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In order to obtain energy and momentum (due to matter and fields including gravitation)

distributions of the Gibbons-Maeda dilaton spacetime, we use the Møller energy and/or

momentum prescription both in Einstein’s theory of general relativity and teleparallel

gravity. We find the same energy distribution for a given metric in both of these

different gravitation theories. Under two limits, we also calculate energy associated

with two other models such as the Garfinkle-Horowitz-Strominger dilaton spacetime

and the Reissner-Nordstrom spacetime. The energy obtained is also independent of

the teleparallel dimensionless coupling constant, which means that it is valid in any

teleparallel model. Our result also sustains (a) the importance of the energy-momentum

definitions in the evaluation of the energy distribution for a given spacetime and (b) the

viewpoint of Lessner that the Møller energy-momentum complex is a powerful concept of

energy and momentum (c) the hypothesis of Vagenas that there is a connection between

the coefficients of the energy-momentum expression of Einstein and those of Moller.

Keywords: Møller energy; black holes; general relativity; teleparallel gravity.

1. INTRODUCTION

Energy and/or momentum prescriptions introduced first by Einstein [1], were the

foremost endeavor to solve the problem of energy localization. After that a large

number of formulations of the gravitational energy, momentum and angular momentum

have been proposed. Some of them are coordinate independent and others are

http://arxiv.org/abs/gr-qc/0603063v1
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coordinate-dependent. There lies a dispute on the importance of non-tensorial energy-

momentum complexes whose physical interpretations have been questioned by a number

of physicists, including Weyl, Pauli and Eddington. Also, there exists an opinion

that the energy-momentum pseudo-tensors are not useful to find meaningful results

in a given geometry. Chang, Nester, Chen [2] obtained that there exists a direct

relationship between quasilocal and pseudotensor expressions; since every energy-

momentum pseudotensor is associated with a legitimate Hamiltonian boundary term.

Ever since the Einstein’s energy-momentum complex was used for calculating energy and

momentum in a general relativistic system, many attempts have been made to evaluate

the energy distribution for a given space-time [3]. Except for the Møller definition these

formulations only give meaningful results if the calculations are performed in Cartesian

coordinates. Møller proposed a new expression for energy-momentum complex which

could be utilized to any coordinate system. Next, Lessner [4] argued that the Møller

prescription is a powerful concept for energy-momentum in general relativity.

Virbhadra [5], using the energy and momentum complexes of Einstein, Landau-

Lifshitz, Papapetrou and Weinberg for a general non-static spherically symmetric metric

of the Kerr-Schild class, showed that all of these energy-momentum formulations give the

same energy distribution as in the Penrose energy-momentum formulation. In literature

there are several papers on the calculation of the enegy-momentum distribution of the

universe by using energy-momentum complexes [6].

Recently, the problem of energy-momentum localization has also been considered

in teleparallel gravity [7]. Møller showed that a tetrad description of a gravitational field

equation allows a more satisfactory treatment of the energy-momentum complex than

does general relativity. Therefore, we have also applied the super-potential method by

Mikhail et. al. [8] to calculate the energy of the central gravitating body. In Gen. Relat.

Gravit. 36, 1255(2004); Vargas, using the definitions of Einstein and Landau-Lifshitz in

teleparallel gravity, found that the total energy is zero in Friedmann-Robertson-Walker

space-times. There are also new papers on the energy-momentum problem in teleparallel

gravity. The authors obtained the same energy-momentum for different formulations in

teleparallel gravity [9, 10, 11, 12].

In his new paper, Vagenas hypothesized [13] that there is a connection between

the coefficients of the expression for the energy (when the energy and/or momentum

complex of Einstein is employed) of the form

E(r) =
+∞
∑

n=0

α(Einstein)
n r−n (1)

and those of the expression for the energy (when the energy and/or momentum complex

of Møller is employed) of the form

E(r) =
+∞
∑

n=0

α(Møller)
n r−n. (2)

The relation that materializes this connection between the aforementioned coefficients
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is given by

α(Einstein)
n =

1

n+ 1
α(Møller)
n . (3)

Here, we will also check whether this hypothesis is true or not for our problem.

