EXPLORING DEEP SPATIO-TEMPORAL FUSION ARCHITECTURES
TOWARDS LATE TEMPORAL MODELING OF HUMAN ACTION
RECOGNITION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUHAMMET ESAT KALFAOGLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
ELECTRICAL AND ELECTRONICS ENGINEERING

AUGUST 2020

Approval of the thesis:

EXPLORING DEEP SPATIO-TEMPORAL FUSION ARCHITECTURES
TOWARDS LATE TEMPORAL MODELING OF HUMAN ACTION
RECOGNITION

submitted by MUHAMMET ESAT KALFAOGLU in partial fulfillment of the re-
quirements for the degree of Master of Science in Electrical and Electronics Engi-
neering Department, Middle East Technical University by,

Prof. Dr. Halil Kalipcilar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. ilkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. A. Aydin Alatan
Supervisor, Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Sinan Kalkan
Co-supervisor, Computer Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Fatih Kamigh
Electrical and Electronics Engineering, METU

Prof. Dr. A. Aydin Alatan
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Nazli Ikizler Cimbig
Computer Engineering, Hacettepe University

Assist. Prof. Dr. Elif Siirer
Multimedia Informatics, METU

Assist. Prof. Dr. Emre Akbag
Computer Engineering, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: MUHAMMET ESAT KALFAOGLU

Signature

v

ABSTRACT

EXPLORING DEEP SPATIO-TEMPORAL FUSION ARCHITECTURES
TOWARDS LATE TEMPORAL MODELING OF HUMAN ACTION
RECOGNITION

Kalfaoglu, Muhammet Esat
M.S., Department of Electrical and Electronics Engineering
Supervisor : Prof. Dr. A. Aydin Alatan

Co-Supervisor : Assoc. Prof. Dr. Sinan Kalkan

August 2020, [I26] pages

Visual action recognition (AR) is the problem of identifying the labels of activities
that occur in a video. In this thesis, different spatio-temporal representations are
analyzed and the factors making these representations better suited for AR are deter-
mined. To be specific, three main concepts are analyzed in this thesis study which
are the effects of different architectural selections, the input modalities (RGB, optical
flow, human pose), and temporal modeling concepts. Additionally, the joint utiliza-
tion of BERT-based late temporal modeling with 3D CNN architectures is proposed
and a novel distillation concept is recommended within this approach.

Firstly, for architectural analysis, both 2D and 3D CNN structures are considered. For
3D CNN architectures, the effects of clip length, input spatial resolution, group con-
volution, and separable 3D convolution are analyzed. During this analysis, popular
3D CNN architectures for AR, such as MFNET, SlowFast Networks, R(2+1)D net-
works, I3D, MARS networks (knowledge distillation), and various ResNet architec-
tures are all considered. Temporal shift modules are also investigated as an extension
to 2D CNN architectures.

For input modality analysis, popular two-stream architectures (RGB+Flow) are ana-
lyzed within both 2D and 3D CNN architectures. Moreover, as an extension to RGB

and flow modalities, pose input modality is utilized with a different approach from
the literature and studied within the 2D CNN architectures in this thesis.

For the temporal modeling analysis, various techniques are analyzed such as average
pooling, LSTM, convolutional GRU, BERT, and non-local blocks within 2D CNN
architectures.

As a novel extension, conventional 3D convolutions are combined with late temporal
modeling for AR. The popular temporal global average pooling layer (TGAP) at the
end of 3D convolutional architecture is replaced with the recent Bidirectional Encoder
Representations from Transformers (BERT) layer in order to better exploit the atten-
tion mechanism of BERT. Such a replacement is shown to improve the performances
of many popular 3D convolution architectures, including ResNeXt, 13D, SlowFast,
and R(2+1)D. The-state-of-the-art performances are obtained on both HMDBS51 and
UCF101 datasets with 85.10% and 98.69% Top-1 accuracy, respectively. Finally, a
novel knowledge distillation concept is proposed using a 3D-BERT architecture that
yields quite promising performances.

Keywords: Activity Recognition, Action Recognition, Temporal Modeling, 3D Con-
volution, Two-Stream Networks, Spatio-Temporal Features

vi

(0Y/

INSAN AKTIVITELERINI TANIMA ICIN DERIN UZAM-ZAMANSAL
FUZYON MIMARILERIN GEC ZAMANSAL MODELLEMEYE YONELIK
INCELENMESI

Kalfaoglu, Muhammet Esat
Yiiksek Lisans, Elektrik ve Elektronik Miithendisligi Boliimii
Tez Yoneticisi : Prof. Dr. A. Aydin Alatan
Ortak Tez Yoneticisi : Dog. Dr. Sinan Kalkan

Agustos 2020 , [126] sayfa

Gorsel eylem tamima (ET), bir videoda meydana gelen eylemlerin ne oldugunu ta-
nimlama problemidir. Bu tezde, farkli uzam-zamansal yapilar analiz edilmis ve bu
gosterimleri ET icin daha uygun hale getiren faktorler belirlenmistir. Spesifik olmak
gerekirse, bu tez calismasinda farkli mimari se¢imlerin, girdi modalitelerinin (RGB,
optik akis, insan pozu) ve zamansal modelleme kavramlarinin etkileri {i¢ ana kavram
olarak ele alinmistir. Ek olarak, BERT tabanli ge¢ zamansal modellemenin 3D CNN
mimarileri ile ortak kullanimi Onerilmis ve bu yaklasim i¢inde yeni bilgi damitma
kavrami onerilmistir.

Mimari analiz i¢cin hem 2D hem de 3D Evrisimsel Sinir Aglar1 (CNN) dikkate alinir.
3D CNN mimarileri i¢in girdi klip uzunlugu, girdi uzamsal ¢oziiniirliigii, grup evri-
simi ve ayrilabilir 3D evrisim mimarilerinin etkileri analiz edilir. Bu analiz sirasinda,
MENET, SlowFast Networks, R(2 + 1)D aglar1, I3D, MARS aglar1 (bilgi damitma) ve
cesitli ResNet mimarileri gibi AR i¢in popiiler 3D CNN mimarilerinin tiimii dikkate
alinir. Zamansal kayma modiilleri ayrica 2D CNN mimarilerinin bir uzantis1 olarak
incelenir.

Girdi modalite analizi i¢in, popiiler iki kanalli mimariler (RGB + optik akis) hem 2D
hem de 3D CNN mimarileri i¢inde analiz edilir. Ayrica, RGB ve optik akis moda-

vii

litelerinin bir uzantis1 olarak, poz girdi modalitesi literatiirden farkli bir yaklagimla
kullanilmigtir ve bu tezde 2D CNN mimarileri dahilinde incelenmistir.

Zamansal modelleme analizi i¢in, 2D CNN mimarileri i¢inde ortalama havuzlama,
LSTM, evrisimli GRU, BERT ve Yerel Olmayan blok yapilar gibi cesitli teknikler
analiz edilir.

Yeni bir Oneri olarak, bu calismada, ET problemi i¢in 3D evrisim mimarilerinin geg
zamansal modelleme ile birlestirilmesi sunulmugtur. Bu amacla 3D evrisimsel mi-
marilerinin sonundaki geleneksel zamansal ortalama havuz katmani1 (TGAP) Trans-
formatorlerden Cift Yonlii Enkoder Temsilleri (BERT) katmanmiyla degistirilmis ve
BERT nin ilgi mekanizmasiyla daha iyi bir ge¢ zamansal modelleme amag¢lanmisgtir.
Bu degistirmenin, ResNeXt, I3D, SlowFast ve R(2 + 1)D gibi eylem tanima icin bir-
cok popiiler 3D evrisim mimarisinin performansini gelistirdigi gosterilmistir. Ayrica,
HMDBS51 ve UCF101 veri kiimelerinde sirastyla 85.10% ve 98.69% top-1 dogrulugu
ile literatiirdeki en gelismis sonuglar sunulmustur. Ayrica, 3D-BERT mimarisi lize-
rinden bir bilgi damitma yapis1 Onerilmis ve analiz edilmistir.

Anahtar Kelimeler: Aktivite Tespiti, Zamansal Modelleme, 3D Evrigim, Iki Kanalli
Aglar, Uzamsal-Zamansal Oznitelikler

viii

To my beloved family and friends

X

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my supervisor Prof. Dr.
A. Aydin Alatan for his continuous support, guidance, patience, encouragement in
the path of creation of this thesis. I learnt a lot not only in the perspective of research
but also the ethical concerns and the administration. I thank him for his contribution
to my scientific vision, my writing skills and for the great lab environment that he
provides us. I am very grateful for his immediate responses when I need some help
in anything I have asked for and the great positive communication and understanding
which he provides for me.

Secondly, I want to thank the greatest support to my co-advisor Assoc. Prof. Dr.
Sinan Kalkan for his contribution to my project and my thesis work. I learn to look
at the problems from a different perspective, and I improved my writing skills very
much thanks to his contribution. I am very grateful for his effort to create creative
ideas and his great communication.

I also would like to thank to my friends from Center for Image Analysis (OGAM).
Special thanks to Alp Eren Sari for his friendship and all kinds of support and help.
We have shared lots of great memories together. He is really a genuine friend for
me. It was a pleasure being in the same project with him. I won’t forget the good
memories of England with him. Thanks to Ogul Can for directing my studies towards
BERT architecture which has strong impact on this thesis and for his good friendship.
Thanks to Dr. Alper Koz, Mustafa Ergiil, Yeti Ziya Giirbiiz, Dr. Gokhan Koray
Giiltekin, Dr Kutalmus Ince and Ilker Giircan for their advices about both the academy
and the personal life. Thanks to Ece Selin Boncii for sharing valuable moments with
me. She has a great personality and I wont forget the day of Bahri Abi with her
and Ogul. Thanks to Ayberk Aydin for his genuine friendship, sharing his profound
knowledge about the literature with us and his child stuff. It was a pleasure to work
back to back with him. Thanks to Ihsan Emre Ustiin for the cherries that he brings
from his hometown. He is a very good friend and he has a very kind personality.
Thanks to Aziz Berkay Yesilyurt for his help and his friendship. Sometimes, his
assistance can be lifesaving. Thanks to Aybiike Erol for her genuine friendship. She
is the one who makes us not forget Ask-1 Memnu and Titanic. She is the one with
very creative questions and she is very good at multi-tasking. Thanks to izlen Geneci
for her good friendship. Sometimes, I lose the track of time while chatting with her.
Thanks to Gamze Sever for her friendship and help. I have asked her help many
times about the administrative affairs and she always helps me without reluctance.
Thanks to Mustafa Kiitiik and Emre Can Kaya for their friendship. They help me a

lot in my adaptation to the OGAM environment. Thanks to Ufuk Efe, Ahmet Arslan,
Mert Alp Ocalp, Can Caglayan Cakirgdz, Aybora Koksal for their valuable times and
friendship. I also should not forget to thank Bahar Sengiin and Havva Oguz for their
sincere help about administrative affairs.

I also would like to present my special thanks to my family who always supports me
in my decisions. The biggest portion of the thank belongs to my beloved mom. She
is the hidden hero of this thesis. She always take care of me whenever and wherever
I need help without considering herself. Secondly, I want to present my thanks to my
father who has significant guidance in my decisions and always gives the freedom in
my choices. Thanks to my sister and brother-in-law who let me stay in their home
and give me a ride when I needed. Thanks to my brother and sister-in-law for being
guarantors for my TUBITAK 2210/A scholarship and their support.

I also would like to thank Assoc. Prof. Dr. Ipek Giirsel Dino for giving a chance to
work in a project (SISER) which contributes the works in my thesis work. Thanks to
her academic vision, I have lots of academic outputs. It is also a pleasure to work with
Sahin Akin and Orgun Koral Iseri in the same project. They are really hardworking
and problem-solver people.

