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Abstract. We study energy distribution in the context of teleparallel theory of grav-

ity, due to matter and fields including gravitation, of the universe based on the plane-

wave Bianchi VIIδ spacetimes described by the Lukash metric. In order to make this

calculation we consider the teleparallel gravity analogs of the energy-momentum for-

mulations of Einstein, Bergmann-Thomson and Landau-Lifshitz. We find that Einstein

and Bergmann-Thomson prescriptions agree with each other and give the same results

for the energy distribution in a given spacetime, but the Landau-Lifshitz complex does

not. Energy density turns out to be non-vanishing in all of these prescriptions. It is in-

teresting to mention that the results can be reduced to the already available results for

the Milne universe when we write ω = 1 and Ξ2 = 1 in the metric of the Lukash space-

time, and for this special case, we get the same relation among the energy-momentum

formulations of Einstein, Bergmann-Thomson and Landau-Lifshitz as obtained for the

Lukash spacetime. Furthermore, our results support the hypothesis by Cooperstock

that the energy is confined to the region of non-vanishing energy-momentum tensor of

matter and all non-gravitational fields, and also sustain the importance of the energy-

momentum definitions in the evaluation of the energy distribution associated with a

given spacetime.
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1. Introduction

There is and has long been an interest in the investigation of the spatially homogeneous

Bianchi spacetimes and their cosmological applications to our understanding of

singularities and of the observed level of isotropy in the universe. These discussions

analyze the problems within the manageable domain of ordinary differential equations

and provide only a finite number of alternative cosmologies [1]. The most general Bianchi

universes which contain the open Friedmann spacetime as a special subcase are those

of type VIIδ. The late-time asymptotes for the non-tilted type VIIδ spacetimes, with

http://arxiv.org/abs/gr-qc/0609101v1
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δ 6= 0 and a matter content that obeys the strong energy condition, evolve towards the

vacuum plane-wave solution found by Doroshkevich et al. and Lukash [2, 3, 4] that

is known as the Lukash spacetime. These metrics describe the most general effects of

spatially homogeneous perturbations on open Friedmann universes [5, 6, 7, 8]. The

Lukash spacetime plays a guiding role in the investigations mentioned above because

of the subtle stability properties of isotropic expansion at late times in open universes.

When the strong energy condition is obeyed, then isotropic expansion was found to be

stable but not asymptotically stable at late times [6, 7, 8, 9].

Hence, it is very interesting to discuss the energy associated with this model of

the universe. In this study to calculate energy in the expanding Lukash spacetime

we focus on Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum

formulations in the teleparallel gravity. Since Einstein proposed the theory of general

relativity, relativists have not been able to agree upon a definition of the energy-

momentum distribution associated with the gravitational field [10, 11, 12]. Einstein

[13] first obtained such an expression and many others such as Landau-Lifshitz,

Papapetrou, Weinberg, Bergmann-Thomson, Tolman, Møller and Qadir-Sharif gave

similar prescriptions [14, 15, 16, 17, 18, 19, 20]. The expressions they gave are called

energy-momentum complexes because they can be expressed as a combination of the

energy-momentum density which is usually defined by a second rank tensor T k
i and

a pseudo-tensor, which is interpreted to represent the energy and momentum of the

gravitational filed. These formulations have been heavily criticized because they are

non-tensorial, i.e. they are coordinate dependent. Except for the Møller definition these

formulations only give meaningful results if the calculations are performed in Cartesian

coordinates. Møller proposed a new expression for the energy-momentum complex which

could be utilized to any coordinate system. Virbhadra and collaborators revived the

interest in this approach [21, 22, 23, 24, 25, 26, 27, 28, 29, 30] and since then numerous

works on evaluating the energy and momentum distributions of several gravitational

backgrounds have been completed [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,

46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]. Next, Lessner [61] argued that the

Møller prescription is a powerful concept for the energy-momentum in general relativity.

