacobi identity. Hence, WWGM-quantization sets up a Lie algebra
isomorphism between the Lie algebra of quantum observables and the resulting Lie algebra of classical observables with
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respect to MB. More precisely, the association depends on a certain rule of ordering of functions of noncommuting
operators [10,11]. For this reason the star product and therefore the corresponding MB must be labeled with a
parameter specifying the chosen rule of ordering. The O(h̄) terms in Eq.(1) that are called ”quantum corrections” can
be computed to any desired order of h̄ within the classical regime. Hence, the quantization itself can be understood
as a deformation of classical observables without any need for introducing a Hilbert space on which the operators act.
This leads to the fact that one can define a ”pseudomechanics” which has the star product and MB as its principle
ingredients which reduces to classical mechanics in the limit h̄ → 0 [9,12]. In this case the dynamics of a classical
observable f associated with a classical Hamiltonian system described by the Hamilton function H is governed by the
”equation of motion”

df

dt
= (ih̄)−1{H, f}MB. (2)

The WWGM- quantization has a ”simple covariance” with respect to affine canonical (i.e., inhomogeneous symplectic)
transformations [13–15]. This affine canonical covariance follows from the structure of the automorphism group of
the Heisenberg-Weyl (HW) group W1 and the Stone-von Neumann theorem [7] which in essence states that, upto a
central element generated by the unit element of the HW-algebra every irreducible representation of W1 is unitarily
equivalent to the Schrödinger representation D̂ (given by Eq.(3) below). On the other hand, in addition to the
inner automorphisms, automorphism group of W1 contains the inhomogeneous symplectic group ISp(2) which is the

semidirect product of the translation group and the symplectic group Sp(2). Thus, we can combine D̂ with an element

φ ∈ ISp(2) to obtain another representation D̂◦φ which is unitarily equivalent to the Schrödinger representation. This
unitary equivalence provides a double-valued metaplectic representation of ISp(2). The affine canonical covariance of
the WWGM-quantization is a simple consequence of this fact.
To the best of our knowledge, the only known covariance of the WWGM-quantization is the above mentioned

metaplectic covariance. Even this is investigated only for particular cases of WWGM-quantization. In the following
we prove that this quantization scheme has an infinity of covariances described by the recently found W∞ algebra and
W∞ group [16]. We wish to warn that there are two W∞’s here. The first one describes the Lie algebra of deformed
classical canonical diffeomorphisms and it is explicitly realized in the tangent space of the phase space. The other one
that acts in the corresponding Hilbert space with the usual commutator is the Lie algebra of ordered monomials of the
HW-algebra generators. Let us call these the classical W∞ and quantum W∞, respectively. Just as it is in the case
of the metaplectic covariance, it should be emphasized that this is also a direct consequence of the W∞-covariance
of the operator bases that are parametrized Schrödinger displacement operators D̂ and their Fourier transforms (see
Eqs.(4)-(6) below).
We consider only systems with one degree of freedom for the sake of simplicity. However, the structure of the

underlying algebra (HW-algebra) allows a straightforward generalization to systems with finite or denumerably in-
finite number of degrees of freedom. Our approach here is distinct from the conventional one in that differential
structure of the bases are given primary status and are investigated in detail. As an alternative to the integral-based
conventional approach we suggest to call this approach the derivative-based approach. Except for those that occur in
the definitions integrals rarely occur in our investigation. Wherever they do occur integrals should be understood as
double integrations over the whole phase space that is topologically equivalent to R2.
The organization of the paper is as follows. In Section 2 a review of the WWGM-quantization and the definition

of ordered products are given. This section fixes the notation and includes formulas and definitions needed for the
subsequent analyses. In Section 3 the differential structure of the Weyl basis is obtained and an explicit formula for
the ordered products is developed. Parametrized Bopp operators are introduced. Section 4 contains the differential
structure of the generalizedWigner basis and the corresponding Bopp operators. The announcedW∞-covariance of the
Weyl and Wigner bases are explicitly established in Section 5. Quantum deformation of the canonical diffeomorphisms
is also found and the generalized star product and Moyal brackets are obtained. The final Section 6 contains a summary
of results.

II. THE WWGM QUANTIZATION AND ORDERED PRODUCTS

Let us consider the Schrödinger representation of the HW-algebra: [q̂, p̂] = ih̄Î, where q̂ and p̂ are the hermitian
position and momentum operators, respectively. In terms of boson annihilation (â) and creation (â†) operators defined

by â = (a0h̄
√
2)−1(h̄q̂+ ia20p̂), the defining commutation relation is [â, â†] = Î. † stands for the Hermitian conjugation

and in terms of a frequency ω and mass m a length constant a0 = (h̄/mω)1/2 is used. The identity operator Î of the
algebra generates a U(1) group that is the center of W1. Then the so called displacement operators
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D̂(ξ, η) = expi(ξq̂ + ηp̂) ; D̂(z, z̄) = exp(zâ† − z̄â) (3)

which act irreducibly in H are the representatives of the coset space W1/U(1) in the real (ξ, η) and complex (z, z̄)

parametrization of the group space W1, respectively. z̄ denotes the complex conjugation of z = −(a0
√
2)−1(h̄η−ia20ξ).

