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AN ABSTRACT APPROACH TO BOHR’S PHENOMENON

L. AIZENBERG, A. AYTUNA, AND P. DJAKOV

(Communicated by Steven R. Bell)

Abstract. In 1914 Bohr discovered that there exists r ∈ (0, 1) such that if
a power series converges in the unit disk and its sum has modulus less than
1, then for |z| < r the sum of absolute values of its terms is again less than
1. Recently analogous results were obtained for functions of several variables.
Our aim here is to present an abstract approach to the problem and show that
Bohr’s phenomenon occurs under very general conditions.

1. Introduction

The classical (improved) result of H. Bohr [4], which was put in final form by
M. Riesz, I. Schur and F. Wiener reads as follows:

Theorem 1. If a power series
∞∑
k=0

ckz
k(1)

converges in the unit disk and its sum has modulus less than 1, then
∞∑
k=0

| ckzk |< 1(2)

in the disk {z : |z| < 1/3} and the constant 1/3 cannot be improved.

For holomorphic functions with positive real part the following analogous state-
ment holds.

Theorem 2. If the function

f(z) =
∞∑
k=0

ckz
k, |z| < 1,
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has a positive real part and f(0) > 0, then
∞∑
k=0

| ckzk |< 2f(0)

in the disk {z : |z| < 1/3} and the constant 1/3 cannot be improved.

Proof. Obviously, it is enough to prove the statement in the case f(0) = 1. Then
by Carathéodory’s inequality [5] (see also [6], sect. 2.5) we have |ck| ≤ 2, so for
|z| < 1/3 it follows that

∞∑
k=0

| ckzk |< 1 +
∞∑
k=1

2(1/3)k = 2.

On the other hand the Möbius function

f(z) =
1 + z

1− z = 1 +
∞∑
1

2zk

has positive real part, and the sum of the moduli of the terms of its expansion
equals 2 for |z| = 1/3, so the constant 1/3 is the best possible.

Multidimensional analogues of Theorem 1 for Taylor expansions of functions on
complete Reinhardt domains were considered in [3] and [1]. The authors showed in
[2] that an analogous phenomenon occurs for a complex manifold M and expansions
with respect to a certain basis in the space of analytic functions on M, provided
the basis we consider not only exists, but has some additional properties. Our aim
here is to obtain multidimensional generalizations of Theorems 1 and 2 in a more
general setting and in the spirit of Functional Analysis.

2. General setting of the problems

Suppose M is a complex manifold. We denote by H(M) the space of holomorphic
functions on M and for any compact subset K ⊂M we set

|f |K = sup
K
|f(z)|, f ∈ H(M).

The system of seminorms |f |K , K ⊂⊂ M , defines the topology of uniform con-
vergence on compact subsets of M. Equipped with this norm system H(M) is a
nuclear Fréchet space (e.g. [7]).

Let ‖.‖r, r ∈ (0, 1), be one-parameter family seminorms in H(M), that are
continuous with respect to the topology of uniform convergence on compact subsets
of M. We always assume in the following that

‖.‖r1 ≤ ‖.‖r2 if r1 ≤ r2.(3)

Consider the following problem:

Problem B1. Is there an r ∈ (0, 1) and a K ⊂⊂M such that

‖f‖r ≤ |f |K ∀ f ∈ H(M)?

Remark. Obviously, one may state Problem B1 for a sequence of seminorms.
Suppose (ϕn)∞n=0 is a basis in the space H(M). For each K ⊂⊂ M and f ∈

H(M), f =
∑
fnϕn, we can consider the norms

‖f‖K :=
∑
|fn||ϕn|K .(4)
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Fix a point z0 ∈ M ; let Kr ↓ z0 as r → 0 be a system of compact subsets of M
shrinking to the point z0. Theorem 5 in [2] says that Problem B1 has a positive
solution for the system of norms ‖f‖Kr , if, in addition, ϕ0 = 1 and ϕn(z0) =
0, n ≥ 1.

We present here a generalization of this result. Its proof, as the proof of Theorem
5 in [2], depends on the following lemma, which gives an upper bound for the
modulus of a function on a compact subset from the bound of its real part on a
larger compact subset. It generalizes the theorem of Borel and Carathéodory (see
[8]) for the disk case to arbitrary domains.

