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Abstract. This paper reports a fully integrated autonomous power management system for 

thermoelectric energy harvesting with application in batteryless IoT/Wearable devices. The 

novel maximum power point tracking (MPPT) algorithm does not require open circuit voltage 

measurement. The proposed system delivers 0.5 mA current with 1 V regulated output based 

on simulations, which is the highest output current for a fully integrated converter reported in 

the literature for ultra-low voltage applications, to the best knowledge of the authors. Regulated 

1 V output can be achieved for load range >2 kΩ, and input voltage range >140 mV. The 

circuit has been implemented in UMC-180nm standard CMOS technology and simulated. 

1. Introduction 

Elimination of the battery is desirable in emerging applications such as internet of things (IoT) and 

wearable healthcare devices, due to considerable miniaturization and maintenance cost benefits [1]. 

Recent studies have shown energy storage devices can be replaced by ambient energy harvesters [2,3]. 

Among various ambient energy sources, thermal energy is promising for wearable computing and 

similar applications, due to the availability of hundreds of microwatts of harvestable power. Despite 

adequate power availability, maximum open circuit voltage generated by thermoelectric generators 

(TEGs) exposed to the typically attainable 2-5 K temperature gradient, cannot exceed 500 mV [3,4]. 

Requisites of a miniaturized low-cost batteryless power management system, therefore, include 1) Full 

integration, 2) low start-up voltage, 3) stepped-up and regulated output voltage, and 4) relatively high 

output power. Charge pump converters with LC-tank oscillators have been introduced [5-8] to 

overcome MOSFET threshold limitations associated with low input voltage. Our group has reported 

solutions with an input voltage as low as 200 mV, where the maximum output power of 400 µW is 

achieved with a 2.7 kΩ load, which is sufficient to meet the real-time demand of most ultra-low power 

IoT/Wearable circuits [7,8]. Real load dynamically varies in the above-mentioned applications, as 

does the TEG output due to alternating ambient temperature. Thus an autonomous system is required 

to ensure maximum power point tracking (MPPT) under various load and source conditions.  

MPPT algorithm presented in [3,9] measures TEG open circuit voltage, 𝑉𝑇𝐸𝐺, for impedance 

matching, and thus causes system disruption when disconnected.  The method does not work well 

when the converter efficiency varies with input impedance values, as is the case for the LC-tank 

coupled charge pump topology. The system proposed in this paper utilizes a novel MPPT that refrains 

http://creativecommons.org/licenses/by/3.0
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from disconnecting the converter from source. The rest of the paper is organized as follows: The 

proposed system is discussed in section 2. In section 3, characteristics of the LC-tank charge pump 

circuit is presented. MPPT algorithm is discussed in Section 4. Section 5 presents the results, and the 

conclusion is provided in Section 6. 

2. System Topology 

2.1. TEG model and Power Efficiency 

TEG first order model consists of a voltage source with open circuit voltage 𝑉𝑇𝐸𝐺, and a series 

resistance 𝑅𝑇𝐸𝐺, as shown connected to the power management system in figure 1. 𝑅𝑇𝐸𝐺 restricts the 

maximum theoretical input power to 𝑃𝑖𝑛,𝑚𝑎𝑥 as calculated from equation (1). Real input power is 

maximized when 𝑅𝑇𝐸𝐺 is low and power management input impedance, Z is in the range of 𝑅𝑇𝐸𝐺. 

𝑃𝑖𝑛,𝑀𝐴𝑋 =
(𝑉𝑇𝐸𝐺)2

4 𝑅𝑇𝐸𝐺
 

(1) 

Power efficiency of the system can then be calculated using equation (2) with respect to 𝑃𝑖𝑛,𝑚𝑎𝑥. 

𝜂 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛,𝑚𝑎𝑥
=  (

𝑉𝑜𝑢𝑡

𝑉𝑇𝐸𝐺
)

2

× (
4 𝑅𝑇𝐸𝐺

𝑅𝐿
) 

(2) 

2.2. Power Management System  

The proposed power management circuit (figure 2) is composed of an LC-tank oscillator connected to 

a charge pump with an adjustable number of stages, using a minimum number of PMOS switches. 𝑉𝑠𝑡5 

node supplies sufficient voltage to the digital MPPT even when 𝑉𝑇𝐸𝐺 is low. Low-frequency square 

wave (clock) signal necessary for the MPPT block is generated using a thyristor-based ring oscillator 

[11] with ultra-low power consumption. The output voltage is regulated utilizing a low-dropout (LDO) 

regulator and a subthreshold voltage reference circuit [10]. When sufficient input power is available, 

op-amp and LDO start regulation.  

