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Abstract

This study investigates the influence of the fourth generation quarks on the double
lepton polarizations in the B → Kℓ+ℓ− decay. Taking |Vt′sVt′b| ∼ {0.01 − 0.03} with
phase about 100◦, which is consistent with the b → sℓ+ℓ− rate and the Bs mixing
parameter ∆mBs

, we have found out that the double lepton(µ, τ) polarizations are
quite sensitive to the existence of fourth generation. It can serve as an efficient tool
to search for new physics effects, precisely, to indirect search for the fourth generation
quarks(t′, b′).

PACS numbers: 12.60.–i, 13.30.–a, 14.20.Mr

∗e-mail: bashiry@ipm.ir
†e-mail: S.M.Zebarjad@physics.susc.ac.ir
‡e-mail: phy1g832889@shiraz.ac.ir
§e-mail: kazizi@newton.physics.metu.edu.tr

http://arxiv.org/abs/0710.2619v3


1 Introduction

Although the standard model (SM) of electroweak interaction has very successfully de-
scribed all existing experimental data, it is believed that it is a low energy manifestation of
a fundamental theory. Therefore, intensive search for physics beyond the SM is now being
performed in various areas of particle physics. One possible extension is the SM with more
than three generations.

Considering the recent experimental data, i.e., LEP II, two different interpretations
already exist. The first one insists on the fact the fourth generation is ruled out by these
experimental data. The second one claimes that the status of the fourth generation is
subtle [1]. This approach illustrates that the experimental results make some constrains
on the fourth generation parameters, i. e., masses(fourth neutrino mass has to be greater
than the half of the Z boson mass) and mixing[2]. While an unstable neutrino with mass
of 50 GeV is ruled out by LEP II bounds, the stable one may be ruled out by dark matter
direct search experiments[2]. Many authors who support the existence of fourth generation
studied those effects in various areas, for instance, Higgs and neutrino physics, cosmology
and dark matter[3]–[7].

It is known that Democratic Mass Matrix approach [8], which is quite natural in the
SM framework, favors the existence of the fourth SM family [9, 10]. The main restrictions
on the new SM families come from the experimental data on the ρ and S parameters [10].
However, the common mass of the fourth quark (mt′) lies between 320 GeV and 730 GeV
with respect to the experimental value of ρ = 1.0002+0.0007

−0.0004 [11]. The last value is close to the
upper limit on heavy quark masses, mq ≤ 700 GeV ≈ 4mt, which follows from partial-wave
unitarity at high energies [12]. Flavor–changing neutral current (FCNC) b → s(d)ℓ+ℓ−

decays provide important tests for the gauge structure of the standard model (SM) at one–
loop level. Moreover, b→ s(d)ℓ+ℓ− decays are also very sensitive to the new physics beyond
the SM. New physics effects manifest themselves in rare decays in two different ways, either
through new combinations with the new Wilson coefficients or through the new operator
structure in the effective Hamiltonian, which is absent in the SM. One of the efficient ways
in establishing new physics beyond the SM is the measurement of the lepton polarization in
the inclusive b→ s(d)ℓ+ℓ− transition[13] and the exclusive B → K( K∗, ρ, γ) ℓ+ℓ− decays
[14]–[22].

In this study, we investigate the possibility of searching for new physics in the double
lepton polarization of the B → Kℓ+ℓ− using the SM with fourth generation of quarks(b′, t′).
The fourth quark (t′), like u, c, t quarks, contributes to the b→ s(d) transition at the loop
level. Note that the fourth generation effects have been widely studied in baryonic and
semileptonic B decays [23]–[36].

The main problem in the description of exclusive decays is to evaluate the form factors,
i.e., the matrix elements of the effective Hamiltonian between initial and final hadron states.
It is obvious that in order to achieve the form factors the non pertubative QCD approach
has to be used(see for example [15]).

The sensitivity of the branching ratio and various asymmetries to the existence of fourth
generation quarks in the B → K∗ℓ+ℓ− decay[33] and Λb → Λℓ+ℓ− [35, 34]decay are inves-
tigated and found out that the branching ratio, lepton polarization and forward–backward
asymmetry are all very sensitive to the fourth generation parameters (mt′ , Vt′bV

∗
t′s). Con-
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sequently, it is natural to ask whether the double lepton polarizations are sensitive to the
fourth generation parameters, in the B → Kℓ+ℓ− decays. In the present work, we try to
answer this question.