Recently, the problem of energy-momentum localization has also been considered in

the teleparallel theory of gravity [62, 63, 64]. Møller showed that a tetrad description

of a gravitational field equation allows a more satisfactory treatment of the energy-

momentum complex than does general relativity. Vargas [63], using the definitions of

Einstein and Landau-Lifshitz in the teleparallel gravity, found that the total energy is

zero in Friedmann-Robertson-Walker space-times. After this work there are a few papers

on the energy-momentum in the teleparallel gravity [65, 66, 67, 68, 69, 70, 71, 72].

The paper is organized as follow. In the next section, first we introduce

Einstein, Bergmann-Thomson and Landau-Lifshitz’s prescriptions of energy-momentum

distribution in the teleparallel gravity, and then calculate the energy of the expanding

Lukash metric of a plane-wave attractor. Finally, section 3 is devoted to the discussions.

In this paper we use convention that G = 1 and c = 1. Except for the cases we give the
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special values of the indices, all indices take the values from 0 to 3.

2. Teleparallel Energy

The Bianchi VIIδ type spacetimes belong to the non-exceptional family of the Behr

class B spatially homogeneous metrics. The plane-wave Lukash solution is the late-

time attractor of the Bianchi VIIδ models for a broad range of initial date and matter

properties. These vacuum models correspond to equilibrium points of the associated

autonomous dynamical system and are self-similar [73, 74, 75]. The metric of Lukash

spacetime is defined as

ds2 = −dt2 + t2dx2 + t2ωe2ωx
[

(Ady +Bdz)2 + (Bdy + Adz)2
]

, (1)

where ω is an arbitrary constant parameter in the range 0 < ω < 1, and A = cosΛ,

B = Ξ−1 sin Λ, C = −Ξ sinΛ, Λ = k(x+ ln t) [76, 77]. Note that Ξ and k are constants

related to ω by

k2

Ξ2
(1− Ξ2)2 = 4ω(1− ω), (2)

and

w2 = δk2, (3)

where δ is the associated group parameter. Constraints (2) and (3) are the Lukash

analogue of the Friedmann equation. We also point out that when we take ω = 1 and

Ξ2 = 1, the Lukash metric can be reduced to that of the empty Milne universe.

Now, let’s calculate the energy associated with the metric (1) in the teleparallel

gravity. Teleparallel gravity (the tetrad theory of gravitation), which corresponds to

a gauge theory for the translation group based on the Weitzenböck geometry, [80] is

an alternative approach to Einstein gravitation [81, 82]. In this theory, gravitation is

attributed to torsion [83], which plays the role of a force [84], whereas the curvature

tensor vanishes identically. The fundamental field is a nontrivial tetrad field, which gives

rise to the metric as a by-product. The last translational gauge potentials appear as the

nontrivial part of the tetrad field, and thus they induce on space-time a teleparallel

structure which is directly related to the presence of the gravitational field. The

interesting point of teleparallel gravity is that it can reveal a more appropriate approach

to considering the same specific problem due to gauge structure. This is the case, for

example, for the energy-momentum problem, which becomes more transparent when

considered from the teleparallel point of view.

Teleparallel theories of gravity, whose basic entities are tetrad fields ξaµ (a and µ

are SO(3,1) and spacetime indices, respectively) have been considered long time ago by

Møller [78, 79] in connection with attempts to define the energy of the gravitational

field. Teleparallel theories of gravity are defined on Weitzenböck spacetime [80], which

is endowed with the affine connection

Γλ
µν = ξaλ∂µξaν , (4)
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This connection defines a spacetime with an absolute parallelism or teleparallelism of

vector fields [85]. In this geometrical framework the gravitational effects are due to the

spacetime torsion corresponding to the above mentioned connection.

As remarked by Hehl [86], by considering Einstein’s general relativity as the best

available alternative theory of gravity, its teleparallel equivalent is the next best one.

Therefore it is interesting to perform studies of the space-time structure as described

by the teleparallel gravity.

