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Abstract

It is known that the L-function of an elliptic curve defined over Q is given by
the Mellin transform of a modular form of weight 2. Does that modular form have
anything to do with string theory? In this article, we address a question along this
line for elliptic curves that have complex multiplication defined over number fields. So
long as we use diagonal rational N = (2, 2) superconformal field theories for the string-
theory realizations of the elliptic curves, the weight-2 modular form turns out to be
the Boltzmann-weighted (qL0−c/24-weighted) sum of U(1) charges with FeπiF insertion
computed in the Ramond sector.
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1 Introduction

For any elliptic curve defined over Q, its Hasse–Weil L-function is given by the Mellin trans-

form of a modular form of weight 2 (by Shimura–Taniyama conjecture, now a theorem). For

many elliptic curves with complex multiplication defined over number fields, their Hasse–

Weil L-functions are still given by multiplying the Mellin transforms of modular forms. In

the meantime, when we define a string theory by using a geometry as a target space, its

worldsheet formulation must have modular invariance; various observables computed in such

a string theory are often modular forms. Are there any relations between those two kinds of

modular forms? If there are, what are the relations precisely? We address this question1 in

this article; the spirit is therefore similar to that of [21].

A relation between them, if there is any, cannot be as simple as “they are the same”.

The Hasse–Weil L-function is defined for an algebraic variety (where complex structure is

specified, but metric is not), while there is no choice in formulating a string theory without

specifying a metric on a target space.2 At least we need to extract some information from

string theory in a way the results do not depend on the choice of a metric, or to find a way to

extract for any choice of metric, to say the least. One will also notice that the L-function is

defined for individual models defined over number fields; in arithmetic geometry, two elliptic

curves given by y2 = x3 − x and y2 = x3 − 4x are regarded different varieties defined over

Q. Those two elliptic curves are regarded the same, however, when we use them as a target

space of string theory; coordinate reparametrization in C (rather than in Q) washes out the

difference between them.3 How can a string theory with a given elliptic curve defined over C

provide information of the L-functions of various models defined over number fields?

In this article, we deal with a class of elliptic curves—those with complex multiplication

with one condition (stated in Lemma 4.2.4)—and provide an answer to the questions raised

above. It is best to begin with a relation between character functions (given essentially by

theta functions) of string theory with an elliptic curve as a target space, and the Dedekind

zeta function ζk(s) of a number field k; the observation that the Mellin transform of the

1 The second named author has been led to this question through the application of arithmetic ideas to
the cosmological constant / gravitino mass problem in the context of flux compactification [18, 3, 1, 9].

2a caveat: topological string theory
3In a more mathematical language, elliptic curves used as a target space in string theory are objects in

the category of Kähler manifolds (if duality is ignored). On the other hand, the L-function is defined for
individual objects in categories of algebraic varieties defined over some number fields. There is no canonical
functor in one way or the other. There is just correspondence between them, where infinitely many objects
on one side correspond to infinitely many objects on the other.

1



former is the latter [Moore [17], §4] corresponds to the first line of the following diagram,

characters ⇐⇒ ζk(s) = L(H0
et(E), s),

?? ⇐⇒ L(H1
et(E), s).

In section 3.4, we elaborate on the relation in the first line, because this process serves as a

warming up exercise in finding out the appropriate string-theory objects in the second line.

We will see, in section 4.3, that the objects “??” are (62, 63), because of the observation

(102). Thms. 4.3.1 and 4.3.2 explain how the Hasse–Weil L-functions (i.e., L(H1
et(E), s))

of arithmetic models of an elliptic curve with complex multiplication can be obtained from

those objects defined in string-theory realizations. The objects (62, 63) are modular forms of

weight 2 for a subgroup of SL(2;Z)ws acting on the complex structure parameter τws of the

worldsheet torus of string theory. The “how can a string theory... ?” question raised earlier

in Introduction is also answered right after Thm. 4.3.2.

Background materials from string theory are explained in sections 2, 3.2 and 4.1, while

sections 3.1, 3.3 and 4.2 provide a quick review on materials from algebraic number theory

we need in this article. Novelty may be found only in section 4.3. If a reader already has

introductory level knowledge on string theory and class field theory, he/she can proceed

directly to section 4.3.

Despite the apparent style of presentation built up with “Theorem,” “Proposition” and

so forth, and despite frequent use of algebraic number theory, the main result reported in

this article—-what is the object “??” in the diagram above—is a statement on string theory.

We have adopted a math-like style of presentation in this article for the purpose of making

statements more precise, and implicit contexts explicit.

2 Rational CFT and Complex Multiplication

Refs. [16, 6] pointed out, roughly speaking, that an elliptic curve has complex multiplication

if and only if its string-theory realization is given by a rational conformal field theory (CFT).

See also [30]. This section provides a brief review on part of the results of [16, 6] for readers

with math background, by adopting a math-style presentation. We have also inserted Remark

2.0.4, which tries to give an idea of what elliptic curves with complex multiplication are like,

for those who have never heard of the jargon.

Think of a bosonic string theory with an elliptic curve as the target space. This is
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equivalent to thinking of a (c, c̃) = (2, 2) CFT on a worldsheet that has two holomorphic (left-

mover) U(1) current operators and also two anti-holomorphic (right-mover) ones. We call

such a CFT as a T 2-target CFT. T 2-target CFT’s are parametrized by a pair (z, ρ) ∈ H×H,

where H is the upper complex half plane without the real axis. Here, z stands for the complex

structure parameter and ρ for the complexified Kähler parameter of an elliptic curve.

Notation 2.0.1. For z ∈ H, Ez, [Ez ] or [Ez]C stands for a C-isomorphism class of elliptic

curves that can be constructed by C/(Z⊕ zZ). •

The same elliptic curve characterized by a pair (z, ρ) ∈ H × H can also be used as a

target space of Type II superstring. There, we think of a (c, c̃) = (3, 3) CFT with N = (2, 2)

supersymmetry on a worldsheet that has two holomorphic (left-mover) U(1) current operators

in addition to the U(1) current operator JL in the left-mover superconformal algebra, and also

two anti-holomorphic (right-mover) ones in addition to JR in the right-mover superconformal

algebra. We call such a CFT as a T 2-target N = (2, 2) superconformal field theory (SCFT).

2.0.1 Statements from Refs. [16, 6]

References [16, 6] found the following, among other things.

Proposition 2.0.2. A T 2-target CFT is a rational CFT if and only if both of the following

two conditions are satisfied: i) both Ez and Eρ admit complex multiplications, and ii) Ez

and Eρ are isogenous. •

Proposition 2.0.3. A rational T 2-target CFT is diagonal, when either ρ ∈ Aut(Ez), or

z ∈ Aut(Eρ). •

In the rest of this note, we only think of the cases with ρ ∈ Aut(Ez). For non-string

readers, additional information (incl. definition) on diagonal rational CFT’s are provided in

section 2.0.2. For readers with physics background, it is useful to know the following classic

results in mathematics:

Remark 2.0.4. Elliptic curves with complex multiplication by an order of an imaginary

quadratic field K = Q(
√
−d0) (for some positive square-free integer d0) are classified modulo

isomorphisms over C by the set

∐fz∈N>0Ell(Ofz), (1)

3



where4

Ell(Ofz) =

{(
2a b
b 2c

)∣∣∣∣ a, b, c ∈ Z, (a, b, c) = 1, Dz := 4ac− b2 = |DK |f 2
z

}
/SL(2;Z).

Here, a matrix h ∈ SL(2;Z) acts on a matrix g(a, b, c) parametrized by integers a, b, c as

above, by g(a, b, c) 7→ g(a′, b′, c′) = h · g(a, b, c) · hT . The corresponding C-isomorphism class

in Ell(Ofz) is given by Ez with the solution z ∈ H of

az2 + bz + c = 0. (2)

A set of integers (a, b, c) that gives rise to an elliptic curve Ez in this way is denoted by

(az, bz, cz). Because the SL(2;Z) action on a set of integers (az, bz, cz) corresponds to the

SL(2;Z) transformation on z ∈ H, an SL(2;Z) orbit of sets of integers (az, bz, cz) specifies

just one C-isomorphism class of elliptic curves.

For any C-isomorphism class [Ez] of elliptic curves in Ell(Ofz), the ring of endomorphism

of Ez is Aut(Ez) ∼= Z ⊕ (azz)Z =: Ofz ⊂ OK ⊂ K ⊂ C; here, OK is the ring of algebraic

integers in K. Such a subring Ofz of OK is called an order, and OK = Ofz=1 is called the

maximal order of the imaginary quadratic field K = Q(
√
−d0). We say that an elliptic curve

E whose C-isomorphism class [E] is in Ell(Ofz) has complex multiplication by Ofz .

It is also known that the ideal class group of an order5 Ofz , denoted by ClK(Ofz), is

isomorphic to the set Ell(Ofz). Table 1 shows examples of elliptic curves with complex

multiplication. This article will not provide a review on class field theory beyond what is

written here; instead, we will provide reference to math textbooks occasionally.6 •

Suppose that an elliptic curve Ez has complex multiplication by an order Aut(Ez) = Ofz of

an imaginary quadratic field, as in Propositions 2.0.2 and 2.0.3. Two string theory realizations

with (z, ρ) and (z, ρ′), with ρ, ρ′ ∈ Ofz = Z⊕ (azz)Z (as indicated in Proposition 2.0.3) are

regarded the same, when ρ − ρ′ ∈ Z (converting ρ to ρ′ ∈ ρ + Z is a part of SL(2;Z)

action on the parameter ρ). This means that we can always choose ρ of a rational diagonal

4DK is the discriminant of an imaginary quadratic field K = Q(
√−d0). When d0 satisfies d0 ≡ 3 mod 4,

−DK = d0; when d0 ≡ 1, 2 mod 4, however, −DK = 4d0.
5 It is a quotient of the ray ideal class group ClK(mf ) with the modulus mf = (fz)OK

. The ray class field
corresponding to the modulus mf = (fz)OK

is denoted by Lmf
= L(fz)OK

in this article, whereas Lfz stands

for the abelian extension of K satisfying Gal(Lfz/K) ∼= ClK(Ofz ). Lfz is a subfield of L(fz)OK
. See [13, 19]

for class field theory associated with elliptic curves.
6 A string-theorist-friendly review on global class field theory is found in [16, 18]. Systematic expositions

on global class field theory are also found in such textbooks as [20, 12, 14], and a little more introductory
ones in [13, 19].
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|DK | fz = 1 fz = 2 fz = 3 fz = 4 fz = 5
3 [1,1,1] [1,0,3] [1,1,7] [1,0,12], [3,0,4] [1,1,19],[3,3,7]
4 [1,0,1] [1,0,4] [1,0,9], [2,2,5] [1,0,16], [4,4,5] [1,0,25],[2,2,13]
7 [1,1,2] [1,0,7] h(Ofz=3) = 4 h(Ofz=4) = 2 h(Ofz=5) = 6
8 [1,0,2] [1,0,8], [3,2,3] h(Ofz=3) = 2 h(Ofz=4) = 4 h(Ofz=5) = 6
11 [1,1,3] [1,0,11],[3,±2,4] h(Ofz=3) = 2 h(Ofz=4) = 6 h(Ofz=5) = 4
20 [1,0,5], [2,2,3] h(Ofz=2) = 4 h(Ofz=3) = 4 h(Ofz=4) = 8 h(Ofz=5) = 10

Table 1: Representatives [a, b, c] of individual elements of ClK(Ofz) for imaginary quadratic
fieldsK with small |DK |. Representatives are chosen so that 0 ≤ a ≤ c and−a < b ≤ a; when
c = a, however, 0 ≤ b ≤ a. In order to save space, just the cardinality h(Ofz) of ClK(Ofz) is
shown in part of this Table, instead of representatives of all the elements of ClK(Ofz). There
are two more imaginary quadratic fields, K = Q(

√
−15) and K = Q(

√
−19), that would

come in between DK = −11 and DK = −20, but we omitted them, just to save space.

T 2-target CFT to be an integer (fρ) multiple of azz: ρ = fρazz. From here, therefore,

follows a consequence of Propositions 2.0.2 and 2.0.3 phrased in a way favorable for algebraic

geometers:

Proposition 2.0.5. Think of a C-isomorphism class of elliptic curves with complex multi-

plication by an order Ofz of an imaginary quadratic field K, i.e., any element of (1). Then

there is a family of bosonic string theory realizations in the form of a rational and diagonal

T 2-target CFT, parametrized by fρ ∈ N>0. Also, there is a family of Type II superstring

theory realizations parametrized by fρ ∈ N>0, each one of which is in the form of a rational

and diagonal T 2-target N = (2, 2) SCFT. •

The parameter fρ controls the choice of complexified Kähler form on the C-isomorphism

class of elliptic curves. Although algebraic geometry only deals with complex structure of a

geometry and does not refer to the choice of a metric on it, yet there is no option in any string-

theory realization of an object in algebraic geometry not to specify a metric (complexified

Kähler form) on it. The Proposition above says that the choice of complexified Kähler form

is parametrized by one positive integer fρ ∈ N>0, when we impose a condition that the CFT

on worldsheets be rational and diagonal.7

7If we do not impose this condition, any [ρ] ∈ H/SL(2;Z) is fine.
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2.0.2 Rudiments on Rational CFT’s

To describe various structures of diagonal rational T 2-target CFT’s in terms of arithmetic

properties of the elliptic curves with complex multiplication, we prepare a few important

general properties of diagonal rational CFT’s (that are not necessarily T 2-target).

Remark 2.0.6. When a rational diagonal CFT is given, there is an isomorphism ϕ0 be-

tween the algebra A− of purely holomorphic vertex operators and that (A+) of purely anti-

holomorphic vertex operators,

ϕ0 : A− ∼= A+. (3)

The Hilbert space of closed string states Hclosed in such a theory has a structure

Hclosed = ⊕α∈iReps.(V
−
α ⊗ V +

α ); (4)

here, V +
α is an irreducible representation of A+, and there are just finite number of distinct

irreducible representations (by definition of rational CFT’s). The index α runs over all the

irreducible representations. V −
α is the irreducible representation of A− that is regarded as

V +
α when the action of A− is identified with that of A+ through the isomorphism ϕ0 (by

definition of the diagonality). •

Remark 2.0.7. In a rational T 2-target CFT, there exists a sublattice (Γ−⊕Γ+) ⊂ II2,2; II2,2 is

the even unimodular lattice of signature (2, 2), Γ− [resp. Γ+] is an even integral negative [resp.

positive] definite primitive sublattice of II2,2. When a rational T 2-target CFT is also diagonal,

then the isomorphism ϕ0 : A− ∼= A+ also induces a lattice isometry ϕ0 : Γ−[−1] ∼= Γ+. The

set of irreducible representations are labeled by

iReps. ∼= Γ∨
+/Γ+

∼= II2,2/(Γ− ⊕ Γ+) ∼= Γ∨
−/Γ−, (5)

where L∨ stands for the dual lattice of an integral lattice L. •

In the language of string theory, II2,2 is the lattice of charges under the four U(1) currents

in a T 2-target CFT. The sublattice Γ− [resp. Γ+] in a rational T 2-target CFT corresponds

to the set of U(1) charges for which purely holomorphic [resp. purely anti-holomorphic]

operators exist.8

8Due to the fact that the pair of primitive sublattices Γ− and Γ+ fit into the even unimodular lattice II2,2,
one can see that the discriminant groups and forms of Γ−[−1] and Γ+ are identical. This condition is still
weaker than the existence of a lattice isometry Γ−[−1] ∼= Γ+. See [7]. Furthermore, the existence of a lattice
isometry Γ−[−1] ∼= Γ+ is still a weaker condition than the one for a rational T 2-target CFT to be diagonal.