The paper is organized as follows: In section 2, we try to include the fourth generation
in the the effective Hamiltonian. In section 3, the general expressions for the longitudinal,
transversal and normal polarizations of leptons are obtained. In section 4, we examine the
sensitivity of these polarizations to the fourth generation parameters (mt′ , Vt′bV

∗
t′s ).

2 The matrix element for the B → Kℓ+ℓ− decay in

SM4

The matrix element of the B → Kℓ+ℓ− decay at the quark level is described by the
b→ sℓ+ℓ− transition and the effective Hamiltonian at O(µ) scale can be written as

Heff =
4GF√

2
VtbV

∗
ts

10
∑

i=1

Ci(µ)Oi(µ) , (1)

here the full set of the operators Oi(µ) and the corresponding expressions for the Wilson
coefficients Ci(µ) in the SM are given in [37]. As has already been noted, the fourth
generation is introduced in the same way as three generations in the SM, and so new
operators do not appear clearly and the full operator set is exactly the same as in the
SM. The fourth generation changes the values of the Wilson coefficients C7(µ), C9(µ) and
C10(µ), via virtual exchange of the fourth generation up type quark t′. The above mentioned
Wilson coefficients are modified as:

Ctot
7 (µ) = CSM

7 (µ) +
λt′

λt
Cnew

7 (µ) ,

Ctot
9 (µ) = CSM

9 (µ) +
λt′

λt
Cnew

9 (µ) ,

Ctot
10 (µ) = CSM

10 (µ) +
λt′

λt
Cnew

10 (µ) , (2)

where λf = V ∗
fbVfs and the last terms in these expressions describe the contributions of the

t′ quark to the Wilson coefficients. λt′ can be parameterized as:

λt′ = V ∗
t′bVt′s = rsbe

iφsb (3)

Ci’s can also be re–written in the following form:

λtCi → λtC
SM
i + λt′C

new
i , (4)

The unitarity of the 4× 4 CKM matrix leads to

λu + λc + λt + λt′ = 0. (5)

One can λu = V ∗
ubVus is very small compared with the others . Then, λt ≈ −λc − λt′ . And

then

λtC
SM
i + λt′C

new
i = λcC

SM
i + λt′(C

new
i − CSM

i ) (6)
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It is clear that for the mt′ → mt or λt′ → 0, λt′(C
new
i −CSM

i ) term vanishes, as required by
the GIM mechanism.

In deriving Eq. (2), we factored out the term V ∗
tbVts in the effective Hamiltonian given in

Eq. (1). The explicit forms of the Cnew
i can be obtained from the corresponding expression

of the Wilson coefficients in the SM by substituting mt → mt′ (see [37, 38]). If the ŝ quark
mass is neglected, the above effective Hamiltonian leads to the following matrix element
for the b→ sℓ+ℓ− decay

Heff =
GFαem

2
√
2π

VtbV
∗
ts

[

Ctot
9 s̄γµ(1− γ5)b ℓ̄γµℓ+ Ctot

10 s̄γµ(1− γ5)b ℓ̄γµγ5ℓ

− 2Ctot
7

mb

q2
s̄σµνq

ν(1 + γ5)b ℓ̄γµℓ

]

, (7)

where q2 = (p1 + p2)
2 and p1 and p2 are the final leptons four–momenta. The effective

coefficient Ctot
9 can be written in the following form

Ctot
9 = C9 + Y (s) , (8)

where s′ = q2/m2
b and the function Y (s′) contains the contributions from the one loop

matrix element of the four quark operators.
In addition to the short distance contributions, Yper(s

′) receives also long distance con-
tributions, which have their origin in the real cc̄ intermediate states, i.e., J/ψ, ψ′, · · ·. In
the present study we neglect the long distance contributions for the sake of simplicity.

Now, having the effective Hamiltonian, describing the b → sℓ+ℓ− decay at a scale
µ ≃ mB, we can write down the matrix elements for the B → Kℓ+ℓ− decay. The matrix
element for this decay can be obtained by sandwiching the effective Hamiltonian between
B and K meson states; which are parameterized in terms of form-factors which depend on
the momentum transfer squared, q2 = (pB − pK)

2 = (p+− p−)
2. It follows from Eq.(7) that

in order to calculate the amplitude of the B → Kℓ+ℓ− decay the following matrix elements
are required;

〈K |s̄γµb|B〉 , 〈K |s̄iσµνqνb|B〉 , 〈K |s̄b|B〉 , 〈K |s̄σµνb|B〉 .
These matrix elements are defined as follows [39, 40];

〈K(pK) |s̄γµb|B(pB)〉 = f+

[

(pB + pK)µ −
m2

B −m2
K

q2
qµ

]

+ f0
m2

B −m2
K

q2
qµ, (9)

〈K(pK) |s̄σµνb|B(pB)〉 = −i fT
mB +mK

[

(pB + pK)µqν − qµ(pB + pK)ν
]

. (10)

Note that the finiteness of Eq. (7) at q2 = 0 is guaranteed by assuming that f+(0) = f0(0).
The matrix elements 〈K(pK) |s̄iσµνqνb|B(pB)〉 and 〈K |s̄b|B〉 can be derived from Eqs.