The displacement operators, or their suitable parametrizations form complete operator bases, in the sense that, any
operator obeying certain conditions can be expanded in terms of them [10,11] . Each basis is closely connected with
the ordering of noncommuting q̂ and p̂ (or â and â†) in the expansion of operators. Therefore, not only the symbols
thus obtained but also the resulting phase spaces are distinct. In essence, the WWGM-quantization comes into play
by considering the parameters of the group space as the coordinate functions of a phase space. In this sense, the basis
elements play a dual role. On the one hand they are operators parametrized by the coordinate functions of a phase
space and acting in H, and on the other hand they behave as operator-valued c-number functions defined on the same
phase space.
A unified approach to different quantization rules is achieved by using s-parametrized (s ∈ C) displacement operators

[10,17]

D̂(s) = e−ih̄sξη/2D̂(ξ, η) ; D̂(z, s) = es|z|
2/2D̂(z, z̄) (4)

and their Fourier transforms

∆̂qp(s) = (h̄/2π)

∫ ∫
e−i(ξq+ηp)D̂(s)dξdη (5)

∆̂Z(s) = (π)−1

∫ ∫
e−(zZ̄−z̄Z)/a0

√
2D̂(z, s)d2z (6)

where, zR and zI being the real and the imaginary parts of z, d2z = dzRdzI and Z = q+ i(a20/h̄)p, Z̄ are the complex

coordinates for the (q, p) phase space. The ∆̂(s) operators are called the s-parametrized displaced parity operators.
It is easy to verify the following trace and unitarity properties

D̂†(s) = D̂†(0)eih̄ξηs̄/2 = D̂−1(s̄) (7)

D̂†(z, s) = D̂†(z)es̄|z|
2/2 = D̂−1(z,−s̄) (8)

Tr[D̂(s)] = (2π/h̄)δ(ξ)δ(η) (9)

Tr[D̂(z, s)] = πδ2(z) (10)

Another important property, which is independent of s, is the so called displacement property

D̂(s)f̂(q̂, p̂)D̂−1(s) = f̂(q̂ + h̄η, p̂− h̄ξ) (11)

D̂(z, s)f̂(â, â†)D̂−1(z, s) = f̂(â− z, â† − z̄) (12)

Making use of the relations given above and the definitions (5) and (6) one can easily obtain

∫ ∫
∆̂qp(s)dqdp = h = h(2πa20)

−1

∫ ∫
∆̂Z(s)d

2Z (13)

Tr[∆̂qp(s)] = 1 = Tr[∆̂Z(s)] (14)

∆̂†
qp(s) = ∆̂qp(−s̄) , ∆̂†

Z(s) = ∆̂Z(s̄) (15)

Now, two large class of associations can be defined as follows

F̂ (q̂, p̂) = h−1

∫ ∫
f (−s)(q, p)∆̂qp(s)dqdp (16)

Ĝ(â†, â) = (2πa20)
−1

∫ ∫
g(−s)(Z, Z̄)∆̂Z(s)d

2Z (17)

whose inverse transformations are

f (−s)(q, p) = Tr[F̂ ∆̂qp(−s)] (18)

g(−s)(Z, Z̄) = Tr[Ĝ∆̂Z(−s)], (19)
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respectively, where Tr stands for the trace. For the special values s = 1, 0,−1, Eqs.(16) and (18) are known as the
standart, Weyl, and antistandard rules of associations, respectively. On the other hand, Eqs.(17) and (19) are known
as the normal, Weyl, and antinormal rules of associations for s = 1, 0,−1 , respectively. If the density operator ρ̂ of
a quantum mechanical system is mapped by Eqs.(18) and (19), the resulting c-number functions

Wρ(q, p,−s) = Tr[ρ̂∆̂qp(−s)] , W ′
ρ(Z, Z̄,−s) = Tr[ρ̂∆̂Z(−s)] (20)

are called, generically, the quasiprobability distribution functions (qdf). They enable us to carry out quantum me-
chanical calculations in classical manner in the corresponding phase space [6,18]. In the real parametrization, the qdf’s
corresponding to s = 0 and s = ∓1 are called the Wigner and the Kirkwood qdf’s, respectively. In the case of complex
parametrization, the qdf corresponding to s = 1 and s = −1 are known as the Glauber-Sudarshan P-functions and
Q-functions. There is one more special association defined by

F̂ (q̂, p̂) = (h̄/2π)

∫ ∫
f(ξ, η)D̂−1(ξ, η)dξdη

f(ξ, η) = Tr[F̂ D̂(ξ, η)]. (21)

This is known as the alternative Weyl association (or quantization), and the above mentioned Wigner quantization is
simply the Fourier transform of it. The phase space resulting from Eq.(12) and having (ξ, η) as canonically conjugate
coordinates, is also known as the Weyl phase space. In the case of complex parametrization the alternative Weyl
association takes the form

F̂ (â†, â) = π−1

∫ ∫
f(z, z̄)D̂−1(z, z̄)d2z ; f(z, z̄) = Tr[F̂ D̂(z, z̄)]. (22)

By using the properties of the D̂ basis it can be easily verified that the Hilbert-Schmid norm of an operator defined
by ||F̂ || = (Tr[F̂ †F̂ ])1/2 is equal to the usual Hilbert space norm ||f || = (〈f |f〉)1/2 of the corresponding c-number
function. Thus, the alternative Weyl quantization is a norm preserving 1−1 association between the space of bounded
operators and the space of square integrable functions. Except for some particular values of s that may give rise to
singularities [10], the other associations are norm preserving 1− 1 associations as well.
The parametrized bases operators were for the first time, introduced by Cahill and Glauber [10] in order to inter-

polate among various types of orderings. Thus, the s-ordered products ŷ
(s)
nm ≡ {(â†)n(â)m}s and t̂

(s)
nm ≡ {(q̂)n(p̂)m}s

are defined as follows:

ŷ(s)nm = ∂n
z ∂

m
(−z̄)D̂(z, s)|z=0 (23)

t̂(s)nm = (−i)n+m∂n
ξ ∂

m
η D̂(s)|ξ=0=η (24)

where, and henceforth, the notation ∂x ≡ ∂/∂x. will be used. By writing

D̂(z, s) = e(s−s′)|z|2/2D̂(z, s′) ; D̂(s) = e−ih̄(s−s′)ξη/2D̂(s′) (25)

and differentiating, we obtain

ŷ(s)nm =

(n,m)∑
k=0

2−kb(k, n,m)[−(s− s′)]kŷ
(s′)
n−k,m−k (26)

t̂(s)nm =

(n,m)∑
k=0

2−kb(k, n,m)[ih̄(s− s′)]k t̂(s
′)

n−k,m−k (27)

where (n,m) denotes the smaller of the integers n and m, and (nk ) = n![(n − k)!k!]−1 being a binomial coefficient we
set

b(k, n,m) = (nk )(
m
k )k! (28)

These relations express an arbitrary s-ordered product in terms of a polynomial in s′-ordered products where s′ is
also arbitrary. Note that the minus sign in [−(s − s′)] in Eq.(20) and ih̄ in Eq.(21). These are the remnants of the
commutators of the corresponding operators there.
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III. DIFFERENTIAL STRUCTURE OF THE WEYL BASIS

The embedding of orderings in a continuum provides a natural context for viewing their differences and interrela-
tionships in a continuous manner and enable us to carry out the related analyses in the most general form. However,
the definitions (23) and (24) are quite implicit in contrast with the simple notion of ordering as a prescription about
the arrangement of operators. Moreover, some complicated and long formulas that may be encountered in the formu-
lation of the WWGM-quantization can be traced back to this implicit definition of ordering. The derivatives of the
bases D̂(s) and D̂(z, s) with respect to the phase space coordinates are obtained in this section. An explicit formula
for the ordered products which initiated the main observations of this report will be derived in the next section.
First, the following relations can be easily obtained from (11) and (12):

ξD̂(s) = h̄−1[p̂, D̂(s)] ; ηD̂(s) = −h̄−1[q̂, D̂(s)] (29)

zD̂(z, s) = [â, D̂(z, s)] ; z̄D̂(z, s) = [â†, D̂(z, s)] (30)

They can be generalized as follows

ξnηmD̂(s) = (−h̄−1adq̂)
m(h̄−1adp̂)

nD̂(s) ; zmz̄nD̂(z, s) = (adâ†)n(adâ)
mD̂(z, s) (31)

where adÂ denotes the adjoint action of Â: adÂB̂ ≡ [Â, B̂]. Note that [adq̂, adp̂] = ad[q̂,p̂] = 0. The same relation

remains valid if the pair (q̂, p̂) is replaced by (â†, â). Thus, the ordering of ad operations in Eq.(31) is inessential.

By taking the derivatives of the various factorizations of D̂(s) and D̂(z, s) implied by the Baker-Campbell-Hausdorff
(BCH) formula we obtain the following identities:

∂ξD̂(s) = i(q̂ + ηs−)D̂(s) = iD̂(s)(q̂ − ηs+) = (i/2)[q̂ − 1

2
h̄ηs, D̂(s)]+

∂ηD̂(s) = i(p̂− ξs+)D̂(s) = iD̂(s)(p̂+ ξs−) = (i/2)[p̂− 1

2
h̄ξs, D̂(s)]+ (32)

∂zD̂(z, s) = [â† − (z̄s−/h̄)]D̂(z, s) = D̂(z, s)[â† + (z̄s+/h̄)] = (1/2)[â† +
1

2
z̄s, D̂(z, s)]+

∂(−z̄)D̂(z, s) = [â− (zs+/h̄)]D̂(z, s)

= D̂(z, s)[â+ (zs−/h̄)] = (1/2)[â− 1

2
zs, D̂(z, s)]+ (33)

where [, ]+ denotes the anticommutator and

s∓ =
1

2
h̄(1∓ s) (34)

By making use of the Leibniz rule

∂n(uv) =

n∑
k=0

(nk )(∂
ku)(∂n−kv) (35)

it is possible to obtain generalizations of Eqs.(32)-(33) in several ways. That is, depending on the way the derivatives
are taken, the definitions (23) and (24) may not yield the desired s-ordered product, but an equivalent one. In this
sense the definitions (23) and (24) are implicit. The dual role played by the bases operators allows us to have the
opposite sides of Eqs.(29) and (30) contain quantities living in different spaces. On the other hand Eqs.(32)-(33)
are not written in the same way. The implicit nature of the above formulas is due this fact. Eqs.(32)-(33) can be
rewritten in such a way that the quantities appearing on the opposite sides of the equalities live in different spaces.
This we may achieve in two ways: (i) by taking the terms proportional to ηD̂(s), ξD̂(s), zD̂(z, s), and z̄D̂(z, s) to

the left, hence leaving all the Hilbert space quantities at the right, or (ii) by replacing h̄ηD̂(s), h̄ξD̂(s), zD̂(z, s), and

z̄D̂(z, s) in view of Eqs.(29)-(30) by −adq̂, adp̂, adâ, and adâ† , respectively. The first way leads to the introduction
of s-parametrized Bopp operators that we are going to investigate at the end of this section. The second way allows
us to rewrite Eqs.(32)-(33) in the following unique form:

∂ξD̂(s) = (i/2)T̂[q̂](s)D̂(s) ; ∂ηD̂(s) = (i/2)T̂[p̂](−s)
D̂(s) (36)