6



Remark 2.0.8. (we keep the notation as in the previous remark) In a rational diagonal CFT,

ϕ0-Cardy states refer to a special class of choices of boundary conditions that can be imposed

on worldsheets; they are in one-to-one correspondence with the set iReps. Furthermore, when

a worldsheet is in the form of a long strip and both of the two edges of the strip are subject

to Cardy states, say, α and β ∈ iReps., then the open string states on such a long strip

form a representation of the algebra9 (A− ×A+)/(ϕ0 at.bdry) ∼= A+. Therefore, the Hilbert

space of open string states with both of the two boundary conditions being ϕ0-Cardy states

consists of a direct sum of V o
α , the irreducible representation of the algebra that is isomorphic

to V +
α when seen as a representation of A+. •

2.0.3 More Statements from Ref. [6]

With the preparation in remark 2.0.4 and section 2.0.2, we are now ready to write down more

statements in [6]:

Proposition 2.0.9. Think of a diagonal rational T 2-target CFT, with ρ = fρazz. Then the

characters of the irreducible representations of the algebra A+ and A− are given by

chV +
α
(q̄ = e−2πiτ̄ ) := TrV +

α
[e−2πiτ̄(L̃0−c̃/24)] = χα(q̄), (6)

chV −
α
(q = e2πiτ ) := TrV −

α
[e2πiτ(L0−c/24)] = χα(q), (7)

where

χα(e
2πX) =

f0(X ;α)

(η(e2πX))2
, f0 (X ;α) :=

∑

p∈α
e2πiX

(p,p)
2 ; (8)

η(q) = q
1
24

∏∞
n=1(1−qn) is the Dedekind η-function, and L0 [resp. L̃0] is one of the generators

of the Virasoro algebra in the left-moving [resp. right-moving] sector. α ∈ iReps. ∼= Γ∨
+/Γ+

labels irreducible representations on the left-hand sides, but is regarded as the subset of Γ∨
+

on the right-hand side; the positive definite intersection form (−,−) of the lattice Γ∨
+ is used

in the exponent.

The intersection form of Γ+ is given by a matrix

fρ

[
2az bz
bz 2cz

]
= 2azfρ

[
1 −z1

−z1 |z|2
]

(9)

9With an abuse of notation, we also use ϕ0 for this isomorphism.
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when a set of generators of Γ+ is chosen appropriately; here, Re(z) =: z1 and Im(z) =: z2 > 0.

It follows that

discr(Γ+) = f 2
ρDz = f 2

ρf
2
z |DK |. • (10)

Proposition 2.0.10. In a diagonal rational T 2-target CFT with ρ = fρazz, the open string

states subject to ϕ0-Cardy states10 are in the representation of the algebra ϕ0 : (A− ×
A+/(ϕ0 at.bdry) ∼= A+, and the irreducible representations are labeled by (see below for

notation)

α ∈ ΛCardy/Λwinding
∼= iReps. = Γ∨

+/Γ+. (11)

The character of the irreducible representation V 0
α of such open string states is given by

chV o
α
(e−2πt) := TrV o

α
[e−2πt(L0−c/24)] = χα(e

−2πt). (12)

L0 is one of the Virasoro generators for the open string sector. •
Just for the purpose of keeping track of the set of all the irreducible representations of

an algebra A+ and anything isomorphic to it, it is not necessary to introduce yet another

set ΛCardy/Λwinding, which is isomorphic to the set Γ∨
+/Γ+. In string theory, however, the

set ΛCardy/Λwinding labeling the irreducible representations of open string states should be

regarded as the character group of Γ∨
+/Γ+ labeling the irreducible representations of close

string states; they are the same finite set (set theoretically), though.

In the language of string theory, the lattice Γ+ [resp. Γ∨
+] can be regarded also as all the

possible values of the right-mover momentum
√

(α′/2) k+ of all the purely anti-holomorphic

operators [resp. all the operators]. [
√
(α′/2) kC+] : Γ+ → C is an embedding where the

absolute-value-square | [
√
(α′/2) kC+](p) |2C in C for p ∈ Γ+ reproduces the self intersection

(p, p) in Γ+.

ΛCardy and Λwinding are also rank-2 lattices, and ΛCardy
∼= Γ∨

+, Λwinding
∼= Γ+ as lattices. In

string theory, the geometry of elliptic curve (target space) is given by

[C/Λwinding]C ∼= [Ez]C; (13)

10 Cardy states are certain class of boundary conditions to be imposed on string theories on a worldsheet
with a boundary. It may sound strange to refer to a boundary condition as a “state,” but it is legitimate,
because choice of such a boundary condition can be regarded as a choice of a state in a vector space on
which linear operators act, in a certain perspective in string theory. Because we do not need to exploit this
perspective in this note, Cardy states can be understood as a certain class of choices of boundary conditions
imposed on a string theory on a worldsheet with a boundary.
In order to define Cardy states, one needs to specify the linear combination of operators from A− and A+

whose kernel the boundary states are in. The prefix “ϕ0-” specifies the linear combination.

8



ΛCardy = Λ∨
winding is a lattice of torsion points of the elliptic curve C/Λwinding. When we

refer to open string states on a strip-shape worldsheet with two boundaries subject to ϕ0-

Cardy states, we think of states of an open string with one boundary fixed at the origin of

ΛCardy/Λwinding and the other boundary at another point in ΛCardy/Λwinding. The number of

torsion points of ΛCardy/Λwinding is

[ΛCardy : Λwinding] = [Γ∨
+ : Γ+] = f 2

ρDz = #[iReps.]. (14)

The combination of the isometry ΛCardy
∼= Γ∨

+ and an embedding [
√
(α′/2) kC+] : Γ

∨
+ → C

gives an embedding of ΛCardy → C. It is natural for string theorists to use [
√

2/α′∆XC/(2π)] :

ΛCardy → C as the notation of this embedding, but we use a simpler notation Ω′ : ΛCardy → C

instead in the following. The following information is written down here, as we use it later

on:

Ω′(Λwinding) =
√

2azfρ(Z⊕ zZ) = [
√
(α′/2) kCR](Γ+) ⊂ C (15)

Ω′(ΛCardy) =

√
2azfρ

fρ

(
2azz + bz

Dz
Z⊕ bz + 2czz

Dz
Z

)
⊂ C. (16)

3 ζk(s): the L-function for H0
et(E)

3.1 Field of Definition of Arithmetic Models

Definition 3.1.1. Let X be an algebraic variety defined over11 a number field k. When we

wish to emphasize the choice of the field of definition, we also write X/k. When k′/k is a

field extension, and [X ′]k′ is an k′-isomorphism class of algebraic varieties defined over k′,

X/k is said to be a model of [X ′]k′, if the base change12 of X , X ×Spec(k) Spec(k
′), belongs to

[X ′]k′.

Although we wish to deal with a C-isomorphism class of a variety [X ]C as a target space

in string theory, arithmetic geometry deals with its models X/k defined over some number

field k. From the perspective of arithmetic geometry, one might be interested in X/k in the

category of algebraic varieties defined over a number field k, but its string-theory realizations

depend only on the C-isomorphism class [X ]C of which X/k is a model.

11In a more colloquial language, X is a subvariety of a projective space over a number field k, given by a
set of defining equations whose coefficients are in k.

12In a more colloquial language, this is an operation to include all the points where the affine coordinates
take value in k′ (although defining equations have coefficients in k).
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Let X be an n-dimensional algebraic variety defined over a number field k. One can

then define13 2n L-functions for X/k, L(H i
et(X), s) for i = 0, 1, · · · , 2n, each one of which

is associated with the i-the cohomology (denoted symbolically) H i(X) of X . In the case

X/k is a curve, n = 1, the L-function for H0(X) is the Dedekind zeta function ζk(s) of the

field of definition, k. The L-function for H2(X) is ζk(s − 1). When we refer to Hasse–Weil

L-function, or simply the L-function, that is meant to be the L-function associated with

H1(X). The notation L(X/k, s) is also used for L(H1
et(X), s).

The Dedekind zeta function ζk(s) of a number field k is so well-understood an object for

a given number field k that few people will find it interesting to think of an elliptic curve

E defined over k, think of string-theory realizations of [E/k]C, and then write down ζk(s)

in terms of characters of states in the string-theory realizations of [E/k]C. We still do so

in this section as a warming-up exercise for section 4, where we study how the L-functions

associated with H1(E) are related to string-theory realizations of E.

The following facts are well-known.

Theorem 3.1.2 (e.g., Shimura [25], Thm. 5.7). Let [E]C ∈ Ell(Ofz) be a C-isomorphism

class of elliptic curves with complex multiplication by an order Ofz of an imaginary quadratic

field K. Then it has a model defined over the ring class field

Lfz = K(j([E])) (17)

of K, where j([E]) is the j-invariant of [E]; this number field Lfz is determined uniquely from

K and fz ∈ N>0, and is independent of choice of [E] in Ell(Ofz). An example of models over

Lfz is a Weierstrass model given by (e.g., Silverman [28], Prop. III.1.4(c))

y2 + xy = x3 − 36

j([E])− 1728
x− 1

j([E])− 1728
, (18)

although this is not the only possible model of E defined over Lfz .

Obviously, there exists a model of E defined over L for any extension field L of Lfz ; we

can use the base change of E/Lfz to obtain a model over L. •
Theorem 3.1.3. Let [E]C ∈ Ell(Ofz) be a C-isomorphism class of elliptic curves with

complex multiplication by Ofz . Then it also has a model defined over a number field

F
[E]
fz

:= Q(j([E])); (19)

13The definition of the L-function is written down in [Shimura [27], 19.1–6] for the case X is an abelian
variety, and i = 1; for more general cases, we need to refer to etale cohomology groups to define L(Hi

et(X), s).
When X is an elliptic curve, however, the L-function for i = 1 has a more intuitive characterization in terms
of the number of Fp(residue field)-points of the reduction of X at a non-zero prime ideal p of k.
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the Weierstrass equation given by (18) is an example of such models. The field of definition

F
[E]
fz

is a degree-h(Ofz) extension over Q, and Lfz is a degree-2 extension of F
[E]
fz

. The

field F
[E]
fz

is not necessarily stable under conjugation in Aut(Q/Q); the subfield F
[E]
fz

⊂ Q

depends on which one of [E] ∈ Ell(Ofz) is used (although Lfz ⊂ Q does not). For any

[E] ∈ Ell(Ofz), however, there exists a unique element ρ[E] ∈ Gal(Lfz/Q) that generates

Gal(Lfz/F
[E]
fz

) ∼= Z/2Z. •

Notation 3.1.4. The extension field Lfz for fz = 1 of an imaginary quadratic field K may

also be denoted by HK or simply by H , and called the Hilbert class field of K. The subfield

F
[E]
fz

⊂ HK may also be denoted by F
[E]
K , FK , F

[E] or F , when K and/or [E] is fixed. •

In this section, we will focus on the cases where k/K is an abelian extension containing

Lfz/K (including k = Lfz cases), and write down theh relation between characters of string-

theory realizations of [E/k]C and ζk(s).

3.2 Preparation in String Theory

The embedding Ω′ : Λwinding⊗Q → C was determined so that the absolute-value-square norm

| |2C reproduces the intersection form of Γ+
∼= Λwinding. It is more convenient to modify the

embedding by rescaling it, so that the image of the lattices Γ+
∼= Λwinding and Γ∨

+
∼= ΛCardy

fit within K = Q(
√−d0) = Q(z) ⊂ Q ⊂ C. Let us take Ω := [(C−1

√
2azfρz2i)] · Ω′, where

C ∈ Q is some constant. Then

Ω(ΛCardy) = C−1(Z⊕ zZ) ⊂ Q ⊂ C, (20)

bz := Ω(Λwinding) = C−1fρ((2azz + bz)Z⊕ (bzz + 2cz)Z) ⊂ Q ⊂ C. (21)

As long as C ∈ Q, bz and Ω(ΛCardy) are now regarded as rank-2 lattices within K ⊂ C. We

fix C ∈ Q so that OK is contained in Ω(ΛCardy); we need to take

C ∈ fz

GCD
(
az,

fz−bz
2

)Z if DK is odd, C ∈ fz
GCD(az, bz/2)

Z if DK is even; (22)

in the rest of this article, we use the minimum positive value of C. One can also see that

C−1Ofz ⊂ Ω(ΛCardy).

11



Here are a couple of bilinear forms introduced on an imaginary quadratic field K.

(−,−)K/Q : K ×K ∋ (x, y) 7→ (x, y)K/Q := TrK/Q(xy) ∈ Q, (23)

〈−,−〉K/Q : K ×K ∋ (x, y) 7→ 〈x, y〉K/Q := (xȳ + x̄y) ∈ Q ⊂ C, (24)

〈x, x〉K/Q = 2|x|2C, (25)

(−,−)Γ+⊗Q : K ×K ∋ (x, y) 7→ (x, y)Γ+⊗Q := C2 az
fρDz

〈x, y〉K/Q , (26)

(x, x)Γ+⊗Q = C2 az
fρDz

〈x, x〉K/Q . (27)

The ratio between the last two norms, 〈−,−〉K/Q and (−,−)Γ+⊗Q, is due to the rescaling

factor C−1
√

2azfρz2i between Ω and Ω′; (2azfρ)z
2
2 = fρDz/(2az). Using these relations,

Ω(ΛCardy) can be characterized in terms of bz and vice versa as

Ω(ΛCardy) =
fρDz

C2az
b∗z, bz =

fρDz

C2az
Ω(ΛCardy)

∗. (28)

Here, a∗ for a full-rank Z-lattice a ⊂ K ⊂ C is the dual lattice with respect to the inter-

section form 〈−,−〉K/Q. The notation a∨ is reserved for the dual lattice with respect to the

intersection form (−,−)K/Q.