3. LC-tank and Charge Pump Characteristics 

The output voltage of the n-stage charge pump can be determined by equation (3) based on the lumped 

circuit model in figure 3 previously presented by our group [8]. 𝑉𝐶2𝑛
, maximum voltage at charge 

pump capacitors of stage n, can be calculated in an iterative manner for n-1 stages. Input impedance of 

the DC-DC converter with LC-tank oscillator can be calculated using equation (4). 

𝑉𝑜𝑢𝑡 = (𝑉𝑜𝑠𝑐 + 𝑉𝐶2𝑛
) e

−
𝑡

(𝑅𝐿+ 𝑅𝑃)𝐶  ×
𝑅𝐿

𝑅𝐿 + 𝑅𝑃
   , 𝑡 =

𝑇

4
,       𝑤ℎ𝑒𝑟𝑒         𝑉𝐶2𝑛

= (𝑛 − 1)𝑉𝑜𝑠𝑐 + 𝑉𝑖𝑛 −
𝑡𝑖𝑛

2𝐶
   (3) 

𝑌 =
1

𝑍
=

𝑅𝑀𝐶2𝜔2

1 + 𝑅𝑀
2𝐶2𝜔2

+
(𝑅𝑀 + 𝑅𝑃)𝐶2𝜔2

4 + (𝑅𝑀 + 𝑅𝑃)2𝐶2𝜔2
(𝑛 − 1) +

𝑅𝐿𝐶𝐿𝐶𝜔2(𝑅𝑀𝑅𝐿𝐶𝐶𝐿𝜔2 − 1) + 𝐶𝜔2(𝑅𝐿𝐶𝐿 + 𝑅𝑀𝐶 + 𝑅𝐿𝐶)

(𝑅𝑀𝑅𝐿𝐶𝐶𝐿𝜔2 − 1)2 + (𝑅𝐿𝐶𝐿 + 𝑅𝑀𝐶 + 𝑅𝐿𝐶)2𝜔2
 

(4) 

where 𝑅𝑃 and 𝑅𝑀 are average PMOS and NMOS average switch resistance in charge pump 

respectively, 𝑛 is the number of stages, 𝑅𝐿 represents load, 𝑖𝑛 is the output current of stage 𝑛, 𝑉𝑜𝑠𝑐 is 

the LC-tank oscillation amplitude, 𝑉𝐶 represents the peak voltage across the charge pump capacitors, 𝑇 

is the oscillation period, and 𝑉𝑖𝑛 is the input voltage. Equation (3) establishes that 𝑉𝑜𝑢𝑡 is directly 

related to 𝑛. From (4), converter input impedance has an inverse relation with  𝑛. 𝑉𝑜𝑠𝑐 also has an 

inverse relation with 𝑛 due to the loading effect of charge pump on LC-tank. 

 
Figure 1. TEG first order model 

connected to the power management 

system. 

 
Figure 2. The proposed fully integrated power management system  

for thermoelectric energy harvesting. 

 
Figure 3. LC-tank and n stage charge 

pump circuit model proposed in [8]. 
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4. MPPT Algorithm 
MPPT algorithm maximizes η from equation (2) by maximizing 𝑉𝑜𝑢𝑡 for a given 𝑅𝑇𝐸𝐺, 𝑉𝑇𝐸𝐺, and 𝑅𝐿. 

Therefore, regulation target is the maximum voltage that  𝑉𝑜𝑢𝑡 can reach. Among the variables in 

equations (3), only 𝑛 and 𝐶 can be used to adjust 𝑉𝑜𝑢𝑡. Changing 𝐶 requires an adjustable capacitor 

bank that significantly increases layout cost and charge redistribution losses (CRL). 𝑛 is hence 

selected as the control parameter for MPPT. Stage 5 (last stage) is activated in the start-up state to 

maximize 𝑉𝑜𝑢𝑡. As long as 𝑉𝑜𝑢𝑡 target is achieved, digital MPPT is inactive. When the output voltage 

drops below the target value, which can be a result of an increase in load or decrease in source voltage, 

MPPT block looks for a new optimum to reach the target voltage, by reducing the number of stages.  

