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Abstract

Early development of the instabilities in a dilute nuclear source is in-
vestigated using a finite temperature quantal RPA approach for different
systems. The growth rates of the unstable collective modes are determined
by solving a dispersion relation, which is obtained by parametrizing the
transition density in terms of its multipole moments. Under typical con-
ditions of a dilute finite system at moderate temperatures the dispersion
relation exhibits an ultraviolet cut-off. As a result, only a finite number of
multipole modes becomes unstable, and the number of the unstable collec-
tive modes increases with the size of the source. Calculations indicate that
for an expanding source, unstable modes show a transition from surface to

volume character.

*This work is supported in part by the U.S. DOE GrantDE-FG05-89ER40530.
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1 Introduction

The experimental observation of the abundant fragment production obtained in
violent heavy ion collisions has generated many theoretical efforts for understand-
ing the mechanisms responsible for such an explosion of the nuclear systems. It
has been proposed that, because of the initial collisional shock, a large part of
the nuclear matter phase diagram may be explored and new states can be ac-
cessed, hence making it possible to enter the unstable region of the phase diagram
[1. 2. 3]. In such a context, fragment formation may take place through a rapid
amplification of dynamical instabilities in the spinodal region. In order to deal
with the dynamics of these large density fluctuations, stochastic semi-classical ap-
proaches of the Boltzmann — Langevin type, have been developed and applied
to investigate the spinodal decomposition of nuclear systems [4, 5]. As far as the
early development of instabilities is concerned, useful information can be gained.
more easily, in the linear response framework of such approaches [6, 7]. Also. the
response of the system to small initial perturbations can be studied within the
Landau theory of Fermi liquid [8, 9]. It turns out that. due to the finite range
of the nucleon-nucleon attraction, the small amplitude density inhomogeneities
need to have a relative large spatial extension (= 5—7 fm) in order to grow {2. 6].
The fact that the corresponding most unstable wave numbers (k = 0.8 — 1 fm)
are of the same order of magnitude as the Fermi momentum of the dilute systems
suggests that quantal effects may have an important influence on the spinodal
decomposition process, and should be included into the treatment for a quanti-
tative description of the growth of instabilities. In a quantal RPA framework.
it has been shown in [10] that in unstable nuclear matter, the most important
modes shift towards longer wave lengths (A = 10 fm) due to quantal effects.

In this paper, we extend our previous quantal RPA treatment for the unsta-
ble nuclear matter, and investigate the early evolution of the unstable collective
modes in the realistic case of the finite dilute systems, which may be formed dur-
ing a nuclear collision. We calculate the growth rates of the unstable collective
modes solving a quantal dispersion relation, and study the relative importance of
the surface effect, the quantal effect and the finite range of the nucleon interaction
in determining the most important unstable collective modes.

2 RPA Dispersion Relation

In the mean-field approximation, the single-particle density matrix p of the sys-
tem is determined by the time-dependent Hartree-Fock (TDHF) equation,
. 9p(1)

th— = = [kle], p(1)], (1)

where h[p] = p?/2m + U|p] denotes the mean-field Hamiltonian, and Ulp] is the
density dependent self-consistent mean-field potential. The source is represented
at the initial time ¢t = 0 by a density matrix po = p(0) determined by the con-
straint Hartree-Fock equation [h[po] — AMQ, po] = 0, where h[po] is the mean-field
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Hamiltonian at the initial state, Q is a suitable constraining operator for prepar-
ing the system at low densities and ) is the associated Lagrange multiplier. The
stability of a finite hot nuclear source against small amplitude density fluctua-
tions has been studied on the basis of the TDHF eq.(1) in [11]. However, for this
purpose it is more convenient to consider the density matrix A(t) in the "moving
frame”, p(t) = exp[h)\tQ] p(t) ezp[-—l/\tQ] and transform the TDHF equation
into the moving frame,

5 900) _ 1 -
P = [h(t) = 20, A1), 2)
where the mean-field Hamiltonian in the moving frame is given by,
h(t) = exp[irtQ] h(t) exp[—irtQ). (3)