Modular invariance of CFT on worldsheet is an important principle in string theory. In a

diagonal rational CFT, characters {χα}α∈iReps. can be regarded as a vector-valued modular

form; by introducing a vector space C[iReps.] = SpanC{eα |α ∈ iReps.} with a basis that

consists of formal elements eα’s in one-to-one correspondence with the set of irreducible

representations iReps.,
∑

α

eα χα(q) ∈Mwt=0(SL(2;Z),C[iReps.]). (29)

χα’s can be regarded as characters of the left-mover chiral algebra (where the argument is

q = e2πiτ ), those of the right movers, and those of open string states subject to ϕ0-Cardy states

(where the argument is q = e−2πt). The modular invariance of the closed string partition

function is ensured by the cancellation between the left-mover C[iReps.] representation matrix

of the worldsheet-SL(2;Z) group and that of the right-mover.

The power series expansion of χα(q)’s with respect to q, however, begins with a fractional

power term, q−
c
24 ; the central charge is c = 2 in T 2-target CFT’s. An object mathematically

nicer is
∑

α eα[χαη
2], when the Fourier expansion begins with the 1 = q0 term. Now

∑

α∈iReps.

eα[χαη
2] =

∑

α∈iReps.

f0(τ ;α) ∈Mwt=1(SL(2;Z),C[iReps.]). (30)

12



It may look artificial to multiply η2 for the purpose of getting the integer-power leading term

in the Fourier expansion, but this nice object shows up naturally in superstring version of

the diagonal rational T 2-target CFT’s. In the closed string Ramond sector,

f0(τws;α) = (−i)TrV −
α ;R

[
FLe

πiFLqL0−c/24
]
, q = e2πiτws , (31)

and in the open string Ramond sector,

f0(itws;α) = (−i)TrV o
α ;R[Fe

πiF qL0−c/24], q = e−2πtws ; (32)

here, τws ∈ H is the complex structure parameter of worldsheet torus, and tws ∈ R>0 the

parameter of the shape of a cylinder; FL and F are the fermion number operators on the

closed string left-moving sector and open string sector, respectively.14 It is evident in the

closed string language that
∑

α eαf0(τws;α) is a vector-valued modular form of weight 1; on

a worldsheet torus Σ with the complex structure τws with the odd spin structure, think of

the partition function with the action modified from S to S̃ by a parameter u ∈ C:

Z(τws, u) :=

∫

Map(Σ,E(z,ρ))

eiS̃(u,ū), (33)

iS̃(u, ū) = iS + 2πi

∫

Σ

d2σ

Im(τws)
(uJL(σ)− ūJR(σ)) . (34)

This “partition function” transforms as [10, 2]

Z

(
aτws + b

cτws + d
,

u

cτws + d

)
= E

[
(1/2)cu2

cτws + d
− (1/2)cū2

cτ̄ws + d

]
Z(τws, u), (35)

where E[X ] := e2πiX , under the worldsheet SL(2;Z)ws transformation acting on τws through

τ ′ws =
aτws+b
cτws+d

. Because

−1

(2π)2

[
∂

∂u

∂

∂ū
Z(τws, u, ū)

]

u=ū=0

=
∑

α

f0(τws;α)f0(−τ̄ws;α), (36)

we can use (35) to see,

∑

α

f0(τ
′
ws;α)f0(−τ̄ ′ws;α) = (cτws + d)(cτ̄ws + d)

[
∑

α

f0(τws;α)f0(−τ̄ws;α)

]
, (37)

14Here, we think of a worldsheet made of a strip with width π and length 2πtws; it is made periodic to be
a cylinder in the “2πtws” direction.
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a property satisfied by a vector-valued modular form of weight 1.

As we are working on the T 2-target diagonal rational CFT’s, we know a lot more about

the functions f0(α), α ∈ iReps.. The vector-valued modular form
∑

α eαf0(τws;α) is given

by congruent theta functions associated with the rank-2 even positive definite lattice Γ+
∼=

Λwinding

f0(τws;α) =
∑

ξ∈α
e
2πiτws

C2az
fρDz

〈ξ,ξ〉K/Q
2 , α ∈ Ω(ΛCardy)/bz ∼= iReps. ∼= Γ∨

+/Γ+, (38)

using the rescaled embedding Ω : Λwinding ⊗ Q → bz ⊗ Q ⊂ K ⊂ C. They are none other

than a vector-valued modular form in the Weil representation ρΓ+ of SL(2;Z)ws associated

with the lattice Γ+
∼= Λwinding.

3.3 Theta Functions and Zeta Functions

The Mellin transform of the Riemann theta function yields the Riemann zeta function (e.g.,

[Koblitz [11], II §4], [Lang [12], XIII §1]). This classical result has been generalized for any

number field k, and is found in textbooks (e.g., Lang [12], Chap. XIII). We wish to find

a relation, however, between ζk(s) and such functions as f0(τws;α) obtained from string-

theory realizations of an arithmetic variety E/k. Here, we provide a brief review of known

mathematical facts that serve for this purpose.

Let k be an abelian extension of K that contains the ring class field Lfz/K (where

fz ∈ N>0). The Dedekind zeta function ζk(s) can be reconstructed from functions that can

be defined in terms of the imaginary quadratic field K, by (e.g., [Lang [12], Thm. XII.1],

[Serre [24], Prop. VI.13])

ζLfz
(s) =

∏

χ∈Char[Gal(Lfz/K)]




∑

K∈ClK((fz))

〈χ,K〉 ζK(s,K)



 , (39)

ζk(s) =
∏

χ∈Char[Gal(k/K)]




∑

K∈ClK(mf )

〈χ,K〉 ζK(s,K)


 , (40)

apart from the Euler factors for prime ideals P ∈ Spec(OLfz
) [resp. ∈ Spec(Ok)] in the fiber

of the support of the modulus (fz)OK
[resp. mf ]; here, mf is an integral OK ideal15 such that

15The subscript f here is a reminder that we are referring to the finite part of a modulus. Almost all the
subscripts f in this article, such as those in cf , Cf , φf , and χf , are reminders for the finite part. When the
same letter “f” is used in the form of fz ∈ N, and Lfz , however, it originates from a German word meaning
conductor.
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the ray class field corresponding to mf contains k. Here, χ runs over the characters of the

abelian group Gal(Lfz/K) or Gal(k/K), which are quotient of the abelian group ClK((fz)OK
)

or ClK(mf ). For a congruent ideal class K ∈ ClK(mf ) for an integral OK ideal mf (which

includes the case of mf = (fz)OK
),

ζK(s,K) :=
∑

I∈K

1

(NI)s
. (41)

By writing I ∈ K, we mean that the sum is over integral OK ideals I that belong to the class

K. NI is the norm of the ideal I.

There is a particularly simple formula for ζK(s,K)’s, when fz = 1 and k = HK . Let

us take one integral OK ideal a(K) from each ideal class −K ∈ ClK , and fix a set of these

representatives {a(K) | K ∈ ClK} once and for all. Then16 (e.g., [Lang [12], Chap. XIII])

ζK(s,K) =
(Na(K))s

#[O×
K ]

∑

ξ∈a(K)

1

|ξ|2sC
, (42)

where one embedding σ : K →֒ C is fixed implicitly (as we have done already in section 3.2);

an idea here is that integral ideals in the class K can be listed up in the form of (ξ)OK
a(K)−1.

The functions ζK(s,K) for K ∈ ClK(mf ) are obtained as Mellin transforms of congruent

theta functions associated with the number field K. To see this, let us start off by introducing

congruent theta functions associated with a number field L. The ring of algebraic integers

OL in L can be regarded as a lattice by using

〈−,−〉L/Q : OL ×OL ∋ (x, y) 7→
r1∑

a=1

ρa(xy) +

r2∑

b=1

(σb(x)σ̄b(y) + σ̄b(x)σb(y)) (43)

as the intersection form; here ρa : L →֒ R with a = 1, · · · , r1 are real embeddings of L,

and σb and σ̄b with b = 1, · · · , r2 are imaginary embeddings L →֒ C forming r2 pairs under

complex conjugation in C; r1 + 2r2 = [L : Q]. This lattice (OL, 〈−,−〉L/Q) is integral, and

in particular, it is even when L is a totally imaginary field. For a sublattice Λ of this lattice

(OL, 〈−,−〉L/Q) and x ∈ R[L:Q]/Λ, we set

ϑL(Λ, x) = ϑL(τ ; Λ, x) :=
∑

w∈x
e2πiτ

〈w,w〉L/Q
2 =

∑

w∈x
q

〈w,w〉L/Q
2 . (44)

16 Note also that there are only finitely many units in OK when K is an imaginary quadratic field. That
is, #[O×

K ] <∞.
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The definition of the functions ϑL(Λ, x) is possible, in fact, without referring to a number

field L or the lattice (OL, 〈−,−〉L/Q); we just need an integral lattice Λ as a part of data

for the definition. So, one may drop the subscript L. We will be interested in those theta

functions for an imaginary quadratic field L = K along with x placed at torsion points of

L⊗Q R/Λ, often within Λ∗/Λ ⊂ L⊗Q R/Λ.

Now, let us get started for the case of k = HK ; fz = 1 and mf = OK . The Mellin

transformation of the congruent theta functions associated with K (Lang [12], Chap. XIII),

1

#[O×
K ]

∫ +∞

0

[ϑK(it; a(K), 0)− 1] ts
dt

t
=

Γ(s)

(2π)s
1

#[O×
K ]

∑

ξ∈a(K)

1

|ξ|2sC
=

Γ(s)

(2π)s
ζK(s,K)

Na(K)s
, (45)

provide all the components ζK(s,K) (for K ∈ ClK) necessary in reconstructing ζHK
(s) through

(42, 39).

Here, we record a property of the functions ϑK(Λ, 0) as we use it in section 3.4.1:

Proposition 3.3.1 (Iwaniec [8], Thm. 10.8; Miyake [15], Cor. 4.9.5(2)). Let L be a totally

imaginary field. Let Λ be a rank-2r0 Z-lattice in (OL, 〈−,−〉L/Q), and NΛ ∈ N>0 be the

level17 of Λ. Then ϑL(Λ, 0) is a modular form of weight r0 for Γ0(2NΛ) with a multiplier

system (homomorphism) χ : Γ0(2NΛ) → {±1}. The subgroup Γ0(2NΛ) ⊂ SL(2;Z) acts on

the argument τ as used in the definition (44) of theta functions through SL(2;Z). •

This means that ζK(s,K) can be regarded as the Mellin transform of a modular form of

weight 1 for Γ0(M) with some appropriately chosen integer M (apart from subtraction of 1).

Let us now move on to more general cases, where k = Lfz with fz > 1, or [k : Lfz ] > 1.

In order to reconstruct ζk(s) from the information of how many ideals OK has, the idea

behind (42) needs to be generalized. First, we still choose a set of representatives {a(K) | K ∈
ClK(mf )} satisfying a(K) ∈ −K; then a(K) is prime to mf by definition. Let us assume

that all the representatives are integral OK ideals (not just fractional ideals) although this

assumption is only for the sake of simplifying the presentation here. Second, for integral OK

ideals a and mf that are relatively prime, let us also introduce the following notations:

a1(mf ) :=
{
ξ ∈ a | ∃ǫ ∈ O×

K s.t. ǫξ ≡ 1 mod mf

}
, (46)

aG0(mf ) :=
{
ξ ∈ a | ∃ǫ ∈ O×

K ,
∃a ∈ G0 s.t. ǫξ ≡ a mod mf

}
, (47)

17 The level NΛ of an integral lattice Λ is NΛ := Min{N ∈ N>0 | Λ∗[N ] is integral }. Here, Λ∗ stands for
the dual lattice of Λ.
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where G0 is a subgroup of [OK/mf ]
× in the multiplication law. We will also use a notation

aZ(mf ) for mf = (fz)OK
for some fz ∈ N>0 in this article, which is meant to be aG0((fz)OK

)

introduced above, with G0 ⊂ [OK/(fz)OK
]× chosen to be the image of all integers in Z prime

to fz. Now, with these preparations, a general version of the idea behind (42) is stated as

follows: the list of integral ideals I that are prime to mf and belong to K ∈ ClK(mf ) are

in one-to-one correspondence18 with [ξ] ∈ [a(K)]1(mf )/O×
K ; the correspondence is given by

I · a(K) = (ξ)OK
in the ideal group of K (e.g., [Lang [12], Chap. XIII]). So, the expression

(42) for ζK(s,K) with K ∈ ClK is replaced by

ζK(s,K) =
(Na(K))s

#[O×
K ]

∑

ξ∈[a(K)]1(mf )

1

|ξ|2sC
, K ∈ ClK(mf ). (48)

These zeta functions ζK(s,K) for K ∈ ClK(mf) are obtained as the Mellin transform as

in (45), but now in the form of

1

#[O×
K ]

∫ ∞

0

dt

t
ts

∑

y∈[[a(K)]1(mf )]a(K)mf

ϑK(it; a(K)mf , y) =
Γ(s)

(2π)s
ζK(s,K)

(Na(K))s
. (49)

Here, [[a(K)]1(mf )]a(K)mf
stands for the image19 of [a(K)]1(mf ) in the quotient map a(K) →

a(K)/a(K)mf .

Here, we record a property of the functions ϑK(Λ, y) for a torsion point y ∈ R[L:Q]/Λ, as

we use it in section 3.4.2.

Proposition 3.3.2 (Iwaniec [8], Cor. 10.7; Miyake [15], Cor. 4.9.4). Let Λ be a rank-2r0

Z-lattice in (OL, 〈−,−〉L/Q) of a totally imaginary field L/Q with [L : Q] = 2r0, and NΛ its

level. Let N ∈ N>0 be divisible by NΛ. Then, for any x ∈ N−1Λ, ϑL(Λ, x) is a modular form

of weight r0 for Γ(4N) without a non-trivial multiplier system. The group Γ(4N) ⊂ SL(2;Z)

acts on the argument τ as we used in (44) through SL(2;Z).

When x ∈ Λ∗/Λ, in particular, we can choose N = NΛ.

