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Abstract

We analyze the semileptonic D, — Ki/fv transition with ¢ = u, d, s, in the
framework of the three—point QCD sum rules and the nonleptonic D — K7 decay
within the QCD factorization approach. We study D, to K;(1270) and K;(1400)
transition form factors by separating the mixture of the K;(1270) and K;(1400)
states. Using the transition form factors of the D — K;, we analyze the nonleptonic
D — Kim decay. We also present the decay amplitude and decay width of these
decays in terms of the transition form factors. The branching ratios of these channel
modes are also calculated at different values of the mixing angle §x, and compared
with the existing experimental data for the nonleptonic case.
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1 Introduction

Analyzing the semileptonic decays of the charmed D, mesons is very useful for determina-
tion of the elements of the Cabibbo-Kabayashi-Maskawa (CKM) matrix and also leptonic
decay constants of the initial and final meson states. The semileptonic D, — K /v tran-
sition could give useful information about the internal structure of the D, meson. Investi-
gating the nonleptonic decays such as D — Kjm can also be important for interpretation
of the structure of the lightest scaler mesons [1].

From the experimental view, the physical states K;(1270) and K7(1400) are the mixtures
of the strange members of two axial-vector SU(3) octets 1°Py(K14) and 1'Py(K;5). The
K4 and K p are not mass eigenstates and they can be mixed together due to the nonstrange
light quark mass difference. Their relations with the K;(1270) and K;(1400) states can be
written as [2-4]:

| K1(1270) > = | Kya > sinfg, + | Kip > cosOx,,
‘ K1(1400) > = ‘ Kia> COSHK1 — ‘ K> sin@Kl. (1)

The angle 0, has been obtained with two-fold ambiguity | O, |~ 33°, as given in Ref
[3]. Also in Ref [6] 35° <| 0k, |< 55° has been found. In this paper we use 0, in the
interval 37° <| 0k, |< 58° [4,7]. The sign ambiguity for 0k, is due to the fact that one can
add arbitrary phases to | K14 > and | K1p > states.

The QCD sum rules approach has been successfully applied to a wide variety of problems
in charm meson decays. The semileptonic decays Dy — folv, Dy — ¢lv [1], D — K 8],
Dt — K%etuy, [9], D — wlv [10], D — plv [11], D — ¢fv [12] and D — K;lv [13] have
been studied in the framework of the three—point QCD sum rules. As a nonperturbative
method, the QCD sum rules has been of interest and it is a well established technique in
the hadron physics since it is based on the fundamental QCD Lagrangian (for details about
the QCD sum rules approach see for instance [14]).

In the present work, we study the semileptonic decays of the D, — K;fv in the frame-
work of the three—point QCD sum rules. The long distance dynamics of such transitions
can be parameterized in terms of some form factors calculating of which play fundamental
role in the analyzing of such type transitions. Considering the contributions of the oper-
ators with mass dimension d = 3,4,5 as condensate and non-perturbative contributions,
first we calculate the transition form factors of the semileptonic D, — K lv(q¢ = u,d,s)
decays. Using these form factors, the total decay width as well as the branching ratio for
the aforementioned transitions are also evaluated at different values of the mixing angle.
Having computed the form factors of the D — K, the amplitude and decay rate of the
nonleptonic D, 4 — K7 decays are also computed in terms of those form factors using the
QCD factorization method (for more about the method see [15-17] and references therein).

The paper is organized as follows. The calculation of the sum rules for the relevant
form factors are presented in section2. In calculating the form factors, first we consider the
general (K| state. Then, using the definition of the G-parity conserving decay constant
<0 Jg,, | Kia(p'e) >= fx,,mx, ,&” and G-parity violating decay constant < 0 | Ji . |

Kip(p',e) >= fx . (1 GeV)ag’KleKlBe”, where ag’KlB is the zeroth Gegenbauer moment



of K,p state and it is zero in the SU(3) symmetry limit, we obtain the form factors of the
D — K4 states. Finally, considering Eq. (1), we separate the (/;[1270(1400)]| states
and derive form factors of the D — K;[1270(1400)] transitions. The decay rate formulas
for semileptonic and nonleptonic cases are presented in section3. We derive the decay rate
formula for D — K7 decay using the QCD factorization method in tree level. Section 4
is devoted to the numeric analysis of the form factors as well as the branching fractions of
the considered semileptonic and non-leptonic decays at different values of the mixing angle,
and discussions. A comparison of our results for the branching ratios for the non-leptonic
case with the existing experimental data is also made in this section.

2 Sum rules for D, — K{v transition form factors

The D, — Kilv with ¢ = u,d,s decay governed by the tree level ¢ — ¢ (¢ = d,s)
transition (see Fig .1).
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Figure 1: Semileptonic decays of D, to K;. Diagrams 1, 2 and 3 are related to the D? —
Kitv, DT — KYv and D} — KYlv, respectively.