I also want present my special thanks to my friends Fatih Cagatay Akyon, Ahmet
Safa Oztiirk, Ibrahim Tanri6ver, Ibrahim Kurban Ozaslan, Botan Yildirim and Tugrul
Gorgiilii for their sincere friendship and their guidance about academic life. It was a
pleasure to share the same dormitory room with Tugrul Gorgiilii.

This work is supported by an Institutional Links grant under the Newton-Katip Celebi
partnership, Grant No. 217M519 by the Scientific and Technological Research Coun-
cil of Turkey (TUBITAK) and ID [352335596] by British Council, UK.

This work is supported by TUBITAK within the scope of 2210/A scholarship.

The numerical calculations reported in this paper were partially performed at TUBITAK
ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

xi

TABLE OF CONTENTS

xii

ABSTRACTI. o v
OZ . . . vii
ACKNOWLEDGMENTSI. o o o X
TABLE OF CONTENTS| o oo o . xii
LISTOETABLESI 0 o XViii
LISTOFEIGURES|. o XX
CHAPTERS

1 INTRODUCTIONI 1
(1.1 Applications of Action Recognition|. 2

(1.2 Scope and Contributions of the Thesis| 3

(L3 Outhneofthe Thestsf. 4

2 RELATED WORK| o o . 5
[2.1 An Overview of Action Recognition (AR) Literature{. 5

[2.1.1 Pre-deep-learning AR literature| 5

2.1.1.1 3D Spatio-temporal Extension of 2D [

Spatial Detectors and Descriptors| . . . 8

2.1.1.2 Trajectory-based Detectors and Descrip- |

torsl o 9

[2.1.2 Deep Learning AR Literature|. 11
2121 2D CNN Architectures| 12

2122 3D CNN Architectures| 13

[2.1.2.3 Recurrent Architectures, Pooling and |

Fusion Techniques|. 15

2.1.24 Attention|. 16

2.1.2.5 Optical Flow Networks| 17

2.1.2.6 Pose Networksl. 19

[2.1.2.7 Unsupervised and Weakly Supervised |

Techniques|. 20

o)

Prominent Deep Leaning Based Methods in AR Literature|. . 21

21 BERT[9], 21
[2.2.2 Group Convolution and Depth-wise Convolution| . 23
2.2.3 3D Convolution| 24

2.2.3.1 Inception Type Architectures| 28

[2.2.3.2 ResNet Type Architectures| 28
[2.2.4 Separable 3D Convolution| 29
[2.2.5 Non-local Neural Networks [72] 32
2.2.6 SlowFast Networks [16]] 34
[2.2.7 Motion-Augmented RGB Stream Networks (MARS) |

3 38

[2.2.8 Multi-Fiber Networks for Video Recognition[6] . . 39

[2.2.9 TSM: Temporal Shift Module for Efficient Video [

Understanding [41] 41

B EXPERIMENTAL EVALUATION OF LITERATURE| 45
3.1 Datasets for AR Researchl 45
BIT HMDBS3T[36] 45

UCF-101[59]« o oo oo 46

[3.1.3 Kinetics [32] 47

[3.1.4 Something - Something [23] 48

B.15 TIG-Kinetics-6SMT19] 49

[3.2 Implementation Detaals| 51
[3.2.1 Data Augmentation| 51

[3.2.2 Pre-trained Weights| 53

[3.2.3 Optimization| 53

324 Batch Size Selectionl 55

3.2.5 Validation Procedurel 55

[3.2.6 Input Modalities| 56

(3.3 Experiments on 2D CNN Architectures| 56

[3.3.1 Late Temporal Modeling of 2D CNN Architectures| 57

3.3.2 Feature Fusion from the Different Parts of 2D CNN |

Architectures| 59

[3.3.3 Effect of Network Depth and Input Modality on [

2D CNN Architecturesl 60

X1V

B4

Experiments on 3D CNN Architectures| 63

[3.4.1 Eftects of Clip Length and Input Resolution on the |

performance of 3D CNN Architectures| 63
342 Two-stream 3D Architectures 64
(3.4.3 Comparison of 3D CNN Architectures| 66

[3.4.4 Computational Complexity and Memory Utiliza- |

tion Analysis of the Architectures:| 69

4 PROPOSED METHOD: BERT ON 3D CNN ARCHITECTURES| . . 73

4.1 Proposed Methods| oL 74
4.1.1 BERT-based Temporal Modeling with 3D CNN5s |

for Action Recognition| 75
4.1.2 Proposed Feature Reduction Blocks: FRAB & FRMB| 77

4.1.3 Proposed BERT Implementations on SlowFast Ar- |
chitecture| Lo 78

4.2 Experimental Results| 79
4.2.1 Datasetl 79

4.2.2 Implementation Details| 80

4.2.3 Ablation Study| oo 80

424 Results on Different 3D CNN Architectures| . 83

4241 ResNeXt Architecturef 83

4.2.4.2 [3D Architecturef. 84

4243 Slowkast Architecturel 85

4.24.4 R(2+1)D Architecturel 87

XV

4.2.5 Comparison with State-of-the-Art) 88

D1 1ON] . v e e e e e e e 89

5 PROPOSED METHOD : BERT DISTILLATION] 91

[5.1 Methodology|. 91

[5.2 Experimental Results| 92

6 SUMMARY & CONCLUSION] 97

(6.1 Summary|. 97

6.2 Conclusion| L 98

63 FutureWorkl oo 100

REFERENCES| o o 103
| APPENDICES

A OPTICALFLOW o . 111

(A.1 Brightness Consistency Equation| 111

[A.2 TV-L1 Optical Flow Algorithm| 112

B OPENPOSE!|. 115

C _ FURTHER DETAILS ABOUT EXPERIMENTS

(C.1 Frame Selection Procedure for Late Temporal Modeling in [
| 2D CNN Architecturesl 119
(C.2 Testing Procedures of 3D CNN Architectures|. 120

(C.3 Detailed Experimental Results for Different Clip and Crop [
Selections| 120

Xvi

(C.4 FRMB 1implementation on 2D CNN Architectures with BERT-

| based late temporal modeling|

Xvil

LIST OF TABLES

TABLES
Table|[3.1 Summary table for activity recognition datasets| 46
Table|3.2 Optimizer result on RGB-ResNet-18-BERT architecture]. 54

Table|3.3 Results for temporal modeling on top of the 2D-RGB-ResNet18 on [
| HMDB-STI . . o oo 58

Table(3.4 The Results of fusion types with 2D-RGB-ResNet18 concatenation [
| poolingon HMDBSI| o oo 59

Table (3.5 'The effect of architecture depth on the performance of 2D-RGB |
| ResNet with concatenation pooling and triple fusion on HMDBSI1|. 61

Table 3.6 Top-1 performances of late temporal modeling on ResNet18 back- [
| bone with optical flow and human pose modalities on HMDBSI|. 62

Table (3.7 Comparing modalities on HMDBST1 using Top-1 for AR|. 63

Table|3.8 Ablation Study on 3D-RGB-ResNet type architectures on Split-1 of |
| HMDBST . .. 63

Table[3.9 Results of Two-stream 3D architectures on HMDBS1 Split-1| 65

Table(3.10 Performance and Parameter Size Comparison for RGB input modal- [
| ities on HMDBST sphit-1)., 66

Table|d.1 Ablation Study of RGB ResNeXt101 architecture for temporal pool- [
| ing analysis on HMDBS51. FRMB: Feature Reduction with Modified Block.| 81

Table 4.2 Ablation Study of BERT late temporal Modeling on HMDBS5I1| . . . 83

Table 4.3 Analysis of ResNeXt101 architecture with and without BERT for |
| RGB, Flow, and two-stream modalities on HMDBS1 sphit-1} 84

Table 4.4 The performance analysis of [3D architecture with and without [
| BERT for RGB, Flow, and two-stream modalities on HMDBS1 split-1| . . 85

Xviii

Table4.5 The performance analysis of SlowFast architecture with and without |
or modality on spht-1f 86

Tablei4.6 'The performance analysis of R(2+1)D architecture with and without |
| BERT for RGB modality on HMDBS1 split-1) 87

Table 4.7 Comparison with the state-of-the-art.| 89

Table|5.1 Lambda parameter selection for distillation with unsupervised train- |
| ing of BERT architecture on split-1 of HMDBSI| 94

Table 5.2 Distillation with unsupervised training of BERT architectures and |

[1 WITH FOUR TYPES OF TEST RESULTS! 121
Table |C.2 COMPARISON OF RECENT STATE OF THE ART ARCHITECTURES |
[ON HMDBS1 SPLIT-1 WITH FOUR TYPES OF TEST RESULTS| 123
Table|C.3 THE RESULTS ON ALL SPLITS OF HMDBJS1 DATASET| 124
Table|C.4 THE RESULTS ON ALL SPLITS OF UCEF101 DATASET 124

Xix

LIST OF FIGURES

FIGURES

Figure|[l.1 The visual demonstration of the significance of temporal informa- |

L tion for the distinction of reverse actions. 2
Figure[2.1 General block diagram of pre-deep learning methods| 6
Figure[2.2 'The general approach for hand-crafted based learning methods|. . . 7
Figure[2.3 Taxonomy of deep learning methods for AR literature. |. 11
Figure[2.4 Masked LM BERT[9]. 23

Figure 2.5 The demonstration for group and depth-wise convolution. Each |
| circular node represents an input or output channel [63]. (a) A conven- [
| tional convolution, the number of group 1s one. (b) Group convolution, [
| where the number of groups 1s two 1n the figure. (c¢) Depth-wise convo- [
I |
I

lution, the number of groups 1s equal to the number of channels and it 1s
fournthisexample. o oo 24

Figure [2.6 Conventional (Top) and group (Bottom) convolution operations. [
| The 1image 1s from Towards data science: Comprehensive introduction to
different types of convolutions in deep learning| 25

Figure[2.7 Depth-wise separable convolution. The image 1s from Eli Bender-

sky’s website: Depthwise separable convolutions for machine learning . . 26
Figure[2.8 2D versus 3D convolution [62]]{. 27
Figure[2.9 Architectural information about 3D Inception network [S]]| 28

Figure [2.10 Basic (Left) and Bottleneck (Right) blocks of ResNet architecture [
N 17 29

Figure [2.11 Standard and CSN bottleneck blocks. (a) Standard block. (b) 1p- [
| CSNblock. (¢) ir-CSNblock [63] oo oo 30

Figure[2.12 (a) Conventional 3D convolution. (b) Separable 3D Convolution [IME] 31

XX

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/
https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/

Figure[2.13 Proposed alternative separable 3D convolutional bottleneck blocks

L IS20 31
Figure2.14 Non-Tocal block [72] 33
Figure [2.15 The modified blocks of the utilized ResNet architecture of non- |
| local paper. Traditional block (Left), modified block-1 (Middle) and mod- |
| ified block-2 (Right)|. o oo 35
Figure[2.16 The Slowfast Network Architecture [16/] 35
Figure[2.17 The details of the SlowFast-50 with « = 8and 5 = ¢ [16] 37
Figure [2.18 Possible bottleneck blocks implementations to ResNet architec- |
[ture. (a) Basic Block. (b) Bottleneck block of ResNeXt atchitecture. (c) |
| Multi-Fiber architecture. (d) Multi-fiber with multiplexer. (e) Multiplexer| 40
Figure [2.19 (a) The architecture of 3D MENET. (b) The bottleneck block or |
L unitof the 3D MENET architecture. 41
Figure 2.20 Left: The classical tensor structure. Middle: The bi-directional |
[shift (Offline). Right: The uni-directional shift (Online) [Iélﬂl 43
Figure[2.21 Proposed TSM shift modules. (a) In-place TSM. (b) Residual TSM |
L TAL . . e 43
Figure 3.1 The crop positions for multi-scale cropping. Blues are used only |
[mferencel. 52
Figure 3.2 Possible input modalities from the HMDB-51 walking and jump- |
[mgclasses| L 56
Figure[3.3 Different Layers and their corresponding Output sizes for ResNet18 |
[Architecturel 60
Figureid.l BERT-based late temporal modeling| 75
Figure 4.2 'The implementations of Feature Reduction with Modified Block |
[(FRMB) and Feature Reduction with Additional Block (FRAB)[. 77
Figure 4.3 Early-fusion and late-fusion implementations of BERT on Slow- |
[Fastarchitecture]. Lo 79
Figure[5.1 BERT-based Distillation] 93

Xxi

Figure|A.1 Small motion model in a very small time interval Brightness Con-
stancy, 16-385 Computer Vision (Kris Kitani), Carnegie Mellon Univer-

SItY[]. . .