The same statement holds true, when Γ(4N) is replaced by Γ1(4N) and a non-trivial

multiplier system (homomorphism) χ : Γ1(4N) → S1 is allowed. When x ∈ OL/Λ, we can

take N = NΛ (as above), and moreover, (x, x)/2 ∈ Z, from which one can conclude that the

multiplier system χ is trivial (cf [8, 15]). •
18 [a(K)]1(mf ) is the a = a(K) case of (46).
19Note that [a(K)]1(mf ) ⊂ a(K) has a periodicity a(K)mf and hence a(K)mf or any abelian subgroup m of

it acts on [a(K)]1(mf ) by the addition law.
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This is not to say, however, that ζK(s,K) for K ∈ ClK(mf ) with a non-trivial modulus mf

cannot be the Mellin transform of a modular form for Γ0(M∗) for any choice ofM∗ ∈ N>0. We

do not pursue this question in detail in this article, but at least in Example 3.4.3, we see that

the set [a(K)]1(mf ) can be decomposed into a sum of Z-sublattices of OK (not necessarily

OK-ideals), so the Proposition 3.3.1 can be used, instead of Prop. 3.3.2.

3.4 Combining Them Together

Having done preparations in sections 3.2 and 3.3, let us now combine them together to find

out how the Dedekind zeta function ζk(s) of the field of definition of an elliptic curve E/k

is reconstructed from functions obtained in the string-theory realizations of E/k. In section

3.4.1, we begin with the cases of elliptic curves with complex multiplication by the maximal

order OK of a quadratic imaginary field K, and the field of definition is k = Lfz=1 = HK .

More general cases are treated in section 3.4.2.

3.4.1 Cases with k = HK

Note first that the lattices Λwinding and ΛCardy have been embedded into K, which is also

identified (by a fixed imaginary embedding σ : K →֒ C) with a subset of C. The character

functions f0(τws;α) in a string-theory realization of E/k is closely related to the congruent

theta functions in (44). To be concrete, choose one elliptic curve E/HK which has complex

multiplication by OK . We focus on its string realizations whose fρ satisfies

LCM(a(K)K∈ClK ) | bz. (50)

Then [Moore [17], §4]
∑

π(α)=0

f0 (τws;α) = ϑK(τ ; a(K), 0), τ =
C2az
fρDz

τws, (51)

where π : ΛCardy/Λwinding → Ω(ΛCardy)/a(K) is the quotient map, which is well-defined when

the condition (50) is satisfied. Consequently, we see that ζHK
(s) is obtained by summing

up the character functions f0(τws;α) of irreducible representations α of the chiarl algebra

A− ∼= AL in those string realizations in a way specified by (51) first; the sum of f0(α)’s is

now a single component modular form of Γ0(2Na(K)) (see Prop. 3.3.1), although f0(α)’s as a

whole forms a vector-valued modular form of the entire SL(2;Z)ws. Remaining steps are to

take a Mellin transformation of the sum with respect to the imaginary part of the complex
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−DK z = wK [a, b, c] C Ω(ΛCardy) bz/fρ iReps.(if fρ = 1)

3 −1+
√
3i

2
[1,1,1] 1 Z+ wKZ (2wK + 1)Z+ (2 + wK)Z Z/3Z

4 i [1,0,1] 1 Z+ wKZ 2Z+ 2wKZ Z/(2Z)× Z/(2Z)

8
√
2i [1,0,2] 1 Z+ wKZ 4Z+ 2wKZ Z/(4Z)× Z/(2Z)

Table 2: Embedding of the lattices ΛCardy and Λwinding into K ⊂ C, for the unique (trivial) el-
ement of Ell(OK) with K = Q(

√
−d0), d0 = 1, 2, 3. For elliptic curves [C/bz]C corresponding

to the trivial element of Ell(OK), we can use the value of z for one (wK) of the two generators
of OK over Z, OK = Z+ wKZ. In all the three examples here, the relation Ω(ΛCardy) = OK

holds, although this is not always the case (see Table 3).

structure parameter τws of a worldsheet torus, and then to sum them and multiply them as

in (39).

Example 3.4.1. For any one of the imaginary quadratic fields K = Q(
√
−1), Q(

√
−2) and

Q(
√
−3), there is just one C-isomorphism class of elliptic curves with complex multiplication

by OK (fz = 1). Put differently, ClK = {[0]}. We choose an ideal a([0]) to be OK . In all

these examples, one can confirm explicitly20 that OK ⊂ bz/fρ. So, any string realization with

fρ ∈ N>0 satisfies the condition (50). More detailed data are found in Table 2.

When we choose the minimal fρ = 1 string realization,

ϑK(τ ;OK , 0) =
∑

α∈iReps.

f0(τws;α), τ = τws/|DK | (52)

for all these three examples, because C = 1, az = 1 and Ω(ΛCardy) = OK . •

Example 3.4.2. For the case K = Q(
√
−5), there are two inequivalent C-isomorphism

classes of elliptic curves with complex multiplication by OK . The lattices Ω(ΛCardy) and bz

in our embedding Ω are shown in Table 3.

For the two ideal classes ClK ∼= Z/(2Z) =: {[0], [1]} in this case, we can choose a([0]) =

OK , and a([1]) = (2Z + (1 +
√
5i)Z), which is not a principal ideal. For this choice of

representatives, {a([0]), a([1])}, the condition (50) is satisfied for any string realizations with

fρ ∈ N>0 (see Figure 1 (a)). So, let us use the string-theory realization with the minimum

choice fρ = 1. Note that we still think of two string realizations, one for each [E] ∈ Ell(OK).

20In fact, this is a special case of a more general statement. For the C-isomorphism class of elliptic curves
that correspond to the trivial element in Ell(OK) ∼= ClK (that is not necessarily trivial), one can verify that
bz/fρ = dK/Q, the different of the extension K/Q. The different dE/F associated with extension of number
fields E/F is always an integral ideal of OE . So, (a([0]) = OK)|dK/Q = bz/fρ.
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z [a, b, c] C Ω(ΛCardy) bz #1 #2 #3√
5i = wK [1,0,5] 1 Z+ wKZ 10Z+ 2wKZ 1 20 10

−1+
√
5i

2
= −1+wK

2
[2,2,3] 1 Z+ 1+wK

2
Z 2wKZ+ (5 + wK)Z 2 10 5

Table 3: Two C-isomorphism classes of elliptic curves with complex multiplication by the
maximal orderOK ,K = Q(

√
−5). Embedded lattices ΛCardy and Λwinding inK ⊂ C are shown

here, relatively to OK = Z + wKZ, where wK =
√
5i; fρ = 1 is used for bz. The last three

columns are #1 = [Ω(ΛCardy) : OK ], #2 = [OK : bz] = [a([0]) : bz] and #3 = [a([1]) : bz].

In order to obtain ϑ(a([0]), 0) [resp. ϑ(a([1]), 0)], f0(τws;α)’s need to be summed up over

#2 [resp. #3] irreducible representations α ∈ iReps. in those string-theory realizations; see

Table 3. Although ϑ(a(K), 0)’s are expressed differently in terms of f0(τws;α)’s for the two

string-theory realizations, the functions f0(τws;α)’s for the two realizations are also different.

In the end, ϑ(a(K), 0)’s should not depend on which string-theory realization (which one of

[E] ∈ Ell(OK)) is used to reconstruct them. After all, one and the same zeta function ζk(s)

is being re-constructed for the common Hilbert class field k = K(j([E])) = Q(
√
−5,

√
−1). •

We have seen that the Dedekind zeta function ζk=HK
(s) can be written down by using

the combinations (51) of a string-theory realization of an arithmetic model E/HK (when

[E] ∈ Ell(OK)). Prop. 3.3.1 says that those combinations of f0’s are weight-1 modular

forms of Γ0(2Na(K)), where Na(K) is the level21 of the even lattice a(K), which is a sublattice

of the even lattice (OK , 〈−,−〉K/Q). When we see those combinations as functions of τws, as

natural in string-theory perspective, however, only the common subset of Γ0(2Na(K)) and the

worldsheet SL(2;Z)ws transformation,

SL(2;Z)ws ∩
(

(fρDz/C
2az)

1

)
Γ0(2Na(K))

(
(C2az/fρDz)

1

)
, (53)

is evident. So, in particular, there exists a congruence subgroup Γ(M) ⊂ SL(2;Z)ws that is

contained in all those groups, under which all of the combinations (51) for ∀K ∈ ClK of a

string-theory realization are modular forms of weight 1, and ζHK
(s) = L(H0

et
(E), s) can be

reproduced from them through the Mellin transformation, summation and multiplication.

The common subgroup is not of the form of Γ0(M) or Γ1(M) in SL(2;Z)ws, unless

C2az/(fρDz) ∈ Z. It is isomorphic to the group Γ0(N∗LCM(D∗, 2Na(K))) acting on τ/N∗,

where N∗ and D∗ are relatively prime integers satisfying C2az/(fρDz) = N∗/D∗. It is in-

21For a([0]) = OK , Na(K) = |DK/Q|.
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X X X

X X X

X X X

(a) (b)

Figure 1: (a) is an illustration for Example 3.4.2 and (b) for 3.4.3. In (a), OK = a([0])
and a([1]) in K = Q(

√
−5) ⊂ C are shown by large black dots and large open circles,

respectively. Ω(ΛCardy) = OK for z =
√
5i, whereas Ω(ΛCardy) for z = (−1 +

√
5i)/2 consists

both of OK and the tiny open circles in (a). The unit cell Ω(Λwinding)/fρ is also indicated
for the two inequivalent [Ez]C’s in Ell(OK) in (a). In (b), where K = Q(

√
−1) and fz = 3,

OK ideals (fz)OK
and a([1]) for [1] ∈ ClK(Ofz=3) are indicated by x and ◦, respectively.

The set [OK ]Z((fz)) consists of dots. Also shown are the unit cell Ω(Λwinding)/fρ for the two
inequivalent [Ez]C’s in Ell(Ofz=3). By enlarging those unit cells by fρ = 3, all the points of
Ω(Λwinding) are to be contained in fza([1]) = (3 + 3i)OK

, the ◦-and-x points in (b).

teresting to note, from string-theory perspective, that there are modular transformations of

Γ0(2Na(K)) that are not captured within the worldsheet SL(2;Z)ws transformation.

3.4.2 More General Cases: k/K Is a Ramified Abelian Extension Containing
Lfz/K

Now think of an elliptic curve [E]C ∈ Ell(Ofz) and its model E/k over a number field k that

is an abelian extension of K containing Lfz/K. The field of definition k is not necessarily

the Hilbert class field HK . We claim that ζk(s) = L(H0
et
(E), s) is still obtained through a

process as in section 3.4.1 from the character functions f0’s of string-theory realizations of

[E]C.

To see this, let us focus on string-theory realizations whose parameter fρ on the complex-

ified Kähler parameter satisfies

LCM( (mfa(K)) K∈ClK(mf ) ) ⊃ bz. (54)

Then the projection π : Ω(ΛCardy)/bz → Ω(ΛCardy)/a(K)mf is well-defined, and one finds that
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the relation

∑

π(α)=y

f0(τws;α) = ϑK(τ ; a(K)mf , y), τws
C2az
fρDz

= τ, (55)

holds. Now (49) and (39, 40) can be used to obtain ζk(s) from the data f0’s of the spectrum

of a string-theory realization.

The combinations of character functions of a string realization appearing in the left-hand-

side are weight-1 modular forms of Γ(4Na(K)) acting on τ (see Prop. 3.3.2); note that we use

y ∈ [a(K)]1(mf ) ⊂ a(K) ⊂ OK in (49, 55), which means that y ∈ OK ⊂ f−1
z O∨

K ⊂ (mf)
∗ ⊂

(mfa(K))
∗. The common subset of this modular transformation and SL(2;Z)ws acting on τws

can be worked out as in (53). It may also be possible to find an appropriate combination of

f0(α)’s so that it is a modular form for a group of the form Γ0(M) for some M ∈ N>0 instead

of a group Γ(4Na(K)); we do this only in the example below, however.

Example 3.4.3. There are two C-isomorphism classes of elliptic curves with complex mul-

tiplication by the order Ofz=3 in K = Q(
√
−1); ClK(Ofz=3) ∼= Z/(2Z) =: {[0], [1]}. One is

for z = 3i and the other for z = (−1 + 3i)/2. We choose a([0]) = OK and a([1]) = (1 + i)OK

for the two ideal classes22 in ClK(Ofz=3). Using the data shown in Table 4, one can see that

string-theory realizations with 3|fρ satisfy the condition (54) for (fz)OK
a([1]) = (3 + 3i)OK

.

One can work out, in such a string realization, the number of irreducible representations

α of the chiral algebra contributing to ζK(s,K), as follows. First, [[a([0])]1((fz)OK
)]fza([0])

consists of 4 elements represented by y = 1, 2, i, 2i mod fza([0]) = (3)OK
; for each one of y’s,

there are #[fza([0])/bz] irreducible representations α ∈ iReps. of a string-theory realization

(see Table 4) whose f0(α) contributes to ϑK(fza([0]), y) in (55). Overall, ζK(s, [0]) is obtained

as the Mellin transform of a sum of f0(α)’s of #[O×
fz
]×(4/#[O×

fz
])×#[fza([0])/bz] irreducible

representations of the chiral algebra. Similarly, ζK(s, [1]) is obtained as the Mellin transform

of a sum of f0’s of #[O×
fz
]× (4/#[O×

fz
])×#[fza([1])/bz] irreducible representations.

The subset23 [a(K)]Z((fz)OK
) ⊂ OK , over which the sum (48) runs, is not a Z-lattice,

which is why the combination (55) is a modular form for Γ(4Nfza(K)), but is not guaranteed

to be one for a group of the form Γ0(M) for some choice of M ∈ N>0. In this example,

however, the set [a([0])]Z((fz)OK
) = [OK ]Z((3)OK

) = [a([0])]1((fz)OK
) can be decomposed

into three Z-lattices, Ofz , iOfz and (fz)OK
, with multiplicities +1, +1 and −2, respectively;

one can see this decomposition most easily by a glance at Figure 1 (b). Similar decomposition

22Note that ClK(Ofz=3) ∼= ClK((fz = 3)OK
) in this example.

23See the explanation below (47) for the notation aZ((f)OK
); here, we use it for a = a(K).
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z [a, b, c] C Ω(ΛCardy) bz/fρ #[fza(0])/bz] #[fza([1])/bz]
3i [1,0,9] 3 Z+ 3wKZ 6Z+ 2wKZ 12(fρ/3)

2 6(fρ/3)
2

(−1+3i)
2

[2,2,5] 3 Z+ −1+3wK

2
Z (3 + wK)Z+ 2wKZ 6(fρ/3)

2 3(fρ/3)
2

Table 4: Two C-isomorphism classes of elliptic curves in Ell(Ofz=3) where K = Q(
√
−1).