In the standard model, the effective Hamiltonian responsible for these transitions is
given as:

G ,
Hepp = TZch' T 7u(L—=75) 1 G 7u(1—15)c, (2)

where, G is the Fermi constant and V,,/ are the CKM matrix elements. The decay ampli-
tude for D, — K;{v is obtained by inserting Eq. (2) between the initial and final meson
states.
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M= 5V 7l =)l < Kalp',€) | 7 (1= )e| Dylp) > (3)

The next step is to calculate the matrix element appearing in Eq. (3). Both axial
and vector parts of the transition current give contribution to this matrix element and it
can be parametrized in terms of some form factors using the Lorentz invariance and parity
conservation as follows:

Dy—K
_2fV 7 1(q2) vV, o /B

< Kl(plug) |q/’}/“’)/50‘ Dq(p) >= (mD "‘mK )E,uuaﬁg pp, (4)
q 1



< K\(0e) |Te | Dylp) > = i [f27" (@) mo, + mu, e,

7 () £ ()

(ep) Py ] (ep)ay| - (5)

(me +mK1) (me —|—mK1

In order for the calculations to be simple, the following redefinitions are used

FroR ey 2T FPRu(g2) = fP 5 () (mp, + mi,)
1% q (me +mg,) " ! ’ ! v o
q 1 fDq—>K1 q2 . fDq%Kl q2
FlD K (q2) _ _1—() ’ F2D —K; (q2) __J2 ( ) (6)

(mp, +mk,) (mp, +mxk,)’

where the FV77(q2), EP77R (@), FP7% N (g2) and FY 77" (¢?) are the new transition
form factors, P, = (p+p'),, ¢, = (p—p'), and ¢ is the four-polarization vector of the axial
K, meson.

Based on the general philosophy of the three-point QCD sum rules technique, the above
form factors in Eq. (6) can be evaluated from the time ordered product of the following
three currents.

00092 %) = # [ dad'ye = ([T {Ji (@) 10D 005, )} 0) . (7)

where, Jk,,(x) = @55 (0 = u,d) , Jp,(y) = Gysc are the interpolating currents of the
K7~ and D, and JX = ?%c and J;f = ?%750 are the vector and axial-vector parts of the
transition current, respectively.

The above correlation function is calculated in two different approaches: On the quark
level, it describes a meson as quarks and gluons interacting in a QCD vacuum. This is called
the theoretical or QCD side. In the phenomenological or physical side, it is saturated by a
tower of mesons with the same quantum numbers as the interpolating currents. The form
factors are determined by matching these two different representations of the correlation
function and applying double Borel transformation with respect to the momentum of the
initial and final meson states to suppress the contribution coming from the higher states
and continuum. We can express the correlation function in both sides in terms of four
independent Lorentz structures:

I = €ap p"P Iy + g llo + Pupy Il + qup 1. (8)

To find the sum rules for the related form factors, we will match the coefficients of the
corresponding structures from both representations of the correlation function.

First, we calculate the aforementioned correlation function in the phenomenological
representation. Inserting two complete sets of intermediate states with the same quantum
number as the currents Jg, and Jp, to Eq. (7), we obtain

V—-As 2 2 2\ __
I, (0% 0", ¢°) =
<O Jiyw | Ka(p,e) >< Ki(p'€) | JY =" | Dy(p) >< Dy(p) | Jh, 10> N

(p? —mi, ) (p* —mp,)

the higher resonances and continuum. (9)




In Eq. (9), the vacuum to initial and final meson states matrix elements are defined as:

fo,mb,

<O LK) >= fiamuae” . <01 Jp, | Dyfp) >= i =2

(10)
where fr, and fp, are the leptonic decay constants of K; and D, mesons, respectively.
Using Eq. (4), Eq. (5) and Eq. (10) in Eq. (9) and performing summation over the
polarization vector of the K7 meson, we get the following result for the physical part:

fD m%) fK Mg Dio—K
HV—A 2’ /2 2 - _ q q 1 1 < [F (s) 172 ,
112 (p pq ) (mc+mq) (p,g_m%ﬁ)(pg_szq) [ 0 (q )gu
D(y—K D(y—K . D= K o
+ BT By + BT (@) aups + 1 BT (6 €puasy D]
+ excited states. (11)
The coefficients of the Lorentz structures z'eu,,agpaplﬁ, 9w, Pup, and g,p, in the correlation
function IT) ~* will be chosen in determination of the form factors F; D= g2y PO (g,
FPO7R () and Fy 97 (¢2), respectively.

On the QCD or theoretical side, the correlation function is calculated in the quark and
gluon languages by the help of the operator product expansion (OPE) in the deep Euclidean
region where p*> < (m. + my)?, Pl < (m? + mz,). In Eq. (7), using the expansion of the
time ordered products of the currents, the three—point correlation function is written in
terms of the series of local operators with increasing dimension as the following form [18]:

a /d4xd4yei(m_p/y)T{JKlVJuJ})q} - (CO)W[ + (03)HV@\II + (04)WGQBGQB>
+ (C5),w U0 GV + (Cg),, FTVUT'Y | (12)

where, G is the gluon field strength tensor, (C;),, are the Wilson coefficients, [ is the
unit matrix, ¥ is the local field operator of the light quarks, and I and I are the matrices
appearing in the calculations. Taking into account the vacuum expectation value of the
OPE;, the expansion of the correlation function in terms of the local operators is written as
follows:

H/W (pip; q2) = CO;w + C3/u/ <@\D> + C4;W<G2> + 05;11/ <$O-QBGOCB\D>
+ Clop (TTUTT'T) . (13)

In Eq.(13), the contributions of the perturbative and condensate terms of dimension
3,4, and 5 as non-perturbative parts are considered. The diagrams for the contributions of
the non-perturbative part are depicted in Figs. 2, 3 and 4. It’s found that the heavy quark
condensate contributions are suppressed by inverse of the heavy quark mass and can be
safely removed (see diagrams 4, 5, 6 in Fig. 2). The light ¢ quark condensate contributions
are zero after applying the double Borel transformation with respect to both variables p?
and p/2 since only one variable appears in the denominator (see diagrams 1, 2, 3 in Fig. 2).

