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1 Introduction

Although the standard model (SM) of particle physics is in perfect agreement with all

confirmed collider data, there are some problems that can not be addressed by the SM. Some

of these problems are matter-antimatter asymmetry, number of generations, unification of

the fundamental interactions, etc. Hence, we need more fundamental theories beyond the

SM (BSM) such that at low energies those theories reduce to the SM. One of the most

interesting candidates as a BSM theory is extra dimension (ED) [1–6]. A kind of ED

which permits both gauge bosons and fermions as SM fields to spread in ED’s is labeled as

universal extra dimension (UED). The simplest case of the UED is the Applequist-Cheng-

Dobrescu (ACD) model [7] which contains only one UED compactified in a circle of radius

R.

We have no experimental evidence for the new physics effects such as ED’s so far, but we

expect that the LHC will open new horizons in this respect. There are two alternative ways

to search for ED’s. In direct search, we look for Kaluza-Klein (KK) excitations directly

by increasing the center of mass energy of colling particles. In indirect search, we look for

the contributions of the KK particles to the hadronic decay channels. The flavor changing

neutral current (FCNC) transitions induced by loop level quark transitions are considered

as good tools for studying the KK effects.

The ACD model has been previously applied to many rare semileptonic decay channels

[8–17]. In the present work, we apply this model to analyze the branching ratio and double

lepton polarization asymmetries defining the radiative dileptonic B → γl+l− transition.

The advantage of such decay channel compared to the pure leptonic helicity suppressed

B → µ+µ− and B → e+e− channels is that due to the emission of the photon in addition to

the lepton pair, we have no helicity suppression here and we expect larger branching ratio

[18, 19]. The upper experimental limits, Br(B → µ+µ−) < 1.5× 10−8, Br(B → γµ+µ−) <

1.6 × 10−7, Br(B → e+e−) < 8.3 × 10−8, Br(B → γe+e−) < 1.2 × 10−7 [20] verify our

expectations in this respect. The considered decay channel proceeds via FCNC transition

of b → dl+l− at quark level and as we previously mentioned the KK particles can contribute

to such channels. To evaluate the branching ratio and various double lepton polarization

asymmetries, we will use the form factors entering the effective Hamiltonian calculated via

light cone QCD sum rules [18, 21–23].

The layout of the paper is as follows. The introduction is followed by section 2 which

encompasses the theoretical background of the decay channel under consideration and the

associated effective Hamiltonian, a brief review on the ACD model, transition matrix ele-
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ments defining the radiative dileptonic B → γl+l− decay channel and explicit expressions

for the associated observables (differential decay rate and double lepton polarization asym-

metries) in the UED model. In section 3, using the fit parametrization of form factors as

the main ingredients as well as other input parameters, we numerically analyze the physical

observables both in the UED and the SM models and discuss how the results obtained from

the UED model deviate from those of the SM.

2 The radiative dileptonic B → γl+l− transition in the

ACD model

As we mentioned in the previous section, the B → γl+l− transition proceeds via the FCNC

transition of the b → dl+l− at the quark level. The most important contribution to the

B → γl+l− comes from the pure leptonic B → l+l− transition. The latter proceeds via

the box and Z-photon mediated penguin diagrams (see for instance [18, 19]). By attaching

the photon to any external and internal charged lines, we will obtain the transition matrix

elements for the B → γl+l− decay. In the SM, the effective Hamiltonian responsible for

b → qℓ+ℓ− transition can be written as

Heff =
αGF√
2π

VtbV
∗
td

[

Ceff
9 (d̄γµPLb)l̄γµl + C10d̄γµPLbl̄γµγ5l − 2

Ceff
7

q2
d̄iσµνqν(mbPR +mdPL)bl̄γµl

]

,

(2.1)

where PR(L) = 1+(−)γ5
2

, and q2 is the transferred momentum squared. The Ceff
7 , Ceff

9

and C10 are Wilson coefficients which are the source of difference between the SM and

UED models. In the UED, the form of Hamiltonian remains unchanged; however, the

Wilson coefficients are modified [24–28] as a result of interactions of the KK particles with

each other as well as with the usual SM particles. In this model, each Wilson coefficient is

written in terms of the ordinary SM part and an extra part coming from the aforementioned

interactions. Hence,

F (xt, 1/R) = F0(xt) +

∞
∑

n=1

Fn(xt, xn), (2.2)

where F0(xt) is the SM part and xt = m2
t/M

2
W with mt and MW being masses of the

top quark and the W boson, respectively. The second part is defined in terms of the

compactification factor 1/R via

xn = m2
n/m

2
W , with mn = n/R, (2.3)
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where mn is mass of the KK particles and n = 0 corresponds to the ordinary SM particles.