The energy-momentum complex of Einstein in the teleparallel gravity [63] is given

by

4πξℜµ
ν =

∂△ µλ
ν

∂xλ
. (5)

Next, the Bergmann-Thomson formulation is defined as

4πξΠµν =
∂(gµβ△ νλ

β )

∂xλ
, (6)

and the Landau-Lifshitz formulation is

4πξΣµν =
∂(ξgµβ△ νλ

β )

∂xλ
, (7)

where ξ = det(ξaµ) and △ νλ
β is the Freud’s super-potential, which is defined by:

△ νλ
β = ξℑ νλ

β . (8)

Here ℑµνλ is the tensor

ℑµνλ = ℵ1T
µνλ +

ℵ2

2
(T νµλ − T λµν) +

ℵ3

2
(gµλT βν

β − gνµT
βλ

β) (9)

with ℵ1, ℵ2 and ℵ3 the three dimensionless coupling constants of teleparallel gravity

[83]. For the teleparallel equivalent of general relativity the specific choice of these three

constants are ℵ1 = 1

4
, ℵ2 = 1

2
and ℵ3 = −1. To calculate this tensor, first we must

calculate the Weitzenböck connection:

Γα
µν = ξ α

a ∂νξ
a
µ, (10)

and after this calculation, one gets the torsion of the Weitzenböck connection:

T
µ
νλ = Γµ

λν − Γµ
νλ. (11)

In the Einstein, Bergmann-Thomson and Landau-Lifshitz complexes, for Pµ =

(E,
−→
P ), we have the following expressions:

EE =
∫

℘
ξℜ0

0
dxdydz, PE

i =
∫

℘
ξℜ0

idxdydz, (12)

EBT =
∫

℘
ξΠ0

0
dxdydz, PBT

i =
∫

℘
ξΠ0

idxdydz, (13)

ELL =
∫

℘
ξΣ0

0
dxdydz, PLL

i =
∫

℘
ξΣ0

idxdydz (14)

where Pi give momentum components P1, P2, P3 while P0 (E) gives the energy and the

integration hyper-surface ℘ is described by x0 = t =constant.
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The components of the metric tensor gµν for the line-element (1) are

gµν = − δ0µδ
0

ν + t2δ1µδ
1

ν + t2ωe2ωx(A2 +B2)δ2µδ
2

ν

+ t2ωe2ωxA(B + C)(δ2µδ
3

ν + δ3µδ
2

ν) + t2ωe2ωx(A2 + C2)δ3µδ
3

ν , (15)

and of its inverse matrix gµν are

gµν = − δ
µ
0 δ

ν
0
+

1

t2
δ
µ
1 δ

ν
1
+

t−2ωe−2ωx

(A2 + BC)2
(A2 + C2)δµ2 δ

ν
2

− t−2ωe−2ωx

(A2 − BC)2
(A +BC)(δµ2 δ

ν
3
+ δ

µ
3 δ

ν
2
)

+
t−2ωe−2ωx

(A2 −BC)2
(A2 +B2)δµ3 δ

ν
3

(16)

where δµν is the four-index Kronecker Delta function.

The non-trivial tetrad field induces a teleparallel structure on space-time which is

directly related to the presence of the gravitational field, and the Riemannian metric

arises as

gµν = ηabξ
a
µξ

b
ν , ηab = diag(−1, 1, 1, 1). (17)

Using this definition, one can easily obtain the tetrad components ξaµ as:

ξaµ = = δ0µδ
a
0
+ tδ1µδ

a
1
+ tωeωx

√

(A2 +B2)δ2µδ
a
2

+
tωeωx(A+BC)√

A2 +B2
δ2µδ

a
3
+

tωeωx(A2 − BC)√
A2 +B2

δ3µδ
a
3
, (18)

and the components of ξ µ
a are

ξ µ
a = δ

µ
0 δ

0

a +
1

t
δ
µ
1 δ

1

a +
t−ωe−ωx

(A2 +B2)
δ
µ
2 δ

2

a

− t−ωe−ωx

√

(A2 +B2)
δ
µ
3 δ

2

a +
t−ωe−ωx

√

(A2 +B2)

(A2 − BC)
δ
µ
3 δ

3

a. (19)

Hence, we obtain the following non-vanishing components of the Weitzenböck

connection

Γ1

10
=

1

t
, (20)

Γ2

21
= Γ3

30
=

1

t

{

ω − k(Ξ2 − 1) sin[2k(x+ ln t)]

1 + Ξ2 + (Ξ2 − 1) cos[2k(x+ ln t)]