Our calculations show that in this case, the two-gluon condensate contributions (see
diagrams in Fig. 3) are very small in comparison with the quark condensate contributions
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Figure 2: The quark condensate diagrams without any gluon and with one gluon emission.

and we can easily ignore their contributions in our calculations.

Therefore, the main contribution in the non-perturbative part comes from the g-quark
condensates. (see Fig. 4).

As a result, in the lowest order of the perturbation theory, the three—point correlation
function receives a contribution from the perturbative part ( bare-loop contributions of
diagrams in Fig. 1) and nonp-erturbative part (contributions of the diagrams shown in Fig.
4) i.e.,

2 2

7% - (14)

Using the double dispersion representation, the bare-loop contribution is determined:

’ 12 _ ’
IL(p%p ¢ =1 (p*p ", %) + I P (p2 p

er 1 p (5,8, 4%) '
e = — )2 // G (s p/z)dsds' + subtraction terms , (15)

The following inequality is responsible for obtaining the integration limits in Eq. (15).

258’ + (s + 8 — ¢*)(m2 —m?2 — s) + 2s(m? — m?)
—1< 1 T 9° <41, (16)
NP2 (s, 5, @IV, i 5)

5
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Figure 4: Diagrams for g-quark condensates contributions.

where A(a,b,c) = a? + b* + ¢ — 2ab — 2ac — 2bc is the usual triangle function.
By the help of the Cutkosky rule, i.e., replacing the propagators with the Dirac-delta
functions:

m — —217'('5(]{52 - mz) s (17)

the spectral densities pf’ (s, s, ¢?) are found as:
pv = AN, (s, 8,@) {Brlme — my) — Balmy +my) — my}

po = —2N. Io(s,s',¢*) {A(mg +my) — A'(me —my) — 4A1(me — my)

+2m§(mc —mg —my) +mg(2memy —u)}

p1 = 2N Iy(s, s, ¢ ){Bi(me — 3mg) — Ba(mg +my) + 2A5(me — my)
+2A5(me — mg) —mg}



pa = 2N, Io(s, s, q*){2A5(m, — mg) — 2As(m. — my) — Bi(me +my)
+Ba(mg +my) +mg} .

where
1
ANV2(s, 8", q%)’
As, s, q?) = s*+ §% + gt — 2s¢® — 25'¢® — 2s¢’,

B, = W[QS/A — Alul,

By, = W[QSA, — Aul,

A = W[A'zs + A%’ — 4m2/ss' — AAu+miu?,

Ay = W[QAQSS' +6A%° — 8m(2]ss’2 — 6AA's'u
+Au? 4 2m2s'u?,

Az = m[—i&A%s’ — 3A"%us + Amius's + 4AN'ss'

+2AN Y — mlu®,

where, u = s+ 5 — ¢*, A = s+m2 —m? A’:s’+m§—m2, and N, = 3 is the color
factor.

The corresponding non-perturbative part of the considered structures are obtained as
follows:

2, 2 2, 2
_ 9 12 o _ 1 mgmy 1 mgme my“my, 1 mgy“myg
"= (e q") = <qq> {— 5 5

2 rp? 2 rp! rr'3 2 3
2.2 2,2 2, 2 2. 2 2.2
L memg”  Lme"me” 1 mgtmg” 1 mgTme” 1 g"my
2 r2p? 3 r2p? 2 22 3 r2p? 2 22
1 m?’¢®>  mAm? 1 me*m.2 1 me’memy 1 mg?
3 r2p? 73! 2 3yt 6 r2p? 32|

(19)

Lmgmy  1mgm?  1mgme 1 mg°m.

non—per 2 _
" (% p " %) = <q7> {——

4  rr’ 4 2y 4 rr 4 r2yp!
1 mo?mg? 1 me*¢® 1 me*m.? 1 me*my* 1 me?g?
4 r2y! 3 r2p! 6 r2r? 6 r2r? 6 r2r?