Their lattices ΛCardy and Λwinding embedded in K ⊂ C are shown relatively to OK = Z+wKZ,
where wK = i for K = Q(

√
−1) here.

of the set [a([1])]Z((fz)OK
) into Z-lattices will be more complicated; we did not work that

out. •

For cases with k = Lfz with fz > 1 (and possibly for more general cases), there is an

alternative approach, which is to use a set of proper Ofz -ideals instead of OK-ideals as a set

of representatives of the ideal class group ClK(Ofz). Instead of {a(K)K∈ClK(Ofz )
} introduced24

in section 3.3, we can use (e.g., [Shimura [25], Thm 4.11], [Lang [13], Chap. 8 §1, Thm. 4],

[Moreland [19], §5]):

{b(K)}K∈ClK(Ofz )
=
{
C−1 (a(K) ∩Ofz)

}
K∈ClK(Ofz )

. (56)

Here, the factor C−1 is not necessary for the purpose of finding a representative proper Ofz -

ideal, but we include the factor C−1, because b(K) ⊂ C−1Ofz still fits within Ω(ΛCardy). Now,

instead of (48), we can use

ζK(s,K) =
1

#[O×
fz
]

∑

Cη∈[Cb(K)]Z((fz)Ofz
)

(C−2[Ofz : Cb(K)])
s

|η|2sC
, (57)

where we recycle the notation aZ(mf ) introduced in the discussion below (47) for Ofz -proper

ideals a and mf .

The parameter fρ of string-theory realizations should then be chosen so that

fzb(K) | bz for ∀K ∈ ClK(Ofz) (58)

as proper Ofz ideals. When this condition is satisfied, the projection π : Ω(ΛCardy)/bz →
Ω(ΛCardy)/fzb(K) is well-defined, so we can sum over the irreducible representations α ∈
iReps. ∼= Ω(ΛCardy)/bz in the fiber of this projection to obtain ϑK(fzb(K), y). Summing

24cf footnote 5
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them over y ∈ [C−1([Cb(K)]Z((fz)Ofz
))]fzb(K) and carrying out the Mellin transformation,

ζK(s,K) can be reproduced through (57).

In the example we worked on above, the common periodicity of the lattices fzb(K)’s for

K ∈ ClK(Ofz) is (1 + 3i, 1 − 3i)Ofz
, so the condition (58) reads 1|fρ (i.e., any fρ ∈ N>0) for

both of [Ez=3i]C and [Ez=(1+3i)/2]C in Ell(Ofz=3) of K = Q(
√
−1). That is more economical

(than the requirement 3|fρ in the approach above), in that string realizations with a fewer

number of irreducible representations under the chiral algebra can be used in reproducing

ζk(s) = L(H0
et
(E), s).

4 L-functions for H1
et(E)

4.1 Preparation from String Theory

It is known that the L-functions for elliptic curves with complex multiplication are given by

the Mellin transform of some modular forms of weight 2, as we will review in section 4.2.

Because the character functions f0(τws;α) of string-theory realizations are of weight 1, they

are not useful (at least immediately) in reconstructing the L-functions. Here, we prepare

weight-2 observables in string-theory realizations, which are to be used in section 4.3.

Now think of the following set of functions of tws ∈ R>0 or of τws ∈ H,

f1(itws;α) := TrV o
α
[Ω′q(L0−c/24)]× [η(q)]2, q = e−2πtws , (59)

f1(τws;α) = TrV −
α
[Ω′q(L0−c/24)]× [η(q)]2, q = e2πiτws , (60)

for α ∈ iReprs. ∼= Ω(ΛCardy)/bz ∼= Γ∨
+/Γ+, defined in the language of bosonic string theory.

Newly inserted is

Ω′ =





√
α′

2
kC− for V −

α ,√
2
α′

∆XC

2π
for V o

α ,
(61)

which measures a combination of the four U(1) charges of states in the bosonic string real-

izations.

In the language of superstring theory,

f1(τws;α) = (−i)TrV −
α ;R

[
Ω′FLe

πiFLqL0−c/24
]
, q = e2πiτws , (62)

f1(itws;α) = (−i)TrV o
α ;R

[
Ω′FeπiF q(L0−c/24)

]
, q = e−2πtws . (63)
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In the path-integration formulation, we define the “partition function” Z(τws; u, ~µ) obtained

by modifying S̃ from the one in (34) to

iS̃ = iS + 2πi

∫

Σ

d2σ

Im(τws)

(
uJL + ~µ · i

√
2

α′∂
~X

)
+ right mover; (64)

~µ is a doublet of complex parameters associated with the doublet of currents ∂ ~X , and ~̄µ

its complex conjugates coupled to the currents ∂̄ ~X in the right-moving sector. Under the

worldsheet SL(2;Z)ws transformation [2],

Z

(
aτws + b

cτws + d
,

u

cτws + d
,

~µ

cτws + d

)
= E

[
(1/2)c(u2 + ~µ2)

cτws + d
− (1/2)c(ū2 + ~̄µ2)

cτ̄ws + d

]
Z(τws, u, ~µ).

(65)

Taking derivatives with respect to u once and ~µ once, and setting u = ~µ = 0, we find

∑

α

f1(τ
′
ws;α)f1(−τ̄ ′ws;α) = |(cτws + d)|4

[
∑

α

f1(τws;α)f1(−τ̄ws;α)

]
, (66)

a property satisfied by a vector-valued weight-2 modular form of SL(2;Z)ws.

As we think of T 2-target diagonal rational CFT’s, we know the functions f1(τws;α) ex-

plicitly. They are in the form of

f1(τws;α) =
∑

w∈α
Ω′(w)e2πiτws

(w,w)Γ+
2 =

∑

w∈α
Ω′(w)e

2πiτws
C2az
fρDz

〈w,w〉K/Q
2 . (67)

They are a variant of congruent theta functions, and can be organized into Hecke theta

functions; more explanations (for string theorists) follow shortly.

4.2 L-functions of Elliptic Curves with Complex Multiplication

Here is a brief review on the Hasse–Weil L-function of elliptic curves with complex multi-

plication. We have already stated in section 3.1 that any C-isomorphism class of elliptic

curves with complex multiplication, [E]C ∈ Ell(Ofz) for some imaginary quadratic field K

and fz ∈ N>0, has a model E/k over some number field k. The Hasse–Weil L-function is

defined for such an object E/k, not for [E]C. Section 4.2.1 explains how the L-function can

be computed for a given model E/k, and we will discuss in section 4.2.3 how to classify

models E/k for a given C-isomorphism class [E]C. We will restrict our attention to models

where the field of definition k is either i) the ring class field k = Lfz , ii) an abelian extension

k/K containing Lfz/K, and iii) the field k = F
[E]
fz

.
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4.2.1 Hecke L-functions and Hecke Theta Functions

The following three theorems translate computation of the L-function of an elliptic curve

E/k with complex multiplication into determination of the Hecke L-function associated with

E/k.

Theorem 4.2.1 (e.g., Shimura [25], Props. 7.40 and 7.41). 25 Let E/k be an elliptic curve

with complex multiplication by Ofz where k/K is an abelian extension containing Lfz/K. A

procedure described in the propositions of [25] referred to above associates a Hecke character

of the idele class group of k, ψE/k : A×
k /k

× → C×, with the k-isomorphism class of E/k. ψE/k

is of type [−1/2; 1, 0]; we will explain what the type of a Hecke character means in Definition

4.2.12. •

Theorem 4.2.2 (e.g., Shimura [25], Thm. 7.42). 26 Let E/k be an elliptic curve with complex

multiplication by Ofz where the field of definition k/K is an abelian extension containing

Lfz/K. Then

L(E/k, s) = L(s, ψE/k)L(s, ψE/k); (68)

we will have more words shortly on the Hecke L-functions on the right hand side. Here, the

reduction of E/k at a prime of Ok is either good, or cusp that is potentially good (because

E/k has complex multiplication (Silverman [28], Chap. VII §5)), and hence all the fibers

(good or bad) are included in (68). •

Theorem 4.2.3 (e.g. Shimura [26], Thm. 7). Let E/F
[E]
fz

be an elliptic curve with complex

multiplication. Then its L-function is given by

L(E/F
[E]
fz
, s) = L(s, ψE/Lfz

). (69)

Here ψE/Lfz
: A×

Lfz
/L×

fz
→ C× is the Hecke character associated with the base change of

E/F
[E]
fz

with respect to Spec(Lfz) → Spec(F
[E]
fz

). •

In any of the models of elliptic curves discussed here, we need the L-function of a Hecke

character ψE/k′ : A×
k′/k

′× → C× for an abelian extension k′/K containing Lfz/K. Those

Hecke L-functions of a Hecke character of A×
k′ can be written in terms of Hecke L-functions

of Hecke characters of A×
K , provided E/k

′ satisfies the condition (*) stated in the following.

25 also [Silverman [29], Thm.II.9.1. and II.9.2].
26 also [Silverman [29], Thm. II.10.5].

26



Lemma 4.2.4 (Shimura [25], Thm. 7.44). Let k′/K be an abelian extension containing

Lfz/K and ψE/k′ : A
×
k′/k

′× → C× a Hecke character associated with an elliptic curve E/k′

with complex multiplication by an order of K. Suppose that all the points of finite order

of E are rational over Kab—(*). Then there are [k′ : K] Hecke characters of the idele class

group of K, ϕ : A×
K/K

× → C×, that satisfy

ψE/k′ = ϕ · Nmk′/K . (70)

All those ϕ’s define one and the same character [ϕ] on the image of Nmk′/K : A×
k′ → A×

K . All

those ϕ’s are of type [−1/2; 1, 0]. Conversely, if such ϕ’s exist for the Hecke character ψE/k′

of a model E/k′, then the model satisfies the condition (*).

It is known that any elliptic curve [Ez]C with complex multiplication by an order of K

has models over some number fields that are abelian extensions of K (incl. K(j([E]))) so

that the condition (*) is satisfied; more information is found in pp.216–217 of [25], and also

in section 4.2.3. •

Proposition 4.2.5. (cf. [Serre [24], Prop. VI.13] and [Shimura [25], §7.9.A]) Here we use

the same notation as in the previous Lemma, and suppose that a model E/k′ satisfies the

condition (*). Then

L(s, ψE/k′) =
∏

ϕ∈[ϕ]
L(s, ϕ), (71)

where the product runs over all the [k′ : K] variations of ϕ consistent with [ϕ]. •

Therefore, for an elliptic curve E/k defined over a number field k in one of the class

i)–iii) at the beginning of section 4.2 with the condition (*) in Lemma 4.2.4 satisfied by E/k′

(k′ = Lfz for k in (iii), and k′ = k otherwise), computation of the Hasse–Weil L-function has

now been reduced to computation of the L-functions of type [−1/2; 1, 0] Hecke characters of

the idele class group of an imaginary quadratic field K. The latter—Hecke L-functions—is

now related to the Mellin transform of Hecke theta functions as follows. We begin with

defining the following functions:27

27 If we wish to express L(s, ψ) for a Hecke character ψ of A×

k of a number field k with [k : Q] > 2 directly
as the Mellin transform of a modular form, rather than through decomposing it as in (71), more general form
of theta functions (for L = k) needs to be introduced; see [Neukirch [20], VII §8]. The general version of
the theta functions, however, does not fit into the observation (102). For that reason, we do not exploit the
general version of the theta functions and rely on Lemma 4.2.4 and Prop. 4.2.5 instead in this article.
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Definition 4.2.6. Let L be a number field which has r1 real embeddings ρa : L →֒ R

(a = 1, · · · , r1) and r2 pairs of imaginary embeddings σb : L →֒ C, σ̄b = cc ◦ σb; cc stands for
the complex conjugation in C. For a sublattice Λ of the lattice (OL, 〈−,−〉L/Q), x ∈ L⊗QR/Λ

and p ∈ (Z/2Z)r1 × Z⊕r2 , we set

ϑpL(τ ; Λ, x) :=
∑

w∈x
[w]p q

〈w,w〉L/Q
2 , (72)

[w]p :=

r1∏

a=1

(ρa(w))
pρa

r2∏

b=1

{
(σb(w))

pσb , if pσb
≥ 0

(σ̄b(w))
−pσb , if pσb

< 0

}
. (73)

Here, pρa ’s with a = 1, · · · , r1 in p = (pρ1 , · · · , pρr1 , pσ1, · · · , pσr2
) ∈ (Z/2Z)r1 × Z⊕r2 are

regarded as either 0 or 1, when they are used in defining a monomial.28

Let us now complete the task of relating the Hasse–Weil L-function of an elliptic curve

with complex multiplication with the congruent theta functions above. Let k′/K be an

abelian extension containing Lfz/K, and mf an integral ideal of K so that the ray class field

Lmf
contains k′.

Definition 4.2.7 (Neukirch [20], Lemma VII.7.6). Let K be an imaginary quadratic field,

and ϕ its Hecke character of type [−1/2; 1, 0]. For such a Hecke character ϕ of A×
K/K

× with

the conductor cf , one can uniquely determine a character χf : [OK/cf ]
× → S1 with respect

to the multiplication law in [OK/cf ]
× and the group of complex phases S1; we will see how

χf is determined from ϕ in section 4.2.3. We assume that the conductor of ϕ satisfies mf |cf .
Let us also choose a set of OK integral ideals {a(K)}K∈ClK(mf ) as discussed in section 3.3, with

one extra condition that all of a(K) are prime to cf (not just prime to mf ). Using all these

data, we define a Hecke theta function on τ ∈ H by

ϑ(τ ;ϕ,K) :=
1

ϕ(a(K))

∑

x∈[[a(K)]1(mf )]a(K)cf

χf (x) ϑ
1
K

(
τ

Na(K)
; cfa(K), x

)
. (74)

where [[a(K)]1(mf)]a(K)cf is the image of [a(K)]1(mf ) under the projection a(K) → a(K)/a(K)cf .

For the Hecke character ϕ : A×
K/K

× → C×, let ϕ be the Hecke character of A×
K/K

× given

by ϕ := cc ◦ ϕ; ϕ is of type [−1/2;−1, 0], its conductor is the same as cf , and the character

of [OK/cf ]
× corresponding to ϕ is given by χf := cc ◦ χf . A Hecke theta function for ϕ is

28 Here, monomials [w]p labeled by p ∈ (Z/2Z)r1 × Z⊕r2 are called spherical functions. The Poisson
resummation (Fricke involution) formula is not messed up by insertion of such a monomial [8, 15, 20].
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defined by

ϑ(τ ;ϕ,K) :=
1

ϕ(a(K))

∑

x∈[[a(K)]1(mf )]a(K)cf

χf (x)ϑ
−1
K

(
τ

Na(K)
; cfa(K), x

)
. • (75)

Now, we are ready to write down the Hecke L-functions L(s, ϕ) in terms of the Mellin

transform of the Hecke theta functions.