Lemma 3. If G is an open domain on a complex manifold, then for any z0 ∈ G
and K ⊂⊂ G there exists a constant C > 0 such that whenever f ∈ H(G) and
f(z0) = 0 we have

sup
K
|f(z)| ≤ C sup

G
Ref(z).

Proof. The set of holomorphic functions

Φ = {ϕ ∈ H(G) : sup
G
|ϕ(z)| ≤ 1, ϕ(z0) = 0}

is compact. Set

Vm = {ϕ ∈ H(G) : |ϕ|K < m/(m+ 1)}, m = 1, 2, . . . .

The sets Vm are open, Vm ⊂ Vm+1, and (since there is no non-zero constant function
in Φ)

Φ ⊂
⋃
m

Vm.

Thus there exists m0 such that Φ ⊂ Vm0 .
Fix any f ∈ H(G) such that f(z0) = 0 and supGRef(z) = 1 (obviously, it is

enough to prove the theorem for such functions). Consider the function ϕ(z) =
f(z)/(2− f(z)); then ϕ ∈ Φ, so we have

|ϕ(z)| ≤ m0/(m0 + 1) ∀z ∈ K.
Therefore

(m0 + 1)|f(z)| ≤ m0(2 + |f(z)|) ∀z ∈ K;

hence |f(z)| ≤ 2m0 ∀z ∈ K, which proves the statement.

Theorem 4. Let M be a complex manifold, z0 ∈M and ‖.‖r, r ∈ (0, 1), be a one-
parameter family of continuous seminorms in H(M) such that (3) and the following
conditions hold:

(a) ‖f‖r → |f(z0)| as r → 0;
(b) ‖1‖r = 1 ∀ r ∈ (0, 1).

Then Problem B1 has a positive solution.

Proof. Fix any r1 ∈ (0, 1). Since ‖.‖r1 is a continuous seminorm, there exist a
compact subset K1 ⊂⊂M and C1 > 0 such that

‖f‖r1 ≤ C1|f |K1 ∀f ∈ H(M).

By Lemma 3 there exist a compact subset K2 ⊂⊂M and C2 > 0 such that

|f − f(z0)|K1 ≤ C2 sup
K2

Re(f(z)− f(z0)) ∀ f ∈ H(M).(5)
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Fix f ∈ H(M) such that f 6= constant and f(z0) ≥ 0 (obviously, it is enough to
prove the theorem for such functions). Then we have by (5)

‖f‖r ≤ f(z0) + ‖f − f(z0)‖r

≤ f(z0) +
‖f − f(z0)‖r
|f − f(z0)|K1

· C2(sup
K2

|f(z)| − f(z0)).

Obviously the statement will be proved, if we show that ‖f−f(z0)‖r
|f−f(z0)|K1

→ 0 uni-
formly for f ∈ H(M), f 6= constant, as r → 0. Fix ε > 0 and a bounded domain G
on M such that K1 ⊂⊂ G ⊂⊂M, and consider the sets

Φ = {ϕ ∈ H(G) : sup
G
|ϕ(z)| = 1, ϕ(z0) = 0}

and

Ur = {ϕ ∈ H(G) : ‖ϕ‖r < ε|ϕ|K1}.
It is easy to see that Φ is a compact subset of H(G) and Ur, r ∈ (0, 1), is an open
cover of Φ, due to (a). Since Ur1 ⊃ Ur2 if r1 < r2 there exist r0 such that Φ ⊂ Ur0 .
But then we have

‖ϕ‖r0 < ε|ϕ|K1 ∀ϕ ∈ Φ,

which proves the statement.

Remark. In order to prove a weaker property, say B1+ε :

∃ r ∈ (0, 1), K ⊂⊂M : ‖f‖r ≤ (1 + ε)|f |K ,
one does not need Lemma 3. It is enough to use the triangle inequality and the
fact that ‖f−f(z0)‖r

|f−f(z0)|K1
→ 0 uniformly for f ∈ H(M), f 6= constant, as r→ 0.