∂zD̂(z, s) = (1/2)T̂[â†](s)D̂(z, s); ∂(−z̄)D̂(z, s) = (1/2)T̂[â](−s)
D̂(z, s) (37)
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where we define the Hilbert space operation

T̂[Â](s)
= (1 + s)L̂Â + (1− s)R̂Â. (38)

Here L̂Â and R̂Â are, respectively, the multiplication from left and from right by Â. In fact T̂[Â](−s)
is an s-deformation

of T̂[Â]+
≡ L̂Â + R̂Â. It is equal to 2L̂Â, T̂[Â]+

and 2R̂Â for s = 1, s = 0, and s = −1, respectively. We observe that

for an arbitrary operator B̂

[T̂[q̂](s) , T̂[p̂](−s)
]B̂ = 0 = [T̂[â†](s) , T̂[â](−s)

]B̂ (39)

which simply follows from ∂ξ∂η = ∂η∂ξ and the relations (36), (37). It can also be directly verified. Then we generalize
Eqs.(36),(37) as follows:

∂n
ξ ∂

m
η D̂(s) = (i/2)n+mT̂ n

[q̂](s)
T̂m
[p̂](−s)

D̂(s) (40)

∂n
z ∂

m
(−z̄)D̂(z, s) = 2−(n+m)T̂ n

[â†](s)
T̂m
[â](−s)

D̂(z, s) (41)

In view of Eqs.(39)-(41), these can be rewritten in a finitely many different looking but equivalent forms.
We substitute Eqs.(40) and (41) in the definitions (23) and (24) to obtain

t̂(s)nm = 2−(n+m)T̂ n
[q̂](s)

T̂m
[p̂](−s)

Î = 2−(n+m)T̂m
[p̂](−s)

T̂ n
[q̂](s)

Î , (42)

ŷ(s)nm = 2−(n+m)T̂ n
[â†](s)

T̂m
[â](−s)

Î = 2−(n+m)T̂m
[â](−s)

T̂ n
[â†](s)

Î . (43)

By making use of the binomial formula

T̂ n
[Â](s)

≡ [(1 + s)L̂Â + (1− s)R̂Â]
n =

n∑
j=0

(nj )(1 + s)j(1− s)n−jL̂j

Â
R̂n−k

Â
(44)

we can rewrite expressions in (44) more explicitly as

t̂(s)nm = 2−n
n∑

j=0

(nj )(1 + s)j(1− s)n−j q̂j p̂mq̂n−j (45)

= 2−m
m∑

k=0

(mk )(1− s)k(1 + s)m−kp̂kq̂np̂m−k. (46)

A similar relation holds for ŷ
(s)
nm if the pair (q̂, p̂) is replaced by (â†, â) in these relations. In view of Eq.(39), it is

possible to write many equivalent forms of the above relations. But for later use we have written only two of them.
From these we get for s = ±1

t̂(1)nm = L̂n
q̂ R̂

m
p̂ Î = q̂np̂m ; t̂(−1)

nm = L̂m
p̂ R̂n

q̂ Î = p̂mq̂n (47)

and for s = 0

t̂(0)nm = 2−n
n∑

j=0

(nj )q̂
j p̂mq̂n−j (48)

= 2−m
m∑

k=0

(mk )p̂k q̂np̂m−k (49)

The expressions (47) exhibit the standart and antistandart rules of ordering while (48) and (49) yield the two well
known expressions for symmetrically (or Weyl) ordered products. In fact the usual expression known for the Weyl

ordered form of t̂
(0)
nm is a totally symmetrized product containing n factors of q̂ and m factors of p̂, normalized by

dividing by the number of terms in the symmetrized expression. In the literature [19] the equivalence of these three
Weyl ordered forms is said to be verified by using the usual commutation relations. This requires long and tedious
computations. In our formulation on the other hand, not only the above mentioned equivalences, but also explicit
expressions for many forms of the Weyl ordered products arise naturally as a corollary to Eq.(39).

6



As an application, let us consider the traces of Eqs.(40) and (41) for s = 0. By noting that TrD̂ = (2π/h̄)δ(ξ)δ(η),

TrD̂(z) = πδ2(z) where D̂ ≡ D̂(0); the well known Weyl associations follow:

2π

h̄
∂n
ξ δ(ξ)∂

m
η δ(η) ↔ (i)n+mt̂(0)nm (50)

π∂n
z ∂

m
(−z̄)δ

2(z) ↔ ŷ(0)nm (51)

These expressions cannot be so easily obtained in other approaches.
We propose that the relation (45) (or alternatively (46)) can be given as the definition of s-ordered product. There

are several reasons that support this suggestion: (i) These expressions are simpler and more explicit than the definitions
given by (23) and (24). Neither the phase space coordinates nor the basis operators appear in these expressions. (ii)
The ordered products of â† and â can be treated on an equal footing. In fact the disapperance of h̄, or any multiple
of it, in these expressions implies that all the relations and the remarks given above are valid for any algebra having

[
ˆ

A, B̂] = iλÎ;λ ∈ C [20]. A physical application may be the algebra of velocity operators of a charged particle moving
in an external electromagnetic field. (iii) These definitions may be extended to the case when one or both of the
integers n and m are negative. Furthermore, by using these relations the Hermiticity of a general s-ordered product

can be easily decided. From (45) and (46) it follows that [t̂
(s)
nm]† = t̂

(−s̄)
nm . Thus, for every pair of integers n,m , t̂

(s)
nm

are Hermitian provided s̄ = −s. In particular, the Weyl ordered products t̂
(0)
nm are Hermitian. In the case of â, â† we

have, from (45) and (46), [ŷ
(s)
nm]† = ŷ

(s̄)
mn. Hence, the s-ordered products ŷ

(s)
nm are Hermitian if and only if m = n , and

s̄ = s. For general s ∈ C one can find combinations such as

κ̂nm(s) = αt̂(s)nm + ᾱt̂(−s̄)
nm , κ̂′

nm(s) = αŷ(s)nm + ᾱŷ(s̄)mn (52)

(α ∈ C) that are Hermitian.