In order to investigate the early evolution of instabilities, we linearize this equa-
tion around po(t), A(t) = po(t) + 6p(t), where po(t) is the solution of the TDHF
eq.(2) with the initial condition po determined by the constraint Hartree-Fock
equation. The small fluctuation §5(t) is determined by the linearized TDHF
equation in the moving frame,

L0860 - A e . R .

th—r = [ho(t) — AQ, 8] + [6U(t), po(t)] = M(2) - 85(2), (4)
where the mean-field Hamiltonian ho(t) and the fluctuations of the mean-field
potential 6U°(t) in the moving frame are defined in a manner similar to eq.(3).
and M(t) denotes the instantaneous RPA matrix. The formal solution of this
equation can be expressed as

8p(t) = U(t) - 6p(0), (5)

where U(t) = T(ezp[—% [; dsM(s)]) denotes the linearized evolution operator
with 7 as the time ordering operator. The eigenvalues of the evolution opera-
tor U(t) determine the stability of the TDHF trajectories as a function of time.
However the construction of U(t) is, in general. a very difficult task. Therefore.
we consider the early evolution of the instabilities in the vicinity of the initial
state po and solve the RPA problem associated with M(0) = M. Introduc-
ing the eigenmodes p(w) associated with the eigenvalue fiw and incorporating
the representation |¢ >, which diagonalizes ko — AQ and po, the RPA equation
M bp(w) = hw bp(w) for the collective modes becomes

(hw — & +¢j) < i|dp(w)lj > = <il6UW)|7 > (pj = pi), (6)

where p; and ¢ are the occupation number and the energy associated with the
constraint Hartree-Fock state |i >, respectively. The temperature dependence
enters into the calculations through the occupation number p;, which is assumed
to be given by the Fermi-Dirac function in terms of the single-particle energies
€;.



The RPA eq.(6) can be solved using standard techniques [11, 12]. However,
here we consider a simplified approach, and parametrize the transition density
associated with an isoscalar collective mode in terms of its multiple moments as,

§p(r;w) =< rlép(w)|r >= ar(w) fr(kr) Yim(6, ), (7)

where ar(w) is the amplitude, fr(kr) is the radial form factor associated with
the collective mode, k is the radial wave number and Yzar(6, ¢) = [Yiar (8, 0) +
Yrar® (0. 6)]/1/2(1 + 6a0). We parametrize the radial form factor in terms of the
Bessel function jr(kr) as fr(kr) = jr(kr)po(r), where po(r) is the equilibrium
density of the source. By inverting this relation, the amplitude of the mode can
be expressed according to,

ar(w) = K /d3,- Fr(r)ép(r:w), (

0

)

where Fr(r) = Fr(r)Yza(8, ¢) is a function with a smooth r dependence and the
normalization factor K is given by

1
K
A dispersion relation for the frequencies of the collective modes can be deduced

from the self-consistency condition that is obtained by inserting the solution of
the RPA equation for §p(r,w) into the right hand side of eq.(8). This gives

= /dsr Fi(r) fo(kr) You(6,0). (9

ar({w) ar(w) <i|0U/0arlj >< j|FL|t >
: =Z - ﬁu_./_e‘.L_l*_ € 172 (pi = pi); (10)

1,

where the transition field §Up(w) is written in terms of the collective amplitude
ar(w) as §U(w) = (OU/0ar) ar(w). This dispersion relation is valid, in prin-
ciple. for any choice of Fi(r), provided that the parametrization (7) is a good
approximation for the density fluctuations in a multipole mode. In fact, our in-
vestigations show that the solution of the dispersion relation is not very sensitive
to the specific form of Fi(r). Here, we take Fr(r) = 80U /0ar. This gives rise to
a symmetric dispersion relation, which is equivalent to the RPA problem with a
“separable interaction of the form,

n_ 1 )
V(r,r') = 5 w1 Fr(r)Fi(r), (11)
with the coupling constant x; given by the normalization factor K in eq.(9).

Using the Wigner-Eckart theorem and the properties of the spherical harmonics
functions. it is possible to sum over M;, M; and the dispersion relation becomes.

p; — pi (2L,-+1)(2L,—+1)(L,- L L,-)2

1=K 4
\L n'.‘L"Zn,,L; ﬁ.w - € + EJ' 471- 0 0 0

(12)

| < iloU/dayg|j >r %
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LJ' L L.'
Here ( 0 0 0
matrix element of the potential.