Theorem 4.2.8 (e.g., Koblitz [11], II §5; Neukirch [20], VII §7). Let K be an imaginary

quadratic field, and ϕ : A×
K/K

× → C× a Hecke character of type [−1/2; 1, 0]. Then the Hecke

L-function of ϕ is given by

L(s, ϕ) =
∑

K∈ClK(mf )

L(s, ϕ,K), (76)

L(s, ϕ,K)
Γ(s)

(2π)s
=

1

#[O×
K ]

∫ ∞

0

dt

t
tsϑ(it;ϕ,K). • (77)

To summarize, the Hasse–Weil L-function of an elliptic curve E/k with complex multi-

plication by an order of an imaginary quadratic field K is given by combining (72, 74, 77,

76, 71) and finally either (68) or (69), if the field of definition k is either an abelian extension

containing Lfz/K or F
[E]
fz

, and the condition (*) in Lemma 4.2.4 is satisfied (after the base

change to Lfz , if k = F
[E]
fz

).

4.2.2 Hecke Theta Functions as Modular Forms

There is a more general version of Proposition 3.3.2, which is stated in the form we use in

this article:

Theorem 4.2.9 (Iwaniec [8], Cor. 10.7; Miyake [15], Cor. 4.9.4). Here, we use the same no-

tation and assumption as in Definition 4.2.7. Then ϑ1K(τ
′; Λ, x) for x ∈ Λ∗/Λ [resp. ϑ(τ ;ϕ,K)]

is a cusp form of weight 2 for Γ(4NΛ) ⊂ SL(2;Z) [resp.29 Γ(4Na(K)cf ) ⊂ SL(2;Z)]. The group

Γ(4NΛ) [resp. Γ(4Na(K)cf )] acts on τ
′ ∈ H [resp. on the combination τ/Na(K) ∈ H] through

the ordinary action of SL(2;Z) on H.

When a non-trivial multiplier system is allowed, Γ(4NΛ) can be replaced by Γ1(4NΛ). If

x ∈ OK/Λ, then (x, x)/2 ∈ Z, and the multiplier system becomes trivial. •
29 x ∈ a(K)/a(K)cf implies x ∈ (a(K)cf )

∗/a(K)cf ; see section 3.4.2.
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For many cases we use the theta functions ϑPK(τ ; Λ, x) in this article, Λ is not just a

general sublattice of (OK , 〈−,−〉K/Q) (that is, not just an abelian group), but a subring

of OK . In such cases, we can think of summing over ϑPK(τ ; Λ, x) over x and seek for an

analogue/generalization of Proposition 3.3.1.

Remark 4.2.10 (cf. Miyake [15], Thm. 4.9.3). Let K be an imaginary quadratic field,

and a an integral ideal of OK . Let χf : [OK/cf ]
× → S1 be a character with respect to the

multiplication law in [OK/cf ]
×, where cf is an integral ideal of OK relatively prime to a.

Then, for γ =

(
a b
c d

)
∈ Γ0(2Nacf ) and a subgroup G0 of [OK/cf ]

×,

∑

x∈[aG0
(cf )]acf

χf (x)ϑ
P
K(γ · τ ′; acf , x) (78)

= (cτ + d)1+deg(P)

(−disc(acf)

d

) ∑

x∈[aG0
(cf )]acf

χf (x)ϑ
P
K(τ

′; acf , a · x), (79)

where we used the Legendre (quadratic residue) symbol (−/−) in writing down the multiplier

system explicitly; deg(P) is the degree of the monomial [w]P. Therefore, for the subgroup of

Γ0(2Nacf ) where

(a·) : [aG0(cf)]acf ∋ x 7−→ a · x ∈ a/acf (80)

is an isomorphism from [aG0(cf)]acf to itself, the sum (78) is a modular form of weight

1 + deg(P), with the multiplier system given by (−discr(acf)/d)χf(d). •

When we deal with the Hecke L-functions for elliptic curves E/HK with complex multi-

plication by OK , we can just choose G0 to be the entire [OK/cf ]
×. For this case, there is a

more definite result (cf. Prop. 3.3.1).

Theorem 4.2.11 (Miyake [15], Thm 4.8.2). The sum
∑

K∈ClK
ϑ(ϕ,K) of the Hecke theta

functions is a cusp form of weight 2 for the group Γ0(Nχf
) acting on τ ∈ H, with a multiplier

system (homomorphism) χ : Γ0(Nχf
) → C× (for detailed information of χ, see [Miyake [15],

Thm. 4.8.2]). The level of the group Γ0(Nχf
) is Nχf

:= |DK/Q| · Ncf = N(cfdK/Q). •

In a broader context, the two Theorems above are concerned about how to extract single

component modular forms of a subgroup Γ ⊂ SL(2;Z) of some level from a (multi-component)

vector-valued modular form of SL(2;Z), or in the other way around.
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4.2.3 Choice of Models

We have stated that any C-isomorphism class of elliptic curves with complex multiplication,

[E]C ∈ Ell(Ofz), has a model E/k over the number field k = Lfz , over any abelian extension

k/K containing Lfz/K, and over k = F
[E]
fz

. It is not that there is just one model E/k for

a given [E]C and k, however. To be more precise, one can think of classifying models E/k

defined over a number field k for a given [E]C, thinking that two models E/k and E ′/k are

equivalent iff there is an isomorphism between E and E ′ defined over30 k. We will describe

here how one can list up the inequivalent models over a given number field k for a given

C-isomorphism class [E]C.

We have used a notion of a type of a Hecke character of the idele class group A×
L/L

× for

a number field L in section 4.2.1, but did not explain what it is. So, here is

Definition 4.2.12. Let L be a number field which has r1 real embeddings ρa : L →֒ C (for

a = 1, · · · , r1) and r2 pairs of imaginary embeddings σb : L →֒ C and σ̄b = cc ◦ σb : L →֒ C

(for b = 1, · · · , r2); [L : Q] = r1 +2r2. Any Hecke character φ : A×
L/L

× → C× can be written

in the form of the product of continuous homomorphisms associated with all the inequivalent

valuations of L: φ = φf · φ∞, and

φp : L
×
p → C×,

(
φf =

∏

p

φp

)
:

(
∏

p

L×
p ⊃ A×

L,f

)
→ C×, (81)

φvτ : L×
vτ → C×

(
φ∞ =

∏

vτ

φvτ

)
:

(
A×

L,∞ =
∏

vτ

L×
vτ

)
→ C×. (82)

Here, p runs over the set of all the non-Archimedean valuations, which is equivalent to the set

of all the non-zero prime ideals of OL. The index vτ runs over the set of all the inequivalent

Archimedean valuations Arch(L); let Φreal
L = {ρa | a = 1, · · · r1}, and Φim

L ∐Φ
im

L be a mutually

exclusive grouping of imaginary embeddings so that no two elements of Φim
L are the complex

conjugate of the other; then the set Arch(L) is in one-to-one correspondence with Φreal
L ∐Φim

L .

So, we can use τ ∈ Φreal
L ∐ Φim

L as a label/index of the product.

In this article, we say31 that a Hecke character φ : A×
L/L

× → C× is of type [sr;p,q],

30In a colloquial language, that is whether one can find a map between coordinates of E and E′ where the
map in the form of polynomials in the coordinates have coefficients in the field k, not just in C.

31It seems that there is no standard jargon / parametrization in referring to the notion we call “type” of a
Hecke character. The parametrization in terms of p and q are chosen so that φ with sr = 0 reproduces the
Hecke character / Grössen-character in [Neukirch [20], VII §6]; φ∞ here and χ∞ in [20] are in the relation
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where

sr ∈ R, p = (pρ, pσ) ∈ [Z/(2Z)]r1 × Z⊕r2 , q = (qρ, qσ) ∈ [R/(2πZ)]r1+r2 , (83)

when φ∞ =
∏

vτ∈Arch(L) φvτ is parametrized by

φvρ : L
×
vρ ∋ aρ 7→

(
aρ

|aρ|R

)−pρ

(|aρ|R)−iqρ × (|aρ|R)s
r ∈ C×, (84)

φvσ : L×
vσ ∋ aσ 7→

(
aσ

|aσ|C

)−pσ

(|aσ|C)−iqρ × (|aσ|C)2s
r ∈ C×. (85)

The type of a given Hecke character φ looks different depending on how the 2r2 imaginary

embeddings are grouped into Φim
L and Φ

im

L . When a number field L is an extension of an

imaginary quadratic field K, and the pair of imaginary embeddings of K is grouped into

Φim
K = {σ} and Φ

im

K = {σ̄}, we make it a rule to choose a canonical grouping induced from

Φim
K ∐Φ

im

K : Φim
L consists of imaginary embeddings of L that become σ upon restriction to K,

and ΦL of imaginary embeddings of L that become σ̄ upon restriction to K. •

The φ∞ part of a Hecke character is determined completely by the type [sr;p,q]. For

example, when L is a totally imaginary field (r1 = 0), the type [−1/2; 1, 0] implies that

φ∞ : A×
L,∞ ∋ (aσ) 7→

1∏
σ∈Φim

L
aσ

∈ C×. (86)

With this definition, we can now write down a result of classification of models E/k

modulo isomorphism over k, as follows:

Theorem 4.2.13. (See [Shimura [27], Thms. 22.1 and 19.10], [Lang [13], Chap. 10 §4] and
[Shimura [26], Thm. 5]) LetK be an imaginary quadratic field, and k/K an abelian extension

containing a ring class field Lfz/K for some fz ∈ N>0. For a given [E]C ∈ Ell(Ofz), its

models E/k modulo k-isomorphisms are in one-to-one correspondence with Hecke characters

ψ : A×
k /k

× → C× satisfying the two conditions:

(a) It is of type [−1/2; 1, 0].

(b) For any prime ideal P of Ok that is prime to the conductor Cf of ψ, ψP(πP) ∈ Ofz ⊂
K ⊂ C and Nmk/K(P) = (ψP(πP))OK

. Here, πP is a uniformizer of the ring of P-adic

integers.

φ∞(a∞) = (NmL/Q(a∞))s
r

/χ∞(a∞) for a∞ ∈ A×

L,∞. The parameters p and q of the type here are related to
m and ϕ in [Lang [12], XIV] through the relation pρ = mρ ∈ Z/(2Z), pσ = −mσ ∈ Z, qρ = −ϕρ ∈ R/(2πZ)
and qσ = −2ϕσ ∈ R/(2πZ).
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There is an isogeny defined over k from a model E/k of [E]C ∈ Ell(Ofz) to a model E ′/k

of [E ′]C ∈ Ell(Ofz) if and only if ψE/k = ψE′/k. •

The L-function is defined for each one of k-isomorphism classes of elliptic curves over

k (not necessarily with complex multiplication). The L-functions L(E/k, s) and L(E ′/k, s)

of a pair of models over a common number field k can be the same, even when there is no

isomorphism over k between E/k and E ′/k. To be more precise,

Remark 4.2.14. (See [Faltings [4], p.22, Cor. 2]) Let k be a number field and E and E ′

are elliptic curves defined over k (not necessarily with complex multiplication). Then the

following are equivalent:

1. E and E ′ are k-isogenous,

2. Lv(E, s) = Lv(E
′, s) for almost all places v of k.

This statement holds true also for higher-dimensional abelian varieties. As a special case of

this theorem, the pair of models over k that are referred to at the end of Thm. 4.2.13 have

an identical L-function.32 •

One might also be interested in the conditions for a model E/Lfz defined over the ring

class field to be obtained as a base change of a model defined over F
[E]
fz

. The answer to this

question can also be phrased in terms of the Hecke character ψE/Lfz
:

Theorem 4.2.15. (See [Shimura [27], Thms. 22.2 and 20.15; [25], Thm. 7.46]) Let E/Lfz be

an elliptic curve with complex multiplication by Ofz , ψE/Lfz
its associated Hecke character of

type [−1/2; 1, 0], and Cf the conductor of ψE/Lfz
. There exists a model E/F

[E]
fz

whose base

change to Spec(Lfz) is isomorphic to E/Lfz (here, [E] is the C-isomorphism class of E/Lfz),

if and only if the following condition33 is satisfied:

ψE/Lfz
(ρ[E](x)) = cc ◦ ψE/Lfz

(x), ∀x ∈ A×
Lfz
. • (87)

Remark 4.2.16. When an elliptic curve E with complex multiplication by an order Ofz of

K is defined over a number field k containing Lfz , the conductor NE/k of the elliptic curve

E/k is given by the conductor Cf of the associated Hecke character ψE/k by [Serre–Tate [23],

Thm. 12]

NE/k = C2
f ∈ Div(Spec(Ok)). (88)

32 That is consistent with the fact that the L-function is determined from the associated Hecke character,
as in (68).

33It is implicit in this condition that the ideal Cf of OLfz
is invariant under ρ[E].
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When an elliptic curve E with complex multiplication by OK is defined over F = F
[E]
fz=1,

the conductor NE/F of the elliptic curve E/F is related to the conductor Cf of the associated

Hecke character ψE/Lfz
by [Gross [5], eq. (10.3.2)]

NE/F = DH/F · NmH/F (Cf) ∈ Div(Spec(OF )). (89)

Note that, in the case h(OK) = 1 (i.e., when F = Q), the ideal (Nχf
)Z is equal to the

conductor NE/Q. •

Presentation so far makes it clear that the Hecke character ψE/k for the field of definition

k is the crucial tool in classifying elliptic curves defined over number fields so far as the

L-functions are concerned. In the meantime, we have written down a way to express the

L-functions in terms of Hecke characters for the imaginary quadratic field K of complex

multiplication. It is therefore convenient if the k-isomorphism classification of models over k

(Thm. 4.2.13) is re-stated in terms of Hecke characters ϕ for K. We do so in the following,

by largely following discussions in [Neukirch [20], VII §6] and [Milne [14], Chap. V].

To start off, we study in detail the structure of the group of Hecke characters for a number

field L; we intend to use the following discussion for L = K.

Let L be a number field, and we follow the notation adopted in Definition 4.2.12. Let cf

be an integral OL ideal, and H.Char[C(cf)] the group of Hecke characters φ : A×
L/L

× → C×

with the modulus cf . It then follows immediately from [Neukirch [20], Prop. VII.6.12] that

0 → Char [ClL(cf)] → H.Char[C(cf)] → Char
[
A×

L,∞/O×
L,1(cf)

]
→ 0 (90)

is exact. Here,34

O×
L,1(cf ) :=

{
ǫ ∈ O×

L | ǫ ∈ 1 + cf
}
. (91)

The projection from H.Char[C(cf)] to Char[A×
L,∞/O×

L,1(cf)] is given by φ 7→ φ∞.

