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ABSTRACT

The question of the interpretation of Wheeler-DeWitt solutions in the

context of cosmological models is addressed by implementing the Hamilto-

nian constraint as a spinor wave equation in minisuperspace. We offer a

relative probability interpretation based on a non-closed vector current in

this space and a prescription for a parametrisation of classical solutions in

terms of classical time. Such a prescription can accommodate classically de-

generate metrics describing manifolds with signature change. The relative

probability density, defined in terms of a Killing vector of the Dewitt metric

on minisuperspace, should permit one to identify classical loci corresponding

to geometries for a classical manifold. This interpretation is illustrated in the

context of a quantum cosmology model for two-dimensional dilaton gravity.
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1. Introduction

One of the many outstanding problems in trying to construct a quantum field theory of

gravitation concerns the appropriate interpretation of quantum states for configurations that

make no overt reference to “time”. Thus it is difficult in general to endow the theory with

any traditional Hilbert space structure based on a hermitian inner product and a unitary

evolution. Although many alternative schemes have been suggested difficulties in interpre-

tation remain. Some of the difficulties are intrinsic to the infinite dimensional aspect of field

quantisation and in this respect one often seeks guidance by studying truncated field configu-

rations corresponding to situations with high symmetry. We shall not rehearse here the many

cogent arguments that urge caution in extending deductions from such models to the full

quantum field theory [1]. However symmetric models are a useful theoretical laboratory for

testing ideas that may have more general validity, and enable one to disentangle conceptual

problems from technical ones. In the context of minisuperspace models a number of authors

have noticed that it is possible to implement the Hamiltonian constraint for Bianchi-type

models in general relativity, on a multicomponent wavefunction [2]. In an attempt to relate

such states to modes of the gravitino field such models have been examined in the context

of N=1 supergravity [3] although the relation with the original Wheeler-Dewitt equation is

then lost [4]. In this letter we focus on a particular minisuperspace analysis that gives rise to

a Hamiltonian constraint, classically describing the zero energy configuration of an oscillator

ghost-oscillator pair. This gives rise to a Wheeler-DeWitt equation that has occurred in a

number of different contexts. It appears in certain 4-dimensional spacetime cosmologies [5],

[6], [7], [8], and we have discussed it in the context of a class of 2-dimensional dilaton-gravity

models. These models have arisen either from string-inspired limits or from the suppression

of inhomogeneous modes in Einstein’s theory of general relativity, [9], [10], [11], [12], [13],
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[14] [15]. Our interest with this class of models stems from the properties of coherent state

solutions to the corresponding Wheeler-DeWitt equation and their relation to classical solu-

tions to general relativity including those that change signature [16]. We show in this letter

that it is possible to implement the Hamiltonian constraint in the cosmological sector as a

first order wave equation for a multicomponent state vector and to endow the space of spinor

solutions to such an equation with a Hilbert space structure. We offer an interpretation of

such states in terms of relative probabilities defined by a non-conserved current. This is

possible since such solutions enable one to construct such a current with a positive definite

density defined by the Killing isometry of the minisuperspace metric. We suggest that such

an interpretation is not unnatural in a quantum theory that attempts to accommodate states

whose classical limits describe manifolds with degenerate metrics where the signature can

change. Such limits correspond to more exotic spaces in which the global topology may be

non-trivial and the geometry non-Riemannian. In such situations the emergence of an arrow

of classical time may have its origin in an underlying quantum description of such spaces.

2. The Model

We have recently developed [16] a canonical quantisation of the 2-dimensional dilaton-

gravity theory based on the classical action

S[g, ψ] =
∫

N

{

1

2
ψ ⋆R+ cdψ ∧ ⋆dψ + ⋆(Λ0 + αecψ)

}

(1)

where N is some domain of a two-dimensional manifold, ψ is a real scalar field and R is the

curvature scalar of the Levi-Civita connection associated with the metric tensor g. The oper-

ator ⋆ denotes the Hodge map of g and c, Λ0 and α are constants. The classical cosmological

sector of this theory can be solved exactly and admits solutions with a degenerate metric

where the signature changes from being Lorentzian to Euclidean. The standard approach for
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implementing the Hamiltonian constraint in the quantum version of such theories is to search

for complex scalar valued functions on the appropriate manifold of matter and space geom-

etry configurations. Thus in [16] we took R2 as a minisuperspace with global coordinates