2,2 2, 2 2 2 3 4, 2
+1 mo me” L mg mg” 1 me™q” 1 mgmg” 1 mgTmy
6 rr? 4 6 rr? 4 2 3
2, 4 4,2 2, 2 2, 2 2, 2
L me™mg™ 1 mmg” 1 mmg™ 1 mg~mg™ 1 q"mg
4 3 4 p2p? 4 r2y 4 r2p 4 r2p
CImgtmg? Tmg?mg® 1me® 3 mememy 1 me*mcmy?
4 22 4 pr? 6 rr’ 4  r2y 6 2y
1 me*m2¢* 1 me*my*® 1 memPmy 1 mgmemy?
3 2 3 r2p? 2 r2r 4 r’
1 mgmeq®> 1 mgmgq® 1 mgmPmy 1 mgmemy? 1 my?
4 r2’ 4 pr? 4 e 2 rr’? 2 rr
2, 2 4, 2 2, 2 4, 2 4, 2
_LImeomgm  1g'mg™  1gmg™ 1 memg™ 1 memg
4 prp? 4 p2p2 4 ppr? 2 3y 4 3y
2 2 2 3 2
L memgmg”™ 1 memgmg” 1 memgme”™ | me"mgmg
2 r2r! 2 rr? 4 2 r3r!
_lmcsmq,moz 1 me2mg?mg? lmczmqumoz 1 me2qPm,?
2 r3r! 2 r3r! 4 r3r! 2 3y
2, 2,2 2.2, 2 2.2 2, 2
_LIme™mcq” 1 mlgmg” 1 memggtmg” 1 memgqtmg
4 3 2 r2p? 2 r2r? 4 22
1 my2q*my’ 1 M2y ?m,? lmc2mq’2m02 Memy®my?
2 22 2 rr’ 4 rr’3 rr’
3,2 2.2 2 2, 2.2 3 2
L memg®me” 1 mgTgmg” 1 me"mgTq 1 mePmgmy
2 rr3 2 rr3 4 rr3 2 22
CImlmeme® 1 mPmgPmg? 1 memg®mg® 1 meamgPme?
4 r2p? 2 r2p? 2 r2r’? 4 22 ’
(20)
2, 2 2,2
e g g cgge { LMy L Lt L
" =
Y 4 pp? 4 r2p 2 3 4 e
1 mamz? 1 me*m2 1 mg*mS® 1 mg®me? 1 ¢*m,?
4 p2p? 6 r2r? 4 r2p? 6 r2r? 4 p2pr?
+1 m02q2 l mCqu2 B 1 m02m02 B 1_ mqZ lmOZ
6 r2r? 2 r3r 4 3y 2 r2r’ 6 r2r’
2
1 me*memy (21)
12 r2p? ’
e (2 ) P = <qi> 1 mgmy 1mgm. 1 myg*m,® 1 mgy*me?
" — - _Z e S BT
Y 4 rr? 4 r2yp’ 2 4 s
Ims2m2  1me?’m2  1my*m? 1 mg*me® 1 ¢*m,?
4 r2pr? 6 r2r? 4 22 6 r2r? 4 p2p?
2.2 2, 2 2, 2 2 2
_lmoq_l_mcmq lmomc _lmq 1_m0
6 r2r? 2 3 4 3y 2 r2r’ 2 r2y’
1 mo memy
g @
12 r?r



2
where r = p* —m2, v’ = p'* —m},.

Equating two representations of the correlation function and applying the double Borel
transformation using

1 (=)™ e My
B (M) (———)" =
Pz( 1)(p2_m3) F(m) (Mlg)ma
m2,
1 (=) e M
B 2 (M; "= 23
pz( 2)(p,2 —mzl) T(n) (MZ)"’ (23)
D(s)—>K1 .
the sum rules for the form factors F; are obtained as:
m2 m? / —s 75/
R = (me + mq) e Mqu e ”221 - /SO ds' /so dspi(s,s',q*)e™ e
fqu%qulmKl 471-2 m% SL
non—per 12
b MM Bp(8) B8 I 02 )l @1

where ¢+ = V,0,1 and 2, sy and slo are the continuum thresholds in pseudoscalar D, and
axial-vector K; channels, respectively and the lower limit in the integration over s is as
follows:
2, 2 2 N2 2 2
m, +q°—m;—s)m.s —m
SL:(q q c — 5)(mg 4) (25)
(mZ — ¢*)(mj — )

In Eq. (24), to subtract the contributions of the higher states and the continuum the quark-
hadron duality assumption is also used, i.e., it is assumed that

phigherstates(s’ Sl) — pOPE(S, S/)Q(s — 30)9(8 — 86) (26)

Here, we should stress that in the three-point sum rules with double dispersion relation,
the subtraction of the continuum states and the quark-hadron duality is highly nontrivial.
For ¢> > 0 values, their may be an inconsistency between double dispersion integrals in
Eq. (24) and corresponding coefficients of the structures in the Feynman amplitudes in
the bare-loop diagram. In this case, the double spectral density receives contributions
beyond the contributions coming from the Landau-type singularities. This problem has
been widely discussed in [9]. Here, we neglect such contributions since with the above
continuum subtraction and the selecting integration region the contribution of the non-
Landau singularities is very small comparing the Landau type singularity contributions.
Now, as we mentioned in the introduction section, the FZ-Dq_)KlA(B) form factors are ob-
tained from the above equation by replacing fx, by the G-parity conserving decay constant

||7KlB
0

fx,, and G-parity violating decay constant fx,, = fx ., (1 GeV)a and myg, with

mKlA(B), 1.e.,

me K (B) o s s
FZ.D(S)_)KIA(B) = — 2(mc +mq) e M e#{ — %/ " ds’ ’ dspi(s, s, q?)e™ e2
fququKlA(B)mKlA(B) 42 Jm2 sL
non—per 2
b MM Bp(08) B0 I 02 ) @)
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Also, using Egs. (1, 4, 5, 6), the form factors of the fiDq—>K1[1270(1400)} are found as follows:
Dg—K1(1270) Mp, + MK 4\ Dg—Kia - Mmp, +MK,g\ Dy—Kip
1o = (—2—) £ sinfg, + (—+———) fo* coslr, ,
0 (me+mK1) 0 ! <me+mK1) 0 !