Definition 4.2.17. An integral OL-ideal cf as a modulus and a type [p,q] are said to be

compatible, if a character φ∞ ∈ Char[A×
L,∞] of type [sr;p,q] (with any sr ∈ R) is trivial on

O×
L,1(cf) (the triviality condition is independent of sr).

Proposition 4.2.18 (cf. Neukirch [20], VII.6.12–14). Let φ : A×
L/L

× → C× be a Hecke

character of type [sr;p,q] with a modulus cf that is compatible with the type [p,q]. Then

34Notation: the group O×

L,1(cf ) in this article corresponds to Om in [20].
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at non-Archimedean valuations for prime ideals q outside of the support of cf (i.e., q/| cf),
φq : L

×
q → C× are given by a unique unitary (i.e., S1-valued) character χ : IL(cf ) → S1 for a

given φ:

φq : L
×
q ∋ aq 7→ χ(qordq(aq))|πq|s

r

q = χ(qordq(aq))(Nq)−sr , (92)

where IL(cf) is the group of fractional ideals of OL prime to cf , and πq is a uniformizer of

the ring of q-adic integers.

φp : L×
p → C× for non-Archimedean valuations in the support of cf (i.e., p|cf) have the

following property. For α ∈ OL that is prime to cf , define

χf : α 7→ χf (α) :=
(∏

q/| cfφq(αq)
)
· φ∞(α) = χ((α)OL

) ·
∏

vτ

(
ατ

|ατ |C

)−pτ

|ατ |−iqτ
C ; (93)

then the triviality of φ on L× ⊂ A×
L (by def) implies35 that

(∏
p|cfφp(αp)

)
= 1/χf(α). (94)

Since φ has a modulus cf , χf so defined is a unitary character of [OL/cf ]
×. This character

χf satisfies the condition

χf(ǫ) =
∏

vτ∈Arch(L)

(
ǫτ

|ǫτ |C

)−pτ

|ǫτ |−iqτ
C , ∀ǫ ∈ O×

L/O×
L,1(cf ). (95)

Let H.Char[C(cf)]
[sr;p,q] be the set of Hecke characters for L with the modulus cf and

type [sr;p,q]. It is not empty so long as [p,q] is compatible with cf . For a pair of Hecke

characters φ1 and φ2 in H.Char[C(cf)]
[sr;p,q], φ1/φ2 should be regarded as an element of

Char[ClL(cf)]. This is done by
36 using χ1/χ2 : IL(cf) → S1, which implies that χ1/χ2 factors

through ClL(cf) = IL(cf)/PL,1(cf). •

Using an injective homomorphism c : IL(cf) →֒ A×
L/L

× given by sending a prime ideal

q ∈ IL(cf) to (1p, πq, 1τ ) ∈ (
∏

p6=q L
×
p )×L×

q ×A×
L,∞, a character φ◦c : IL(cf) → C× is induced;

we will abuse the notation and use φ also for the character φ ◦ c of IL(cf) in this article.

35This property specifies φp’s with p|cf for ap ∈ L×
p with ordp(ap) = 0, but φp(ap) remains unspecified for

ap with ordp(ap) 6= 0. One should exploit the triviality of φ for α ∈ OL that is not prime to cf to determine
φp completely.

36The ratio χf,1/χf,2 : [OL/cf ]
× → S1 cannot retain more detailed information of φ1/φ2 than χ1/χ2 does,

because χf is completely determined by χ (after a type is specified).
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Proposition 4.2.19 (Neukirch [20], VII §6). Let φ : IL(cf) → C× be a character corre-

sponding to a Hecke character φ : A×
L/L

× → C× with a modulus cf . Then a principal ideal

(ξ)OL
prime to cf has the following value:

φ((ξ)OL
) = χ((ξ)OL

)
∏

q/| cf |ξq|
sr

q =
χf(ξ)

φ∞(ξ)
. (96)

This result, combined with (86), determines the expression on the right-hand-side of (74). •

We wish to use Prop. 4.2.18 in classifying Hecke characters ϕ for the imaginary quadratic

fieldK of complex multiplication. Remember that a Hecke character ψE/k′ of type [−1/2; 1, 0]

of an abelian extension k′ over K corresponds to a set of [k′ : K] different Hecke characters of

type [−1/2; 1, 0] for K, provided that E/k′ satisfies the condition in Lemma 4.2.4. Therefore,

we wish to introduce an equivalence relation where χ ∼ χ′ if they are different only by

Char[Gal(k′/K)], so that we can classify Hecke characters for k′ by dealing with characters

associated with the imaginary quadratic field K.

Let us first develop a result that is useful in dealing with the cases of k′ = HK (so fz = 1).

Now, remember

Lemma 4.2.20 (Milne [14], Thm. V.1.5). The following sequence is exact:

0 → O×
L /O×

L,1(cf) → [OL/cf ]
× → ClL(cf) → ClL → 0. • (97)

Using this fact, we arrive at

Theorem 4.2.21. Let cf be an integral OL ideal to be used as a modulus of Hecke character

for a number field L, and [p,q] a type compatible with cf . Then the set H.Char[C(cf)]
[sr;p,q]

modulo difference by Char[ClL] is in one-to-one with the set of unitary characters χf :

[OL/cf ]
× → S1 that satisfy the condition (95).

We are also interested in cases where the field of definition is k′ = Lfz with fz > 1, and

also in cases where k′/K is an abelian extension containing Lfz/K.

Lemma 4.2.22. Let k be an abelian extension of L that is contained in the ray class field

Lcf of L. Then appropriate subgroups of [OL/cf ]
× and O×

L/O×
L,1(cf ) are determined so that

0 → [O×
L/O×

L,1(cf)]k → [OL/cf ]
×
k → ClL(cf) → Gal(k/L) → 0 (98)

is exact.
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Theorem 4.2.23. The notation and assumption being the same as in Thm. 4.2.21 and

Lemma 4.2.22, the set H.Char[C(cf)]
[sr;p,q] modulo difference by Char[Gal(k/L)] is in one-

to-one with the set of unitary characters χf : [OL/cf ]
× → S1 satisfying (95) evaluated on

[OL/cf ]
×
k ⊂ [OL/cf ]

×.

The condition (a) in Thm. 4.2.13 can be implemented in the language of Hecke characters

ϕ of A×
K/K

× through Thms. 4.2.21 and 4.2.23 for L = K. The condition (b) is implemented

as follows:

Theorem 4.2.24. Let K be an imaginary quadratic field, and k/K an abelian extension

containing Lfz/K for some fz ∈ N>0. Suppose that an elliptic curve E/k has complex

multiplication by Ofz , and satisfies the condition (*) in Lemma 4.2.4. If the conductor Cf of

the Hecke character ψE/k of A×
k /k

× has the same support as π∗(cf) for an integral OK ideal

cf satisfying Lcf ⊃ k, where π : Spec(Ok) → Spec(OK), then the [k : K] Hecke characters

ϕ’s of A×
K/K

× in Lemma 4.2.4 admit cf as a modulus,

O×
K ·
(
[Ofz ] ∩ [OK/cf ]

×
k

)
= [OK/cf ]

×
k , (99)

is of type [−1/2; 1, 0], and satisfy one more condition

χf([α]) ∈ O×
fz

∀[α] ∈ [Ofz ] ∩ [OK/cf ]
×
k ⊂ [OK/cf ]

×. (100)

Conversely, suppose that ϕ is a Hecke character of A×
K/K

× that admits cf as a modulus,

which satisfies k ⊂ Lcf and the condition (99). Suppose further that ϕ is of type [−1/2; 1, 0]

and also satisfies (100). Then ψ := ϕ ◦ Nmk/K is a Hecke character of A×
k /k

× that admits

π∗(cf) as a modulus, and is of type [−1/2; 1, 0]. The condition (b) of Thm. 4.2.13 is satisfied

for prime ideals P prime to π∗(cf). So, if the Hecke character ψ constructed in that way has

a conductor Cf whose support is the same as that of π∗(cf), then there is a model E/k whose

associated Hecke character is this ψ. •
The condition (87) is also translated as follows.

Theorem 4.2.25. Let E/Lfz be a model of [E] ∈ Ell(Ofz) and ψE/Lfz
its Hecke character.

Suppose that this model has the property (*) in Lemma 4.2.4. Then the condition (87) is

replaced by

χf (ρ[E](α)) = cc ◦ χf(α),
∀[α] ∈ [Ofz ] ∩ [OK/cf ]

×
Lfz

⊂ [OK/cf ]
×, (101)

where cf is the conductor of the Hecke character ϕ of A×
K/K

×. Here, ρ[E] is regarded as an

element of Gal(Lfz/F
[E]
fz

) ⊂ Gal(Lfz/Q), which maps K ⊂ Lfz to itself. It is implicit in the

condition here that the integral OK ideal cf is invariant under ρ[E].
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Therefore, the conditions (a, b) in Thm. 4.2.13 and (87) in Thm. 4.2.15 can be imple-

mented by Thms. 4.2.21, 4.2.23, 4.2.24 and 4.2.25, respectively, purely in the language of the

imaginary quadratic field K [Koblitz [11], II §5],37 at the cost of introducing a restriction (*)

on models.

4.3 Combining Them Together

4.3.1 Models Defined over HK or F
[E]
K

Think of a C-isomorphism class of elliptic curves [Ez]C ∈ Ell(OK) for some imaginary

quadratic field K. It is realized in superstring theory in the form of rational diagonal T 2-

target N = (2, 2) SCFT, parametrized by fρ ∈ N>0, which controls the choice of complexified

Kähler form on [Ez]C. Now, we observe that the functions f1(τws;α) and ϑ
1
K(τ ; Λ, x) are al-

most the same. In fact,

f1(τws;α) =
C

i

√
2az
fρDz

ϑ1K

(
C2az
fρDz

τws ; Ω(Λwinding), α

)
. (102)

Now, think of a model E/HK or possibly E/F
[E]
K of [Ez]C that corresponds to a multi-

plicative character χf : [OK/cf ]
× → S1, where cf is an integral OK ideal (Thm. 4.2.21, with

L = K). Focus on string-theory realizations with any fρ ∈ N>0 chosen so that

cf · LCM (a(K)K∈ClK ) | bz. (103)

This condition is a little more restrictive than (50) for re-construction of L(H0
et(E), s) = ζk(s)

from f0(τws;α)’s available in string-theory realizations.

For string-theory realizations of [Ez]C satisfying the condition (103),

f1(τws; a(K)cf , x) :=
∑

π(α)=x

f1(τws;α), (104)

ϑ1K(τ ; a(K)cf , x) =
∑

π(α)=x

ϑ1K(τ ; bz, α), (105)

where π : a(K)/bz → a(K)/a(K)cf is the projection. Therefore, the observation (102) implies

the main result of this article,

37 memo: χ′ in [11] corresponds to χf in this article, and χ̃ in [11] to ϕ or ψ in this article.
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Theorem 4.3.1. For a C-isomorphism class [Ez]C ∈ Ell(OK), think of a model E/HK that

satisfies the condition (*) in Lemma 4.2.4. Then the Hasse–Weil L-function of E/HK is

obtained from the Boltzmann-weighted sum of U(1)-charges f1(τws;α) in (62, 63) in any one

of string realizations of [Ez]C so long as the parameter fρ satisfies the condition (103). The

procedure is to use (102), (104, 105), (74), the Mellin transformation (77), (76), (71), and

finally (68).

If χf satisfies one more condition, (101), then the model E/HK is obtained as a base

change of a model E/F
[E]
K whose L-function is obtained by using (69) instead of (68).

The numbers of vertex operators with given sets of conformal weight and U(1) charge are

related to the numbers of solutions of arithmetic models reduced over prime ideals through

(102). •

From a slightly different perspective, the same result can be stated also as follows:

Theorem 4.3.2. Think of a diagonal rational T 2-target CFT (or N = (2, 2) SCFT) cor-

responding to a C-isomorphism class of elliptic curves [Ez]C ∈ Ell(OK) and a complexified

Kähler parameter ρ = fρazz. Then linear combinations of the Boltzmann-weighted sum of

U(1) charges of irreducible representations (i.e., f1(τws;α)’s) in that CFT yield the Hasse–

Weil L-function in the procedure outlined above for models E/HK of [Ez]C with the property

(*), as long as the conductor cf of Hecke characters ϕ of A×
K/K

× in Lemma 4.2.4 satisfies

the condition (103). The number of such models of [Ez ]C over HK is finite, once the complex

structure (i.e., [Ez]C ∈ Ell(OK)) and the Kähler parameter (i.e., fρ ∈ N>0) are fixed.

The same procedure also yields the L-functions of a finite number of models over F
[E]
K , if

there is any such model within the restriction on cf set by fρ through (103). •

We have posed a question in Introduction how a T 2-target CFT, which depends only on

the C-isomorphism class [E]C (and a Kähler parameter ≈ fρ), can contain information of the

L-functions of multiple different models of [E]C defined over some number fields. When [E]C

has complex multiplication, the answer is now clear. Such a CFT has finitely many irreducible

representations of the chiral algebra labeled by α ∈ iReps. ∼= Γ∨
+/Γ+

∼= ΛCardy/Λwinding.

Multiple different linear combinations of {f1(τws;α) | α ∈ iReps.} yield the L-function of

multiple different models of [E]C.

The other question posed in Introduction was how the L-function of a model E/k become

independent of the choice of a Kähler parameter (fρ) in a string-theory realization. The

procedure summarized in Thm. 4.3.1 allows us to reproduce the L-function of E/k from

the functions {f1(τws;α) | α ∈ iReps.} of a string realization with the parameter fρ that
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can be chosen in infinitely many different ways. Although the set iReps. and the set of

functions {f1(α)|α ∈ iReps.} depend on the choice of fρ, the L-function so computed should

remain independent of fρ. The procedure achieves fρ-independence technically, although it

is not clear how the independence comes about (without exploiting relations among theta

functions).

Note also that the study in this article restricted string realizations of an elliptic curve

[E]C with complex multiplication to be within the class of diagonal rational CFT’s; the extra

constraint of being diagonal made our problem easier in that f0’s and f1’s are the same

regardless of whether we use the left-moving, right-moving or the open string sector. The

degeneracy among f0’s and f1’s in those three sectors also obscured, at the same time, how

the metric independence has been achieved.

As a side remark, Thms. 4.2.9 and 4.2.11 can be used to see the following.