}

, (21)

Γ2

21
= Γ3

31
= ω − k(Ξ2 − 1) sin[2k(x+ ln t)]

1 + Ξ2 + (Ξ2 − 1) cos[2k(x+ ln t)]
, (22)

The corresponding non-vanishing torsion components are found:

T 1

01
= −T 1

10
=

1

t
, (23)

T 2

02
= −T 2

20
= T 3

03
= −T 3

30
=

1

t

{

ω − k(Ξ2 − 1) sin[2k(x+ ln t)]

1 + Ξ2 + (Ξ2 − 1) cos[2k(x+ ln t)]

}

, (24)
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T 2

12
= −T 2

21
= T 3

13
= −T 3

31
= ω − k(Ξ2 − 1) sin[2k(x+ ln t)]

1 + Ξ2 + (Ξ2 − 1) cos[2k(x+ ln t)]
. (25)

Substituting these results into the equation (9), the non-zero energy component of

the tensor ℑ νλ
µ is found as:

ℑ001 = −ωt−2, (26)

from this point of view, the only non-vanishing component of Freud’s super-potential is

△ 01

0
= e2ωxt2ω−1ω. (27)

Using equations (5), (6), (7), the relative Einstein, Bergmann-Thomson and

Landau-Lisfhitz’s energy densities are found as:

ξℜ0

0
=

1

2π
e2ωxt2ω−1ω2, (28)

ξΠ00 = − 1

2π
(e2ωxt2ω−1ω2), (29)

ξΣ00 = −1

π
(e4ωxt4ωω2) (30)

It is evident that for the energy densities we have
(

ξℜ0

0

)

Lukash
=

(

ξΠ0

0

)

Lukash
6=

(

ξΣ0

0

)

Lukash
, (31)

which means that although Einstein and Bergmann-Thomson formulations agree with

each other, the Landau-Lifshitz prescription gives different energy distribution in this

universe. Furthermore, for the Milne universe, we have

ξℜ0

0
=

t

2π
e2x, (32)

ξΠ00 = − t

2π
e2x, (33)

ξΣ00 = −t4

π
e4x, (34)

and still we have the same relation among the energy-momentum formulations of

Einstein, Bergmann-Thomson and Landau-Lifshitz.
(

ξℜ0

0

)

Milne
=

(

ξΠ0

0

)

Milne
6=

(

ξΣ0

0

)

Milne
. (35)

3. Discussions

The main object of the presented paper is to show that it is possible to evaluate the

energy distribution by using the energy-momentum formulations in not only general

relativity but also teleparallel gravity. In the context of teleparallel theory, we showed

that the Einstein and Bergmann-Thomson formulations give the same results both in

the Lukash plane-wave attractor spacetime and Milne universe, but the Landau-Lifshitz

formulation does not.

hE0

0
= hB0

0
6= hL0

0
. (36)
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It is interesting to mention that the results reduce to the already available results for the

Milne universe when we write ω = 1 and Ξ2 = 1 in the metric of the Lukash spacetime.

We find that the energy distribution (due to matter and fields including gravitation)

turns out to be non-vanishing in three of the prescriptions used.

Lukashξℜ0

0
=

1

2π
e2ωxt2ω−1ω2, Milneξℜ0

0
=

t

2π
e2x, (37)

LukashξΠ
00 = − 1

2π
(e2ωxt2ω−1ω2), MilneξΠ

00 = − t

2π
e2x, (38)

LukashξΣ
00 = −1

π
(e4ωxt4ωω2), MilneξΣ

00 = −t4

π
e4x. (39)

The energy distributions are also dependent of the teleparallel dimensionless coupling

constants, which means that it is valid only in the teleparallel equivalent of general

relativity, it is not valid any teleparallel model. Hence, one can also perform the

calculations and get the same energy distributions in the general relativity.

Our results also (a) support the hypothesis by Cooperstock that the energy is

confined to the region of non-vanishing energy-momentum tensor of matter and all non-

gravitational fields, and (b) sustain the importance of the energy-momentum definitions

in the evaluation of the energy distribution of a given spacetime.
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