{X, Y } labeling these configurations and sought Wheeler-DeWitt solutions Ψ : R2 7→ C to

the equation:

HΨ = 0 (2)

where

H = (ω2X2 −
∂2X
4
)− (ω2Y 2 −

∂2Y
4
) (3)

The Wheeler-DeWitt equation (2) endows R2 with a natural (Lorentzian signature) metric

G. In terms of the coordinates {X, Y }:

G = ∂X ⊗ ∂X − ∂Y ⊗ ∂Y . (4)

If # denotes the associated Hodge map then (2) may be written:

d# dΨ −W#Ψ = 0 (5)

where W (X, Y ) = 4ω2(X2 − Y 2). By multiplying (5) by Ψ and subtracting from the corre-

sponding equation obtained by complex conjugation we readily verify that

dJ = 0 (6)

where the current 1-form

J = Im(Ψ#d Ψ ). (7)

Although this current is conserved there is no preferred spacelike foliation of R2 that defines

a “density” component of J that does not in general change sign. Furthermore, although

the minisuperspace is flat there is no natural way to restrict solutions to have a positive

definite norm. The Killing vectors of the metric (4) do not generate a symmetry of the
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equation (5). Thus there appears no invariant way to normalise solutions of (5), construct a

Hilbert subspace of normalisable solutions and endow the quantum theory with the standard

probabilistic interpretation. By contrast the traditional Klein-Gordon quantisation of the

relativistic free particle in Minkowski spacetime exists because the Killing isometry of the

spacetime metric induces a classical symmetry of the Klein-Gordon equation. Furthermore

one can then exploit translational symmetry to restrict solutions to either the positive or

negative mass-hyperboloid in the space of spatial Fourier modes on which the above current

induces a positive-definite inner-product. However if one considers the quantisation in a

non-stationary spacetime (or in a stationary spacetime with a time dependent potential)

again one may loose the timelike Killing symmetries that enable one to effect the above

construction and the particle interpretation of the field system is at best an asymptotic

notion in a second quantised formulation. Before the advent of second quantisation Dirac

was motivated to implement the constraint arising from the reparametrisation of the action

for a relativistic free particle by a first order equation for the space of quantum states.

In a similar vein we are interested here in the possibility of implementing the constraint

(2) by a first order equation for a complex multicomponent field Φ : R2 7→ Cn for some

n, such that each component of Φ satisfies (2). If this is possible it is natural to seek

for a current constructed from Φ that admits a positive-definite charge density for some

class of foliations that are spacelike with reference to the metric (4). If this is possible

then the choice of a probability interpretation is determined by the Lorentzian structure of

(mini-)superspace. (This Lorentzian structure has its origins in the universal gravitational

attraction between matter and must be clearly distinguished from the light-cone structure of

classical spacetime). Such a choice seems natural if we wish to extend the interpretation of

the theory to accommodate classical limits that include spacetime metrics with a signature
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transition. In a domain with Euclidean signature one has no natural means of defining the

spacelike and timelike components of a current. Thus the definition of a probability current

must transcend any definition of any preferred classical time for classical spacetimes. We

shall reiterate our views on the latter problem in the last section.

3. The Clifford Algebra of Minisuperspace

The natural Lorentzian null-cone structure in 2D minisuperspace endows the space with

a (1,1) Clifford bundle structure [17]. Thus there is a matrix basis for the Clifford Algebra

Cl(1,1) in which the 1-forms dX and dY are represented as matrices satisfying

dX ∨ dX = 1 (8)

dY ∨ dY = −1 (9)

dX ∨ dY + dY ∨ dX = 0 (10)

where ∨ denotes multiplication in the Clifford algebra. In conventional gamma matrix no-

tation: (dX 7→ γ1, dY 7→ γ0). The Clifford bundle has minisuperspace as base and Cl(1,1)

as fibre. Let Φ be a section of this bundle:

Φ = Φ0 + Φ1 dX + Φ2 dY + Φ12 dX ∨ dY. (11)

Since the bundle is trivial the components Φj ≡ {Φ0, Φ1, Φ2, Φ12}may be regarded as complex

functions on R2.