FigureB.1 The Stages of the OpenPose algorithm (Left) and Extracted joints

with OpenPose [2]]| o o

xxii

http://www.cs.cmu.edu/~16385/s17/Slides/14.1_Brightness_Constancy.pdf
http://www.cs.cmu.edu/~16385/s17/Slides/14.1_Brightness_Constancy.pdf
http://www.cs.cmu.edu/~16385/s17/Slides/14.1_Brightness_Constancy.pdf

CHAPTER 1

INTRODUCTION

Activity recognition or action recognition (AR) is the task of recognition of pre-
defined actions or activities from "short" video clips ("short" duration is typically
assumed to be between 2 to 15 seconds). There are two important information sources
in a video clip for the action recognition task: spatial information and temporal infor-

mation.

The first information source is the spatial information, which can be defined as what
someone can obtain from a still image or a single frame. In another definition, it is
defined as the static information existing in a single frame, such as entities, objects,
and context. For example, the action ‘swimming’ can be identified from a still image,

if a person in a water body can be recognized.

The other major information source, which is quite critical for AR, is the temporal
information. This information source is based on the relationship between the frames
of a video sequence. For example, if a person is in a water body, it is hard to capture
the difference between the breast crawl and breast stroke, which are two different

swimming styles.

Another typical example in which the temporal information is crucial is discrimina-
tion between opening and closing actions on a window (or door). Assume that only
one frame is extracted from the video sequence consisting of opening and closing
window actions (See Figure [[.T)). It is quite hard to recognize whether it belongs
to the opening or closing actions. For this purpose, there is an extra requirement to

understand where a person moves or where a window rotates.

(a) A frame sample from the clip of closing win- (b) A frame sample from a the clip of opening

dow action. window action.
Figure 1.1: The visual demonstration of the significance of temporal information for

the distinction of reverse actions.

Another challenge is distinguishing actions which are similar but evolving at different
speeds, such as walking and running. As a consequence, in order to perform reliable
action recognition, the representations that are extracted from a video clip should
model both spatial and temporal information simultaneously and the representations

should be aware and invariant of the evolution speed of the performed action.

In any real-world application of AR, not only the classification performance but
also the computational complexity and memory utilization are two important factors.
Tackling such a difficult problem using conventional machine learning techniques
requires huge computational complexity and memory utilization. Therefore, the ul-
timate goal of our AR research is obtaining good performance while considering the

computational complexity and memory utilization.

1.1 Applications of Action Recognition

Action recognition (AR) can be utilized in many different areas and applications, such
as video retrieval, surveillance systems, human-computer interaction, robot percep-

tion, and sign language.

Video retrieval is the problem of finding similar video clips to the given input video

clip. It is an important concept in dealing with huge video archives. Another im-

2

portant area for AR is surveillance. In video surveillance, detecting any problematic
action as early as possible can be crucial for preventing advert events, such as rob-
bery or fights. Human-machine interaction is another domain where AR is crucial.
For instance, in virtual reality or computer games, detecting gestures can be useful.

Similarly, AR can be utilized in automatic sign language recognition.

Another domain where AR can be utilized is robot perception. For robots to be able to
freely interact with humans, AR should be an indispensable part of robot perception,
since the first step of taking proper actions is to comprehend the situation. For exam-
ple, consider an example of robot surgery. This requires having an understanding of
the surgeon to make convenient interventions for the surgery. Another example can
be physiotherapy exercises where the correctness of an exercise can be evaluated by

AR systems.

1.2 Scope and Contributions of the Thesis

This thesis covers various 2D and 3D CNN architectures for the AR problem. 3D
CNN architectures have become quite popular due to their success in the AR liter-
ature. However, 3D CNN architectures have higher computational complexity and
more parameters than their 2D CNN counterparts. Therefore, there are studies which
try to decrease the computational burden of 3D CNNs, while preserving their accu-
racy [64, [76, 16, 24]]. For this aim, this thesis makes an in-depth analysis of 2D and
3D CNN architectures with their performances, the number of parameters, and the

number of operations.

A second focus of the thesis is regarding the input modality. There are studies that
show the positive impact of utilizing different input modalities jointly in the perfor-
mance of the AR problem. [S7,17,15, 148,71, 49,8, 164, (76,168, 12, 13,78, [7, 18]. For
this aim, the effect of RGB videos, estimated motion vectors (i.e. optical flow field)
of the points in the scene, automatically determined human pose positions and their

joint utilization (two-stream and three-stream) are analyzed in this thesis.

Moreover, the thesis analyzes late temporal modeling of the learned spatio-temporal

representations for both 2D and 3D CNN architectures. Within this context, a novel

3

BERT-based late temporal modeling on 3D CNN architectures is proposed in this

thesis.

Finally, various concepts are examined for the AR problem, such as the effect of
the distillation concept in which one network transfers its knowledge to the other
network, scale of the pre-training dataset, clip length of 3D CNNs, feature fusion.
Additionally, knowledge distillation for AR is extended by using BERT architectures
and this novel method is analyzed by using 3D CNN architectures.

The work presented in the Chapter 4] of the thesis has been disseminated in a paper
[30]:

E. Kalfaoglu, S. Kalkan, A. Alatan, “Late Temporal Modeling in 3D CNN Archi-
tectures with BERT for Action Recognition", ECCV2020 2nd Workshop on Video
Turing Test: Toward Human-Level Video Story Understanding, 2020.

1.3 Outline of the Thesis

In this thesis, the related work from the literature is presented in Chapter 2] In order
to better assess the advantages of the related work, an experimental analysis of the
literature is presented in Chapter 3] In this chapter, datasets, implementation details,
experimental results related with 2D CNN architectures and experiments related with
3D CNN architectures are given in Sections and [3.4]respectively. Next, a
proposed method based on BERT which is applied on 3D CNN architectures is pre-
sented in Chapter[d, where BERT is implemented for late temporal modeling on top of
the 3D CNN architectures. After this chapter, another novel method for BERT-based
knowledge distillation is analyzed in Chapter [5] Finally, the thesis is concluded with
Chapter [6] where the summary and concluding remarks of the thesis are presented.
Some complementary concepts, such as the utilized optical flow and pose estimation
techniques or the experimental details are all presented in the Appendix section of the

thesis.

CHAPTER 2

RELATED WORK

In this chapter, the literature related to the scope of this thesis is covered. Firstly,
an overview of action recognition literature is presented. Following this overview,
the prominent deep-learning-based methods and concepts from the literature are pre-

sented in detail in this chapter.

2.1 An Overview of Action Recognition (AR) Literature

In this section, a general overview of the AR literature is presented without giving
detailed explanations. This section is divided into two main parts, which are pre-deep
learning AR literature and deep learning AR literature, while the main focus of this
thesis is more on the latter. Therefore, the analysis of deep learning AR literature will

be more elaborate.

2.1.1 Pre-deep-learning AR literature

Before the introduction of deep learning, action recognition methods depended on
the extracted hand-crafted features. The general block diagram of pre-deep-learning
methods is presented in Figure 2.1] The pre-deep-learning methods for AR consist
of three main stages: spatio-temporal interest point detection, creations of spatio-
temporal description for detected interest points, and the encoding of interest point

descriptions.

As mentioned before, both the spatial information and temporal information are cru-

5

Creation of
io- Encoding of Interest i
Spatlo.te'mporal nc? ing o .n 'eres Classifier Action
Description for Point Descriptions Label
Interest Points

Spatio-temporal

Video Interest Point
Detector

Figure 2.1: General block diagram of pre-deep learning methods

cial for action recognition problem. Therefore, differently from an image classifica-
tion task, there is a need to process also the temporal information for action recogni-
tion. From that perspective, the keyword spatio-temporal should be highlighted for

both interest point detection and description.

The spatio-temporal interest point detectors can be categorized into two from the per-
spective of providing temporal characteristics to spatial detectors. These are spatio-
temporal detectors which the extension of spatial detectors with the temporal dimen-
sion [37, [10} [73) 138]] and trajectory-based detectors which are the temporal trajec-
tories of spatial or spatio-temporal interest points. The extension of spatial detectors
with the temporal dimension means that detectors aim to find three-dimensional blobs
or corners in a video. In temporal trajectories, the spatial interest points which are de-
tected from a single frame or spatio-temporal interest points, such as Harris3D are

tracked with KLT, SIFT-matching and optical flow algorithms [435, 46, 29, 66].

The spatio-temporal descriptors can also be categorized into two from providing tem-
poral characteristics to spatial descriptors. These are the extension of spatial descrip-
tions with the temporal dimension [54, |35, [73]] and pooling of spatial descriptions
across temporal dimension [66, [38]]. For instance, pooling can be a concatenation.

The trajectories themselves can also be descriptors [66} 45]].

Interest point descriptions are obtained by aggregating local descriptions of the de-
tected interest points into fixed-sized video-level features. This can be achieved via
Visual Bag of Words (VBoW), or Fisher Vector Representations [S3] or Vector of
Locally Aggregated Descriptors (VLAD) vector. Visual Bag of Words can be imple-
mented via K-means or Gaussian Mixture Models (GMM). The difference between
K-means and GMM is that K-means is the hard assignment of the feature vector to
the clusters and assumes that one feature only belongs to the one cluster of K-means

while GMM is the soft assignment of the feature vector to the clusters and defines

6

probabilities for the assignments of the clusters. Fisher Vectors depends on the idea
that score function can be defined as the gradient of probability modeling and de-
scribes how the parameters of the model should be modified to represent the model
better. For this aim, it uses first-order and second-order statistics assuming the Gaus-
sian model on the data which makes the total number of parameters (2D + 1) K where
D is the dimension of the feature vectors and K is the number of clusters in Gaussian
Mixture Model. VLAD is similar to Fisher Vectors but it does not use the second-

order statistics to reduce the number of parameters.

Interest point extraction (SURF)

Histogram description

o ASDE eASE ©ASDE
Figure 2.2: The general approach for hand-crafted based learning methods

From this point, crucial pre-deep learning AR studies will be introduced without en-

tering into much detail.

2.1.1.1 3D Spatio-temporal Extension of 2D Spatial Detectors and Descriptors

Laptev extends the idea of the Harris corner detector to the spatio-temporal Harris
corner detector [37]]. Harris corner detector depends on the idea that the change in a
window will cause sharp changes in both spatial directions around the corner. To do
so, this technique uses first-order approximation and creates a matrix from the first-
order derivatives and investigates the eigenvalues of this matrix for corner detection.
In spatio-temporal Harris detector [37], the dimension is equal to three. Therefore,
for a meaningful corner in the space-time domain, all of the eigenvalues should be
high. For the scale selection, the maximum Laplacian of Gaussian (LoG) value is
searched over the spatio-temporal domain. Next, from the selected scales, the corner

points are re-calculated, which creates a two-step iterative algorithm.