Here we should also mention that the KK sums appearing in all Wilson coefficients converge

and give finite results.

Now, we proceed to present the explicit expressions of the Wilson coefficients entering

the low energy effective Hamiltonian obtained by a renormalization group evolution from

the electroweak scale down to themb scale. In the leading log approximation, the coefficient

Ceff
7 (1/R) is written as [24–28]:

Ceff
7 (µb, 1/R) = η

16

23C7(µW , 1/R) +
8

3

(

η
14

23 − η
16

23

)

C8(µW , 1/R) + C2(µW )
8
∑

i=1

hiη
ai ,

(2.4)

where

η =
αs(µW )

αs(µb)
, (2.5)

and

αs(x) =
αs(mZ)

1− β0
αs(mZ )

2π
ln(mZ

x
)
, (2.6)

with αs(mZ) = 0.118 and β0 = 23
3
. The coefficients ai and hi, with i running from 1 to 8,

are also given as [27, 28]:

ai = ( 14
23
, 16

23
, 6

23
, −12

23
, 0.4086, −0.4230, −0.8994, 0.1456 ),

hi = ( 2.2996, −1.0880, −3
7
, − 1

14
, −0.6494, −0.0380, −0.0186, −0.0057 ).

(2.7)

The functions

C2(µW ) = 1 , C7(µW , 1/R) = −1

2
D′(xt, 1/R) , C8(µW , 1/R) = −1

2
E ′(xt, 1/R) . (2.8)

Also, the 1/R -dependent functions D′(xt, 1/R) and E ′(xt, 1/R) are defined as

D′(xt, 1/R) = D′
0(xt) +

∞
∑

n=1

D′
n(xt, xn), E ′(xt, 1/R) = E ′

0(xt) +
∞
∑

n=1

E ′
n(xt, xn) , (2.9)

where the SM parts are given as

D′
0(xt) = −(8x3

t + 5x2
t − 7xt)

12(1− xt)3
+

x2
t (2− 3xt)

2(1− xt)4
lnxt , (2.10)

E ′
0(xt) = −xt(x

2
t − 5xt − 2)

4(1− xt)3
+

3x2
t

2(1− xt)4
ln xt , (2.11)
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and the parts coming from the new interactions can be written in the forms

∞
∑

n=1

D′
n(xt, xn)

=
xt[37− xt(44 + 17xt)]

72(xt − 1)3
+

πmWR

12

[

∫ 1

0

dy (2y1/2 + 7y3/2 + 3y5/2) coth(πmWR
√
y)

− xt(2− 3xt)(1 + 3xt)

(xt − 1)4
J(R,−1/2)− 1

(xt − 1)4

{

xt(1 + 3xt) + (2− 3xt)[1− (10− xt)xt]
}

× J(R, 1/2)− 1

(xt − 1)4
[(2− 3xt)(3 + xt) + 1− (10− xt)xt]J(R, 3/2)− (3 + xt)

(xt − 1)4
J(R, 5/2)

]

,

(2.12)

and

∞
∑

n=1

E ′
n(xt, xn)

=
xt[17 + (8− xt)xt]

24(xt − 1)3
+

πmWR

4

[

∫ 1

0

dy (y1/2 + 2y3/2 − 3y5/2) coth(πmWR
√
y)

− xt(1 + 3xt)

(xt − 1)4
J(R,−1/2) +

1

(xt − 1)4
[xt(1 + 3xt)− 1 + (10− xt)xt]J(R, 1/2)

− 1

(xt − 1)4
[(3 + xt)− 1 + (10− xt)xt)]J(R, 3/2) +

(3 + xt)

(xt − 1)4
J(R, 5/2)

]

. (2.13)

Here,

J(R, α) =

∫ 1

0

dy yα
[

coth(πmWR
√
y)− x1+α

t coth(πmtR
√
y)
]

. (2.14)

The next Wilson coefficient is Ceff
9 . In the leading log approximation and at µb scale it

is given as [27, 28]:

Ceff
9 (µb, ŝ

′, 1/R) = CNDR
9 (1/R)η(ŝ′) + h(z, ŝ′) (3C1 + C2 + 3C3 + C4 + 3C5 + C6)

−1

2
h(1, ŝ′) (4C3 + 4C4 + 3C5 + C6)