The paper is organized as follows. In the next section, we introduce the Gibbons-

Maeda dilaton spacetime. Next, in section 3, we give the energy-momentum definitions

of Møller both in Einstein’s theory of general relativity and the teleparallel gravity and

Einstein complex in general relativity. Section 4 gives the calculations for the energy

distribution associated with a given metric. Finally, section 5 is devoted to summarize

and conclusions.

Notations and conventions: c = h = 1, metric signature (+,−,−,−), Greek indices

run from 0 to 3 and, Latin ones from 1 to 3. Throughout this paper, Latin indices (i, j,

...) number the vectors, and Greek indices (µ, ν,...) represent the vector components.

2. THE GIBBONS-MAEDA DILATON SPACETIME

The metric for the Gibbons-Maeda dilaton spacetime [14, 15] is

ds2 =
(r − r+)(r − r−)

r2 −D2
dt2 − r2 −D2

(r − r+)(r − r−)
dr2 − (r2 −D2)(dθ2 + sin2 θdφ2) (4)

where D = P 2−Q2

2M
and r∓ = M ∓

√
M2 +D2 − P 2 −Q2. The parameters P and Q

represent the black hole magnetic and electric charges, respectively. When P = 0, the

metric returns the Garfinkle-Horowitz-Strominger dilaton spacetime which is given by

the line-element

ds2 =
(r − r+)(r − r−)

r2 − ( Q2

2M
)2

dt2 − r2 − ( Q2

2M
)2

(r − r+)(r − r−)
dr2

−(r2 − (
Q2

2M
)2)(dθ2 + sin2 θdφ2) (5)

and, if D = 0, then the metric transforms into the Reissner-Nordstrom spacetime

ds2 =
(r − r+)(r − r−)

r2
dt2 − r2

(r − r+)(r − r−)
dr2 − r2(dθ2 + sin2 θdφ2). (6)

For the metric describing the Gibbons-Maeda dilaton spacetime, the non-vanishing

components of the Einstein tensor Gµν (≡ 8πTµν , where Tµν is the energy-momentum

tensor for the matter field described by a perfect fluid of density ρ and pressure p) are

G11 =
(D2 − rr+)(D

2 − rr−)

(r+ − r)(r − r−)(D2 − r2)2
(7)

G22 =
(D2 − rr+)(D

2 − rr−)

(D2 − r2)2
(8)

G33 =
(D2 − rr+)(D

2 − rr−) sin
2 θ

(D2 − r2)2
(9)
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G00 =
(r+ − r)(r− − r)

(D2 − r2)4

[

D2(D2 + 2r2 − 32r−) + r+(−3rD2 + 2r−D
2 + r2r−)

]

.(10)

The general form of the tetrad, h
µ
i , having spherical symmetry was given by

Robertson [16]. In the Cartesian form it can be written as

h 0
0 = iΞ, h 0

a = Σxa, h α
0 = i∆xα,

h α
a = Υδαa + Γxaxα + ǫaαβℜxβ (11)

where Ξ,Υ,Σ,∆,Γ, and ℜ are functions of t and r =
√
xaxa, and the zeroth vector

h
µ
0 has the factor i2 = −1 to preserve Lorentz signature and the tetrad of Minkowski

space-time is hµ
a = diag(i, δαa ) where (a=1,2,3).

Using the general coordinate transformation

haµ =
∂Xν′

∂Xµ haν (12)

where {Xµ} and
{

Xν′
}

are, respectively, the isotropic and Schwarzschild coordinates

(t, r, θ, φ). In the spherical, static and isotropic coordinate system X1 = r sin θ cosφ,

X2 = r sin θ sinφ, X3 = r cos θ. We obtain the tetrad components of h µ
a as



















i
√
r2−D2√

(r−r+)(r−r−)
0 0 0

0
√

(r−r+)(r−r−)
r2−D2 sθcφ 1√

r2−D2
cθcφ − sφ√

r2−D2sθ

0
√

(r−r+)(r−r−)
r2−D2 sθsφ 1√

r2−D2
cθsφ cφ√

r2−D2sθ

0
√

(r−r+)(r−r−)
r2−D2 cθ − 1√

r2−D2
sθ 0



















(13)

where i2 = −1. Here, we have introduced the following notation: sθ = sin θ, cθ = cos θ,

sφ = sinφ and cφ = cosφ. For the Gibbons-Maeda dilaton spacetime, gµν is defined by