Dy—K1(1270) ( mp, + Mgk, ) Dy—Kia

. mp, + Mg Dy—K
q 1 1B
1,2,V sinfg, + (———) 1

1,2,V COS@K1 ’

1,2,V =
mp, + Mk, , mp, + MK,
Dg—K1(1400 mp, + Mg Dy—K mp, + Mgk Dy—K .
qu a ):( - 1A) qu - COSGKl_( : 1B)foq ' SzneKl )
mp, + Mg, mp, + Mg,

Dy—K1(1400) ( mp, + Mg, ) Dy—Kia

0 mp, + Mgk, Dy—Kip
12,V 1,2,V coslg, — (————)
mp, + Mk, ,

1727‘/ S/LneKl .
mp, + Mk,

(28)

3 Decay amplitudes and decay widths

semileptonic

Using the amplitude in Eq. (3) and definitions of the form factors, the differential decay
widths for the process D, — K;{v are found as follows:

2

ara(D, — Kitv)  Gh[Vy
qdq2 B 19271'377[23 qz)\l/z(m%q’miqu%u{if’
Dq
2
0( . - oo O (b, mi, @) [Hol” (29)
Dq

A2 (md,,, mic,, %)

H 2 _ 2 2
+(q%) (mp, +mK,)fo(q”) F ———— fv(a®) ,
1 Am3, ,mi,, ¢%)
Hy(?) = —— 20 02 2 2\ _ q 1 2
0(q%) e VT (mp, —my, —a )(mp, +mx,) fo(q") ———— fi(q”)

The £,0 in the above relations belong to the K helicities. The total differential decay
width can be written as

drtot(Dq — Klgl/) o dFL(Dq — Klfl/) I dFT(Dq — Klfl/)

where,
dFL(Dq — K1£V) o dro(Dq — Klgy)
dq? N dq? ’
dFT(Dq — Klfl/) - dF+(Dq — Klfl/) I dF_(Dq — Klgl/) (31)
dq? B dq? dq? ’

and % (%) is the longitudinal (transverse) component of the differential decay width.
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nonleptonic

In this part, we study the decay amplitude and decay width for the nonleptonic D — K«
decay. The effective Hamiltonian for this decay at the quark level is given by (see for
example [19] and references therein):

Heff VcsV;d(OlOl + 0202)} . (32)

Gr {
V2
Here O; and O, are quark operators and they are given as:

O1 = (Sici)v_a(tjdj)v_a, O2 = (5i¢j)v_a(t;d;)v_a, (33)

where (q1g2)vea = @7"(1 £ 75)q.

The Wilson coefficients C and Cy have been calculated in different schemes [20]. In the
present work, we will use Ci(m.) = 1.263 and Cy(m.) = —0.513 obtained at the leading
order in renormalization group improved perturbation theory at p ~ 1.3 GeV" [21].

Now, we calculate the amplitude A for D — K7 decay. Using the factorization method
and definition of the related matrix elements in terms of the form factors f7 71, fP=%  fP=kK

and f3’ %" in Egs. (4-6), we obtain this amplitude as follows:

AP VeV ar} fr () [FP2107 (m2)), (34)

oy
V2
where,

fa(m2)

FD—>K17r 2 o
( ) (mD —+ mKl)

m3) = [(mp—+mg,)fo(m3) — (mp —mg,) fr(m}) —

- m3] . (35)
The € stands for polarization of K7, p is four momentum of D, f, is the pion decay constant,
ap = C1+ N%C’g and N, is the number of colors in QCD.

Now, we can calculate the decay width for D — Kjm decay. The explicit expression for
decay width is given as follow:

G2
(D — K Vs *Vadl* @} [}
A(m,m3, ,m2)2 [FPEm (2 )]2, (36)

4 Numerical analysis

From the sum rules expressions of the form factors, it is clear that the main input parameters
entering the expressions are condensates, elements of the CKM matrix V,/, leptonic decay
constants fp,, fk,4 and leB ., Borel parameters M} and M2 as well as the continuum
thresholds sp and s,. We choose the values of the condensates (at a fixed renormalization
scale of about 1 GeV'), leptonic decay constants , CKM matrix elements, quark and meson
masses as: < utl >=< dd >= —(0.240 £ 0.010 GeV)?, < 55 >= (0.8 £0.2) < wu >,
mZ = 08402 GeV? [22], | Vi |= 0.957 & 0.110, | Viq |= 0.230 & 0.011 [23], fpo =

11



fpx = 0.222+0.016 GeV [24], fp, = 0.274 £ 0.013 GeV [25], fk,, = 0.250 £ 0.013 GeV,
fx . = 0.190£0.010 GeV [2], m, (1 GeV') = (1.5-3.3) MeV, my(1 GeV') = (3.5—6) MeV,
ms(1 GeV) = (10413%) MeV, m, = 1.275097 GeV, mpo = 1.864 GeV, mp+ = 1.869 GeV/,
mp, = 1.968 GeV', mg, (1270) = 1.27 GeV, mg, (1400) = 1.40 GeV[23], mg,, = 1.31 £
0.06 GeV, mg,, = 1.34 £0.08 GeV and al™? = —0.19 +0.07 2].