We now consider the alternative way of writing the derivatives in D̂(s) so that the quantities appearing at opposite
sides belong to different spaces as

(−i∂ξ − s−η)D̂(s) = q̂D̂(s) , (−i∂ξ + s+η)D̂(s) = D̂(s)q̂

(−i∂η + s+ξ)D̂(s) = p̂D̂(s) , (−i∂η − s−ξ)D̂(s) = D̂(s)p̂ (53)

By defining the s-parametrized Bopp operators

QL(s) = −i∂ξ − s−η , QR(s) = −i∂ξ + s+η

PL(s) = −i∂η + s+ξ , PR(s) = −i∂η − s−ξ (54)

we can generalize Eqs.(46):

Qn
L(s)D̂(s) = q̂nD̂(s) , Qn

R(s)D̂(s) = D̂(s)q̂n

Pn
L (s)D̂(s) = p̂nD̂(s) , Pn

R(s)D̂(s) = D̂(s)p̂n (55)

Being defined in the tangent space of the (ξ, η)-phase space, the s-parametrized Bopp operators obey the commutation
relations

[QL(s), PL(s)] = −ih̄ = −[QR(s), PR(s)] (56)

with all the other commutators equal to zero. These relations indicate that the s-parametrized Bopp operators provide
a concrete coordinate realization of the direct sum of two copies of the HW-algebra, and for real s they are hermitian
on the Lebesque space defined on the (ξ, η)-phase space.
In the case of complex coordinates Eqs.(37) yield

Q′n
L (s)D̂(z, s) = (â†)nD̂(z, s) , Q′n

R (s)D̂(z, s) = D̂(s)(â†)n

P ′n
L (s)D̂(z, s) = (−â)nD̂(z, s) , P ′n

R (s)D̂(z, s) = D̂(z, s)(−â)n (57)

where we have defined the s-parametrized complex Bopp operators

Q′
L(s) = ∂z + z̄(s−/h̄) , Q′

R(s) = ∂z − z̄(s+/h̄)

P ′
L(s) = ∂z̄ − z(s+/h̄) , P ′

R(s) = ∂z̄ + z(s−/h̄). (58)
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The nonvanishing commutation relations they satisfy are

[Q′
L(s), P

′
L(s)] = −I = −[Q′

R(s), P
′
R(s)] (59)

We note that the complex Bopp operators are related with a coordinate realization of the bosonic annihilation and
creation operators. We wish also to remark in passing that Eqs.(55) and (57) resemble eigenvalue equations.
The Bopp operators were originally defined only for the Wigner (s=0) quantization [18,21]. They play an important

role in the derivative-based approach that we are using. So we generalize them for any quantization rule.

IV. DIFFERENTIAL STRUCTURE OF THE WIGNER BASIS

Differential structure of the ∆̂(s) bases are formally the Fourier transform of that obtained in the preceding sections

for the D̂(s) bases. To put it more simply, they can be derived from the definition (5), (6) by elementary calculations.
Indeed, making use of Eqs.(29) and (30), it is easy to verify that

∂q∆̂qp(s) = − i

h̄
[p̂, ∆̂qp(s)] , ∂p∆̂qp(s) =

i

h̄
[q̂, ∆̂qp(s)]

∂Z∆̂Z(s) =
1

a0
√
2
[â†, ∆̂Z(s)] , ∂Z̄∆̂Z(s) = − 1

a0
√
2
[â, ∆̂Z(s)] (60)

and from (36) and (38) it follows that

q∆̂qp(s) =
1

2
T̂[q̂](s)∆̂qp(s) , p∆̂qp(s) =

1

2
T̂[p̂](−s)

∆̂qp(s)

Z∆̂Z(s) =
a0√
2
T̂[â](−s)

∆̂Z(s) , Z̄∆̂Z(s) =
a0√
2
T̂[â†](s)∆̂Z(s). (61)

This is the only place where we need partial integration. Recalling the commutation relations (39), the above
expressions may be generalized as follows:

qnpm∆̂qp(s) = 2−(n+m)T̂ n
[q̂](s)

T̂m
[p̂](−s)

∆̂qp(s)

Z̄nZm∆̂Z(s) = (
a0√
2
)n+mT̂ n

[â†](s)
T̂m
[â](−s)

∆̂Z(s). (62)

As an example, by taking the traces of both sides of Eqs.(62) we obtain

qnpm = Tr[t̂(s)nm∆̂qp(−s)]

Z̄nZm = (a0
√
2)n+mTr[ŷ(s)nm∆̂Z(−s)]. (63)

Alternatively, taking the integrals of both sides of the same equations we are led to

t̂(s)nm = h−1

∫ ∫
qnpm∆̂qp(s)dqdp,

ŷ(s)nm = (2πa20)
−1(a0

√
2)−(n+m)

∫ ∫
Z̄nZm∆̂Z(s)d

2Z. (64)