(9) and (10) by multiplying both sides of these equations by qµ and using the equations of
motion, we get;

〈K(pK) |s̄b|B(pB)〉 = f0
m2

B −m2
K

mb −ms
, (11)

〈K(pK) |s̄iσµνqνb|B(pB)〉 =
fT

mB +mK

[

(pB + pK)µq
2 − qµ(m

2
B −m2

K)
]

. (12)
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As has already been mentioned, the form-factors entering Eqs.(9)-(12) represent the
hadronization process. In order to calculate these form-factors information about the non-
perturbative region of QCD is required. Therefore, for the estimation of the form-factors
to be reliable, a nonperturbative approach is needed. Among the nonperturbative ap-
proaches, the QCD sum rule is more predictive in studying the properties of hadrons. The
form-factors appearing in the B → K transition are computed in the framework of the
light cone QCD sum rules[39, 40]. We will use the result of the work in [40] where radiative
corrections to the leading twist wave functions and SU(3) breaking effects are taken into
account. As a result, the form-factors are parameterized in the following way [40];

fi(q
2) =

r1
1− q2/m2

1

+
r2

(1− q2/m2
1)

2
, (13)

where 1 = + or T , and

f0(q
2) =

r2
1− q2/m2

fit

, (14)

with m1 = 5.41GeV and the other parameters as given in Table 1.

r1 r2 m2
fit

f+ 0.162 0.173 −−
f0 0. 0.33 37.46
fT 0.161 0.198 −−

Table 1: The parameters for the form-factors of the B → K transition are given in [40].

Using the definition of the form factors given in Eqs.(9)-(12), we arrive at the following
matrix element for the B → Kℓ+ℓ− decay;

M(B → Kℓ+ℓ−) =
GFαem

4
√
2π

VtbV
∗
ts

{

ℓ̄γµℓ
[

A(pB + pK)µ +Bqµ
]

(15)

+ℓ̄γµγ5ℓ
[

C(pB + pK)µ +Dqµ
]

.

The functions entering Eq.(15) are defined as;

A = (Ctot
LL + Ctot

LR)f+ + 2(Ctot
BR + Ctot

SL)
fT

mB +mK

,

B = (Ctot
LL + Ctot

LR)f− − 2(Ctot
BR + Ctot

SL)
fT

(mB +mK)q2
(m2

B −m2
K),

C = (Ctot
LR − Ctot

LL)f+,

D = (Ctot
LR − Ctot

LL)f− .

where

Ctot
LL = Ctot

9 − Ctot
10 , Ctot

LR = Ctot
9 + Ctot

10 .

Ctot
SL = −2msC

tot
7 , Ctot

BR = −2mbC
tot
7 . (16)
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Considering Eq. (15), we get the following result for the dilepton invariant mass spec-
trum of decay rate:

dΓ

dŝ
(B → Kℓ+ℓ−) =

G2α2mB

214π5
|VtbV ∗

ts|2 λ1/2(1, r̂K , ŝ)v∆(ŝ) , (17)

where λ(1, r̂K, ŝ) = 1+ r̂2K+ ŝ2−2r̂K−2ŝ−2r̂K ŝ, ŝ = q2/m2
B, r̂K = m2

K/m
2
B, m̂ℓ = mℓ/mB,

v =
√

1− 4m̂2
ℓ/ŝ is the final lepton velocity, and ∆(ŝ) is

∆(ŝ) =
4m2

B

3
Re[24m2

Bm̂
2
l (1− r̂K)D

⋆C + λm2
B(3− v2)|A|2 + 12m2

Bm̂
2
l ŝ|D|2

+ m2
B|C|2{2λ− (1− v2)(2λ− 3(1− r̂K)

2)}] (18)

3 Double-Lepton Polarization

In this section, we will calculate the double–polarization asymmetries, i.e., when polar-
izations of both leptons have to be simultaneously measured. One can introduce a spin
projection operator as follows:

Λ1 =
1

2
(1 + γ56s−i ) ,

Λ2 =
1

2
(1 + γ56s+i ) ,

for lepton ℓ− and antilepton ℓ+, where i = L,N, T correspond to the longitudinal, normal
and transversal polarizations, respectively. Firstly, we must define the orthogonal vectors
s in the rest frame of leptons(where its vector is the polarization vector of the lepton):

s−µ
L =

(

0, ~e−L
)

=

(

0,
~p−
|~p−|

)

,

s−µ
N =

(

0, ~e−N
)

=

(

0,
~pK × ~p−
|~pK × ~p−|

)

,

s−µ
T =

(

0, ~e−T
)

=
(

0, ~e−N × ~e−L
)

,

s+µ
L =

(

0, ~e+L
)

=

(

0,
~p+
|~p+|

)

,

s+µ
N =

(

0, ~e+N
)

=

(

0,
~pK × ~p+
|~pK × ~p+|

)

,

s+µ
T =

(

0, ~e+T
)

=
(

0, ~e+N × ~e+L
)

, (19)

here ~p∓ and ~pK are the three–momenta of the leptons ℓ∓ and K meson in the center of mass
frame (CM) of ℓ− ℓ+ system, respectively.

The longitudinal unit vectors are boosted to the CM frame of ℓ−ℓ+ by Lorenz transfor-
mation:

(

s−µ
L

)

CM
=

(

|~p−|
mℓ

,
E~p−
mℓ |~p−|

)

,

(

s+µ
L

)

CM
=

(

|~p−|
mℓ

,− E~p−
mℓ |~p−|

)

, (20)
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while the other two vectors remain unchanged.
We can now define the double–lepton polarization asymmetries as in [41]:

Pij(ŝ) =

(

dΓ

dŝ
(~s−i , ~s

+
j )−

dΓ

dŝ
(−~s−i , ~s+j )

)

−
(

dΓ

dŝ
(~s−i ,−~s+j )−

dΓ

dŝ
(−~s−i ,−~s+j )

)

(

dΓ

dŝ
(~s−i , ~s

+
j ) +

dΓ

dŝ
(−~s−i , ~s+j )

)

+

(

dΓ

dŝ
(~s−i ,−~s+j ) +

dΓ

dŝ
(−~s−i ,−~s+j )

) , (21)

where i, j = L, N, T , and the first subindex i corresponds to lepton while the second
subindex j corresponds to antilepton, respectively.

Now, regarding the aforementioned definitions, after doing the straight forward calcu-
lations we obtain the following results for Pij(ŝ):

PLL =
−4m2

B

3∆
Re[−24m2

Bm̂
2
l (1− r̂K)C

⋆D + λm2
B(1 + v2)|A|2 (22)

− 12m2
Bm̂

2
l ŝ|D|2 +m2

B|C|2(2λ− (1− v2)(2λ+ 3(1− r̂K)
2))], (23)

PLN =
−4πm3

B

√
λŝ

ŝ∆
Im[−mBm̂lŝA

⋆D −mBm̂l(1− r̂K)A
⋆C], (24)

PNL = −PLN , (25)

PLT =
4πm3

B

√
λŝ

ŝ∆
Re[mBm̂lv(1− r̂K)|C|2 +mBm̂lvŝC

⋆D], (26)

PTL = PLT , (27)

PNT = −8m2
Bv

3∆
Im[2λm2

BA
⋆C], (28)

PTN = −PNT , (29)

PTT =
4m2

B

3∆
Re[−24m2

Bm̂
2
l (1− r̂K)C

⋆D − λm2
B(1 + v2)|A|2 − 12m2

Bm̂
2
l ŝ|D|2

+ m2
B|C|2{2λ− (1− v2)(2λ+ 3(1− r̂K)

2)}], (30)

PNN =
4m2

B

3∆
Re[24m2

Bm̂
2
l (1− r̂K)C

⋆D − λm2
B(3− v2)|A|2 + 12m2

Bm̂
2
l ŝ|D|2

+ m2
B|C|2{2λ− (1− v2)(2λ− 3(1− r̂K)

2)}] (31)

4 Numerical analysis

In this section, we will analyze the dependence of the double–lepton polarizations on
the fourth quark mass(mt′) and the product of quark mixing matrix elements (V ∗

t′bVt′s =
rsbe

iφsb). The challenging input parameters in the calculations are the form factors, which
are related to the non–pertubative part of QCD. We will use the result of the study in [40]
where radiative corrections to the leading twist wave functions and SU(3) breaking effects
are taken into account.