The sum rules for the form factors contain also four auxiliary parameters: Borel mass
squares M? and M3 and continuum thresholds sy and sj. These are not physical quantities,
so the form factors as physical quantities should be independent of them. The parameters
sp and s;, which are the continuum thresholds of D, and K; mesons, respectively, are
determined from the condition that guarantees the sum rules to practically be stable in the
allowed regions for M7 and MZ. The values of the continuum thresholds calculated from the
two—point QCD sum rules are taken to be s = (6 — 8) GeV? and sj, = (4 — 6) GeV?%. The
working regions for M? and M2 are determined requiring that not only the contributions
of the higher states and continuum are small, but the contributions of the operators with
higher dimensions are also small. Both conditions are satisfied in the regions 4 GeV? <
M? <10 GeV? and 3 GeV? < M2 < 8 GeV2.

The values of the form factors at ¢> = 0 are shown in Tables 1 and 2. Note that, the
values of the f;(0) for D — Ki"fv and D* — K"v are approximately equal, so the values
in Table. 1 refer to both decays.

05, 37 58 37 53 05, 37 58 37 53
D=2 1399 182 4.00 2,95 || fP7F0N0 1 337 434 227 3.60

DoIGA20) | 074 2042 2093 -0.68 || P70 ) 72 092 049 -0.77

D=0 g 30 019 044 034 || fPFO009 1 938 049 023 0.38

DoE210) 1 9 56 146 3.24 236 || fP7FM0 ) 970 349 1.82 2,90

Table 1: The ¢*> = 0 values of the form factors of the D — K;/(v decay for M} = 8 GeV'?,
M3 =6 GeV? at different values of 0y, .

The dependence of the f7*(0) on 6, at ¢> = 0 is depicted in Figs. 5-8, in the
interval —58° < Ok, < 58°. In Figs. 6 and 8, as it is seen, all of the form factors con-
tact at one point. Also each form factor in Figs. 5 and 7, has one extremum point.
These extrema as well as the contact points have been specified in Figs. 5-8. It is in-
teresting that in the D, — K;(1270)(v and D, — K;(1400)¢v cases, the extrema and
contact points of the form factors are nearly at —8°. The sum rules for the form factors
are truncated at about ¢ = 0.15 GeV? and ¢*> = 0.25 GeV? for ¢ = u(d) and s cases
of the K;(1270), respectively. These points for K;(1400) state are ¢> = 0.22 GeV? and
q? = 0.32 GeV? for u(d) and s cases, respectively. To extend the results to the full physical
region, ie., 0 < ¢* < (mp, —mg,)* GeV?, we look for a parametrization such that: 1) this
parametrization coincides well with the sum rules predictions below the points at which the
form factors are truncated and 2) the parametrization provides an extrapolation to ¢> > the

12



i 37 58 37 5% i 37 58 37 5%
FRIRI0 | 500 999 486 3.58 || £ TEIMO | 409 527 276 4.40

fD+—>K0 1270)
0

115 -0.65 -144 -1.07 | fRIRA00 90 144 076 -1.20

+ +
FRIIIA0 54 031 <066 -0.50 || fPTEIA00 ) o570 073 039 -0.61

n +
RO 589 3360 733 540 | £ N 619 797 418 6.64

Table 2: The ¢? = 0 values of the form factors of the D, — K;/{v decay for M? = 8 GeV'?,
Mz =6 GeV? at different values of 0y, .

truncated points, which is consistent with the expected analytical properties of the form
factors and reproduces the lowest-lying resonance (pole). This resonance in the D, channel
is D*(J¥ = 17) state. Following references [26,27], which describe this point in details, we
choose the following theoretically more reliable fit parametrization:

a b
fi(qz) = 2 + 2 (37)
]_ - ]_ - m2
D* fit
The values of the parameters a, b and my; are given in Tables 3-6 at different values of
the mixing angle fx,. From this parametrization, we see that the mp- pole exist outside
the allowed physical region and related to that, one can calculate the hadronic parameters

such as the coupling constant gpp«k, (see [28,29]).

13



b

a m it a b M it
fooI0 2y 1383 0.64 1.25 || fO7FM0 2y | 594 257 1.25
D020 02y | 905 131 1.36 || fP7F M0 g2y | 204 132 1.36
DoEa210) 02y 1046 -0.12 1.27 || fP7E00 2y | 059 021 1.27
D200 2y | 997 041 1.29 || L0002y 1394 044 1.29
FREORI020) oy | g 08 008 1.8 || £ TRII0) (2 | 787 378 1.98
FRIORI020) oy | 356 941 151 || £ TR0 2y [ 306 S1.04 151
FREORI00) oy | 70 016 131 || £ ORI 2y | os8 c0.01 1.31
fZDi—>K?(1270)(q2) 712 -1.23 1.35 fZDj*K?(MOO)(qZ) -5.32 -0.87 1.35

b

Table 3: Parameters appearing in the fit function for the form factors of the D, —
K1(1270)fv and D, — K;(1400){v decays at M? =8 GeV? Mz = 6 GeV? and 0, = 37°.