The dispersion relation (12) allows to determine frequencies w associated with
the collective modes of the nuclear source. Since we consider a spherically sym-
metric source, collective frequencies depend on the multipole order L and the
radial wave number k, but not on M. In the unstable region, the collective
frequencies are imaginary and determine the growth rates rz(k) of the unstable
collective modes, wr(k) = £i/7.(k). In the calculations, we use a Skyrme-like
parametrization for the effective mean-field potential,

3 (o +2)

Ulp) = top+—¢

With the parameters o = 1, to = 1000 MeV fm?® and t; = 1500 MeV fm® this
force gives a saturation density of 0.16 fm~3 and a compressibility of 350 Mel".
The parameter ¢ = —126 MeV fm® is the same as in the corresponding term in
the Skyrme-3 force. The radial matrix element in the dispersion relation (12) for
a Skyrme-like effective mean-field potential can be expressed as

) is a 3 — j symbol and < i|@U/8ar|j >r denotes the radial

ta p°t + ¢ V?p. (13)

< z]@l’/aaL[] >R= /r'zdr' (8U/aaL)R hn“L‘(T") th,L’(T"), (14)
where h, r,(r) denotes the radial wave function and
A Y. =[O (c+1)e+2), , L(L+1) 1d ,d _
(0(//60[,)}2—-[1 to + 16 t3p +c(—r5—+r—2-&;r dr)]f[‘(‘.r,‘.

(13)

3 Instabilities in Finite Systems

In order to solve the dispersion relation (12), first we need to determine the single-
particle representation of the constraint Hartree-Fock problem (CHF). However.
it is not very easy to guess a suitable form of the constraining operator Q(r).
which produces the single-particle representation for a wide range of densities in
the unstable region. For example, an operator of the form

-

Qtr) =12 i, (16)

where rg is a cut-off distance, provides a resonable constraint for preparing the
nuclear source at low densities. However, in the spinodal region, as soon as the
monopole mode L = 0 is unstable, the CHF calculations can not be carried out.
For this reason, we follow a more schematic approach and solve the dispersion
relation by employing the harmonic oscillator wave functions and the wave func-
tions of a Wood-Saxon-like potential, instead of the CHF wave functions. The
harmonic oscillator representation implicitly corresponds to a constraint accord-
ing to,

Ule] - AQ(r) = 307 (17)
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where C is the stiffness parameter of the oscillator determined by the root-mean-
square-radius of the source. The representation of the Wood-Saxon-like potential
is generated by solving the eigenfunctions of the Skyrme potential U(po) taken
as a function of the source density pp. The source density profile is taken as a
Fermi shape po(r) = 5(0)/[1 + exp(r — R)/a], where 5(0) , R and a are the central
density, sharp radius and the surface thickness of the source, respectively. In
particular, this representation provides a useful basis to investigate the influence
of the source density profile on the properties of the unstable modes. In order
to obtain accurate solutions of the dispersion relation, a sufficiently large num-
ber of orbitals should be incorporated into the calculations. Here, we present
calculations carried out for sources containing A = 40 and A = 140 nucleons by
including 100 and 120 orbitals, respectively. .