We use the next–to–leading order logarithmic approximation for the resulting values
of the Wilson coefficients Ceff

9 , C7 and C10 in the SM [42, 43] at the re–normalization
point µ = mb. It should be noted that in addition to the short distance contribution, Ceff

9
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rsb 0.005 0.01 0.02 0.03

mt′(GeV ) 739 529 385 331

Table 2: The experimental limit of mt′ for φsb = π/3[34]

rsb 0.005 0.01 0.02 0.03

mt′(GeV ) 511 373 289 253

Table 3: The experimental limit of mt′ for φsb = π/2[34]

receives long distance contributions from the real c̄c resonant states of the J/ψ family. In
the present research, we do not take the long distance effects into account.

The input parameters used in this analysis are as follows:
|VtbV ∗

ts| = 0.0385, (Ceff
9 )sh = 4.344, C10 = −4.669, ΓB = 4.22 × 10−13 GeV . In order

to perform quantitative analysis of the double–lepton polarizations, the values of the new
parameters(mt′ , rsb, φsb) are needed. Using the experimental values of B → Xsγ and B →
Xsℓ

+ℓ−, the restriction on rsb ∼ {0.01−0.03} has been obtained [27, 34] for φsb ∼ {0−2π}
and mt′ ∼ {200, 600} (GeV)(see table 2). Considering the Bs mixing, which is in terms of
the ∆mBs

, φsb is sharply restricted (φsb ∼ π/2) [23].
Before performing numerical analyses, we would like to add a few words about lepton

polarizations. From explicit expressions of the lepton polarizations one can easily see that
they depend on both ŝ and the new parameters(mt′ , rsb). Therefore, it may experimentally
be difficult to study these dependencies at the same time. For this reason, we eliminate
the q2 dependence by performing integration over ŝ in the allowed region, i.e., we consider
the averaged double–lepton polarization asymmetries. The average gained, here, over ŝ is
defined as:

〈Pij〉 =

∫ (1−
√
r̂K)2

4m̂2

ℓ

Pij
dB
dŝ
dŝ

∫ (1−
√
r̂K)2

4m̂2

ℓ

dB
dŝ
dŝ

.

Our quantitative analyses indicate that some of the 〈Pij〉 are less sensitive to the fourth
generation parameters; i.e, the maximum deviation from the SM3 are ∼ 5%. We do not
present those dependencies on fourth generation parameters with relevant figures. We
present our analysis for strongly dependent functions in a series of figures where the black

rsb 0.005 0.01 0.02 0.03

mt′(GeV ) 361 283 235 217

Table 4: The experimental limit of mt′ for φsb = 2π/3[34]
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”DOTS” in figures show the experimental limit on mt′ , considering the 1σ level deviation
from the measured branching ratio of B → Xsℓ

−ℓ+(see Table 2,3,4). From these figures,
we deduce the following results:

• Taking the fourth generation into account , the value of 〈PLL〉 shows weak dependency
for µ channel and alters τ channel at most about 20% compared to the SM3 the
prediction, while it increases for , φsb = 90◦, 120◦. However, it both increases and
decreases for the φsb = 60◦ for both channels.

• In the SM3 the non–zero values of 〈PLN〉 and 〈PNT 〉, as well as 〈PNL〉 and 〈PTN〉, have
their origin in the higher order QCD corrections to the Ceff

9 . Since these functions
are proportional to the lepton mass and imaginary part of the Ceff

9 , results of both
are negligible. However, they seem to exceed the SM value sizeably. This is because
of the new weak phase and new contribution to the Wilson coefficients coming out of
the fourth generation. Furthermore, for fixed values of rsb, their magnitude decreases
by increasing the φsb in the the experimentally allowed region.

• Regarding the fourth generation, the value of 〈PNN〉 changes 3–4 times for µ channel
and at most about 25% for τ channel compared with the SM3 prediction, while it
increases for , φsb = 90◦, 120◦. But, it is both increases and decreases for the φsb = 60◦

in both channels.

• The situation for 〈PTT 〉 is similar to the 〈PNN〉, if the µ channel is considered . But τ
channel depicts weak dependence on the fourth generation parameters(at most ∼ 5%
deviation from the SM3 predictions).

• The value of 〈PLT 〉 changes about two times for µ channel and at most about 5% for
τ channel compared with the SM3 prediction, while it increases for , φsb = 90◦, 120◦.
But, it both increases and decreases for the φsb = 60◦ in both channels.