a m it a b M it
FRoI020 2y 9 19 030 1.27 || fPM0 @2y | 744 310 1.27
FRomO20 2y 1500 110 1.37 || fPFM0 g2y | 270 178 1.37
DoEa210) 02y 1927 0,08 1.29 | fPE0 g2y | 075 0.26  1.29
Do) 2y |68 022 1.31 | fPPE000 2y | 400 051 1.31
FOESRIO20) 0y |y 09 093 1.30 || f2F IO 42) | 918 391 1.30
JOTRI0 (2 9 9g 149 153 || fPTTO 42y | 403 259 153
FETO gy | 05 004 132 || 0@ |09 006 1.32
FRERIOZ0) oy |y 79 149 137 || pERIO00 oy | 25 940 1.37

Table 4: Parameters appearing in the fit function for the form factors of the D, —
K1(1270)¢v and D, — K;(1400)¢v decays at M} =8 GeV? M2 =6 GeV? and 0, = 58°.
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a b mpy a b myi

FooEA0) 2y 15 A8 148 1.23 || fOTE00 02y 981 054 1.23

FRR2O 2y | 995 902 1.33 | fPRIMO ey ) 171 192 1.33

1D—>K1(1270)(q2) 061 -0.17 1.25 1D_>K1(1400)(q2) 035 -0.12 1.25

2D—>K1(1270)(q2) 390 -0.66 1.29 f2D_>K1(1400)(q2) 2.10 -0.28 1.29

FOEIROZ0) oy | 703 937 1o7 | fLEOKIAN0 0y 910 066 1.27
fODi—>K?(1270)(q2) 497 9283 1.48 fODj_}K?(MOO)(f) -243  1.67 148

FRERIAA0) oy |05 008 136 || f2 IO 2y | 562 144 1.36

Table 5: Parameters appearing in the fit function for the form factors of the D, —
K1(1270)¢v and D, — K;(1400)¢v decays at M7 = 8 GeV? M3 = 6 GeV? and O, = —37°.

At the end of this section, we would like to discuss the numeric values of the differential
decay rates as well as the branching ratios for the considered semileptonic and nonleptonic
transitions.

semileptonic

The dependence of the longitudinal and transverse components of the differential decay
width for the semileptonic D, — K fv decays is shown in Figs. 9-20 at 0, = £37°. In
these figures, the total decay widths related to each decay are also depicted. To calculate
the branching ratios of the semileptonic decays, we Integrate Eq. (30) over ¢* in the
whole physical region and using the total mean life-time 70 = 0.41 ps, 7p+ = 1.04 ps
and 7p, = 0.50 ps [23]. The values for the branching ratio of these decays are obtained
as presented in Table 7. The errors in this Table are estimated by the variation of the
Borel parameters M7 and M3, the variation of the continuum thresholds sy and s; and
uncertainties in the values of the other input parameters.

nonleptonic

For estimating the branching ratio of the nonleptonic D — K7 decay, first the values of
the form factors at ¢> = m2 are calculated as shown in Table 8. Inserting these values in

™

Eq. (36) and using V,4 = 0.97377 £ 0.00027 [23], m, = 0.139 GeV and f, = 0.133 GeV,
we obtain the values for the branching ratio of these decays as presented in Table 9. In
comparison, we also include the experimental values and upper limits in this Table. This
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a b myu a b mypy

FORAZ0) 2y 396 091 1.24 || fRR00 2y | 488 128 1.24

Jo7O ) | 207 149 135 | fy TR @2) | 257 180 135

1D—>K1(1270)(q2) 044 -0.10 1.26 1D_>K1(1400)(q2) 0.56 -0.18 1.26

2D—>K1(1270)(q2) 2097 -061 1.27 f2D_>K1(1400)(q2) 3.38 -0.48 1.27

FOESRIOZ0) oy | 573 915 129 || fDFRIO00 0y 88 048 1.2
JPERIOTO) oy | 394 907 149 || fOFEIAO0 2y | 370 250 149
le?—>}<9(1270)@2) 058 008 1.32 leiﬁK?(1400)(q2) 078 0.17  1.32
FRERIAA0 oy | g 69 071 135 || 200 2y | 7oy 120 1.35

Table 6: Parameters appearing in the fit function for the form factors of the D, —
K1(1270)¢v and D, — K;(1400)¢v decays at M7 = 8 GeV? M3 = 6 GeV? and O, = —58°.

Table shows that for the D° — K; (1270)7", D° — K; (1400)7" and DT — K} (1400)7™
cases, the different values of mixing angle 6k, give the values of branching ratios in good
agreement with the experimental results but for DT — KY(1270)7" decay, the values of
the branching ratios at different values of 0, are about one order of magnitude more than
that of the experimental expectation.