As we see, Problem B1 has a positive solution for each system of seminorms
satisfying the conditions (a) and (b). In view of the previous result we can consider
the following problem:

Problem B2. Let M be a complex manifold; find

sup{r : ‖f‖r ≤ sup
M
|f(z)| ∀ f ∈ H(M) and bounded}.

We call the finite solution of Problem B2 the Bohr radius. Theorem 4 proves
that the Bohr radius exists for any family of continuous seminorms ‖.‖r, r ∈ (0, 1),
satisfying conditions (a) and (b).

Let us mention some known results from this point of view (with z0 = 0):

1. Theorem 1 says that in case M coincides with the unit disk and

‖f‖r = sup
|z|≤r

∑
n

|cnzn|,(6)

where f(z) =
∑
n cnz

n is the Taylor expansion of f , Problem B2 has solution
r = 1/3, i.e. in this case the Bohr radius equals 1/3.

2. Boas and Khavinson [3] considered Problem B2 for the polydisk U1 =
{z ∈ Cn : |zk| < 1, k = 1, . . . , n} and the system of norms

‖f‖r = sup
r·U1

∑
α

|cαzα|, f ∈ H(U1),(7)
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where r · U1 is the homothetic transformation of U1 with coefficient r, α =
(α1, . . . , αn) is a multi-index, zα = z1

α1 . . . zn
αn and f(z) =

∑
α cαz

α is the Taylor
expansion of f. Let Kn(U1) be the corresponding Bohr radius. Boas and Khavinson
proved that for n > 1

1
3
√
n
< Kn(U1) <

2
√

logn√
n

(8)

and generalized the left-hand side of (8) for complete Reinhardt domains.
Let us note that the above estimates depend on n. In [1] for the unit hypercone

D◦ = {z : |z1| + ... + |zn| < 1} estimates that do not depend on n were obtained.
Namely, if Kn(D◦) is the corresponding Bohr radius, then we have

1
3e1/3

< Kn(D◦) ≤ 1/3 .(9)

3. Other multidimensional extensions of Problem B2 were considered in [1]. Let
D be a complete Reinhardt domain; consider the system of norms

‖f‖r =
∑
α

sup
Dr

|cαzα| f ∈ H(D),(10)

where Dr = r · D is the homothetic transformation of D. Let Bn(D) denote the
corresponding Bohr radius. In [1] it is proved that the inequality

1− n

√
2
3
< Bn(D)(11)

holds for any complete bounded n-circular domain D; these estimates can be im-
proved for concrete domains (unit ball, unit hypercone, complete Cartan’s circular
domains), and, moreover, one can also obtain estimates from above in these cases.

3. Bohr’s phenomenon for holomorphic functions

with positive real part

Analogous questions may be posed for the class of holomorphic functions with
positive real part. Suppose again M is a complex manifold, and z0 ∈M . Let

P = {f ∈ H(G) : Ref(z) > 0, f(z0) > 0}.(12)

For a given system of continuous seminorms in H(M), ‖.‖r, r ∈ (0, 1), we consider
the following problems:

Problem PB1. Does there exist an r ∈ (0, 1) such that

‖f‖r < 2f(z0) ∀ f ∈ P?(13)

Problem PB2. In case Problem PB1 has a positive solution find

sup{r : ‖f‖r < 2f(z0) ∀ f ∈ P}.(14)

We will again call the solution of Problem PB2 the Bohr radius.
Problem PB1 has a positive solution under a weaker condition on the norms

compared to the case of Problem B1 of the previous section.

Theorem 5. Let M be a complex manifold, z0 ∈ M and ‖.‖r, r ∈ (0, 1), be a
system of continuous seminorms in H(M), satisfying (3) and the condition

(ã) ∃ c ∈ (0, 2) : ‖f‖r → cf(z0) as r → 0 ∀ f ∈ H.
Then there exists an r ∈ (0, 1) such that (13) holds, i.e. Problem PB1 has a positive
solution.
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Proof. Obviously, it is enough to prove the theorem for functions belonging to the
set

P1 = {f ∈ P : f(z0) = 1}.
The set P1 is compact. Indeed, let (fn) be a sequence in P1. Consider the functions

gn =
1− fn
1 + fn

, n = 1, 2, . . . .