Eqs.(63) and (64) explicitly show that the s-quantization of the monomials qnpm and Z̄nZm(a0
√
2)−(n+m) are nothing

but the s-ordered products t̂
(s)
nm and ŷ

(s)
nm, respectively. In our approach these well known results concerning the

WWGM-quantization are obtained with ease in a unified manner.
From Eqs.(60) and (61) we have

Q∆L(s)∆̂qp(s) = q̂∆̂qp(s) , Q∆R(s)∆̂qp(s) = ∆̂qp(s)q̂

P∆L(s)∆̂qp(s) = p̂∆̂qp(s) , P∆R(s)∆̂qp(s) = ∆̂qp(s)p̂ (65)

where

Q∆L(s) = q − is−∂p , Q∆R(s) = q + is+∂p

P∆L(s) = p+ is+∂q , P∆R(s) = p− is−∂q (66)
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are the s-parametrized Bopp operators for the ∆̂qp(s) bases. The only nonvanishing commutators for them are

[Q∆L(s), P∆L(s)] = −ih̄ = −[Q∆R(s), P∆R(s)]. (67)

We also give the s-parametrized complex Bopp operators

Q′
∆L(s) = 2−1/2[

Z̄

a0
+ a0(1 − s)∂Z ] , Q′

∆R(s) = 2−1/2[
Z̄

a0
− a0(1 + s)∂Z ]

P ′
∆L(s) = 2−1/2[

Z

a0
− a0(1 + s)∂Z̄ ] , P ′

∆R(s) = 2−1/2[
Z

a0
+ a0(1− s)∂Z̄ ] (68)

Their action on bases can be obtained from (60) and (61) as

Q′n
∆L(s)∆̂Z(s) = (â†)n∆̂Z(s) , Q′n

∆R(s)∆̂Z(s) = ∆̂Z(s)(â
†)n

P ′n
∆L(s)∆̂Z(s) = (â)n∆̂Z(s) , P ′n

∆R(s)∆̂Z (s) = ∆̂Z(s)(â)
n. (69)

In the complex case the nonvanishing commutators are

[Q′
∆L(s), P

′
∆L(s)] = 1 = −[Q′

∆R(s), P
′
∆R(s)]. (70)

We will finish this section by another important observation that generalizes a well known relation between the
Wigner (s = 0) association and arbitrary s-association. It follows immediately from

t̂(r)nm∆̂qp(s) = {Qn
∆L(s)P

m
∆L(s)}−r∆̂qp(s)

∆̂qp(s)t̂
(r)
nm = {Qn

∆R(s)P
m
∆R(s)}r∆̂qp(s) (71)

by taking trace of both sides and making use of Eqns. (14), (45), (46) and (65),

Tr[t̂(r)nm∆̂qp(s)] = {Qn
∆L(s)P

m
∆L(s)}−rI = {Qn

∆R(s)P
m
∆R(s)}rI. (72)

Thus for any arbitrary r and s, the c-number function corresponding to an r-ordered product via the s-rule of
association can be obtained by the action of the r-ordered s-parametrized Bopp operators on the phase space identity
operator I. The extension of these observations to the case of complex coordinates and by linearity to arbitrary
functions of operators that can be expanded to a series of ordered products is straightforward.

V. W∞-COVARIANCE OF THE BASES OPERATORS

By following the same lines leading to Eqs.(71) from (45) (or (46)) and (55) we obtain

T (r)
nm(s)D̂(s) = [t̂(r)nm, D̂(s)] (73)

where

T (r)
nm(s) ≡ {Qn

L(s)P
m
L (s)}−r − {Qn

R(s)P
m
R (s)}r. (74)

Equation (73) reveals the important fact that each r-ordered product of q̂’s and p̂’s generates an infinitesimal trans-

formation in the Weyl basis D̂(s) in the Hilbert space H. This transformation corresponds to an infinitesimal
transformation of the basis in the Weyl phase space that is built up in terms of r and −r ordered Bopp operators.
The exponentiation of these transformations leads to

Vnm(r, s)D̂(s) = Ûnm(r)D̂(s)Û−1
nm(r) (75)

where γnm ∈ C are the transformation parameters and

Vnm(r, s) ≡ exp(iγnmT (r)
nm(s)) , Ûnm(r) ≡ exp(iγnmt̂(r)nm). (76)

Û−1
nm(r) denotes the operator inverse of Ûnm(r). Eq.(73) at the algebra level and Eq.(75) at the group level explain

what we mean in its full generality by W∞-covariance of the Weyl basis. Here we have two W∞ algebras (and
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groups): First one is generated by the ordered products t̂
(r)
nm;n,m ≥ 0 and is acting in H. The second is generated by

T
(r)
nm(s);n,m ≥ 0 and is realized in the Weyl phase space.

Let s = 0 and multiply both sides of Eqs.(73) and (75) by an arbitrary bounded operator F̂ (q̂, p̂). Then take the
trace of the resulting equations. We thus obtain

T (r)
nmf(ξ, η) = Tr([F̂ (q̂, p̂), t̂(r)nm]D̂) (77)

Vnm(r, 0)f(ξ, η) = Tr{[Û−1
nm(r)F̂ (q̂, p̂)Ûnm(r)]D̂} (78)

where f = Tr[F̂ D̂], T
(r)
nm ≡ T

(r)
nm(0). These two equations describe the W∞-covariance of the Weyl quantization both

at the algebra level (Eq.(77)) and at the group level (Eq.(78)). In other words, if F̂ is the Weyl quantization of a

c-number function f , then the W∞ transform of F̂ ,

F̂ ′ = Û−1
nm(r)F̂ Ûnm(r) (79)

is the Weyl quantization of the c-number function

f ′(ξ, η) = Vnm(r, 0)f(ξ, η). (80)