5. Results 

𝑅𝑇𝐸𝐺 value varies for different products. 40 Ω is chosen in the simulations as a typical value for tiny 

TEGs [13].  DC-DC converter behaviour without voltage regulation is depicted in figure 4. Figure 4(a) 

shows that there is an optimal stage to maximize 𝑉𝑜𝑢𝑡 for a given load. Loading on the LC-tank 

oscillator increases with the number of stages, resulting in decrease in the voltage swing as shown in 

figure 4(c). This also reduces input 𝑍  and 𝑉𝑖𝑛 of the power management circuit, as depicted in figures 

4(b) and 4(d) respectively. Therefore, output cannot be boosted up further by increasing the number of 

stages. Varying 𝑉𝑇𝐸𝐺 has a similar effect as varying  𝑅𝐿, although this is not shown here for brevity: 

With fixed 𝑅𝐿, the optimal stage count varies with 𝑉𝑇𝐸𝐺 value. Figure 5(a) depicts simulation results 

for the complete MPPT system with a given input voltage and load. Since 1 V output is not reached at 

start-up, MPPT block decreases the number of stages until a stage is found that delivers the target. 

Once target value is reached, MPPT stops. Figure 5(b) presents to a condition that leads to a lower 

efficiency despite increase in 𝑉𝑇𝐸𝐺. However, output power calculated from equation (1) is almost two 

times more compared to the one in figure 5(a). The power management design in this paper, which 

delivers maximum power to load, is practically more desirable than a design that would prioritize high 

efficiency over output power, as demonstrated here. Figure 6 shows the layout of the proposed system. 

Table 1 compares this work to the recent state-of-the art thermoelectric energy harvesting solutions in 

the literature. The solution in this paper provides lower cost in terms of process technology (0.18 µm), 

and is fully integrated. Circuit proposed in [9] is fully integrated, but use of ring oscillator has 

increased start-up time and limited output power. In [9], input impedance of the system is in the range 

of 300 Ω, which results in lower output power capacity, despite higher end to end efficiency.  

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 4: Optimization of charge pump stage count for each load, (a) to maximize Vout with fixed source voltage, and 

resulting change in (b) input impedance, Z, (c) LC-tank oscillation amplitude, (d) Vin. 
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6. Conclusion 
A fully integrated autonomous power management system with high output power suitable for 

batteryless IoT/Wearable devices is introduced. The solution maximizes output power for a wide range 

of loads and input voltage variations through a novel MPPT, and delivers 0.5 mA current with 1 V 

regulated output at 220 mV input voltage, which is the highest output current for a fully integrated 

converter in the literature for ultra-low voltage applications to the best knowledge of the authors. 

Using this system, regulated 1 V output can be achieved for loads of > 2 kΩ and input voltage range of 

> 140 mV. Cold start-up from input voltages as low as 140 mV and high output power delivery are 

simultaneously attained in simulations due to the presence of the integrated LC-tank oscillator in the 

system. 

Table 1. Comparison with state-of-the-art thermoelectric energy harvesters. 

 [5] [9] [10] [3] [8] This Work 

Process  0.18 µm 65nm 0.18 µm 65 nm 0.18 µm 0.18 µm 

Maximum Output Current 200 µA 730 µA 71 µA 358 µA 150 µAa 500 µA 

Separate Start-Up Unit  No Yes No Yes No No 

Min Vin for start-up 150 mV 80 mV 350 mV 65 mV 360 mV 140 mV 

Regulated Vout 1.8 V 0.7 V–1V 1.8V 1.8 V 1.2V 1 V 

Peak End to End efficiency N/A 73%  73% N/A 80% 68% 43%a 36.7% 

Off chip (L+C+R) 0+6+0 4+2+0 0+7+4 1+2+0 0+0+0 0+0+0 

MPPT Tracking Time NO MPPT ~20ms < 180ms < 20ms NA < 10ms 
a Extracted for the 𝑉𝑇𝐸𝐺voltage range of < 500 mV 
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(a) 

 
(b) 

 

Figure 5: Sample simulation results to demonstrate MPPT operation: (a) For 𝑉𝑇𝐸𝐺=300 

mV and 𝑅𝐿=4 kΩ, MPPT finds optimal stage count as 3 for 1 V regulated output with 

36% efficiency. (b) For 𝑉𝑇𝐸𝐺=500 mV and 𝑅𝐿=2 kΩ, MPPT find optimal stage count as 

2 for 1 V regulated output with 26% efficiency. 

Figure 6:Chip layout: Induc-

tors occupy 0.66 mm2. 

Reconfigurable charge pump 

and MPPT take up 0.24 mm2 

and 0.05 mm2 respectively. 
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