Introduce the Clifford potentials:

V1 = 2iω(−Y +X dX ∨ dY ) (12)

V2 = 2iω(Y +X dX ∨ dY ). (13)

We assert that if Φ satisfies first order equation:

DΦ+ V1 ∨ Φ = 0 (14)
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where D = (d − δ) then each component of Φ will satisfy (2). In this equation d denotes

exterior differentiation and δ is the coderivative:

δ = #−1d# η

where the involution η [17] is a linear operator on Φ that preserves 0-forms, reverses the sign

of 1-forms and

η(dX ∨ dY ) = dX ∨ dY. (15)

The above result follows from

(D + V2) ∨ (D + V1) = (D2 −W ) (16)

and the recognition that D2 = −(d δ+ δ d) is the Laplace-Beltrami operator. Since the basis

forms in Φ are all holonomic it follows that if Φ satisfies (14) then its components satisfy

d# dΦj −W#Φj = 0. (17)

4. Spinor Solutions and Associated Currents

We observe that since our minisuperspace is flat with respect to (4) it is possible to find

solutions Ψ of (14) that lie in a minimal (left) ideal of Cl(1,1) at each point. For example

we may decompose

Φ = Φ ∨ P+ + Φ ∨ P− (18)

where P± = 1
2(1 ± dX) and take Ψ = Φ ∨ P+. Minimal ideals provide irreducible modules

for the sub-group SPIN of the Clifford group of Cl(1,1) [17] and their elements are spinors.

Since P+ is a parallel idempotent in minisuperspace, if Φ is a solution of (14) then so is

Φ ∨ P+ so Ψ may be regarded as a spinor solution of (14).

We concentrate on those spinor solutions of (14) that are asymptotically well behaved as

|X| or |Y | tends to infinity. Such solutions may be expressed in terms of a basis of Hermite
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functions. Thus if

Ψ = (u− vdY ) ∨ P+ (19)

(14) may be expressed as the coupled partial differential equations:

∂ξF − 2iωξ H = 0 (20)

∂ηH + 2iωη F = 0 (21)

where ξ = (Y − X)/
√

(2) η = (Y + X)/
√

(2), F = u − v, H = u + v. These have the

solutions

F (X, Y ) =
∞
∑

n=0

cne
−(z21+z

2

2)/2Hn(z1)Hn(z2) (22)

H(X, Y ) =
∞
∑

n=0

bne
−(z21+z

2

2)/2Hn(z1)Hn(z2) (23)

where z1 =
√

(2ω)X and z2 =
√

(2ω)Y . The complex coefficients {cn} and {bn} are linearly

correlated by the wave equation (14). A typical “ coherent spinor state “ solution takes the

form:

F = Ce−(α(X2+Y 2)−2βXY ) (24)

H =
i

ω
(α + β)F (25)

where α, β, C are arbitrary complex constants. Since our 2-dimensional minisuperspace

is topologically trivial it is always possible to find closed 1-forms that are candidates for

conserved currents. However it is non-trivial to construct a current that has a positive

definite density for a class of solutions to (14). It is not difficult to verify that the (complex)

current

J ′ = H2ξ dξ − F 2η dη (26)

is closed and hence gives rise to a conserved current in mini-superspace. However for general

solutions of (14) there is no foliation of mini-superspace that enables one to construct a

non-negative real density from such a conserved current.
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We recall that in the Dirac theory of a relativistic particle described by a spinor ψ on

spacetime, the Dirac vector current with components ψγµψ is conserved and possesses a

positive-definite density for any non-trivial spinor. In the language of Clifford bundles this

current is the form:

j[ψ] = ∗ReS1(ψ ∨ ψ̃) (27)

where S1 projects out the 1-form part of its argument and ψ̃ = C−1∨ψI for some involution

I in the (simple) Clifford algebra that is equivalent to hermitian conjugation:

A† = C−1AIC (28)

for all elements A in the Clifford algebra.