−1

2
h(0, ŝ′) (C3 + 3C4) +

2

9
(3C3 + C4 + 3C5 + C6) , (2.15)

where, ŝ′ = q2

m2

b

with the physical region 4m2
l ≤ q2 ≤ m2

B. The function CNDR
9 (1/R) in the

naive dimensional regularization (NDR) scheme is defined as

CNDR
9 (1/R) = PNDR

0 +
Y (xt)

sin2 θW
− 4Z(xt) + PEE(xt). (2.16)
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Here we should underline that, due to smallness of PE, we can neglect the contribution of

last term in Eq. (2.16). The constant PNDR
0 = 2.60 ± 0.25 [27, 28], and remaining two

functions Y (xt, 1/R) and Z(xt, 1/R) have the following expressions:

Y (xt, 1/R) = Y0(xt) +
∞
∑

n=1

Cn(xt, xn) , (2.17)

where,

Y0(xt) =
xt

8

[

xt − 4

xt − 1
+

3xt

(xt − 1)2
lnxt

]

, (2.18)

and,

∞
∑

n=1

Cn(xt, xn) =
xt(7− xt)

16(xt − 1)
− πmWRxt

16(xt − 1)2
[3(1 + xt)J(R,−1/2) + (xt − 7)J(R, 1/2)] .

(2.19)

also

Z(xt, 1/R) = Z0(xt) +

∞
∑

n=1

Cn(xt, xn) , (2.20)

with

Z0(xt) =
18x4

t − 163x3
t + 259x2

t − 108xt

144(xt − 1)3
+

[

32x4
t − 38x3

t − 15x2
t + 18xt

72(xt − 1)4
− 1

9

]

ln xt.

(2.21)

To complete the presentation of the coefficient Ceff
9 in Eq. (2.15), we define

η(ŝ′) = 1 +
αs(µb)

π
ω(ŝ′), (2.22)

where,

ω(ŝ′) = −2

9
π2 − 4

3
Li2(ŝ

′)− 2

3
(ln ŝ′) ln(1− ŝ′)− 5 + 4ŝ′

3(1 + 2ŝ′)
ln(1− ŝ′)−

2ŝ′(1 + ŝ′)(1− 2ŝ′)

3(1− ŝ′)2(1 + 2ŝ′)
ln ŝ′ +

5 + 9ŝ′ − 6ŝ′2

6(1− ŝ′)(1 + 2ŝ′)
. (2.23)

The coefficients Cj (j = 1, ...6) are given as

Cj =

8
∑

i=1

kjiη
ai (j = 1, ...6) (2.24)
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and the constants kji have the values

k1i = ( 0, 0, 1
2
, −1

2
, 0, 0, 0, 0 ),

k2i = ( 0, 0, 1
2
, 1

2
, 0, 0, 0, 0 ),

k3i = ( 0, 0, − 1
14
, 1

6
, 0.0510, −0.1403, −0.0113, 0.0054 ),

k4i = ( 0, 0, − 1
14
, −1

6
, 0.0984, 0.1214, 0.0156, 0.0026 ),

k5i = ( 0, 0, 0, 0, −0.0397, 0.0117, −0.0025, 0.0304 ),

k6i = ( 0, 0, 0, 0, 0.0335, 0.0239, −0.0462, −0.0112 ).

(2.25)

Finally, we should define the other functions in Eq. (2.15):

h(y, ŝ′) = −8

9
ln

mb

µb
− 8

9
ln y +

8

27
+

4

9
x (2.26)

−2

9
(2 + x)|1− x|1/2







(

ln
∣

∣

∣

√
1−x+1√
1−x−1

∣

∣

∣
− iπ

)

, for x ≡ 4z2

ŝ′
< 1

2 arctan 1√
x−1

, for x ≡ 4z2

ŝ′
> 1,

(2.27)

where y = 1 or y = z = mc

mb

and,

h(0, ŝ′) =
8

27
− 8

9
ln

mb

µb
− 4

9
ln ŝ′ +

4

9
iπ. (2.28)

The Wilson coefficient C10 is scale-independent and is given as:

C10(1/R) = −Y (xt, 1/R)

sin2 θW
, (2.29)

where, sin2 θW = 0.23.