In a different approach [10], the usage of 3D corner detectors is criticized due to
the fact that in some behavior types, such as facial expressions, quite a few spatio-
temporal corners are extracted. It is mentioned that sparseness is desirable to some
extent but a rare number of interest points might not be sufficient for action recogni-
tion. The proposed interest points of [10] depend on the idea of perturbation in the
temporal domain. For this aim, spatial Gaussian convolved with a quadrature pair of
temporal 1D Gabor filters are applied to choose the interest points. Then, from the
selected points, cuboids are defined which are spatio-temporal cubes from the video.
From these cuboids, it is possible to extract various features like normalized pixel
values, gradient information (G, G, G¢), and optic flow (V,, V,). Then, from these
features, the BoW approach is followed for the representation and local histograms
are created in order not to lose all space and time information. 3D-SIFT [54] is a study
where the focus is more on creating 3D descriptors than the finding interest points.
In this work, the interest points are randomly sampled from videos. The difference of
3D-SIFT representation from the 2D counterpart is that one more angle information
also exists in histogram bins and sub-histograms are divided not only in the spatial

domain but also in the temporal domain.

The authors of extended SURF [73] argue that the iterative 3D Harris-Laplace [37/]]
detector is quite complex and might diverge since the iterative approach is applied

for every feature detected. It is also argued that cuboids [[10] are not scale-invariant,

since the size of a cuboid is a hyper-parameter. The proposed approach in [[73]] is that
both the interest point and its scale are determined by the determinant of the Hes-
sian matrix. Moreover, the second-order derivative calculation complexity is reduced
by using the integral video concept. By using some box filters, the second-order
derivatives are calculated and differently sized box filters are used to model the scale.
Moreover, for the extraction of a descriptor, Haar wavelets are preferred and integral
images are utilized for the calculation of these wavelet responses in order to decrease

the complexity.

Another paper that utilizes the 3D Harris corner detector is [38]]; however, for scale
selection, a multi-scale approach is followed instead of an iterative algorithm to re-
duce the computational complexity. The cuboid concept is adopted and the scales
of the cuboids are selected according to the scale of interest point. The grid size
in cuboids is chosen as 3x3x2 and Histogram of Oriented Gradient (HOG) and His-
togram of Oriented Flow (HOF) are used as features. Moreover, a spatial pyramid
concept is followed to divide a video into spatial and temporal parts and calculating

BoW separately for every part. For classification, non-linear SVMs are used.

The main focus in [35] is about creating a 3D descriptor which is a similar topic
examined in 3D-SIFT [54]]. The authors in [35] argue that the 3D-SIFT description
proposed in [54] creates the problem of singularities at the poles because bins get
smaller and smaller. To solve this problem, they propose making orientation with
regular polyhedrons instead of parallels and meridians approach in the 3D-SIFT de-
scription. Moreover, the gradient calculation for different scale, they propose the
integral gradient image approach, reducing the memory requirements. However, in

my view, this paper does not propose rotation invariance as in 3D-SIFT or 2D-SIFT.

2.1.1.2 Trajectory-based Detectors and Descriptors

As mentioned before, another way of providing spatio-temporal characteristics to
interest points is by creating trajectories from the detected spatial interest points. In-
stead of finding the interest points from the whole volume, trajectory-based interest
point detectors firstly find spatial interest points in specific frames and secondly tracks

them along the temporal dimension with specific temporal length. In order to create

9

trajectories, both KLT trackers [45]46] and SIFT descriptor matching [29] are used.

Dense Trajectories (DT) [66] is a method that utilizes trajectory-based interest point
detectors. Differently from the previous methods in the literature, it uses optic flow
[15] for tracking instead of KLT tracking or SIFT matching. Another difference from
the previous approaches is that it uses dense sampling for interest point selection
instead of sparse selection. From the location of the detected interest points, the
algorithm defines volumes and extracts three types of features from these volumes.
These features are Histogram of Gradient (HOG), Histogram of Flow (HOF), and
Motion Boundary Histograms (MBH). Among these features, MBH is found to be
the best compared to HOG and HOF. The success behind MBH features is the fact
that it suppresses camera motion. MBH is calculated by the first-order derivative of
optical flow. Additionally, to these three types of features, the trajectories themselves
are added to the created descriptions. In order to provide the DT algorithm with scale

invariance, different trajectories are created from different scales.

Improved Dense Trajectories (IDT) [67] is the improved version of DT. In this im-
plementation, the homography matrix between the consecutive frames is calculated.
As a result of this estimation, camera motion components are removed from optical
flow. Homography matrix calculation is performed with RANSAC on SURF descrip-
tors. Moreover, instead of using the classical BoW method, Fisher vectors are used

to encode the information of descriptors.

All aforementioned techniques have a common drawback: The spatio-temporal fea-
tures are "hand-crafted" which means their design depends on human experience and
intuition. There is no convincing reason to make all these representations yield op-
timal results for the AR problem. The solution to this fundamental problem has
emerged in the last decade as learned representations that are obtained through deep
neural networks. The next section will examine the deep-learning-based solutions

specific to AR research.

10

Architecture

: Feature
Convolution

Types Aggregation

Separable Recurrent Attention Pooling
Architectures (Non-Local, (Average,
3D CNN (LSTM, GRU) BERT) Concatenation)

(a) Architectures with respect to their convolution types (b) Feature Aggregations Techniques

Training

Modality Types

Video-only Fusion Weakly
Input Optical Flow Human Pose (Two-Stream and Supervised
(RGB Only) Three-Stream)

. U ised
Supervised nsupervise

(c) Input Modalities (d) Training Types

Figure 2.3: Taxonomy of deep learning methods for AR literature.

2.1.2 Deep Learning AR Literature

In this section, a general overview of deep learning methods is conveyed. For this aim,
four different categorizations are considered as presented in Figure 2.3] These four
categorizations are determined according to architecture convolution types, feature

aggregation techniques, input modalities, and training types.

For the categorization according to the architecture convolution types, there are four
approaches: 2D CNN [57, [17, 48, |69, [70], 3D CNN [62. 5. 18, 24, [16, 49, l6, 163]],
separable 3D CNN and Hybrid CNN[64, [76] in which the mixture of the others can

be implemented.

For the categorization based on the input modalities, there are also four options:
video-only input (RGB Only), extracted optical flow of the video, extracted human
pose [12, [13} 78] [7] of video, and fusion in which the mixture of others can be per-

formed as two-stream and three-stream architectures.

For the categorization in terms of feature aggregation, there are three methods: recur-
rent architectures [48], (11}, 13, 40] (Such as LSTM, GRU, and convolutional version of
them), attention architectures 21,120, [18, 51]] (such as Transformers [65], BERT

11

[9] and non-local blocks), and pooling [31, [17, 22] (such as average, concatenation,
minimum and maximum). The attention mechanism can also be performed within the

implementation of recurrent architectures [S5, 158, [13} 140].

For the categorization depending on the training types, there are three methods: su-
pervised, weakly supervised, and unsupervised. The supervised approach is the most
general one for the classification task and all samples in a dataset have a specific label.
Weak supervision can simply be defined as noisy labeling. Unsupervised implies the

complete absence of the labels.

From this point, the literature for the deep learning based methods is divided into
general categories in order to emphasize the core idea of the studies for AR problem.
These are 2D CNN architectures (Section [2.1.2.1)), 3D CNN architectures (Section
[2.1.2.2)), recurrent architectures, pooling and fusion techniques (Section [2.1.2.3)), at-
tention models (Section [2.1.2.4), optical flow networks (Section [2.1.2.5), pose net-
works (Section [2.1.2.6)) and weakly supervised and unsupervised techniques (Section
[2.1.2.77). Note that these sections do not strictly follow the categorizations in Figure

It is important to note that studies from the different categories might not be unrelated
to each other. On the contrary, they can be strongly related to each other. For example,
2D CNN architectures might exist in all sub-categories. Pose and optical flow are
different input modalities, therefore they cannot be considered independently from
the architecture techniques. Additionally, most attention-based networks are utilized
with the recurrent architectures. The main aim of this categorization is to convey the

main focus of the studies and to relate similar studies to each other.

2.1.2.1 2D CNN Architectures

2D CNN architectures are trained basically with single images. However, it is pos-
sible to combine multiple frames in the channel dimension of 2D CNN architectures
and this idea is implemented for the flow stream of two-stream networks. From that

perspective, this is also in the category of optical flow networks which will be detailed

in Section

12

The breakthrough of deep learning methods for the action recognition problem starts
with the introduction of two-stream networks [57]]. The proposed architecture is not a
very deep 2D CNN architecture and consists of only five convolutional layers and two
fully-connected layers. The reason for the “two-stream" naming is the fact that there
are two streams: one stream for RGB images as an input modality while the other
one for optic flow images as an input modality. It is asserted that the RGB stream
emphasizes the appearance of the action while the optical flow stream emphasizes
the temporal information in the action. However, the temporal coverage is limited
because only 11 frames (10 optic flow images) are used within the channel dimension

of the first layer of the 2D CNN architecture.

The methods in [69] and [[/0] carry the two-stream concepts to deep 2D CNN archi-
tectures. For this aim, various good practices are proposed to train these deep 2D
CNN:s. One of the practices is cross-modality training which is training the optic flow
stream with Image-Net pre-trained weights. Another proposed practice is the multi-
scale crop concept as a data augmentation technique which is convenient for action
classification. It is claimed that high dropout is also quite useful for training on an

action dataset.

2.1.2.2 3D CNN Architectures

The first proposed 3D convolution architecture in the literature is C3D [62]]. Be-
fore this approach, the temporal modeling with convolution was performed using an
optical flow CNN in two-stream architectures or time-domain pooling architectures;
however, they are restricted to 2D convolution and temporal information is put into
the channel dimension. The difference of 3D convolution is that kernels are designed
in 3D and channels and time information are represented as different dimensions. The

C3D architecture has 8 convolutions, 5 max-pooling, and 2 fully connected parts.

One of the successful implementations of 3D convolution is Inflated 3D (I3D) [5],
in which 3D convolution is modeled in a much deeper fashion compared to C3D.
There are two important novelties in this method. One of them is the introduction of
the Kinetics dataset which is larger than the previously commonly used two datasets,

UCF101[39] and HMDBS51[36]]. This solves the problem of insufficient data for 3D

13

convolution to some extent. In addition, the designed architecture is the direct 3D
counterpart of Inception V1 architecture, which enables to use of pre-trained Image-
net weights in 3D architecture after some manipulations. In I3D networks, 3D archi-

tectures are trained for both RGB and optical flow input modalities.

Another proposed technique that uses the idea of 3D convolution is ResNet3D [24]
which is very similar to I3D. The only difference is that instead of using the 3D
correspondence of inception architecture, it uses the 3D correspondence of ResNet
architectures. Moreover, this method examines the fact that training 3D architectures
requires more data as in the case of the Kinetics dataset; otherwise, it leads to over-
fitting. Moreover, it investigates the fact that the Kinetics dataset enables performance
gains with deeper architectures as in the case of ImageNet. Different from I3D, this
technique uses a 112x112 input size compared to the usage of 224x224 input size in

I3D.

The downside of the 3D convolution architectures is their requirement for huge com-
putational costs and memory demand. One of the solutions to model 3D convolu-
tion with reduced parameter size is creating pseudo-3D architecture, which is called
Pseudo 3D network (P3D) [52]] in which 3x3x3 spatio-temporal kernels are subdi-
vided into 1x3x3 spatial kernel and 3x1x1 temporal kernels. These are also known as

separable 3D convolution.