For the sake of brevity, in the case of complex coordinates we write out only the main equations:

T ′(r)
nm (s)D̂(z, s) = [ŷ(r)nm, D̂(z, s)]

V ′
nm(r, s)D̂(z, s) = Û ′

nm(r)D̂(z, s)Û ′−1
nm (r) (81)

and

T ′(r)
nm f(z, z̄) = Tr{[F̂ (â†, â), ŷ(r)nm]D̂(z)}

V ′
nm(r, 0)f(z, z̄) = Tr{[Û ′−1

nm (r)F̂ (â†, â)Û ′
nm(r)]D̂(z)}. (82)

These expressions describe the W∞-covariance of the D̂(z, s) basis and of the Weyl quantization, respectively. Here
we used the abrreviations (αnm ∈ C)

T ′(r)
nm (s) ≡ {Q′n

L (s)P ′m
L (s)}−r − {Q′n

R (s)P ′m
R (s)}r

V ′
nm(r, s) ≡ exp(iαnmT ′(r)

nm (s))

Û ′
nm(r) ≡ exp(iαnmŷ(r)nm) (83)

and T
′(r)
nm ≡ T

′(r)
nm (0).

From Eq.(71) we have

Γ(r)
nm(s)∆̂qp(s) = [t̂(r)nm, ∆̂qp(s)] (84)

where

Γ(r)
nm(s) = {Qn

∆L(s)P
m
∆L(s)}−r − {Qn

∆R(s)P
m
∆R(s)}r. (85)

It is straightforward to verify that in the case of complex coordinates the corresponding relations are the following:

Γ′(r)
nm(s)∆̂Z(s) = [ŷ(r)nm, ∆̂Z(s)] (86)

Γ′(r)
nm(s) = {Q′n

∆L(s)P
′m
∆L(s)}−r − {Q′n

∆R(s)P
′m
∆R(s)}r

Exponentiating the actions (84) and (86) we are led to

V ∆
nm(r, s)∆̂qp(s) = Ûnm(r)∆̂qp(s)Û

−1
nm(r)

V ′∆
nm(r, s)∆̂Z(s) = Û ′

nm(r)∆̂Z Û
′−1
nm (r) (87)

where

V ∆
nm(r, s) ≡ exp(iγnmΓ(r)

nm(s)) , V ′∆
nm(r, s) ≡ exp(iαnmΓ′(r)

nm)
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These expressions exhibit both at the algebra and at the group level, the W∞-covariance of the Wigner (s = 0)

and the Kirkwood (s = ±1) bases. Suppose F̂ (q̂, p̂) and Ĝ(â†, â) are two arbitrary bounded operators, and let

F̂ ′ = Û−1
nm(r)F̂ Ûnm(r) and Ĝ′ = Û ′−1

nm (r)ĜÛ ′
nm(r) be their W∞ transforms. Then from Eqs.(87) we get

V ∆
nm(r, s)f (s)(q, p) = Tr[F̂ ′∆̂qp(s)]

V ′∆
nm(r, s)g(s)(Z, Z̄) = Tr[Ĝ′∆̂Z(s)] (88)

where f (s)(q, p) = Tr[F̂ ∆̂qp(s)] and g(s)(Z, Z̄) = Tr[Ĝ∆̂Z(s)] are the corresponding c-number functions. The in-
finitesimal version of (84) are

Γ(r)
nm(s)f (s)(q, p) = Tr([F̂ , t̂(r)nm]∆̂qp(s))

Γ′(r)
nm(s)g(s)(Z, Z̄) = Tr([Ĝ, ŷ(r)nm]∆̂Z(s)). (89)

Thus, the complete W∞-covariance of the WWGM-quantization is achieved. Explicit expressions giving the algebra
generators for n,m ≤ 2 are presented below.

t̂
(0)
00 = Î , Γ

(0)
00 (s) = 0

t̂
(0)
10 = q̂ , Γ

(0)
10 (s) = −ih̄∂p

t̂
(0)
01 = p̂ , Γ

(0)
01 (s) = ih̄∂q

t̂
(0)
11 =

1

2
(q̂p̂+ p̂q̂) , Γ

(0)
11 (s) = ih̄(q∂q − p∂p)

t̂
(0)
20 = q̂2 , Γ

(0)
20 (s) = −2ih̄q∂p + sh̄2∂2

p

t̂
(0)
02 = p̂2 , Γ

(0)
02 (s) = 2ih̄p∂q − sh̄2∂2

q (90)

In order to see the connection between the algebra of canonical diffeomorphisms and the W∞-algebra found above
in a different bases, we consider the relation [22]

Γ(s)
nm(−s)f(q, p) = (qnpm) ⋆(−s) f(q, p)− f(q, p) ⋆(−s) (q

npm)

= {qnpm, f(q, p)}(−s)
MB (91)

where f is an arbitrary c-number function and the s-parametrized star product ⋆(−s) is defined to be

⋆(−s) = exp
1

2
ih̄[(1 − s)∂L

p ∂
R
q − (1 + s)∂L

q ∂
R
p ] (92)

∂L and ∂R denote partial derivatives acting to the left (L) and to the right (R), respectively. We have in particular
exp(−ih̄∂L

q ∂
R
p ) for s = 1, exp(12 ih̄(∂

L
p ∂

R
q − ∂L

q ∂
R
p )) for s = 0 and exp(ih̄∂L

p ∂
R
q ) for s = −1. Thus the above definition

unifies the different expressions given in the literature for the star product and Moyal brackets and generalizes them
for an arbitrary s-ordering. The s-Moyal brackets of two arbitrary functions can also be written as