Once the Wilson coefficients in UED model are specified explicitly, we proceed to obtain

the amplitude for the decay channel under consideration which is obtained by sandwiching

the effective Hamiltonian between the final photon and the initial B meson state. As

previously noted, the diagrams defining the B → γl+l− transition are obtained attaching

the photon to any external and internal charged lines. Hence, we have three kinds of

contributions: 1) the photon is emitted from the initial quark lines, 2) the photon is radiated

from the final charged lepton lines and 3) the photon is attached to any charged internal

line. When photon is attached to the initial quark lines (structure dependent part), the

B → γl+l− transition is described by three Wilson coefficients Ceff
7 , Ceff

9 and C10 and we

deal with the long distance effects. Therefore, the amplitude is written as

M1 = 〈γ(k)|Heff |B(p)〉 (2.30)

6



where k is the momentum of the photon and the p = k + q is the initial momentum. To

obtain the amplitude M1, we need to define the matrix elements

〈

γ(k)
∣

∣d̄γµ(1− γ5)b
∣

∣B(p)
〉

=
e

m2
B

{

ǫµνλσε
∗νqλkσg(q2) + i

[

ε∗µ(kq)− (ε∗q)kµ

]

f(q2)
}

,

(2.31)

and

〈

γ(k)
∣

∣d̄iσµνq
ν(1 + γ5)b

∣

∣B(p)
〉

=
e

m2
B

{

ǫµνλσ ε
ν∗qλkσg1(q

2) + i
[

ε∗µ(qk)− (ε∗q)kµ

]

f1(q
2)
}

,

(2.32)

where ε∗µ is the four vector polarization of the photon, and g(q2), f(q2), g1(q
2) and f1(q

2)

are the transition form factors.

When photon is radiated from the final charged leptons (Bremsstrahlung part) the

corresponding amplitude is called M2. From the helicity arguments it follows that the

amplitude M2 should be proportional to the lepton mass ml; for the cases of the l = e, µ

we can safely ignore from such contributions. For τ lepton case, this amplitude is calculated

in [19]. Finally, when the photon is attached to any charged internal line, the amplitude

of such contributions (M3) is proportional to
m2

b

m2

W

; so these contributions for all leptons are

strongly suppressed and we can safely ignore those contributions (see for instance [18, 19]).

Now we proceed to present the 1/R-dependent physical observables defining the radia-

tive dileptonic B → γl+l− transition. Considering the aforementioned contributions, the

differential decay rate for the l = e or µ case as a function of the compactification factor is

obtained as [18]:

dΓ

dŝ
(ŝ, 1/R) =

α3G2
F

768π5
|VtbV

∗
td|2m5

B ŝ(1− ŝ)3

√

1− 4
m̂l

2

ŝ
×

×
{

1

m2
B

[

|A|2 + |B|2
]

+
1

m2
B

|C10(1/R)|2
[

f 2(q2) + g2(q2)
]

}

, (2.33)

where ŝ = q2

m2

B

, m̂l =
ml

mB

,

A = A(ŝ, 1/R) = Ceff
9 (ŝ, 1/R)g(q2)− 2Ceff

7 (1/R)
mb

ŝm2
B

g1(q
2) ,

and

B = B(ŝ, 1/R) = Ceff
9 (ŝ, 1/R)f(q2)− 2Ceff

7 (1/R)
mb

ŝm2
B

f1(q
2) .
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In the case of τ , the differential decay width is obtained as [19]:

dΓ

dŝ
(ŝ, 1/R) =

∣

∣

∣

∣

αGF

2
√
2π

VtbV
∗
td

∣

∣

∣

∣

2
α

(2 π)3
m5

Bπ

{

1

12

∫ 1−4r

δ

x3 dx

√

1− 4r

1− x
m2

B

[

(

|A′|2 + |B′|2
)

(1− x+ 2r)

+
(

|C|2 + |D|2
)

(1− x− 4r)

]

− 2C10(1/R)fBr

∫ 1−4r

δ

x2 dxRe (A′) ln

1 +

√

1− 4r

1− x

1−
√

1− 4r

1− x

−4 |fB C10(1/R)|2 r 1

m2
B

∫ 1−4r

δ

dx

[

(

2 +
4r

x
− 2

x
− x

)

ln

1 +

√

1− 4r

1− x

1−
√

1− 4r

1− x

+
2

x
(1− x)

√

1− 4r

1− x

]}

, (2.34)

where the fB is the leptonic decay constant of the B meson, x =
2Eγ

mB
is a dimensionless

parameter with Eγ being the photon energy and r =
m2

τ

m2
B

. The lower limit of integration

over x comes from imposing a cut on the photon energy (for details see [19]). Considering

the experimental cut imposed on the minimum energy for detectable photon, we demand

the energy of the photon to be larger than 50 MeV , i.e., Eγ ≥ amB with a ≥ 0.01. As

a result, the lower limit is set as δ = 2a and we will take δ = 0.02 for the lower limit of

integration over x. In Eq. (2.34), we have introduced the following coefficients:

A′ = A′(ŝ, 1/R) =
A(ŝ, 1/R)

m2
B

,

B′ = B′(ŝ, 1/R) =
B(ŝ, 1/R)

m2
B

,

C = C(1/R) =
C10(1/R)

m2
B

g(q2) ,

D = D(1/R) =
C10(1/R)

m2
B

f(q2) . (2.35)

At the end of this section we would like to present various 1/R-dependent double–lepton

polarization asymmetries for the transition under study. Note that using the most general

model-independent form of the effective Hamiltonian including all possible forms of the

interactions, these double–lepton polarization asymmetries are calculated in the [29]. To

calculate the double–polarization asymmetries in our case, we consider the polarizations
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of both lepton and anti-lepton, simultaneously and suggest the following spin projection

operators for the lepton ℓ− and the anti-lepton ℓ+:

Λ1 =
1

2
(1 + γ56s−i ) ,

Λ2 =
1

2
(1 + γ56s+i ) , (2.36)

where i = L,N and T correspond to the longitudinal, normal and transversal polarizations,

respectively. Then, we introduce the following orthogonal vectors sµ in the rest frame of

the lepton and anti-lepton:

s−µ
L =

(

0, ~e−
L

)

=

(

0,
~p1
|~p1|

)

,

s−µ
N =

(

0, ~e−
N

)

=



0,
~k × ~p1
∣

∣

∣

~k × ~p1

∣

∣

∣



 ,

s−µ
T =

(

0, ~e−
T

)

=
(

0, ~e−
N × ~e−

L

)

,

s+µ
L =

(

0, ~e+
L

)

=

(

0,
~p2
|~p2|

)

,

s+µ
N =

(

0, ~e+
N

)

=



0,
~k × ~p2
∣

∣

∣

~k × ~p2

∣

∣

∣



 ,

s+µ
T =

(

0, ~e+
T

)

=
(

0, ~e+
N × ~e+

L

)

, (2.37)

where ~p1(2) are the three–momenta of the leptons ℓ−(+) and ~k is three-momentum of the

final photon in the center of mass (CM) frame of ℓ− ℓ+. The longitudinal unit vectors are

boosted to the CM frame of ℓ−ℓ+ via Lorenz transformations

(

s−µ
L

)

CM
=

( |~p1|
mℓ

,
E~p1

mℓ |~p1|

)

,

(

s+µ
L

)

CM
=

( |~p1|
mℓ

,− E~p1
mℓ |~p1|

)

, (2.38)

while the other two vectors remain unchanged. Finally, we define the double–lepton polar-

ization asymmetries as:

Pij(ŝ) =

(

dΓ

dŝ
(~s−i , ~s

+
j )−

dΓ

dŝ
(−~s−i , ~s+j )

)

−
(

dΓ

dŝ
(~s−i ,−~s+j )−

dΓ

dŝ
(−~s−i ,−~s+j )

)

(

dΓ

dŝ
(~s−i , ~s

+
j ) +

dΓ

dŝ
(−~s−i , ~s+j )

)

+

(

dΓ

dŝ
(~s−i ,−~s+j ) +

dΓ

dŝ
(−~s−i ,−~s+j )

) , (2.39)

where the subindex j also stands for the L, N or T polarization. The subindexses, i and

j correspond to the lepton and anti-lepton, respectively. Using the above definitions, the

various 1/R-dependent double lepton polarization asymmetries are obtained as:
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PLL(ŝ, 1/R) =
1

∆(ŝ, 1/R)

×
{

1

2
f 2
Bm

4
B

{

(1− ŝ)2(I1 + I4)− [2ŝ+ (1 + ŝ2)v2]I3 + [2ŝ− (1 + ŝ2)v2]I6

}

|F |2

− 1

2m̂ℓ

fBmB ŝ
[

8(1 + ŝ)v2 +m2
B(1− ŝ)(2− 2ŝ− 2v2 + 2ŝv2 + v4 + ŝv4)I8

− m2
B(1− ŝ2)v2I9]

]

Re[(A∗
1 +B∗

1)F ]− 1

3m̂2
ℓ

m2
B ŝ

2(1− ŝ)2(1− v2)2Re[A∗
1B1 + A∗

2B2]

− 2

3
m2

B ŝ(1− ŝ)2(1 + 3v2)
(

|A1|2 + |A2|2 + |B1|2 + |B2|2
)

}

, (2.40)

PLN(ŝ, 1/R) =
1

∆(ŝ, 1/R)