Another method that applies the separable 3D convolution concept is called R(2+1)D
[64] and it is shown that dividing 3D spatio-temporal convolutions into spatial and
temporal convolutions with the same parameter size has improved the performance
significantly. In their paper, the performance of mixed architectures which consist
of both 3D and 2D convolutions have also been evaluated. These mixed architec-
tures replace certain 3D convolution layers with 2D and examine whether using 3D
convolution in higher layers or lower layers is more beneficial. S3D [76] is the sepa-
rable 3D convolution version of I3D. Similar to the study of [64]], [76] also analyses
the performance of mixed architectures which consist of both 3D and 2D convolu-
tions. Additionally, [76] introduces the feature gating concept which seems to be an
attention mechanism on channel dimension, which increases the performance of the

architecture.

14

Another important 3D CNN architecture is Channel-Separated Convolutional Net-
works (CSN) [63]], which depends mainly on the idea of depth-wise separable convo-
lution proposed in [28], which is claimed to be a good trade-off between performance
and efficiency. CSN proposes separating the channel interactions and spatio-temporal
interactions, and CSN can be considered as the 3D CNN version of depth-wise sep-
arable convolution. CSN also investigates the group convolution which is similar to

3D ResNeXt architecture used in [[24]].

2.1.2.3 Recurrent Architectures, Pooling and Fusion Techniques

Pooling is a well-known technique to combine various temporal features; concate-
nation, averaging, maximum, minimum, ROI, feature aggregation techniques, and

time-domain convolution are some of the possible pooling techniques [22, 48]].

Fusion frequently used for AR is very similar to pooling. Fusion is sometimes pre-
ferred instead of pooling in order to emphasize pooling location in the architecture or
to differentiate information from different modalities. Late fusion, early fusion and
slow fusion models on 2D CNN architectures can be performed by combining tempo-
ral information along the channel dimension at various points in CNN architectures
[31]]. As a method, the two-stream fusion architecture in [[17]] creates spatio-temporal
relationship with an extra 3D convolution layer inserted towards the end of the archi-

tecture and fuses information from RGB and optical flow streams.

Recurrent networks are also commonly used for temporal integration. LSTMs are
utilized for temporal (sequential) modeling on 2D CNN features extracted from the
frames of a video [48, [11]. E.g., VideoLSTM [40] performs this kind of temporal
modeling by using convolutional LSTM with spatial attention. RSTAN [13] im-
plements both temporal and spatial attention concepts on LSTM and the attention

weights of RGB and optical flow streams are fused.

Moreover, Temporal Segment Networks (TSN) [[70] is also an average pooling strat-
egy with 2D CNN architectures. Instead of training the RGB stream with a single
frame, TSN divides the video into segments, selects a frame from each segment and

some segmental consensus are satisfied by averaging the final features of the selected

15

frames. With this implementation, the false labeling problem is reduced to some
extent because the selected frame from a single segment might not contain character-

istics of the action.

Slow-fast networks [16] can be considered as a joint implementation of both fusion
techniques and 3D CNN architectures. There are two streams, namely fast and slow
paths. The slow stream operates at a low frame rate and focuses on the spatial infor-
mation similar to the RGB stream in traditional two-stream architectures, while the
fast stream operates at a high frame rate and focuses on temporal information like the
optical flow stream in traditional two-stream architectures. There is also some flow

of information from the fast stream to the slow stream.

2.1.2.4 Attention

The spatial attention mechanism is firstly used in action recognition research by [55]].
Spatial attention tries to direct methods to the related spatial parts of the action. Then

spatially attended features are temporally modeled by LSTM.

Li [40] focuses on the idea of temporal modeling by using convolutional LSTM which
is proposed in [S6] for radar map forecasting. Besides, it adds spatial a attention

mechanism to convolutional LSTM.

Another method that can be considered under the category of attention concept is
non-local neural networks [72]]. The authors aim to create a long-range relationship
between the different spatio-temporal locations of features which cannot be obtained
by the convolution operation. The method is inspired by non-local means which
creates a relationship between distant pixels as a weighted sum of all pixels. It is
claimed that transformers [65]], which is an attention-based method, is the special
case of their proposed algorithm. Their non-local blocks can be put into any CNN

architectures.

Video action transformer network [20], where the transformer is utilized in order to
aggregate contextual information from other people and objects in the surrounding
video for the related bounding box of person. In [S1]], the multi-head self-attention

mechanism of transformers is utilized as a self-attention mechanism in action recog-

16

nition for low-resolution videos. Actor transformers [[18]] utilizes transformers as
an attention mechanism between the features of different actors. Differently from
the video action transformer network, the actor transformer utilizes not only bound-
ing box specific queries but also bounding box specific keys and values in the self-

attention mechanism of transformers.

2.1.2.5 Optical Flow Networks

As mentioned before, the optical flow field (see Appendix [A) is one of the important
input modalities in two-stream networks. However, extracting optic flow needs pre-
processing of the data and is more computationally complex compared to the RGB
stream. Therefore, some studies focus on reducing the complexity of extraction of
optical flow and enable end-to-end training of two-stream architecture including the

extraction of optic flow.

Zhang et al. [80] use motion vectors instead of optical flow vectors and motion vectors
are coarser and noisy compared to optical flow vectors. Motion vectors are normally
used in video compression for its fast implementation. In their paper, a motion vec-
tor CNN is trained with knowledge distillation [27, 42]] which aims to train a student
network by a teacher network. Knowledge distillation aims to obtain with student
network as good performance as with teacher network with much less parameter. In-
stead, in this network, the parameter sizes of two CNN are the same but the quality of
input to the student network is worse compared to the teacher network. This imple-

mentation is claimed to be 20x faster compared to traditional two-stream networks.

Ng et al. (2018) [477] use 3D convolution to learn multi-frame optical flow extraction
and 2D convolution to learn the optical flow of 2 frames jointly with the loss for
action classification. It is shown that the guidance of action classification loss to
optical flow extraction improves the performance compared to the single usage of
optical flow loss for action recognition. The problematic side of this implementation
is that the performance of the algorithm is upper bounded by the traditional optical

flow algorithm which supervises CNN.

Wu et al. (2018) [[74] try to use the information of P frames which is used in com-

17

pressed video formats, like MPEG-4 and H264. In video compression, P frames are
referenced to the image frame with motion vectors and residuals. In this work, in-
stead of referencing P frames to the previous frame, they are referenced to the latest
I frame, which reduces the noisy output of motion vectors and residuals and denoted
as accumulated motion vectors and accumulated residuals, respectively. It is claimed
in the paper that with 3 input modalities (I-frames, accumulated motion vectors, and

accumulated residuals), they achieved good performances with low complexity.

Zhu et al. (2017) [81] tries to calculate optical flow with an unsupervised setting. It
claims that supervised training of optic flow is upper bounded by the performance of
optic flow extractor for the loss function. In this work, optic flow extraction is as-
sumed as an image reconstruction problem. Given an image pair, optical flow vectors
are estimated and one of the images of the pair is tried to be constructed by utilizing
both the other image and optical flow vectors. Additionally, the system is trained
with smoothness loss which are the derivatives of optic flow vectors and the Struc-
tural Similarity Index Measure (SSIM) loss. Then, this network is trained with an

end-to-end fashion with an action classification network.

TVNet [14] proposes a good trick to implement the TV-L1 optic flow algorithm with
CNN layers, which reduces computation time (Complexity reduction increases with
larger batch size due to parallelization). Moreover, due to the nature of the imple-
mentation with CNN layers, the parameters of convolutional filters which calculate
the gradient of image and motion vectors and divergence of brightness difference can

be made learnable.

Representation Flow Networks [50] considers the idea of calculating optical flow
vectors from the intermediate features of CNN architectures and extends the TVNet
study for this aim. Moreover, this effort introduces the flow of flow concept which
provides a model with longer-term flow representation. The authors test various layer
outputs to find better flow feature representations. Additionally, the idea of feature
flow is transferred from the 2D convolution domain to the 3D convolution counterpart.
It is claimed that the final network yields very good accuracy results with significantly

less complexity compared to the rival methods of it.

Sun [61] tries to use the relationship between the features of different times, which

18

is similar to [50]. For achieving this, gradient information in the features (calculated
with Sobel operator) and difference information between the features are concate-
nated and conveyed to the upcoming layer. However, it is observed that it does not
yield as good performance as Representation Flow Networks [50]. This might be

derived from the fact that it lacks the iterative process as in TV-L1 (or TVNet).

Another promising idea for the utilization of optical flow information is related to
the distillation concept, namely Motion-Augmented RGB Stream (MARS) [8]. For
the distillation concept, there are two architectures which are called as feacher and
student. The main concept is guiding the student architecture with that of the teacher.
The distillation concept is utilized in the literature to decrease the parameter size and
time complexity, such that the student architecture is less complex architecture than
the teacher architecture and student architecture is aimed to yield the same results
with the teacher architecture. However, in MARS, the goal of distillation is different.
The input modalities of teacher and student architectures are optical flow and RGB,
respectively. The main purpose of the distillation is the obtainment of the similar
features between the student and teacher architectures, one is fed by optical flow
and the other is fed by RGB. As a consequence, the information of the optical flow
architecture is utilized without the burden of extracting the optical flow of the RGB

input, speeding up the architecture, significantly.

2.1.2.6 Pose Networks

Pose networks try to benefit from the pose of the people in a video. In the literature,
it can be observed that pose network concepts are used jointly with the attention
mechanism. One paper that uses this concept is Recurrent Pose-Attention Network
(RPAN) [12]. In this paper, some joints are grouped into parts. According to parts and
joints, different spatial attention parameters are defined. In addition, the loss function

of spatial attention is guided by the pose map of the image.

Another paper, which uses pose attention, is Recurrent Spatial-Temporal Attention
Network (RSTAN) [13]. However, the main focus of the paper is not on the pose
attention concept as in the case of RPAN. In this paper, temporal and spatial attention

concepts are implemented jointly and attention weights are fused between two stream

19

architectures which use both RGB and optic flow as input modalities.

PA3D [[78] tries to use the outputs of one of the fast multi-person pose detector, called
OpenPose [2] (see Appendix [B]). OpenPose tries to estimate Part Affinity Fields (PAF)
which is the part information between the joints and joints themselves. PA3D uses
the features of the CNN backbone, PAFs, and joints as different input modalities. For

the final prediction, the scores of joints, PAFs, and features are fused.

The PoTion is another method that uses OpenPose [7] joint information. Instead of
adding a temporal dimension for every joint, it encodes the temporal information by

colorizing.

2.1.2.7 Unsupervised and Weakly Supervised Techniques

Weak supervision methods and unsupervised methods are one of the crucial parts
of the action recognition, since labeling a huge amount of data is quite challenging,

while extra data is crucial to obtain better performances.

Order Predicting Network (OPN) [39]] is one of the methods that use an unsupervised
method. In this work, video frames that contain the large optical flow fields are se-
lected, which is called motion-aware frame selection. Then, the frames are shuffled
and the network tries to predict the real order previous to shuffling. Another similar
work called Video Jigsaw [[1] tries not only to predict the temporal order but also to
predict the spatio-temporal order such that three frames are selected and every frame
is divided into 4 patches, which makes the total number of patches equal to 12. How-
ever, instead of trying to predict all 12! cases, it creates sub-samples by maximizing
the Hamming distance between the samples, which reduces the memory and compu-

tation needs.

Additionally, instead of predicting order from per-frame based features, predicting
order from the K-framed clip features is also possible, called as 3DRotNet [[77]. It is
claimed that frame chunks or clips contain more information than the group of frames
and guides the ordering network better. To highlight it more clearly, 3DRotNet uses
3D CNNis to extract features, while OPN uses 2D CNNSs.