Then we have |gn(z)| < 1 for all z ∈ M, so the sequence (gn) has a convergent in
H(M) subsequence gnk → g. Since gn(z0) = 0 ∀n we have g(z0) = 0, therefore
|g(z)| < 1 for all z ∈M. Hence

fnk =
1− gnk
1 + gnk

→ 1− g
1 + g

∈ P1.

The family of sets

Vr = {f ∈ H(M) : ‖f‖r < 2}, r ∈ (0, 1),

is an open cover of P1 (due to (ã)), and moreover, Vr1 ⊃ Vr2 if r1 < r2. Therefore
there exists r such that P1 ⊂ Vr, which proves the theorem.

Theorems 1 and 2 show that in the case when M is the unit disk, z0 = 0 and
the system of norms as in (6), Bohr radii of Problems B2 and PB2 coincide and is
1/3.

Our next results shows that Bohr radii of Problems B2 and PB2 are equal in
more general situations.

Theorem 6. Let M be a complex manifold, z0 ∈M and ‖.‖ be a continuous semi-
norm in H(M) such that for all f, g ∈ H(M),

(i) ‖f‖ = |f(z0)| + ‖f − f(z0)‖ ;
(ii) ‖f · g‖ ≤ ‖f‖ · ‖g‖ .

Then the following statements are equivalent:
(PB) ‖f‖ ≤ 2f(z0) if Ref(z) > 0 ∀ z ∈M and f(z0) > 0 ;

(B) ‖f‖ ≤ supM |f(z)| ∀ f ∈ H(M).

Proof. First we show that (B) ⇒ (PB). Fix g ∈ H(M) such that Reg(z) > 0 and
g(z0) = 1 (obviously, it is enough to prove (PB) for such functions). Set

fε =
1− εg
1 + εg

, ε ∈ (0, 1).

Then |fε(z)| < 1 ∀ z ∈ M ; thus we have (by (i) and (B)) ‖fε‖ = fε(z0)
+ ‖fε − fε(z0)‖ ≤ 1, so we have ‖fε − fε(z0)‖ ≤ 1 − fε(z0). Moreover, since
fε(z0) = (1− ε)/(1 + ε) it follows that

‖1− fε‖ = 1− fε(z0) + ‖fε(z0)− fε‖ ≤ 2(1− fε(z0)) =
4ε

1 + ε
.

On the other hand

εg =
1− fε
1 + fε

=
∞∑
n=1

(
1− fε

2

)n
;

hence by (ii)

‖εg‖ ≤
∞∑
n=1

∥∥∥∥1− fε
2

∥∥∥∥n ≤ ∞∑
n=1

(
2ε

1 + ε

)n
=

2ε
1− ε .
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From here it follows that

‖g‖ ≤ 2
1− ε ∀ ε ∈ (0, 1).

Letting ε→ 0 we obtain ‖g‖ ≤ 2.
Next we prove the implication (PB)⇒ (B). Fix f ∈ H(M) such that sup{|f(z)|,

z ∈ M} = 1 and 0 ≤ f(z0) < 1 (it is enough to prove the statement for such
functions). Then the function g = (1 − f)/(1 + f) has positive real part and, in
addition, by (i) and (PB) we have

‖1− g‖ = 1− g(z0) + ‖g(z0)− g‖ ≤ 1− g(z0) + g(z0) = 1.

On the other hand

f =
1− g
1 + g

=
∞∑
n=1

(
1− g

2

)n
;

hence from (ii) it follows that

‖f‖ ≤
∞∑
n=1

∥∥∥∥1− g
2

∥∥∥∥n =
‖1− g‖

2− ‖1− g‖ ≤ 1.

As a corollary we immediately obtain the following theorem.

Theorem 7. Let M be a complex manifold, z0 ∈ M and ‖.‖r, r ∈ (0, 1), be a
family of continuous seminorms in H(M) such that conditions

(a) ‖f‖r → |f(z0)| as r → 0;
(b) ‖f‖r = |f(z0)|+ ‖f − f(z0)‖r;
(c) ‖f · g‖r ≤ ‖f‖r · ‖g‖r ∀ r ∈ (0, 1)

hold. Then the Bohr radii corresponding to Problems B2 and PB2 are equal.