(r−r+)(r−r−)
r2−D2 0 0 0

0 D2−r2

(r−r+)(r−r−)
0 0

0 0 D2 − r2 0

0 0 0 (D2 − r2) sin2 θ















(14)

and its inverse gµν














D2−r2

(r−r+)(r−r−)
0 0 0

0 (r−r+)(r−r−)
r2−D2 0 0

0 0 1
D2−r2

0

0 0 0 1
(D2−r2) sin2 θ















. (15)

3. GRAVITATIONAL ENERGY AND/OR MOMENTUM DEFINITIONS

TO BE USED

3.1. In general relativity

3.1.1. The energy and/or momentum complex of Møller In general relativity, it is given

by [3]

Mν
µ =

1

8π
χνα
µ,α (16)
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satisfying the local conservation laws:

∂Mν
µ

∂xν
= 0 (17)

where the antisymmetric super-potential χνα
µ is

χνα
µ =

√
−g[gµβ,γ − gµγ,β ]g

νγgαβ. (18)

The locally conserved energy-momentum complex Mν
µ contains contributions from the

matter, non-gravitational and gravitational fields. M0
0 is the energy density and M0

a are

the momentum density components. The momentum four-vector definition of Møller is

given by

Pµ =
∫ ∫ ∫

M0
µdxdydz. (19)

Using Gauss’s theorem, this definition transforms into

Pµ =
1

8π

∫ ∫

χ0a
µ µαdS (20)

where µa (where a = 1, 2, 3) is the outward unit normal vector over the infinitesimal

surface element dS. Pi give momentum components P1, P2, P3 and P0 gives the energy.

3.1.2. Einstein’s energy and/or momentum prescription The formulation [1, 3] is

defined as

Θν
µ =

1

16π
Hνα

µ,α (21)

where

Hνα
µ =

gµβ√−g

[

−g(gνβgαξ − gαβgνξ)
]

,ξ
(22)

Θ0
0 is the energy density, Θ0

a are the momentum density components, and Θa
0 are the

components of energy-current density. The Einstein energy and momentum density

satisfies the local conservation laws

∂Θν
µ

∂xν
= 0 (23)

and the energy-momentum components are given by

Pµ =
∫ ∫ ∫

Θ0
µdxdydz. (24)

Pµ is called the momentum four-vector, Pa give momentum components P1, P2, P3 and

P0 gives the energy.

3.2. In teleparallel Gravity

The teleparallel theory of gravity (the tetrad theory of gravitation) is an alternative

approach to gravitation and corresponds to a gauge theory for the translation group

based on Weitzenböck geometry [17]. In the theory of teleparallel gravity, gravitation is

attributed to torsion [18], which plays the role of a force [19], and the curvature tensor

vanishes identically. The essential field is acted by a nontrivial tetrad field, which gives
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rise to the metric as a by-product. The translational gauge potentials appear as the

nontrivial item of the tetrad field, so induces on space-time a teleparallel structure

which is directly related to the presence of the gravitational field. The interesting place

of teleparallel theory is that, due to its gauge structure, it can reveal a more appropriate

approach to consider some specific problems. This is the case, for example, in the energy

and momentum problem, which becomes more transparent.

Møller modified general relativity by constructing a new field theory in teleparallel

space. The aim of this theory was to overcome the problem of the energy-momentum

complex that appears in Riemannian space [20]. The field equations in this new theory

were derived from a Lagrangian which is not invariant under local tetrad rotation. Saez

[21] generalized Møller theory into a scalar tetrad theory of gravitation. Meyer [22]

showed that Møller theory is a special case of Poincare gauge theory [23, 24].

In teleparallel gravity, the super-potential of Møller is given by Mikhail et al. [8] as

Uνβ
µ =

(−g)1/2

2κ
P τνβ
χρσ [Φ

ρgσχgµτ − λgτµξ
χρσ − (1− 2λ)gτµξ

σρχ] (25)

where ξαβµ = hiαh
i
β;µ is the con-torsion tensor and h

µ
i is the tetrad field and defined

uniquely by gαβ = hα
i h

β
j η

ij (here ηij is the Minkowski space-time). κ is the Einstein

constant and λ is free-dimensionless coupling parameter of teleparallel gravity. For the

teleparallel equivalent of general relativity, there is a specific choice of this constant.