{

fBm
3
B

√
ŝ(1− ŝ2)v2Im[A∗

1F − B∗
1F ]I7

− 4πfBmB

√
ŝ(1− ŝ)(1−

√
1− v2)Im[(A∗

2 +B∗
2)F ]

}

, (2.41)

PNL(ŝ, 1/R) =
1

∆(ŝ, 1/R)

{

fBm
3
B

√
ŝ(1− ŝ2)v2Im[−A∗

1F +B∗
1F ]I7

+ 4πfBmB

√
ŝ(1− ŝ)(1−

√
1− v2)Im[−(A∗

2 +B∗
2)F ]

}

, (2.42)

PLT (ŝ, 1/R) =
1

∆(ŝ, 1/R)

{

− 1√
ŝ
f 2
Bm

4
Bm̂ℓ(1− ŝ)v

[

(1 + ŝ) |F |2
]

(I2 + I4)

+
4

v
πfBmB

√
ŝ(1− ŝ)(1−

√
1− v2)Re[(A∗

2 − B∗
2)F ] + 2mBm̂ℓRe[A

∗
1A2 − B∗

1B2]
]

− 4

v
πfBmB

√
ŝ(1 + ŝ)(1−

√
1− v2)Re[(A∗

1 +B∗
1)F ]

]

}

, (2.43)

PTL(ŝ, 1/R) =
1

∆(ŝ, 1/R)

{

− 1√
ŝ
f 2
Bm

4
Bm̂ℓ(1− ŝ)v

[

(1 + ŝ) |F |2
]

(I2 + I4)

− 4

v
πfBmB

√
ŝ(1− ŝ)(1−

√
1− v2)Re[(A∗

2 − B∗
2)F ]− 2mBm̂ℓRe[A

∗
1A2 −B∗

1B2]
]

− 4

v
πfBmB

√
ŝ(1 + ŝ)(1−

√
1− v2)Re[(A∗

1 +B∗
1)F ]

]

}

, (2.44)
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PNT (ŝ, 1/R) =
1

∆(ŝ, 1/R)

{

2fBm
3
Bm̂ℓ(1− ŝ)2vIm[−A∗

1F +B∗
1F ](I8 − I9)

− 2fBm
3
Bm̂ℓ(1− ŝ2)vIm[(A∗

2 +B∗
2)F ](I8 − I9)

− 8

3
mB(1− ŝ)2vIm[−mB ŝ(A

∗
1B1 + A∗

2B2)]

}

, (2.45)

PTN(ŝ, 1/R) =
1

∆(ŝ, 1/R)

{

2fBm
3
Bm̂ℓ(1− ŝ)2vIm[A∗

1F −B∗
1F ](I8 − I9)

− 2fBm
3
Bm̂ℓ(1− ŝ2)vIm[(A∗

2 +B∗
2)F ](I8 − I9)

+
8

3
mB(1− ŝ)2vIm[−mB ŝ(A

∗
1B1 + A∗

2B2)]

}

, (2.46)

PNN(ŝ, 1/R) =
1

∆(ŝ, 1/R)

{

f 2
Bm

4
B ŝ
[

(1 + v2)I3 − (1− v2)I6

]

|F |2

+
4

3
m2

B ŝ(1− ŝ)2v2
(

2Re[A∗
1B1 + A∗

2B2]
)

}

, (2.47)

PTT (ŝ, 1/R) =
1

∆(ŝ, 1/R)

{

1

2
f 2
Bm

4
B

{

− (1− ŝ)2(1− v2)I1 + [1− v2 − 4ŝ+ ŝ2(1− v2)]I3

− (1− v2)(1− ŝ)2I4 + (1− v2)(1− ŝ2)I6

}

|F |2

− 4fBm
3
Bm̂ℓ(1− ŝ)2Re[(A∗

1 +B∗
1)F ](I8 − I9)

+ mBm̂ℓ

(

|A1|2 + |A2|2 + |B1|2 + |B1|2
)]

+
8

3
m2

B(1− ŝ)2
(

ŝRe[A∗
1B1 + A∗

2B2]
)

}

,

(2.48)

where,

∆(ŝ, 1/R) = 16mBm̂ℓ(1− ŝ)2
(

Re[mBm̂ℓ(A
∗
1B1 + A∗

2B1)]
)

+
2

3
(1− ŝ)2

[

m2
B ŝ(3 + v2)

(

|A1|2 + |A2|2 + |B1|2 + |B2|2
)]

− 1

2
f 2
Bm

4
B |F |2

{

(1− ŝ)2v2(I1 + I4)− (1 + ŝ2 + 2ŝv2)I3 − [1− ŝ(4− ŝ− 2v2)]I6

}

+ 2fBmBm̂ℓRe[(A
∗
1 +B∗

1)F ]
[

8(1 + ŝ) +m2
B(1− ŝ2)v2I8 +m2

B(1− ŝ)(1− 3ŝ)I9

]

.