Finally, let us briefly discuss whether it is possible to measure the lepton polarization
asymmetries in experiments or not. A required number of the events (i.e., the number of
BB̄ pair) in terms of the branching ratio B at nσ level, 〈Pij〉 and the efficiencies of the
leptons s1 and s2 are given by the expression

N =
n2

Bs1s2〈Pij〉2
,

Typical values of the efficiencies of the τ–leptons range from 50% to 90% for their var-
ious decay modes[44]. It should be noted, here, that the error in τ–lepton polarization
is estimated to be about (10 ÷ 15)% [45]. So, the error in measurement of the τ–lepton
asymmetries is approximately (20÷ 30)%, and the error in obtaining the number of events
is about 50%.

Looking at the expression of N , it can be understood that in order to detect the lepton
polarization asymmetries in the µ and τ channels at 3σ level, the minimum number of
required events are (for the efficiency of τ–lepton we take 0.5):

8



• for B → Kµ+µ− decay

N =











3.5× 107 (for 〈PLL〉 , 〈PLT 〉) ,
5.0× 108 (for 〈PTL〉) ,
2.0× 1011 (for 〈PLN〉) ,

• for B → Kτ+τ− decay

N =



















(1.0± 0.5)× 109 (for 〈PLL〉 , 〈PLT 〉 , 〈PTL〉 , 〈PNN〉) ,
(5.0± 2.5)× 108 (for 〈PTT 〉) ,
(4.0± 2.0)× 1010 (for 〈PLN〉 , 〈PNL〉) ,
(3.0± 1.5)× 1011 (for 〈PNT 〉 , 〈PTN〉) .

On the other hand, the number of BB̄ pairs, that are produced at LHC are about
∼ 1012. As a result of the comparison of these numbers and N , we conclude that except
〈PLN〉 in the B → Kµ+µ− decay and 〈PNT 〉, 〈PTN〉 in the B → Kτ+τ− decay, all double
lepton polarizations can be detectable at LHC. The numbers for the B → Kµ+µ− decay
presented above demonstrate that 〈PLL〉 and 〈PLT 〉 for the B → Kµ+µ− decay might be
accessible to B factories after several years of running.

To sum up, in this study we present the most general analyses of the double–lepton
polarization asymmetries in the B → Kℓ+ℓ− decay using the SM with the fourth generation
of quarks. In our analyses, we have used the experimental results of the branching ratio
for the B → Xsµ

+µ− decay and Bs mixing to control the fourth generation parameters.
We have found out that some of the double–lepton polarization functions which are already
accessible to LHC depict the strong dependency on the fourth generation quark mass and
product of quark mixing. The study of such strong dependent double–lepton polarization
asymmetries can serve as a good test for the predictions of the SM and for the indirect
search for the fourth generation up type quarks t′.
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Figure captions

Fig. (1) The dependence of the 〈PLL〉 for the B → Kτ+τ− decay on the fourth gen-
eration quark mass mt′ for three different values of φsb = {60◦, 90◦, 120◦} and rsb =
{0.01, 0.02, 0.03} .

Fig. (2) The dependence of the 〈PLN〉 on the fourth generation quark mass mt′ for three
different values of φsb ∼ {60◦, 90◦, 120◦} and rsb = {0.01, 0.02, 0.03} for µ lepton.

Fig. (3)The same as in Fig. (2), but for the τ lepton.

Fig. (4) The dependence of the 〈PNT 〉 on the fourth generation quark mass mt′ for three
different values of φsb ∼ {60◦, 90◦, 120◦} and rsb = {0.01, 0.02, 0.03} for µ lepton.

Fig. (5)The same as in Fig. (4), but for the τ lepton.

Fig. (6) The dependence of the 〈PLT 〉 on the fourth generation quark mass mt′ for three
different values of φsb ∼ {60◦, 90◦, 120◦} and rsb = {0.01, 0.02, 0.03} for µ lepton.

Fig. (7) The dependence of the 〈PNN〉 on the fourth generation quark mass mt′ for
three different values of φsb ∼ {60◦, 90◦, 120◦} and rsb = {0.01, 0.02, 0.03} for µ lepton.

Fig. (8)The same as in Fig. (7), but for the τ lepton.

Fig. (9) The dependence of the 〈PTT 〉 on the fourth generation quark mass mt′ for three
different values of φsb ∼ {60◦, 90◦, 120◦} and rsb = {0.01, 0.02, 0.03} for µ lepton.
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