Theorem 4.3.3. Think of any diagonal rational T 2-target N = (2, 2) SCFT where the

parameter fρ satisfies the condition (103) for some integral OK-ideal cf compatible with type

[1, 0]. Suppose that cf admits a non-trivial character χf : [OK/cf ]
× → S1 satisfying the

conditions (95) and (100). Then individual f1(τws; x)’s with x ∈ a(K)/a(K)cf are modular

forms of weight 2 for Γ(4Na(K)cf ). Because the group Γ(4Na(K)cf ) ⊂ SL(2;Z) acts ordinarily

on the combination τ = τws
C2az
fρDz

, the common subgroup Γ(4Na(K)cf ) ∩ SL(2;Z)ws is

SL(2;Z)ws ∩
[
diag

(
fρDz

C2az
, 1

)
· Γ(4Na(K)cf ) · diag

(
C2az
fρDz

, 1

)]
. (106)

See also the comment at the end of section 3.4.1.

So long as we deal only with models defined over FK or HK , and [E] ∈ Ell(OK), the

following combination,

∑

K∈ClK

∑

α∈a(K)/bz

χf(π(α))f1(τws;α), (107)

where π : a(K)/bz → a(K)/a(K)cf is the projection, is a cusp form of weight 2 for Γ0(Nχf
)

for some multiplier system (homomorphism) χ : Γ0(Nχf
) → C×. •

What is interesting is that, in string theory, there is no theoretical motivation to think

of a multiplication law among the irreducible representations of the chiral algebra A− ×A+

or A+. The addition law among OK/Ω(Λwinding), not the multiplication law, corresponds
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to the fusion algebra38 on iReps. = ΛCardy/Λwinding. Here, however, it is crucial to use the

character of the group [OK/bz]
× in multiplication, not in the addition of OK/bz, in order to

construct the modular forms (107) of weight 2 for Γ0(Nχf
). As a reminder, though, individual

f1(τws; x)’s are modular forms for a group of the form Γ(4Na(K)cf ) without a sum with the

character χf , if not
39 for a group of the form of Γ0(M) for some M ∈ N that scales as Na(K)cf .

Here, we illustrate by examples how Theorems 4.3.1 and 4.3.2 work in practice.

Example 4.3.4. For an imaginary quadratic field K = Q(
√
−1), [Ez] with z =

√
−1 = i is

the only C-isomorphism class of elliptic curves with complex multiplication by OK . It has

multiple models defined over the Hilbert class field HK = K, and those over FK = Q. A

modulus cf of a Hecke character ψE/HK
= ϕ for HK = K is compatible with the type [1, 0]

iff cf/|(2)OK
in this case.

For example, two choices cf = (2+2i)OK
and cf = (4)OK

have their own unique primitive

multiplicative character χf satisfying (95) and (100) for k = HK = K. Those two characters

χf satisfy (101), so the corresponding two models can be defined over Q. It is known that the

two models correspond to defining equations y2 = x3−n2x with n = 1, 2, respectively [Koblitz

[11], Chap. II]. On the other hand, the choice cf = (2 + i)OK
has a unique multiplicative

character satisfying the two conditions (95, 100) for k = HK = K, so there exists a model over

K, but it is not obtained as a base change from a model over Q, because (101) is not satisfied.

When we choose cf = (3)OK
, there are two inequivalent characters χf : [OK/cf ]

× → S1

satisfying (95). The two characters do not satisfy (100), however. So, there is no model of

[Ez=i]C over k = HK = K with the conductor Cf = (3)OK
.

For both of the two models corresponding to Cf = (2 + 2i)OK
and (4)OK

, the condition

(103) on the parameter fρ of string realizations is 2|fρ; remember that Ω(Λwinding)/fρ = (2)OK

for the case of [Ez] here (see Table 2). In the minimal realization40 using fρ = 2, for

example, there are 16 irreducible representations of the chiral algebra A− ∼= A+. Out of the

38Generally in a rational CFT, the fusion algebra introduces a structure of algebra into Z[iReps.]. In
the case of a T 2-target rational CFT, however, the multiplication law on Z[iReps.] can be induced from an
abelian group law on iReps.. The addition law referred to in the main text corresponds to this abelian group
law on iReps..

39 They are for a group Γ0(M) for an M that scales as N2
a(K)cf

.
40The L-function written down in [22] for this C-isomorphism class of elliptic curves, [Ez]C with z = i, is

the one for Cf = (4)OK
. The conductor of the elliptic curve over Q is NE/Q = Nχf

= 4×NmK/Q(cf ) = (64)Z,
as in [22]. The modular forms (108)—we know that they are (due to Theorem 4.3.3)—are obtained from
string realizations with fρ = 2 or any 2|fρ, not from the one with fρ = 1.
It should be noted, on the other hand, that the two Gepner constructions 0⊗12⊗2/(Z/4) and 0⊗12⊗2/((Z/4)×
(Z/4Z)) yield the same N = (2, 2) SCFT, as one can see by computing the spectrum. This string realization
corresponds to z = ρ = i, so fρ = 1. See also footnote 41.
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Boltzmann-weighted sum of U(1)-charges f1(τws;α) of those 16 representations, the following

linear combinations yield the L-function through the Mellin transformation:

[f1(1)− if1(i)− f1(−1) + if1(−i)]
4

± i
[f1(2 + i)− if1(−1 + 2i)− f1(−2 − i) + if1(1− 2i)]

4
,

= f1(1)± if1(2 + i); (108)

here, only the second argument α ∈ iReps. is retained in the expression above, and a complex

number in a unit cell of C/bz is used to refer to an irreducible representation α by exploiting

the embedding Ω : iReps. ∼= Ω(ΛCardy)/bz ⊂ K/bz ⊂ C/bz.

For the model over K corresponding to the multiplicative character with Cf = (2+ i)OK
,

we find that string realizations with 5|fρ need to be used to obtain the modular forms to be

Mellin-transformed. •

Example 4.3.5. For an imaginary quadratic field K = Q(
√
−3), Ell(OK) consists of just

one C-isomorphism class, [Ez ]C with z = ζ3, where ζN := e2πi/N . The three Gepner con-

structions,41 1⊗3/(Z/3), 1⊗3/((Z/3) × (Z/3)) and 0⊗11⊗14⊗1/(Z/6), all give rise to a single

N = (2, 2) SCFT, as one can see by computing and comparing the spectrum for those Gepner

constructions; the common spectrum reveals that it is a string-theory realization of this [Ez ]C

with z = ζ3, with fρ = 1 (i.e., ρ = ζ3).

The compatibility condition with the type [1, 0] rules out any choice with cf |(1 + ζ6)OK

or cf |(2)OK
.

Ref. [22] picks up two models over Q for this C-isomorphism class [Ez]C. Here is how we

understand the two models. First, let us choose the modulus cf = (3)OK
; there is just one

unitary character of [OK/cf ]
× satisfying the conditions (95, 100) then. The corresponding

Hecke character ϕ = ψ : A×
K/K

× → C× must be primitive, since any OK-ideals dividing

(3)OK
cannot be compatible with the type [1, 0]. This Hecke character ψE/K therefore has

a conductor Cf = cf = (3)OK
. The condition (101) is satisfied, and hence this model E/K

is obtained as a base change from a model E/Q. The L-function of this model E/Q is

[1/1s − 2/4s − 1/7s + · · · ] and the conductor of the elliptic curve over Q is NE/Q = (27)Z,

41 An orbifold construction is a procedure of using a modular invariant SCFT to build a modular invariant
SCFT that is different from the original one, as well as the SCFT so constructed. Gepner construction is
a special version of that. In this article, we study the relation between the L-functions of a variety X and
the spectrum (i.e., f0’s and f1’s) of the X-target SCFT, for natural reason, instead of the spectrum of the
SCFT (such as N = 2 minimal models) which one may use to construct the X-target SCFT. The fact that
multiple different Gepner constructions may give rise to the same geometry-target SCFT motivates the way
we set the problem in this article.
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where we used (89). This reproduces the L-function and NE/Q of one of the two models over

Q discussed in [22].

The other model over Q is found by setting cf = (4(1 + ζ6))OK
. There are four unitary

characters of [OK/cf ]
× in this case, but one of them is induced from a unitary character for

cf = (2(1 + ζ6))OK
and two others from two unitary characters for cf = (4)OK

. There is just

one unitary character where the choice of modulus cf = (4(1+ ζ6))OK
is primitive. So, there

is a unique Hecke character for K = Q(
√
−3) where the conductor is Cf = (4(1 + ζ6))OK

.

It satisfies (101), so the corresponding model is obtained as a base change of a model E/Q.

The L-function and the conductor NE/Q of such a model E/Q are computed to be [1+4/7s+

2/13s−8/19s−5/25s+ · · · ], and NE/Q = (144)Z, respectively. So, the other model of [Ez=ζ3 ]C

in [22] is reproduced.

In order to obtain the modular forms in the procedure in Theorem 4.3.1, we need a string

realization with 3|fρ, and 4|fρ for the models corresponding to Cf = (3)OK
and (4(1+ζ6))OK

,

respectively. •

There are nine imaginary quadratic fields K = Q(
√−d0) where h(OK) = 1 (d0 =

1, 2, 3, 7, 11, 19, 43, 67, 163). That is when just one linear combination of f1(τws;α)’s (for

ϑ(τ ;ϕ,K) with {K} = ClK) is enough in constructing the L-functions of models over Q or

over K. The two examples above, where K = Q(
√
−1) and Q(

√
−3), are both in this cat-

egory. Let us also take a look at an example of imaginary quadratic fields other than these

nine special ones.

Example 4.3.6. For an imaginary quadratic field K = Q(
√
−5), a modulus cf of a Hecke

character of A×
K/K

× is compatible with the type [1, 0] iff cf/| (2)OK
.

If we choose cf = (3,+1+
√
5i)OK

, or cf = (3,−1+
√
5i)OK

, there is one unique character

χf satisfying (95, 100) for each case. π∗(cf) is a prime ideal of OHK
for any one of the two

choices of cf above, and hence ψ = ϕ ◦ NmHK/K is primitive; Cf = π∗(cf). Thus, there

is one model over HK for each choice of cf and for each one of Ell(OK). The condition

(103) implies that we need to employ string realizations with 3|fρ in order to write down the

inverse Mellin transform of the Hecke L-functions in terms of f1’s. The four models over HK

here, corresponding to two possible cf ’s and two in Ell(OK), cannot be obtained by the base

change of a model over FK = Q(
√
5), because the two χf ’s do not satisfy (101). •
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4.3.2 Models Defined over a Ramified Extension of K

Even for arithmetic models of elliptic curves with complex multiplication by a non-maximal

order in general, or for models of elliptic curves with complex multiplication whose field of

definition k is an abelian extension over K containing the ring class field as a proper subfield,

we can use Thms. 4.2.23 and 4.2.24 to list up inequivalent models over a number field k in

the class we consider in this article. For those models, general algorithm for the computation

of the L-functions reviewed in section 4.2.1 still works (as stated there); the relation (102)

also holds for these models; therefore, the functions f1’s obtained from string realizations of

these arithmetic models can be organized by using the character χf as linear combination

coefficients so that the Mellin transform of the linear combinations become Hecke L-functions

to be used in rebuilding the Hasse–Weil L-function.

The only one change we have to make is to replace the condition (103) on the parameter

fρ of string realizations by

cf · LCM
(
a(K)K∈ClK(mf )

)
⊃ bz, (109)

because bz is a proper Ofz -ideal for elliptic curves in Ell(Ofz) and is not necessarily an OK

ideal, when fz > 1. We do not reiterate Thms. 4.3.1, 4.3.2 and the first half of 4.3.3 modified

for these general cases, because the necessary modification is obvious.

Example 4.3.7. For an imaginary quadratic field K = Q(
√
−1), k = K(

√
3) is an abelian

extension of K = Lfz=1 = Lfz=2 as well as Lfz=3 = K(
√
3) (see Table 1). It is also isomorphic

to the ray class field Lmf
for mf = (3)OK

.

Here, we look at models over k = K(
√
3) of elliptic curves in Ell(OK) = {[Ez=i]} and

Ell(Ofz=3) = {[Ez=3wK
], [Ez=(1+3wK)/2]} where the Hecke characters ϕ of A×

K/K
× in Lemma

4.2.4 have a conductor cf = (3)OK
. We have already seen in Example 4.3.4 that cf = (3)OK

as a modulus is compatible with the type [1, 0]. Moreover, the condition (99) is satisfied for

fz = 3; trivial for fz = 1.

There are two inequivalent characters χf : [OK/cf ]
× → S1 satisfying (95):

χf(1) = 1, χf (i) = −i, χf (2) = −1, χf(2i) = i, (110)

χf (1 + i) = a, χf (2 + i) = −ia, χf (2 + 2i) = −a, χf(1 + 2i) = ia, (111)

where a = eπi/4 or −eπi/4. The two χf ’s become the same, when they are restricted to

[OK/cf ]
×
k = {[1], [2], [i], [2i]}, however, and the value of χf remains within O×

K (the condition

(100) for k); because π∗((3)OK
) = P2

3 for a norm-3 prime ideal P3 of Ok, the support of
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the conductor of ψ = ϕ ◦ Nmk/K cannot be different from that of π∗(cf); this means that

there is just one model over k for [Ez=i]C (Thms. 4.2.23 and 4.2.24). There is also just one

model over k for each one of [Ez=3wK
]C and [E(1+3wK)/2]C, since the value of χf remains to be

within O×
fz

= {±1} for [Ofz ]∩ [OK/cf ]
× = {[1], [2]}. The Hecke L-function of ψE/k of A×

k /k
×

is given by L(s, ψE/k) =
∏

a∈{±eπi/4} L(s, ϕa) for all the three models over k; the two ϕa’s

are the Hecke characters of A×
K/K

× corresponding to the two χf ’s. The Hecke L-function

L(s, ϕa) is given by the Mellin transform of appropriate linear combinations of f1’s of string

realizations of the three models, if 3|fρ, 3|fρ and 3|fρ, respectively. •

5 The L-function for H2
et(E)

The L-function is defined for an elliptic curve E/k defined over a number field k also in

association with H2
et
(E). Because L(H2

et
(E), s) = ζk(s − 1), this L-function does not carry

any information not contained in L(H0
et
(E), s) = ζk(s).

If one is interested in reconstructing L(H2
et
(E), s) directly from some data available in

string-theory realizations of E/k, than shifting the argument of L(H0
et
(E), s), then we can

use

f2(itws;α) := (−i)TrV o
α ;R

[
FeπiFΩ′Ω

′
qL0−c/24

]
, q = e−2πtws (112)

for α ∈ iReps., instead of f0’s. By replacing f0’s that appear in section 3 by f2’s, we simply42

obtain ζk(s− 1).
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