(2.49)
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In Eqs. (2.40)–(2.49), v =
√

1− 4m̂2
ℓ/ŝ is the lepton velocity and

A1 = A1(ŝ, 1/R) =
−2Ceff

7 (1/R)

q2

(

mb +md

)

g1(q
2) + (Ceff

9 (ŝ, 1/R)− C10(1/R))g(q2) ,

A2 = A2(ŝ, 1/R) =
−2Ceff

7 (1/R)

q2

(

mb −md

)

f1(q
2) + (Ceff

9 (ŝ, 1/R)− C10(1/R))f(q2) ,

B1 = B1(ŝ, 1/R) =
−2Ceff

7 (1/R)

q2

(

mb +md

)

g1(q
2) + (Ceff

9 (ŝ, 1/R) + C10(1/R))g(q2) ,

B2 = B2(ŝ, 1/R) =
−2Ceff

7 (1/R)

q2

(

mb −md

)

f1(q
2) + (Ceff

9 (ŝ, 1/R) + C10(1/R))f(q2) ,

F = F (1/R) = 4mℓC10(1/R). (2.50)

In the above equations, the Ii have the following representations:

Ii =

∫ +1

−1

Fi(z)dz ,

where

F1 =
z2

(p1 · k)(p2 · k)
, F2 =

z

(p1 · k)(p2 · k)
, F3 =

1

(p1 · k)(p2 · k)
,

F4 =
z2

(p1 · k)2
, F5 =

z

(p1 · k)2
, F6 =

1

(p1 · k)2
,

F7 =
z

(p2 · k)2
, F8 =

z2

p1 · k
, F9 =

1

p1 · k
.

(2.51)

3 Numerical results and discussion

In this section, we numerically analyze the physical observables related to the radiative

dileptonic B → γl+l− transition both in the ACD and SM models. The main input param-

eters entering the calculations are form factors. These form factors which we will use in our

numerical calculations have been calculated using the light cone QCD sum rules [18, 21–23]:

g(q
2) =

1 GeV
(

1− q2

(5.6 GeV )2

)2 , f(q
2) =

0.8 GeV
(

1− q2

(6.5 GeV )2

)2 ,

g1(q
2) =

3.74 GeV 2

(

1− q2

40.5 GeV 2

)2 , f1(q
2) =

0.68 GeV 2

(

1− q2

30 GeV 2

)2 .
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We also use some other input values to numerically analyze the branching ratios as well

as various double—lepton polarization asymmetries: mt = 167 GeV , mW = 80.4 GeV ,

mZ = 91.18 GeV , mc = 1.46 GeV , mb = 4.8 GeV , mu = 0.005 GeV , mB = 5.28 GeV ,

αem = 1
137

, |VtbV
∗
td| = 0.01, GF = 1.167 × 10−5 GeV −2, me = 5.1 × 10−4 GeV , mµ =

0.109 GeV , mτ = 1.784 GeV , and τB = 1.525× 10−12s .

We start by presenting the results on branching ratios. As we previously noted, in

the case of e and µ as final leptons, we only consider the contribution of the structure

dependent part to the amplitude. Integrating Eq. (2.33) over ŝ in the whole physical

region, 4m̂l
2 ≤ ŝ ≤ 1 we obtain the total 1/R-dependent decay width for the l = e or

µ. Multiplying this result by the lifetime of the B meson in appropriate unit, we acquire

the branching ratio as a function of the compactification factor of extra dimension. As the

results of the e and µ channels have similar behavior and are close to each other, we only

depict the numerical results in the µ channel. In figure 1, we present the sensitivity of

the branching ratio in µ channel on the compactification factor both in the UED and SM

models in the interval 200 GeV ≤ 1/R ≤ 1000 GeV .