Φµ is the basic vector field given by

Φµ = ξρµρ (26)

and P τνβ
χρσ can be found by

P τνβ
χρσ = δτχg

νβ
ρσ + δτρg

νβ
σχ − δτσg

νβ
χρ (27)

with gνβρσ being a tensor defined by

gνβρσ = δνρδ
β
σ − δνσδ

β
ρ . (28)

The energy-momentum density is defined by

Ξβ
α = U

βλ
α,λ (29)

where comma denotes ordinary differentiation. The energy is expressed by the surface

integral;

E = lim
r→∞

∫

r=constant
U

0ζ
0 ηζdS (30)

where ηζ (with ζ = 1, 2, 3) is the unit three-vector normal to surface element dS.

4. CALCULATIONS

4.1. In general relativity

The aim of this section is to evaluate the energy and momentum distributions associated

with the Gibbons-Maeda dilaton metric, using the Møller and Einstein energy and/or
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momentum prescriptions. First, we have to evaluate the super-potentials in the contexts

of the Møller and Einstein’s complexes. There is the required non-zero super-potential

of Møller

χ01
0 =

(Mr − P 2 −Q2) sin θ

r
. (31)

By substituting this super-potential, as given above, into equation (16), one gets the

following energy distribution

M0
0 =

M2 sin θ[(P 2 −Q2)2(P 2 +Q2)− 4rM(P 2 −Q2)2 + 4M2(P 2 +Q2)r2]

π[(P 2 −Q2)2 −M2r2]2
(32)

while the momentum density distributions take the form

M0
1 = 0 (33)

M0
2 = 0 (34)

M0
3 = 0. (35)

Therefore, if we substitute the result (31) into equation (20), we get the total energy of

the Gibbons-Maeda dilaton spacetime that is contained in a sphere of radius r

E(Moller)(r) = M − P 2

r
− Q2

r
(36)

which is also the energy (mass) of the gravitational field that a neutral particle

experiences at a finite distance r. Additionally, if we use equations (33-34) in (19),

we can find the momentum components which are given by

P
(Moller)
1 = P

(Moller)
2 = P

(Moller)
3 = 0. (37)

In order to use the Einstein energy-momentum complex, we have to transform the

line element (4) in quasi-Cartesian coordinates. According to

x = r sin θ cosφ, (38)

y = r sin θ sinφ, (39)

z = r cos θ, (40)

one gets

ds2 =
(r − r+)(r − r−)

r2 −D2
dt2 − r2 −D2

r2
(dx2 + dy2 + dz2)

−r2 −D2

r4

(

r2 − (r − r+)(r − r−)

(r − r+)(r − r−)

)

(xdx+ ydy + zdz)2. (41)

Using above metric transformed into quasi-Cartesian coordinates in equations (21), (22)

and (24), one gets the expressions for the energy

E(Einstein)(r) = M − P 2

2r
− Q2

2r
(42)
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and for the momentum components

P
(Einstein)
1 = P

(Einstein)
2 = P

(Einstein)
3 = 0. (43)

By comparing the results presented in this section, it is easy to see that the hypothesis of

Vagenas is true for the expression associated with the Gibbons-Maeda dilaton spacetime.

The corresponding relation is obtained as

α
(Einstein)
1 =

1

2
α
(Møller)
1 . (44)

which is the case of n = 1 for equation (3).

4.2. In teleparallel Gravity

In this part of the paper, we calculate the Møller energy associated with the Gibbons-

Maeda dilaton spacetime in teleparallel gravity. Since the intermediary mathematical

exposition are lengthly, we give only the final result. After making the required

calculations [25, 26], the required non-vanishing component of Uνβ
µ is

U01
0 =

(Mr − P 2 −Q2) sin θ

κr
. (45)

Substituting this result in the energy integral (30), we have the following energy

distribution

E(r) = M − P 2

r
− Q2

r
. (46)

This is the same as obtained in general relativity by using the Møller energy and/or

momentum complex. It is also independent of the teleparallel dimensionless coupling

constant, which means that it is valid not only in teleparallel equivalent of general

relativity but also in any teleparallel model. This result also sustains that the hypothesis

of Vagenas is true.