In the top panel of figure 1, minimum values of the quantity w?/|w| for modes
with multipolarity L = 0,2, 3 are plotted for a source containing A = 40 nucleons
as a function of the root-mean-square-radius < r? >!/2 of the system at zero tem-
perature. These results are obtained by solving the dispersion relation employing
the harmonic oscillator representation (left panel) and the CHF representation
(right panel) with a constraint given by eq.(16). When the minimum value of the
quantity w?/|w| is negative, the corresponding mode becomes unstable. In this
manner the CHF calculations provide a good basis for understanding transition
between the stable and the unstable regions . As seen from the upper right part
of figure 1, for increasing root-mean-square-radius the collective modes become
softer and around < r? >!/2x 3.8 fm the octupole mode becomes unstable. As
indicated above, the CHF calculations are not reliable for < r2 >/?> 4.1 fm
when the system becomes too dilute. However, as seen from the upper left part
of figure 1, the results obtained with the harmonic oscillator representation com-
pares rather well with those of the CHF calculations. In both calculations. the
system begins to show up instabilities when the root-mean-square-radius of the
source is around 3.7-3.8 fm. We notice that the instability growth rates obtained
in both calculations for L =3 mode compare rather well. Moreover, the calculated
frequencies of the stable oscillations for L =0,2.3 modes are also quite similar in
both calculations. In the bottom panel of figure 1, the density profiles of the
source corresponding to two different root-mean-square-radii are shown in both
calculations. Figure 2 illustrates the effect of the Coulomb force on the instabili-
ties of the most important unstable modes for sources with A = 40 and A = 140
nucleons at zero temperature. The Coulomb force is included into the calcu-
lations by replacing U /8ar with 8U/8a; + (1/2)0U€/8ay in the dispersion
relation (12). Here, the fluctuating part of the mean-field due to the Coulomb
force is calculated according to [13],

rC e? N g3t 1 /3\'/° 2, ~2/3
6U (l‘)=/ F—_x-7_|6pp(r) d’r -3 (;) e p,7°(r) épp(r),  (18)
with 8p, = 6p/2, where the second term is the Slater approximation for the
exchange part of the interaction. In figure 3, the minimum values of w?/|w]| for

quadrupole and octupole modes are plotted for the same systems as a function of
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the root-mean-square-radius of the system at temperatures T =0 MeV and T =
3 MeV. These calculations in figure 2 and figure 3 are performed in the harmonic
oscillator representation. As seen from the figures, the Coulomb force has a minor
effect in the light system, and in the case of the heavier system, the degree of
the instability is slightly decreased by the Coulomb force. On the other hand,
a hot source is more stable than the source at T = 0 MeV, and for increasing
temperatures the source becomes unstable at more dilute configurations than
those of at zero temperature.

Figure 4 shows the radial wave numbers associated with the quadrupole and
octupole modes as a function of the root-mean-square-radius of the density distri-
bution in a source with A = 40 nucleons (left part) and A = 140 nucleons (right
part) at zero temperature, calculated with the harmonic oscillator representation.
These wave numbers correspond to the lowest mode in the stable region and the
most unstable mode in the unstable region. In the figure, the crossover from sta-
ble to unstable regions is indicated by vertical lines. In the case of the quadrupole
mode. the crossover occur at < r? >/2x 4.2 fm, whereas the octupole mode be-
comes unstable already at < r? >!/2x 3.7 fm. In both cases, modes exhibit a
rather rapid transition from surface character with small values of k to volume
character with large values of k at around < r? >/2x 4.0~4.5 fm. It is also seen
that the transitions from stable to unstable regions and from surface to volume
character occur at different stages.

In the bottom panel of figure 3, the dispersion relations for different mul-
tipolarities are plotted as a function of the radial wave number k for sources
containing 4 = 40 nucleons (left part) and A = 140 nucleons (right part) at a
temperature ' = 3 MeV. The results obtained in the harmonic oscillator and
the Wood-Saxon representations are indicated by solid-lines and dashed-lines. re-
spectively. The density profiles associated with the sources are displayed in the
top panel of the figure. As seen from the figure, except for the lowest unstable
mode. dispersion relation is not very sensitive to the representation employed.
We note also that, the growth rates for large values of the radial wave number
are suppressed due to the quantal and surface effects, indicating that the system
does not exhibit more than one radial oscillation in the unstable modes. In the
case of A = 40, the calculations done with the harmonic oscillator representation
show that the system is unstable against quadrupole and octupole deformations
. On the other hand, in the calculations with the Wood-Saxon representation the
octupole is the dominant unstable mode. This is consistent with the CHF cal-
culations presented in figure 1, in which the lowest mode that becomes unstable
when the system is diluted is the octupole mode. In the system with A = 140
nucleons. several high order multiple modes up to L = 5 become unstable. Due to
the quantal and surface effects, the multipoles with L larger than 5 are strongly
suppressed. The maximum value of the frequencies |w (k)| is nearly equal for all
multipoles in the region L = 2 — 5, indicating that these modes can be excited.
apart from the statistical weight 2L +1, with nearly equal probability [14]. These
results are in agreement with recent calculations based on a fluid dynamic ap-
proach to spinodal instabilities [15]. It is interesting to note that the maximum
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of the growth rate for a typical multipole mode in a finite source is comparable
to the one obtained in nuclear matter. In fact, we perform a calculation in a
periodic box by solving eq.(12) and determine the growth rates of the unstable
modes as a function of the wave number. We find that the maximum growth rate
at a given density is close to the growth rate of a typical mode in a finite system
at the same central density.