With this goal in mind we find from (14) and (27)

dj[Ψ ] = ReTr(Ψ̃ ∨ (V2 − V1) ∨ Ψ ) ∨#1 (29)

for all spinor solutions Ψ of (14) where

j[Ψ ] = #ReS1(Ψ ∨ Ψ̃). (30)

Here transposition is induced by the involution I ≡ ηξ where ξ is the main anti-involution

[17] of the Clifford algebra and the adjoint spinor Ψ̃ = C−1 ∨ Ψ
ξη
, where Ψ denotes the

complex conjugation of Ψ . In the spinor basis defined by the projectors P± that we are

using, the element C = dY . It follows from (29) that j[Ψ ] defines a closed current for

solutions that satisfy the condition ReTr(iωΨ̃ ∨ Ψ ) = 0. Although such solutions do exist

we shall not impose this restrictive condition in the following discussion.

5. Discussion

For a spinor solution (19) (18) with components {u, v} we find in the chart {X, Y }:

j[Ψ ] = uv dY − (
1

2
|u|2 +

1

2
|v|2) dX (31)
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which clearly displays the non-negativity of the density

ρK(X, Y ) = −j[Ψ ](K) (32)

where K denotes the Killing vector field ∂X . If Ψ carries a representation of SPIN, then

such a density, defined by a spacelike Killing vector field will remain positive for all proper

Lorentz transformations that preserve the metric. Thus it may be adopted as a probability

measure for the interpretation of the theory. However as the notation indicates a choice of

spacelike Killing vector K is implied. Since the current j[Ψ ] is not conserved for all Ψ there

exists no choice of spacelike foliation such that the integral of the probability density over a

particular leaf of the foliation is independent of the leaf chosen. The existence of such a leaf

dependent “charge” means that one cannot identify such a leaf as an “instant of time” and

interpret such a charge as a normalisation factor for a state in the traditional manner. If we

adopt as the Hilbert space norm of a state Ψ

(Ψ, Ψ )K =
∫

R2

ρK#1 (33)

then this also will depend on the choice of Killing vector K. Inasmuch as any convenient

norm can be used to define a Hilbert space this is not necessarily a drawback. However

the probabilistic interpretation of the theory must be restricted to describing relative prob-

abilities between configurations. Thus for K = ∂X the relative probability densities for

configuration Y1 and Y2 irrespective of X may be defined as µ(Y1)/µ(Y2) where:

µ(Y ) =
∫ ∞

−∞
ρK(X, Y ) dX (34)

and in general µ(Y ) will depend on the configuration variable Y .

Up to this point no mention has been made of classical time. Indeed until this issue is

resolved there is little to recommend any particular probabilistic interpretation of the theory

since the obvious questions that need to be addressed involve classical observers in a classical
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spacetime. Thus we assert that in order to give substance to the above one should concentrate

on particular quantum states that can be related to classical cosmologies. As we have stressed

we do not wish to exclude from such classical cosmologies those that admit degenerate

spacetime metrics. Thus we focus on those solutions that for a given choice of Killing vector

K enable one to constructs functions ρK that have maxima in the vicinity of those loci in

(mini-)superspace corresponding to parametrised solutions to the classical field equations.

For a classical manifold with a proscribed topology and a proscribed signature structure

we concentrate on particular classical solutions with degenerate metrics. Furthermore the

manifold should enable one to perform a Hamiltonian description of the field equations so

that the classical and quantum degrees of freedom can be put into correspondence [16]. In

the cosmological context of the model in this discussion such a correspondence is given by a

parametrised curve in mini-superspace:

τ 7→ {X = X(τ), Y = Y (τ)} τ0 < τ < τ1 (35)

Such a parametrisation of a classical solution may describe a Euclidean signature metric for

part of the manifold and a Lorentzian signature metric elsewhere. Thus it is natural to use

τ as a choice of classical evolution parameter which is a classical time in the Lorentzian

domain. We may now transfer the relative probability interpretation to the class of classical

observers that inhabit the classical cosmology defined by the locus of the maxima of ρK .