5. SUMMARY AND DISCUSSIONS

We evaluated the energy distribution associated with the Gibbons-Maeda dilaton

spacetime using Møller and Einstein’s energy and/or momentum complexes and the

teleparallel gravity analog of the Møller energy-momentum formulation.

The localization of energy-momentum in general relativity has been debated since

the beginning of relativity. The energy-momentum pseudotensors are not tensorial

object and one is forced to use Cartesian coordinates. Because of these reasons, this

topic was not considered exactly for a long time. However, after Virbhadra, Rosen,

Chamorro and Aguirregabiria’s works [6], this subject was re-opened. In addition to this,

Virbhadra underlined that although the energy-momentum complexes are not tensorial

objects, they do not disturb the principle of general covariance as the equations defining

the local conservation laws with these objects are covariant. In another study, Chang,

Nester and Chen obtained that there exists a direct relationship between quasilocal and
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pseudotensor expressions; ever since energy-momentum pseudotensor is associated with

a legitimate Hamiltonian boundary term.

In general relativity, several studies have been devoted to calculate the energy

(due to matter plus fields including gravitation) distribution for a given space-time.

For example; Chamorro-Virbhadra and Xulu showed, considering the general relativity

analogs of Einstein and Møller’s definitions, that the energy of a charged dilation black

hole depends on the value h which controls the coupling between the dilation and the

Maxwell fields

E(Einstein) = M − Q2

2r
(1− h2), (47)

E(Moller) = M − Q2

r
(1− h2). (48)

In addition, Virbhadra and Xulu obtained that the energy distribution in the sense

of Einstein and Møller disagree in general. Next, Lessner showed that the Møller

energy-momentum complex is a powerful concept of energy and momentum and Vagenas

hypothesized that there is a connection between the coefficients of the expression for

the energy (when the energy and/or momentum complex of Einstein is employed) of the

form (1) and those of the expression for the energy (when the energy and/or momentum

complex of Møller is employed) of the form (2). The relation that materializes this

connection between the aforementioned coefficients is given by (3).

Using Møller complex, we found the same energy associated with the Gibbons-

Maeda dilaton spacetime both in general relativity (GR) and teleparallel gravity (TG)

is given by

E
(Moller)
GR (r) = E

(Moller)
TG (r) = M − P 2

r
− Q2

r
(49)

and using Einstein’s energy-momentum definition in general relativity, we obtained the

energy of the Gibbons-Maeda dilaton spacetime as

E
(Einstein)
GR (r) = M − P 2

2r
− Q2

2r
. (50)

The result supports that the energy distribution in the sense of Einstein and Møller

disagree in general. Under two limits of the metric (4), the Gibbons-Maeda dilaton

(GM) spacetime can be reduced to the Garfinkle-Horowitz-Strominger (GHS) dilaton

spacetime and the Reissner-Nordstrom spacetime (RN), respectively. Therefore, using

our results, one can easily find that

EGHS =lim
P→0

E(Einstein)(r) = M − Q2

2r
(51)

EGHS =lim
P→0

E(Moller)(r) = M − Q2

r
(52)

ERN =lim
D→0

E(Einstein)(r) = M − Q2

r
(53)
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ERN =lim
D→0

E(Moller)(r) = M − 2Q2

r
(54)

and at large distances (r → ∞), one gets

EGM = ERN = EGHS = M (55)

by using Einstein and Møller’s complexes.

Furthermore, this paper sustains (a) the results by Virbhadra and Xulu, (b)

the viewpoint of Lessner, (c) the hypothesis of Vagenas, (d) the importance of the

energy-momentum definitions in the evaluation of the energy distribution of a given

space-time, and (e) the Møller energy-momentum definitions which allows to make

calculations in any coordinate system. Finally, in teleparallel gravity the energy obtained

is independent of the teleparallel dimensionless coupling constant, which means that it

is valid not only in the teleparallel equivalent of general relativity, but also in any

teleparallel model.

ACKNOWLEDGMENTS

We would The Turkish Scientific and Technical Research Council (Tübitak)-Feza Gürsey
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