Few comments about the lower bound of the compactification scale are in order. Analysis

of the B → Xsγ transition and also anomalous magnetic moment had previously shown that

the experimental data are in a good consistency with the ACD model if 1/R ≥ 300 GeV

[30]. From the electroweak precision tests, the lower limit for 1/R had also previously

been obtained to be 250 GeV if Mh ≥ 250 GeV representing larger KK contributions to

the low energy FCNC processes, and 300 GeV if Mh ≤ 250 GeV [7, 31]. Using also the

electroweak precision measurements as well as some cosmological constraints, the authors

of [32] and [33] have shown that the lower limit on compactification factor is in or above the

500 GeV . Taking into account the leading order (LO) contributions due to the exchange of

KK modes together with the available next-to-next-to-leading order (NNLO) corrections to

also B(B → Xsγ) decay channel in the SM, the authors of [34] have found a lower bound

on the inverse compactification radius as 600 GeV . Finally, using final states with jets and

missing transverse momentum, the ATLAS collaboration at CERN is set a 600 GeV on the

lower limit of the compactification scale for values of the compression scale between 2 and

40, translating to a lower bound of 730 GeV on the mass of the KK gluon [35]. We will plot

the physical observables under consideration in the range 1/R ∈ [200 − 1000]GeV just to

clearly show how the results of the UED deviate from those of the SM and grow decreasing

the value of 1/R.

From figure 1 we see that
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Figure 1: The dependence of the branching ratio for B → γµ+µ− on the compactification

factor, 1/R.

• there is a considerable discrepancy between the UED and the SM predictions at lower

values of the compactification factor. When 1/R is increased the result of UED

approaches to that of the SM, such that at upper limit of 1/R, two models have

approximately the same predictions. This discrepancy can be considered as a signal

for existing extra dimensions in nature we should look for in hadron colliders.

• Although the contribution of single universal extra dimension has different effects

on the Wilson coefficients such that the C10 is enhanced and the Ceff
7 is suppressed

(for details see [17]), the branching ratio is suppressed at small values of 1/R. This

is against the effect of the UED in some semileptonic decay channels considered for

instance in [12, 17].

• The order of the branching ratios in both models indicate that the predicted results

lie below the existing experimental upper limit, Br(B → γµ+µ−) < 1.6× 10−7 [20].

Now, we proceed to depict the results of both UED and SM models on the branching

ratio of the B → γτ+τ− decay channel. Using the differential decay rate in Eq. (2.34) which

contains both the structure-dependent and Bremsstrahlung parts, we obtain the results for

branching ratio as shown in figure 2. Here we also see a sizable difference between the

predictions of two models at lower values of the compactification factor. Increasing the

value of 1/R leads to an increase in the value of the branching ratio such that at upper

limit, the result of UED becomes roughly the same as the SM. The orders of branching

ratios show that the decay channel under consideration is more probable in τ channel case

compared to that of the µ. With developments at LHC, we hope we will be able to detect
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Figure 2: The dependence of the branching ratio for B → γτ+τ− on the compactification

factor, 1/R
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Figure 3: The dependence of the PLL polarization in two models for B → γl+l− on the

compactification factor, 1/R, for both leptons and at two fixed values of ŝ.

these channels and determine the exact branching ratios.
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Figure 4: The same as Figure 3, but for PLN .
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Figure 5: The same as Figure 3, but for PLT .
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Figure 6: The same as Figure 3 but for PNN

At the end of this section, we would like to show our numerical results on the various

double-lepton polarization asymmetries considered in the previous section. For Pi 6=j, we

only show one of the polarizations, not both Pij and Pji. We depict the sensitivity of
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Figure 7: The same as Figure 3, but for PNT
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Figure 8: The same as Figure 3, but for PTT

the various double-lepton polarization asymmetries associated with the radiative dileptonic

B → γl+l− decay channel on the compactification factor of extra dimension in figures 3-8.

As it is clear from the explicit expressions for the double–lepton polarization asymmetries

in the previous section, they have both dependencies on the 1/R and the ŝ. Here, we depict

the results for the compactification factor dependence at two fixed values of the ŝ in its

allowed region. With a quick glance at these figures, we see that

• the polarizations PTT , PLT , PLN and PLL in the τ channel as well as the PTT and

PNN in the µ channel show considerable discrepancies between predictions of the two

models at lower values of the compactification factor. For the remaining cases, those

differences are small.

• Some of the double–lepton polarization asymmetries like PTT in the τ channel are

very small in the SM; however take sizable values in the UED model specially at

lower values of the compactification factor.

• At a fixed value of 1/R, we detect strong dependencies on ŝ for the PLL, PLN , PLT ,

PNN and PNT in the τ channel as well as the PLN , PLT and PNT in the µ channel.

Our concluding remark is that any measurement of the physical observables considered in

the present study and the comparison of these data with our predictions can give valuable

information about the nature of existing extra dimensions.
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