The density ρK(X(τ), Y (τ)) now offers a means of predicting the relative probabilities for

finding the classical configurations {X, Y } at “times” τ1 and τ2. The freedom in choosing

different parametrisations to describe the same classical solutions corresponds to the freedom

in choosing different coordinate systems on the classical manifolds.

To illustrate the viability of this approach within the context of the model defined by
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(2) we have sought a Killing vector K that enables one to construct a “coherent state” that

can be used to construct a classical spacetime in the vicinity of its peak. Define Ψs1,s2 =

(u− vdY ) ∨ P+ with

u = s1e
c1(X

2+Y 2)+2c2XY (36)

v = s2e
c1(X

2+Y 2)+2c2XY (37)

for some complex constants c1, c2, s1, s2. This is a solution to (14) provided

c1 =
2iωs1s2
s21 − s22

(38)

c2 =
iω(s22 + s21)

s22 − s22
. (39)

Then for suitable {s1, s2, s3, s4} the superposition

Φ = Ψs1,s2 − Ψs3,s4 (40)

enables one to construct a density ρ∂X that peaks along classical loci for the theory defined by

the action (1). This is illustrated in Fig 1 for the choice {s1 = (3+0.1i), s2 = (1.3+0.1i), s3 =

(3.1 + 0.1i), s4 = (1.4 + 0.1i)}. The classical solutions correspond to the elliptical contours

defined by this density profile and have been discussed in [16]. A notable feature of this state

is the existence of a particular locus among the classical solutions for which the divergence

of the vector current j[Φ] does in fact vanish. In this sense one may say that there is

approximate conservation in the vicinity of this particular classical configuration

Equation (29) is reminiscent of the equation that follows from the non-relativistic

Schrödinger equation in the presence of a complex potential. Indeed the lack of hermiticity

of the hamiltonian there is analogous to the property V1 6= ±V I
2 . In the Schrödinger sit-

uation the use of a complex potential models the absorptive properties of an open system.

For a closed system a non-hermitian hamiltonian is usually regarded as pathological. How-
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ever in the context of gravitation such a reaction requires caution [15]. For example if the

non-unitary evolution of a pure state of matter to a mixed state via the Hawking process

can be maintained when gravitational back reaction is taken into account then probability

conservation in a gravitational context may not be tenable. It is clear from the behaviour

of the state in Figure 1 why the conservation of our current is impossible. Since the state

vanishes asymptotically in all directions in the configuration space there is no way that a flux

of positive density from the peaks of the state can flow smoothly to zero . In such a scenario

it is tempting to conjecture that it is the existence of degenerate classical geometries that

are mandatory to accommodate the absorption of probability flux in the Euclidean domains.

Just as the creation (and annihilation) of a classical cosmology may correspond to such do-

mains where a classical spacetime description breaks down, the same may be true at the

end points of localised gravitational collapse. Of course a cosmological model is insensitive

to the subtleties required to accomodate a full quantisation of such a system. However it

would be a novel approach to implement the untruncated canonical constraints in terms of

a first order set of functional differential equations for a multicomponent state vector such

that each component satisfies the traditional Wheeler-DeWitt equation.

6. Conclusion

For our particular model we have chosen a symmetry vector of the DeWitt metric on

superspace that enables one to construct, from a particular quantum state, a density that

has maxima in the vicinity of classical cosmological loci. An internally consistent interpre-

tation for such a density is provided in terms of relative probabilities of the occurrence of

classical matter and a cosmological metric. In general the associated current is not closed

on superspace although the divergence is zero in the vicinity of certain classical cosmologies.

Whether the use of a non-conserved probability current has other implications for quantum
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cosmology will be pursued elsewhere.
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Figure 1

|Ψs1,s2 − Ψs3,s4 |
2 for the choice {s1 = (3+ 0.1i), s2 = (1.3 + 0.1i), s3 = (3.1 + 0.1i), s4 =

(1.4 + 0.1i)}. The peak accentuates a classical solution for the theory defined by the action

(1).
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