20

Contrastive Bi-directional Transformer (CBT) [60]] uses BERT with the Noise Con-
trastive Estimation (NCE) loss. In this paper, 3DRotNet is trained with the S3D
network by using the same unsupervised method in 3DRotNet. Additionally, by uti-
lizing the extracted 40 features from the 16-framed clips, longer context is learned,

which makes the representations more temporally informative.

It is shown in the I3D method [3] that training UCF-101 and HMDB-51 from the
fine-tuned model from Kinetics yields better performances compared to training them
from scratch. The question that comes into mind is whether a larger dataset than Ki-
netics might be more beneficial for learning better representations for AR problems.
However, there is no larger dataset for the time being to test this hypothesis. [19]
considers testing this using weak supervision. Weak supervision can be thought of as
noisy labeling. In this paper, four datasets from Instagram videos have been created
using the hashtags. The maximum amount of video among these datasets within this
study consist of 65M videos which is about 200 times larger than the Kinetics-400
dataset. In this paper, the effects of various factors on the performance are analyzed
such as the dataset types, the number of labels, and the pre-training data format. As

the convolutional architecture, R(2+1)D [64]] has been chosen for the experiments.

2.2 Prominent Deep Leaning Based Methods in AR Literature

This chapter examines the following concepts in detail: Bi-directional Encoder Rep-
resentations from Transformers (BERT), group convolution and depth-wise convolu-
tion, 3D convolution, separable 3D convolution, non-local neural networks, SlowFast
networks, motion-augmented RGB stream networks (MARS), multi-fiber networks

(MFNET), and temporal shift modules (TSM).

2.2.1 BERT [9]

Bi-directional Encoder Representations from Transformers (BERT) [9] is a bidirec-
tional self-attention method, which has significant superiority over other attention-
based methods for Natural Language Processing (NLP) tasks. The bidirectional prop-

erty of this method provides BERT to fuse the context from both directions, instead of

21

relying upon only a single direction, as in former recurrent neural networks or other

self-attention methods, such as Transformer [65]].

The single head self-attention model of (BERT or Transformer) is in general formu-

lated as:

yi = ﬁ S g(x5) f(x6, %), @.1)
vj

where x is the embedding vector that consists of extracted visual feature of the current
frame and its positional encoding; ¢ indicates the index of the target output temporal
position and j defines all possible combinations; and N (x) is the normalization term.
The function g(+) is the linear projection inside self-attention mechanism of BERT,
whereas the function f(-,-) denotes the similarity between x; and x;. The function
f(-,-) can be explicitly written as f(x;,x;) = softmax(6(x;)” ¢(x;)), where the func-
tions 0(-) and ¢(-) are also linear projections from the learned feature space. The

outputs of 6(-), ¢(+) and g(-) functions are known as key, queue and values.

Similar work for action recognition is implemented by using the technique entitled
as non-local neural networks (NN) [[72]. A non-local NN uses a similar concept in
every bottleneck block of ResNet, except the last block by using 1x1x1 CNN filters
in order to realize g, ¢, and ¢ functions. However, BERT exploits matrices in order to
realize the same functions, utilizes the multi-head attention concept in order to create
multiple relations with self-attention, and utilizes the positional encoding concept in

order to preserve the position of the words.

In Natural Language Processing (NLP) tasks, multi-head attention is used to learn
multiple relations. For example, homophone words are projected into the same em-
bedding. Therefore, there should be a need to learn multiple relations. Contrary to
RNN-based methods, the positional information of the words is lost because of the
summation term in [2.I] Therefore, positional encoding is applied in a way that po-
sition vectors (or embedding) are added to the feature vectors or word embedding.
Positional embedding can be made learnable or fixed. In the original paper that pro-
poses the Transformer concept, it is argued that making it learnable does not make
any difference; however, in BERT paper [9], learnable positional encoding increases

the performances.

22

() () () () () () () () () () ()

Token

Embeddings ‘E[CLS] Emy ‘ Edog ‘ EIS Ecute E[SEP] ‘ Ehe ‘Elikes ‘Eplay ‘ E”ing ‘E[SEP]
+ + + + + + + + + + +

Segment

crmaanos | En | | B]| Ex || B0][B0][B0 || o][o | [& || & || B0]
+ + + + + + + + + + +

Position

Croecarss | Eo || & || B || o J[& || B || B J[& [& | B || B]

Figure 2.4: Masked LM in BERT [9]

The training of BERT consists of two stages. These stages are pre-training and fine-
tuning. In the pre-train step, BERT is trained in an unsupervised manner. The pre-
train stage is performed by a method called Masked LM (MLM). In this stage, some of
the tokens of the words are replaced by a mask token. Then all of the words (masked
or unmasked) are tried to be predicted by the BERT approach. Moreover, during the
pre-train step, two sentences are given, which are either next to each other or irrelevant
to each other and the proposed method is expected to predict that whether these are
next to each other or not. For different sentences, segment (or sentence) embedding is
added in order to provide the information about the relationship of words to sentences.
For the prediction of the next sentence task, an extra classification token is added.
From that position or index, the classification is performed. The MLM procedure in

BERT is illustrated in [2.41

2.2.2 Group Convolution and Depth-wise Convolution

Group convolution and Depth-wise convolution (DW) can be perceived as a way of
making the architectures with fewer parameters and more computationally efficient.
Group convolution and depth-wise convolution are related to each other. Depth-wise

convolution is a special case of group convolution.

The illustration of group and depth-wise convolution is presented in Figure[2.5] The
main concept for these convolutions is reducing the channel interactions for better
efficiency. Only the channels within the group interact with each other. DW is a
special case of group convolution where the number of groups is equal to the number

of channels. In group convolution, the dimension of the filters changes from C},xhxw

23

input
channel

output
channel

W

O
a) co b) group conv c) depthwise conv

Figure 2.5: The demonstration for group and depth-wise convolution. Each circular
node represents an input or output channel [63]. (a) A conventional convolution, the
number of group is one. (b) Group convolution, where the number of groups is two in
the figure. (c) Depth-wise convolution, the number of groups is equal to the number

of channels and it is four in this example.

to %xhxw where C}, is the number of input channels, / and w are the horizontal and
vertical dimensions of the filter, and K is the number of groups. In group convolution,
both the number of parameters and computational complexity is reduced to one K -th
of the conventional convolution. A better demonstration of the comparison between

conventional and group convolution is shown in Figure 2.6

However, it should be noted that reducing the channel interactions is not a good prac-
tice because the channels might contain complementary information and it might be
processed jointly. Especially, in depth-wise convolution, the channel interactions are
reduced to zero. Therefore, the depth-wise convolution is utilized within the con-
cept of depth-wise separable convolution where the 1x1 channel convolutions are
performed after 3x3 depth-wise convolution. Depth-wise separable convolutions are
proposed in MobileNet architectures [28] as efficient CNN implementations. Sim-
ilarly, the group convolution is applied only to 3x3 filters in bottleneck blocks of
ResNet architecture and 1x1 convolutions are implemented conventionally (see Fig-

ure [2.10]for the bottleneck block of ResNet architecture).

2.2.3 3D Convolution

The contribution of 3D CNNs on the AR tasks is very crucial. For example, accord-

ing to the I3D paper [3], the utilization of 3D CNNs has increased the performance

24

x Dout/2

Figure 2.6: Conventional (Top) and group (Bottom) convolution operations. The
image is from Towards data science: Comprehensive introduction to different types

of convolutions in deep learning

with approximately 9% and 8% compared to 2D CNNs and LSTM-based architec-
ture on the Kinetics dataset, respectively, all utilizing the Inception-V1 architecture.
The reason behind the success of 3D CNN is the fact that the temporal information
is utilized hierarchically and in an order similar to the spatial information. The pool-
ing methods or recurrent neural network methods create temporal relations only at
the final stage, which lacks successful temporal modeling. However, it should al-
ways be remembered that 3D convolution has quite a high number of parameters,
which requires a huge training dataset in order to obtain successful performances.
For example, in the same paper, it is reported that training from scratch and Kinetics
pre-trained Two-Stream 3D CNN has obtained 66.4% and 81.2% performances on
the HMDBS51 dataset, respectively. This fact emphasizes quite clearly that the dataset

is of great importance to benefit from any 3D CNN architecture.

Conceptually, the standard input training data format in 2D convolution consists of

25

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Figure 2.7: Depth-wise separable convolution. The image is from Eli Bendersky’s

website: Depthwise separable convolutions for machine learning

B,Cy,, H, W, where B, C;,, H, W are to denote the batch size, the number of input
channels, the dimension of height and width, respectively. The filter sizes can be
defined as hxw where h and w are the filter height and width, respectively, and the
real filter size is Cy,xhxw if it is not group or depth-wise convolution. The output
of every 2D convolution filter has a dimension of Bx1xHxWW. In 3D convolution,
the standard input data format is B, Cy,, T, H,W, where T is added as a temporal
dimension (i.e. video frames). The filter sizes can be defined as txhxw where t is the
temporal length of the 3D filter, and the real filter size is C;,xtxhxw. The output of
every 3D convolution filter has a dimension of Bx1x7TxHxW . The different between

2D and 3D convolution can be seen in Figure[2.8]

26

https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/
https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/

output

(a) 2D Convolution

H| Lt
output

3
!

output

(c) 3D Convolution on multiple frames

Figure 2.8: 2D versus 3D convolution [62]

Mainly, there is two popular 3D convolution architecture category. There are Incep-
tion based and ResNet based since there are also popular 2D CNN architectures and
using them enables the utilization of Image-Net pre-trained weights obtained in im-
age classification which is a more mature area compared to the AR. To benefit from
Image-Net, it is possible to consider pseudo-video which consists of the same frame
repeating itself. Then, the weights in 2D CNN filters are repeated in temporal dimen-
sion with % normalization factor where ¢ is the temporal dimension of the 3D filter.
As a consequence, the output of 2D CNN with the frame is the same with the output
of 3D CNN with the pseudo-video which consists of the repeating same frame. In
[S], it is also shown that starting with Image-Net yields better performance compared

to starting from scratch.

However, it should also be denoted that the Kinetics dataset is sufficient and utilizing
Image-net pre-trained weights as explained in the previous paragraph does not yield

considerable performance improvements.

27

Rec. Field: Rec. Field:
711,11 11,27,27

Next Layer . TXTX7 1x3x3 1x3x3 (2]
Video Conv Max-Pool Max-Pool Inc. ‘
stride 2 stride 1,2,2 stride 1,2,2 J

Rec. Field:
23,75,75
3x3x3

e e e e L R

stride 2

333 Rec. Field: Rec. Field:
m Max-Pool 59,219,219 99,539,539
4) ~ 2x2x2 — o
! inc. — .nc_]_ 2371 J—m—Predmtlons

1 I {Inc — Max-Pool Al rodl

stride 2

Previous Layer

(a) 3D Inception module (b) 3D Inception-based CNN architecture: Inflated 3D (I3D)

Figure 2.9: Architectural information about 3D Inception network
2.2.3.1 Inception Type Architectures

The inception-based methods consist of Inception blocks. There are two important
aspects of this block. The first aspect is that it concatenates the outputs of differently
sized filters, which creates diversity in the output. The second aspect is that before
applying differently sized filters, it applies point-wise convolution, which reduces the
size of the parameters of the network. The point-wise convolution is implemented
with 1x1 sized filters. The 3D Inception module used in [5]] is given in Figure 2.9
The overall architecture of Inception-based 3D CNN architecture, namely Inflated 3D
(I3D) can be examined in Figure [2.9b]

2.2.3.2 ResNet Type Architectures

The ResNet-based methods consist of basic or bottleneck blocks and these are two
and three convolution operations, respectively [235]. A bottleneck block increases
the number of filters with expansion size compared the basic block. These blocks
gets the input, and apply a function f(-) and adds to itself, which can be shown
in mathematical terminology as = + f(z) or g(z) + f(x), where g(-) is optionally
applied where there is mismatch in channel sizes. Basic and Bottleneck blocks of 2D

CNN architectures are shown in Figure [2.10]

ResNeXt [79] is a ResNet type architecture which includes a group convolution im-

plementation (See Section [2.2.2]for more information about group convolution). The

28

256-d

A 4
| 1x1, 64 |
i relu

| 3x3, 64

l relu

| 1x1, 256

Figure 2.10: Basic (Left) and Bottleneck (Right) blocks of ResNet architecture [25]

group convolution filter sizes are %xhxw in 2D convolution or %xtxhxw in 3D
convolution, where K is the number of groups and called cardinality of the archi-
tecture. It has been denoted that the ResNeXt-50 gets 1.7% higher results compared
to ResNet-50 in Image-Net, which have nearly equal parameter sizes [[75]. It is also
shown that 3D ResNeXt is better than 3D ResNet architecture in activity classification
tasks obtained on Kinetics-400 dataset [24].