In summary, we analyzed the semileptonic D, — K;fv transition with ¢ = u,d, s in
the framework of the three-point QCD sum rules and the nonleptonic D — K;m decay
within the factorization approach. We calculated D, to K;(1270) and K;(1400) transition
form factors by separating the mixture of the K(1270) and K;(1400) states. Using the
transition form factors of the D — K, we analyzed the nonleptonic D — Kj;m decay.
We also evaluated the decay amplitude and decay width of these decays in terms of the
transition form factors. The branching ratios of these decays were also calculated at different
values of the mixing angle fx,. For the non leptonic case, a comparison of the results for
the branching ratios with the existing experimental results was also made.
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05, 37 58 237 58
Br(D° — Ky (1270)0v) | [3.5940.29 1.034+0.10 5344021 2.8440.25] x 1073
Br(D* — K%(1270)(v) | [9.47+0.45 2.704+0.25 14.07+1.22 7.57+0.35] x 103
Br(DF — K%(1270)0v) | [7.84+0.41 2.0940.24 1251 +1.16 6.91+0.32] x 10~
Br(D° — Ky (1400)¢v) | [1.0940.10 1.784+0.15 0.85+0.02 1.2040.11] x 103
Br(Dt — K9(1400)fv) | 2934025 4754029 12740.10 3.20+0.27] x 1073
Br(DF — K9(1400)fv) | [3.4440.29 5884034 1.4940.13 3.96 4+ 0.29] x 10~

Table 7: The values for the branching ratio of the semileptonic D, — K;(1270)¢v and
D, — K;(1400)¢v decays at different values of the O, .

i 37 58 37 58 05, 37 58 37 58
PR 3 0q 182 404 295 | f77MM | 345 442 230 3.65
PO 073 042 091 -0.67 || 7700 070 092 047 -0.75
PO 034 020 045 032 || P70 036 049 025 041
pR0 967 155 332 249 | £ 981 365 187 3.03

Table 8: The values of the form factors of the D — K;(1270) and D — K;(1400) for
M} =8 GeV?, M2 =6 GeV? at ¢> = m? and different values of the mixing angle Oy, .

0. 37 58 37 58 Exp [23]
Br(D° — K;(1270)7%) x 1072 | 1.45+0.11 0.75+0.06 2.26+0.18 1.23+0.11 | 1.15+0.32
Br(D¥ — K%1270)7%) x 1072 | 3.75+0.29 1.23+0.10 585+037 3.184+025| <0.7
Br(D® — K; (1400)7*) x 1072 | 0.60 £ 0.04 1.0040.12 0.26+0.02 0.73+£0.04| <1.2
Br(Dt — KY(1400)7+) x 1072 | 257+ 021 3.63+£0.31 1714013 2.78+024 | 38+13

Table 9: The branching ratios of the nonleptonic D — K;(1270)7 and D — K;(1400)7

decays at different values of Ok, .
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Figure 6: The dependence of the form factors on O, at ¢*> = 0 for D — K;(1400)/v decay.
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0 for Dy — K,(1270)¢v decay.

Figure 7: The dependence of the form factors on , at ¢*

Figure 8: The dependence of the form factors on O, at ¢*> = 0 for Dy — K;(1400)¢v decay.
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Figure 9: The dependence of the dl'y,;/dq®, dTl'r/dq? and dT'z/dq? on ¢* at Ok, = 37° for
DY — Ky (1270)fv.

Figure 10: The dependence of the dl'y/dg®, dUr/dg?* and dU'1/dg* on ¢* at O, = 37° for
D* — KO(1270)fv.
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0.0 0.1 0.2 0.3 0.4

Figure 11: The dependence of the dl'y;/dq®, dU'r/dg* and dU'y/dg* on ¢* at Oy, = 37° for
DF — K0(1270)fv.

0.00 0.05 0.10 0.15 0.20

Figure 12: The dependence of the dly/dg®, dUr/dq? and dU'1/dg* on ¢* at O, = 37° for
DY — K (1400)fv.
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(1071%)

0.00

0.05

Figure 13: The dependence of the dl'y;/dq®, dU'r/dg* and dU'y/dg* on ¢* at Ok, = 37° for
D* — K°(1400)fv.

Figure 14: The dependence of the dlyy/dg®, dUr/dg? and dU'1/dg* on ¢* at O, = 37° for
D — K°(1400)fv.
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Figure 15: The dependence of the dl'y,;/dq?, dT'r/dq? and dT'r/dg* on ¢* at O, = —37° for
DY — K7 (1270)fv.

Figure 16: The dependence of the dl';y;/dq?, dT'r/dg* and dI'f,/dq? on ¢* at O, = —37° for
Dt — KO(1270)fv.
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Figure 17: The dependence of the dl'y,;/dq?, dT'r/dq* and dT'r/dg* on ¢* at O, = —37° for
DF — K0(1270)fv.

0.00 0.05 0.10 0.15 0.20

Figure 18: The dependence of the dl';y;/dq?, dT'r/dg* and dT'f,/dq? on ¢* at Oy, = —37° for
DY — K (1400)fv.
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0.00 0.05 0.10 0.15 0.20

Figure 19: The dependence of the dl'y,;/dq?, dT'r/dq* and dT'r/dq* on ¢* at O, = —37° for
D* — K%(1400)fv.

Figure 20: The dependence of the dl';y;/dq?, dTr/dg* and dT'f,/dq? on ¢* at O, = —37° for
D — K°(1400)fv.
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