In figure 6, the maximum value of the frequency |w; | obtained in the calcula-
tions using the harmonic oscillator representation is plotted as a function of L for
A = 40 (left part) and for A = 140 (right part) at temperatures T = 0, 3,5 MeV.
These calculations correspond to a source with the root-mean-square radius taken
as 4.54fm for the small system and 6.21 fm for the large system. It is seen that
the instability in both systems decreases for increasing temperature of the source
as expected, and the octupole mode appears, once again, as the most robust one.
Also, in the large system, the dispersion relation has a cut at a lower multipolarity
for increasing temperature.

4 Conclusions

In order to investigate the early development of instabilities in a dilute nuclear
source. we carry out finite temperature quantal RPA calculations for systems
with 4 = 40 and A = 140 nucleons. A parametrization of the transition density
in terms of its multipole moments leads to a simple dispersion relation for the
growth rates of the unstable collective modes . We determine the growth rates
as a function of the radial wave number from the dispersion relation employing
a suitable single-particle representation. Under typical conditions, when the di-
lute system with A = 140 nucleons has an average density p = 0.05fm™> and a
temperature range T = 3 — 5MeV the collective modes up to L = 5 — 6 become
unstable. Furthermore, as the source expands to lower densities, the unstable
modes exhibits a transition from surface to volume character. The maximum
growth rates of these unstable modes are nearly the same around 30 fm/c. in-
dicating that the system may develop into different fragmentation channels with
nearly equal probability. The results presented here are consistent with recent
calculations of spinodal instabilities in finite nuclear systems based on a fluid
dynamic approach.
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Figure 1:
Top panel: minimum values of w?/|w| for modes with multipolarity L = 0,2.3 for
A = 40 as a function of the root-mean-square-radius < r?> >/2 at zero tempera-
ture calculated in the harmonic oscillator representation (left part) and the con-
straint Hartree-Fock representation (right part). Bottom panel: density profile of
the source corresponding to different root-mean-square-radii in the harmonic os-
cillator representation (left part) and the constraint Hartree-Fock representation

(right part).

Figure 2:
Minimum values of w?/|w| for different multipole modes for A = 40 (left part)
and A = 140 (right part) as a function of the root-mean-square-radius with the
Coulomb force (dashed lines) and without the Coulomb force (solid lines) at zero
temperature, calculated in the harmonic oscillator representation.

Figure 3:
Minimum values of w?/|w| for quadrupole and octupole modes for A = 40 (left
part) and A = 140 (right part) as a function of the root-mean-square-radius at
temperatures T = 0 MeV (dashed lines) and T = 3 MeV (solid lines), calculated
in the harmonic oscillator representation.

Figure 4:
The radial wave numbers associated with the quadrupole mode (top panel) and
the octupole mode (bottom panel) as a function of the root-mean-square-radius
in a source with A = 40 at zero temperature. The vertical lines indicate the
crossover from stable to unstable regions.

Figure 5:
Top pannel: dispersion relations calculated in the harmonic oscillator representa-
tion (solid lines) and the Wood-Saxon representation (dashed lines) for different
multipolarities plotted as a function of the radial wave number & for A = 40 nu-
cleons (left part) and A = 140 (right part) at a temperature T = 3 MeV. Bottom
panel: density profile of sources in the harmonic oscillator representation (solid
lines) and the Wood-Saxon representation (dashed lines).

Figure 6:
The maximum value of the frequency |wr| obtained in the harmonic oscillator
representation as a function of the multipolarity L for A = 40 (left part) and for
A = 140 (right part) at temperatures T = 0,3,5 MeV.
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