Of course, in general, one should expect that Bohr radii corresponding to Prob-
lems B and PB are different. The next example confirms this.

Example 1. Let ∆ = {z : |z| < 1} be the unit disk. Consider in the space H(∆)
the system of norms

‖f‖r =
(

1
2π

∫ 2π

0

|f(reiθ)|2dθ
)1/2

, r ∈ (0, 1).

Obviously for each r ∈ (0, 1) we have

‖f‖r ≤ sup
∆
|f(z)| ∀ f ∈ H(∆).

Thus the Bohr radius corresponding to Problem B equals 1.
Next we compute the Bohr radius corresponding to Problem PB. For any holo-

morphic function f(z) = c0 +
∑∞

1 cnz
n with positive real part and c0 > 0 we have

by Carathéodory inequality |cn| ≤ 2c0, whence it follows that

‖f‖2r ≤ c20

(
1 + 4

∞∑
n=1

r2n

)
= c20

(
1 +

4r2

1− r2

)
.

Since the expression in the parentheses is less than 4 for r <
√

3/7 the corresponding
Bohr radius is larger than or equal to

√
3/7.
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On the hand, for the function

g(z) = (1 + z)/(1− z) = 1 + 2
∞∑
1

zn

we obtain ‖g‖2r = 1 + 4r2/(1 − r2) > 4 if r >
√

3/7. Hence the Bohr radius of
Problem PB2 equals

√
3/7.

The following examples show that both Problems B1 and PB1 may have negative
solutions, or Problem B1 may have negative solution and simultaneously Problem
PB1 may have positive solution.

Example 2. It is easy to see that the system of functions

{1, z − 1
2

, z2, z3, . . . }

is a basis in the space H(∆). Consider the family of norms that corresponds to this
basis by (7), ‖f‖Kr , r ∈ (0, 1), where Kr = {z : |z| ≤ r}. Then for this family both
Problems B1 and PB1 have negative solutions.

Indeed, we have (z + 1)/2 = 1 + (z − 1)/2, thus for every r ∈ (0, 1)

‖(z + 1)/2‖Kr = 1 + |(z − 1)/2|Kr > 1.

Of course, in this example condition (ã) of Theorem 5 (as well condition (a) of
Theorem 4) is violated.

Example 3. Consider the following basis in H(∆) :

{z + 1
2

, z, z2, z3, . . . }.

Then for the family of norms ‖f‖Kr , r ∈ (0, 1), corresponding by (7) to this basis,
Problem B1 has negative solution, but Problem PB1 has positive solution.

Indeed, we have 1 = 2 · (z + 1)/2 − z, therefore ‖1‖Kr = 1 + 2r > 1 for any
r ∈ (0, 1).

On the other hand, if Ref(z) > 0 and f(z) =
∑∞

0 cnz
n is the Taylor expansion

of the function f , then

f = 2c0
z + 1

2
+ (c1 − c0)z +

∞∑
2

cnz
n

is the expansion of f with respect to the basis we consider. From here, using
Carathèodory inequality |ck| ≤ 2c0 we obtain

‖f‖Kr = c0(1 + r) + |c1 − c0|r +
∞∑
2

|cn|rn ≤ c0(1 + 4r +
r2

1− r ).

Since the expression in the parentheses is less than 2 for r < (5 −
√

13)/6 the
problem PB1 has a positive solution, and moreover the corresponding Bohr radius
is larger than or equal to (5−

√
13)/6.

Finally, since the class P contains unbounded functions, we can easily give an
example, where Problem B1 has a positive solution, but Problem PB1 has negative
solution.
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Example 4. Consider in the space H(∆) the system of norms

‖f‖r = sup{|f(z)| : | z − 3/4 | ≤ r/4 }, r ∈ (0, 1).

Then, obviously Problem B1 has a positive solution and the corresponding Bohr
radius equals 1. On the other hand, Problem PB1 has negative solution, because for
the function g = (1 + z)/(1− z) we have ‖g‖r > 7 for any r ∈ (0, 1). This example
also shows that one cannot replace (i) of Theorem 6 by the weaker condition (b) of
Theorem 4.
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