Channel Separated Convolutional Networks (CSN) [63]] is the depth-wise convolu-
tion version of 3D ResNet (see Section [2.2.2] for more information about depth-wise
convolution). There are two proposed CSN architectures. The difference between
the two architectures lies in the implementation of bottleneck blocks. These bottle-
neck blocks are called as Interaction-preserved channel-separated bottleneck block
(ip-CSN) and Interaction-reduced channel-separated bottleneck block (ir-CSN). ip-
CSN adds 1x1x1 convolution before the depth-wise convolution in order not to lose
the relationship between the channels. The bottleneck blocks of ip-CSN and ir-CSN
is visualized in Figure[2.11]

2.2.4 Separable 3D Convolution

Separable 3D convolution is the two-step implementation of classical 3D convolu-
tions such that 3D convolution which has a filter size of C, xtxhxw is replaced with
the successive implementation of spatial filters which have size of C;,x1xhxw and
temporal filters which have size of C;,9xtx1x1, respectively, and C;,,» is equal to the

number of filter of spatial filters before the temporal filters. The 3D convolution and

29

1 \/ 1

Tx1x1 Tx1x1 Tx1x1
v r__— * — " _ i _
1x1x1 F 1
3x3x3 | | 1 3x3x3(dw) | I
3x3x3(dw) L — — — 4Jd
| M —
\4 v \4
Tx1x1 Tx1x1 Tx1x1
a) + b) * C) *

Figure 2.11: Standard and CSN bottleneck blocks. (a) Standard block. (b) ip-CSN
block. (c) ir-CSN block [63]

separable 3D convolution is shown in Figure [2.12]

The pioneering work in this area is Pseudo-3D Nets (P3D) [52]. The traditional 3D
bottleneck and proposed bottlenecks are shown in Figure [2.13] The performances
are relatively close to each other, but the performance of P3D-A is a little bit higher,
while it is a little bit less complex compared to others. Moreover, it is also possible
to use all of them in the same architecture by following some order. It is claimed that
using in the order of P3D-A, P3D-B, and P3D-C and again, increase the performance

a little bit more compared to using only one type.

R(2+1)D [64]] is another prominent work that follows the same idea with P3D. Ad-
ditionally, R(2+1)D tries to analyze mixing 3D and 2D convolutions in the same
architectures. It has been shown that R(2+1)D shows the best performance among
all mixture variations of 3D and 2D CNN convolutions with the same number of lay-
ers. The bottleneck blocks utilized in the architecture are the same as the blocks of
P3D-A. The 3D basic block of ResNet is also modified similarly. They argue that one
of the positive aspects of separable 3D convolution is that it doubles the number of
non-linear functions for the same number of parameters, resulting in learning more
complex functions. Also, it is claimed that separable 3D convolution facilitates the

optimization of the architecture.

30

1xdxd

txdxd

Y M

ﬂ+ tx1x1

\ 4
a) b)

Figure 2.12: (a) Conventional 3D convolution. (b) Separable 3D Convolution [64]

(st on]

RelU

[55 con]

RelU

[con]

RelU

[con]

[t eond

RelU

[553 con]
RelLU
[rasteon]

© RelU

it con]

[com]

RelU

(it o

RelU

(35 o

RelU

(it o]

I 1x3x3 convl I 3x1x1 convl

RelU

(a) Residual Unit [7] (b) P3D-A (c) P3D-B (d) P3D-C

Figure 2.13: Proposed alternative separable 3D convolutional bottleneck blocks [S2].

A quite similar idea is implemented in S3D architecture [/6] which is the implemen-

tation of separable 3D convolution on I3D architecture.

In order to give more detail about the architecture of R(2+1)D [64], the classical
spatio-temporal 3D convolution which has a filter size of 3x3x3 is converted into sep-
arable 3D convolution which consists of spatial convolution which has a filter size of
1x3x3 and temporal convolution which has a filter size of 3x1x1, respectively. In the
utilization of this separable convolution, there is also a hyperparameter, namely the
number of mid-plane channels, which is the number of channels between the spatial

and temporal filters in separable 3D convolution. The number of mid-plane channels

31

in this architecture is determined in a way that the number of learnable parameters
will be the same between the spatio-temporal 3D convolution and separable 3D con-
volution. The number of parameters in classical 3D convolution is /xOx3x3x3 and
the number of parameters in separable 3D convolution is /x Mx3x3 + Mx3xO, where

I is the number of input channels, O is the number of output channels, and M is the

IxOx3x3x3

number of mid-plane channels. Therefore, M is set to 753755

in order to equal
the number of parameters between classical and separable 3D convolution. Besides,
at the beginning of the R(2+1)D architecture, 45 2D filters of size 1x7x7 and 64 1D
filters of size 3x1x1 are applied instead of utilizing 64 3D filters of size 3x7x7, both
implementations have an equal number of parameters. However, it should be noted
that some 3D ResNet architectures in the literature apply 64 3D filters of size 5x7x7

and 7x7x7 at the beginning of the architecture.

2.2.5 Non-local Neural Networks [72]]

Convolution operations are applied within the local neighborhoods of the architec-
tures. For capturing the long range dependencies, convolutions are applied hierarchi-
cally with stride and max pooling to capture long range dependencies layer-by-layer.
A non-local operation concept is proposed [[72] in order to capture long range depen-
dencies directly within the layer. One possible advantage of using non-local is that
the long-range relationship is created without losing the spatial context and detail as
in CNN architectures. The non-local means concept is a traditional algorithm that re-
lates all the pixels of an image to each other with some weighting. On the other hand,
non-local neural networks aim the same on features instead of pixels and without a
huge complexity. It should also be denoted that non-local concept is directly related

with the attention concept.

The main idea behind the non-local concept can be explained by Equation 4.1} The
general structure of a non-local block is showed in Figure In the figure, T', H,
W denote the dimension of spatio-temporal feature and are time, height, and width,
respectively. 1024 in the figure is to denote the number of channels. This is given
as an example, therefore 1024 may change depending on the layer on which a non-

local block is implemented. With the help of 6(-) and ¢(-) functions, the similarity is

32

// TxHxWx1024

Ix1x1
TxHxWx512

SOfl’max THWx512

THWxTHW

THWx512 512xTHW THWx512

TxHxWx512| TxHxWx512 TxHxWx512
0: 1x1x1 ¢: 1x1x1 g: Ix1x1

1 i

TxHxWx1024

Figure 2.14: Non-local block [72]]

calculated for every possible spatio-temporal positions of X. These can be thought of
as the relation of every position with the other all positions in spatio-temporal domain.
Then, with the ¢(-) function, the features created across the channel dimension is
moved to another domain that the aggregation of g(X) accordingly with the calculated
relation parameters yields good representations for every location in features space.
The reason for the reduction of 1024 to 512 in the example of Figure [2.14|is due to
the aim of the reduction of complexity of the architecture. It should be denoted that
the output of a non-local block is added to the input. Therefore, this approach enables

the utilization of pre-trained weights of any architecture.

When the architecture [72] is inspected, the authors implement non-local blocks in
the second and third bottleneck groups (this is also called as layers in ResNet ar-
chitectures). It should be noted that ResNet architectures have 4 bottleneck groups.
For example, ResNet50 architectures consist of 3,4,6 and 3 bottleneck blocks for the

bottleneck groups of 1,2,3 and 4, respectively. Moreover, in the bottleneck groups,

33

non-local blocks are not applied to all bottlenecks. Instead, odd numbers in the or-
der are applied. For example, in the second bottleneck group which has 4 bottleneck

blocks, the first and third one contains the non-local block.

The PyTorch implementatiorﬂ of Non-Local ResNet50 architecture includes some
modification with respect to the original ResNet architectures. Firstly, the bottleneck
blocks which is originally implemented as 1x1x1, 3x3x3, and 1x1x1 is implemented
as (3x1x1 or 1x1x1), 1x3x3, and 1x1x1, respectively (See Figure[2.15). The selection
of bottleneck block types which are modified block-1 or modified block-2 (see Fig-
ure [2.15] for these types) is determined according to the block position in bottleneck
group and these two types are used alternatively in specific group, one by one. As
an exception to the first bottleneck group, all bottleneck blocks are modified block-2.
Moreover, contrary to the traditional ResNet architectures [24]], temporal stride is not
implemented in the second, third, and fourth bottleneck groups. In this way, the aim
can be preserving the temporal information throughout the CNN layers. The temporal
size reduction is eight at the end of the architecture, which is 16 in ResNets of [24].
The filter size of the first convolutional layer is 5x7x7, which is 7x7x7 in ResNets of

[24].

In this thesis, this explained architecture is denoted as "Modified ResNet50" and is
analyzed in Chapter[3| Additionally, for ¢(-) and g(-) functions, max-pooling applied
to the spatial domain (H and 1) contrary the information given in Figure[2.14] The

aim is to reduce the computational cost of the architecture.

2.2.6 SlowFast Networks [16]

SlowFast Networks [16] is a different perspective to the two-stream architectures.
Instead of utilizing a two-stream or two-path structure for different modalities, Slow-
Fast utilizes two-stream for a single modality and these two streams are not identical
to each other (See Figure 2.16)). As easily realizable from the architecture title, there
are both slow and fast streams of pathways. The slow stream operates at a low frame
rate and focuses on spatial information, such as RGB stream in traditional two-stream

architectures, while the fast stream operates at a high frame rate and focuses on tem-

1 |github.com/Tushar-N/pytorch-resnet3d

34

https://github.com/Tushar-N/pytorch-resnet3d

1x1x1 1x1x1 3x1x1

v i i

3x3x3 1x3x3 1x3x3

v v v

1xix1 1xix1 1xix1

Figure 2.15: The modified blocks of the utilized ResNet architecture of non-local pa-
per. Traditional block (Left), modified block-1 (Middle) and modified block-2 (Right)

=

Low frame rate

HW

[

C
C
ﬁ & —
o aT
aT BC
pC

uonorpaid

pC
High frame rate

Figure 2.16: The Slowfast Network Architecture [[16]

35

poral information as an optical flow stream in traditional two-stream architectures.

Conceptually, when a person waves or shakes a hand, the spatial information does
not vary much; in other words, the hand is still mostly the same appearance and
its properties (color, textural, brightness) evolve slowly in the time. On the other
hand, the movement of the hand is also quite fast. Due to this fact, the fast stream
does not focus on spatial information very much, the channel capacity can be less,
therefore does not require temporal pooling in order to decrease the computational
complexity. In other words, there is a trade-off between higher channel capacity and
higher temporal resolution throughout the architecture, and preference is given to
higher channel capacity in the slow pathway, and higher temporal resolution in the

fast pathway.