{f1, f2}(−s)
MB = 2if1[exp−

1

2
ih̄s(∂L

p ∂
R
q + ∂L

q ∂
R
p )] sin[

1

2
h̄(∂L

p ∂
R
q − ∂L

q ∂
R
p )]f2 (93)

which reduces to the well known Moyal form when s = 0.
Writing out the first three terms explicitly, the expansion of the s-Moyal brackets is

{f1, f2}(−s)
MB = ih̄{f1, f2}PB +

1

2!
(ih̄/2)24s[(∂2

qf1)(∂
2
pf2)− (f1 ↔ f2)]

+
1

3!
(ih̄/2)3{[(1− s)3 + (1 + s)3](∂3

pf1)(∂
3
q f2)−

6(1− s2)(∂q∂
2
pf1)(∂p∂

2
qf2)− (f1 ↔ f2)}+ . . . (94)

where PB denotes the Poisson brackets. This formula generalizes to arbitrary values of s the expansions for some
discrete values of s that previously appeared in the literature. In particular we would like to note that in the case of
Wigner quantization (s = 0), the leading order correction to the PB is proportional to h̄2, while in all the other cases
(s 6= 0) the leading term is proportional to h̄.
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Taking F̂ to be t̂
(s)
kl in Eq.(89) and using (91) we obtain

Γ(s)
nm(−s)(qkpl) = Tr{[t̂(s)kl , t̂

(s)
nm]∆̂qp(−s)}

= {qnpm, qkpl}(−s)
MB (95)

The last equality sets up a Lie algebra isomorphism between the quantum W∞, that is the algebra generated by
s-ordered products under the usual Lie bracket action, and the algebra generated by the monomials qnpm for n,m ≥ 0

under the s-MB action. Since (ih̄)−1{, }(−s)
MB → {, }PB as h̄ → 0, the essence of the full quantum W∞ can be captured

on the classical phase space by simply deforming the Poisson brackets to s-Moyal brackets. On the other hand we

have another infinite algebra generated by the operators Γ
(r)
nm(s);n,m ≥ 0 indexed by two ordering parameters r, s

and built up by the product of the Bopp operators, that are concretely realized in the tangent space of R2. This is
the algebra that we referred to as the classical W∞ in the introduction. As is seen from (95), or more readily from

[Γ(r)
nm(s),Γ

(r)
kl (s)]∆̂qp(s) = −[[t̂(r)nm, t̂

(r)
kl ], ∆̂qp(s)] (96)

the above mentioned isomorphic quantum W∞ algebras are central extensions of this classical W∞. The vanishing

of the right hand side of (95) (or (96)) requires by the completeness of the basis, that t̂
(r)
nm (or [t̂

(r)
nm, t̂

(r)
kl ]) has to be

proportional to Î, while the vanishing of the left hand side requires Γ
(r)
nm( or [Γ

(r)
nm(s),Γr

kl(s)]) to be zero. Note that,
as is apparent from Eq.(96), there is an overall sign difference between the structure constants of the classical and
quantum W∞ algebras. This can be remedied by a simple redefinition of the generators. Thus, the group generated
by the quantum W∞ provides a projective representation of the classical W∞.
On the other hand, it is known that [16] the space of monomials tnm ≡ qnpm;n,m ≥ 0 form the Lie algebra of

canonical diffeomorphisms of a phase space, that is topologically equivalent to R2, under the usual Poisson brackets.
This algebra is known as w∞, or since the area element and the symplectic form coincides in two dimensions, as
the algebra of area preserving diffeomorphisms DiffAR

2. The W∞ algebras discussed above are the quantum (or,h̄)
deformation of this classical w∞. The one called the quantumW∞ provides an implementation of the general canonical
transformations at the quantum level.

VI. CONCLUSION

We have developed a derivative based approach to the WWGM-quantization as an alternative to the integral based
conventional one. This enabled us in particular to obtain some fundamental associations in a unified way easily and
to derive an explicit formula for the s-ordered products that led to further observations. It is argued that this formula
can also be used for any pair of operators. In the case of operators belonging to a nilpotent algebra such as the
Heisenberg-Weyl algebra, seemingly different but equivalent expressions of a given ordered product can be obtained.
In a given association the primary issue is to determine how a member of the association transforms when the

other one is transformed in a well defined way. We have explicitly shown that the WWGM-quantization in its most
general form has a W∞-covariance which includes the known metaplectic covariance as a subset. Eq.(90) contains for
n,m ≤ 2 the generators of the metaplectic algebra Isp(2) in the classical phase space and its central extension in H.
Moreover, we emphasize that like the metaplectic covariance, the W∞-covariance we had shown is a genuine property
of the complete operator bases used. An important group theoretical outcome of this construction is that we have
obtained a projective representation of the classical W∞ realized in the tangent space of the related phase space.
W∞ algebras are currently the subject of active investigations in two dimensional gravity [16], conformal field

theories [23] and in connection with quantum Hall effect in condensed matter physics (see [24] and the references
therein). For example, the notion of incompressibility which plays a fundamental role in the theoretical understanding
of quantum Hall effect has been related to the existence of the W∞ symmetry. These exciting developments suggest
that the structure of the Landau levels, or more generally the quantum Hall effect could also be investigated in the
framework of the WWGM-quantization. We plan to take up a systematic study of these problems in our forthcoming
papers.
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