It should also be noted that SlowFast architecture shares some similarities with the
retinal ganglion cells in the primary visual cortex. The studies claim that about 80
% of these cells are Parvocellular (P-type) and 15-20 % are Magnocellular (M-type).
P-cells provide fine spatial detail and color but have a slow response ability to stimuli.
On the other hand, M-cells can respond in a faster manner but have a lower spatial
ability. The analogy with the architecture is that the channel capacity is more on the
slow pathway as the ratio of P-cells is much higher. As M-cell, the fast pathway has
a faster response ability but has a low spatial ability, and as P-cells, the slow pathway

has a slower response ability but has a better spatial ability.

Some of the hyperparameters of SlowFast architecture can be analyzed in Figure
As seen from the figure, the fast pathway has a lower channel capacity, such that
times of the channel capacity of the slow pathway. However, it has a higher temporal
resolution, such that o times of the temporal resolution of the slow pathway. There
are also lateral connections between the architecture which flows information from
the fast stream to the slow stream. The typical « and (values utilized in SlowFast

architectures are 4 or 8 for o, and é for [3.

The architecture utilized for the implementation of the SlowFast network is ResNet
architecture. The details of an example SlowFast architecture with ResNet-50 is
shown in Figure As it can be observed in the figure, the slow stream is the

same with the traditional ResNet architecture, such that the number of channels is set

36

stage Slow pathway Fast pathway output sizes T'x.S?
raw clip - - 64 x 2247
)) Slow : 4x2242
2 2
data layer stride 16, 1 stride 2, 1 Fast : 32 x2042
conv 1x7%, 64 5%x72, Slow : 4x 1122
1 stride 1, 22 stride 1, 22 Fast : 32x 1122
ool 1 %32 max 1 x3% max Slow : 4x 562
OO stride 1, 22 stride 1, 22 Fast : 32x562
2 7] B 2]
Ix17, 64 3xT, Slow : 4x 562
ress 1x34, 64 X3 1x3~, X3 Fast - 3% 562
| 1x1%,256 | | 1x1%,30 @
[1x12,128] [3x12, 5
ress 1x32,128 | x4 | | Tx32, x4 PS,CZI‘;:V 4222882
| 1x1%,512 | | 1x1%,064 '
3x1%,256] [3x12,32] >
resy 1x3%,256 | x6|| 1x32, X6 lffl‘;;v 4>:<11i2
| 1x1%,1024 | | 112,128 | '
3x12,512] [3x12%,64] 5
ress 1x3%,512 | x3|| 1x32, X3 géi;v 4>:<772
| 1x12%,2048 | | 1x12,256 '
global average pool, concate, fc # classes

Figure 2.17: The details of the SlowFast-50 with « = 8 and § = % [L6]]

to 64, 128, 256, and 512 at the beginning of the bottleneck blocks for the first, sec-
ond, third and fourth bottleneck groups in ResNet architecture, respectively and the
bottleneck expansion is set to 4. However, for the fast stream, the number of channels
is reduced [times, such that are these are 8, 16, 32, and 64 for § = %. Generally, for
the SlowFast architectures, 32 frames with stride 2 are selected for the fast pathway,
as in the implementation of non-local paper (See Section [2.2.5). The information
about the lateral connections that fuse the information from the fast pathway to the
slow pathway is not shown in Figure The lateral connections are applied before
every bottleneck group, namely res,, ress, resy, and res; in Figure In the lat-
eral connections, the output of the fast stream is applied to another 3D convolution.
For the 3D convolutions in lateral connections, there is also another parameter, called
fusion convolutional channel ratio (FCCR). This parameter increases the channel
capacity of the features of the fast stream before fusion. Therefore, the additional

channel information fused to the slow pathway is the Sx F'*C'C'R times the number of

37

channels existing in the slow stream. Hence, the starting number of channels of first
bottleneck blocks of the bottleneck groups (ress, ress, resy, and ress) are 80, 160, 320
and 640 instead of 64, 128, 256 and 512 for § = % and FCCR = 2.

2.2.7 Motion-Augmented RGB Stream Networks (MARS) [8]

For AR tasks, the combination of the information from RGB and optical flow is quit
beneficial in increasing the accuracy of the architectures. These architectures are
known as two-stream architectures. However, extracting accurate optical flow vectors
from the RGB input is an expensive process, resulting in a significant increase in the
computational complexity of the architectures, limiting the utilization of two-stream
architectures in real-life scenarios. During recent years, the researchers in this field
put an effort to obtain the performance of the two-stream architectures without the

need for the optical flow pre-processing.

Another brilliant idea for the aim of obtaining the performance of two-stream ar-
chitectures without the additional complexity of optical flow calculation is Motion-
Augmented RGB Stream Networks (MARS) [8]]. The idea is related to the distillation
concept in the related literature. Distillation denotes transferring the knowledge from
a teacher network to a student network and it is first proposed by [27]]. In this network,
a student network is trained not only with the cross-entropy loss of the hard labels but
also the cross-entropy loss with the soft labels of the teacher network which is pre-
trained on the same task. In addition, some of the performance improvement brought
by ensemble learning is partially obtained by the distillation of ensemble architecture
to single architecture. Another form of distillation is the transfer of privilege informa-
tion [42]. The utilization of privileged information depends on the idea that student
and teacher architectures have different inputs but have the same purpose. By using
this methodology, the regularization or another perspective from the teacher architec-

ture to the problem might increase the performance of the student architecture.

In MARS, teacher architecture is the one that gets optical flow images, and student
architecture is the one that gets RGB images. The aim in the distillation of MARS
is to transfer the information from the flow architecture to the RGB architecture. In

this setting, optical flow is the privilege information; however, it should be denoted

38

that the distillation is not implemented in the level of soft classification labels but
in the level of the output features of the backbone. The final aim is obtaining the
performance of flow architecture without the complexity of the extraction of optical

flow inputs.

For distillation, there are also two types of implementation. The first one is Motion-
Emulated RGB Stream (MERS) in which there is only MSE error between the ex-
tracted features of flow and RGB architectures. In MARS, additional classification
loss from the RGB architecture is also backpropagated. The general loss function of

the method can be defined as:

Loss = CrossEntropy(srgg, y) + A||(fre — fﬂow>||27 2.2)

where frgp and faey, are the final outputs of the RGB and flow architectures, F(-)
and G(+), respectively, for a given input image x. spgp is the predicted classification

of the RGB architecture, which can be defined as:
srap = arg max C'(F(x)) = arg max C(frgs), 2.3)

where C'(.) is the classification function from the features. Larger « values drive
the architecture to MERS, while smaller one makes it more MARS type. For the
selection of the architecture, ResNeXt101 is chosen as the base architecture which is

also utilized in [24] (See Section [2.2.3.2)).

2.2.8 Multi-Fiber Networks for Video Recognition[6]

Multi-Fiber Networks (MFNET) [6] are proposed in order to reduce the number of
parameters and the number of operations in the bottleneck blocks of the ResNet ar-
chitectures. The idea of MFNET depends on the idea of group convolution which is
used in ResNeXt [75]] and Mobile Networks [28]]. In Mobile Networks, the cardinality
(group number) is equal to the number of input channels, namely depth-wise sepa-
rable convolution. However, the authors of MFENET claims that despite the group
convolution, the most of the architecture is not sliced (meaning not grouped) and

dominates the computational cost.

In order to understand the advantage of group convolution better, consider the Figure

and Figure which are basic block and multi-fiber block. Assume that

39

| l M,,, T T T T | Multiplexer

EE NEenEE EEEaEE | —

Multiplexer

L. pEEEES | | ||| EsEaEs

|¢ I (s [][303] Vbl

1x1 [3x3]|[3x3]|[3x3 i
S] [I
— PAARN
Fiber 1 Fiber 2 Fiber 3 Fiber 1 Fiber 2 Fiber 3
(a) (b) (c) (d) (e)

Figure 2.18: Possible bottleneck blocks implementations to ResNet architecture. (a)
Basic Block. (b) Bottleneck block of ResNeXt atchitecture. (¢) Multi-Fiber architec-

ture. (d) Multi-fiber with multiplexer. (e) Multiplexer

the number of input channels to the first convolution is M;,, the number of output
channels of the first convolution, and the number of input channels to the second
convolution is M,,;; and the number of output channels of the second convolution is
M. The complexity of basic block can be written as K (M, XM, iq + MpniaX Mou:)
where K is constant related with the size of filter and the input tensor. However, when

the group convolution concept is applied as in multi-fiber networks, the complexity is

KxN (%XMWH + Mx"dxM]‘\’]“t) which indicates that group convolution has N times
less complexity where /N is the number of groups, cardinality or branch. However, the
utilization of group convolution without creating a relationship between the channels
possibly reduces the performance because preserving the complete channel interac-
tion is also significant. With the aim of complete channel interaction, a new module
namely multiplexer is added as in Figure[2.18d and this multiplexer module is demon-

strated in[2.18e. The reason to use two convolutional operations instead of one is to

reduce the complexity cost. When the number of channels between the two 1x1 con-

k
5-

volutions is reduced by &, the computational gain is
For the 3D implementation of MFNET, original ResNet34 is modified in a way that
the number of channels is changed. In the first convolution layer of MFNET, the
preferred number of channels is reduced from 64 to 16 in order to reduce the com-
putational complexity and the number of parameters because in the first layer the

image resolution is quite high. Different from 3D ResNets implemented in [24], the

temporal stride is implemented only one time at the beginning of the first bottleneck

40

Previous Unit

Cony 3x5x5 Pool 1x3x3 3D Multi- W

(3D Muli-
| Fiber Unit | —>

Video —» > — . Multiplexer
stride (1,2,2) stride (1,2,2) _swide ,11) | Fiber Unit
— 3 \\ . /
- N ~ N - 1x1x1
’ 3D Multi- . 3D Multi-
SDMulti- | | pctnie || SDMUtE) | Eiber Unit J
Fiber Unit Fiber Unit .
L o Ustide22)) |_ stride (1,2,2)
T N
3D Multi-
Fiber Unit | —»| 0 M| Gor Rl | | B e | > Preaiction
| stride (1,2.2)) 8

Next Unit

(a) 3D Multi-fiber Network (b) 3D Multi-fiber Unit
Figure 2.19: (a) The architecture of 3D MFNET. (b) The bottleneck block or unit of
the 3D MFNET architecture.

group. It should be remembered that the numbers of bottleneck blocks in the bottle-
neck groups are 2,3,5 and 2 for the first, second, third, and fourth bottleneck groups,
respectively. Preserving the temporal dimension as much as possible might be im-
portant in order to create a better temporal relationship. The temporal size reduction
is 2, which is 8 in modified ResNet50 (Section and 16 in ResNet of [24]. The
filter size of the first convolutional layer is 3x5x5. Generally, the traditional ResNet
architectures have an output dimension of 2048, Inception type architectures have an
output dimension of 1024 [5]], while MFNET architecture has an output dimension of

768. The overall architecture and bottleneck block of MENET architecture are shown
in Figure [2.19]

A possible criticism of MFNET can be the preference of (224x224) input size di-
mension instead of using (112x112) dimension. For action recognition, utilization
of the input size of (112x112) is frequently observed in popular architectures, such
as [24, 164} 163, [19]. The selection of (112x112) over (224x224) as input dimension
significantly reduces the time complexity of the architecture. One of the main aims
of the MFNET architecture is stated as the reduction in the time complexity of the ar-
chitecture. Therefore, the analysis for the input dimension of (112x112) should also

be covered in the paper in my opinion.

2.2.9 TSM: Temporal Shift Module for Efficient Video Understanding [41]

Modeling the temporal information is one of the most crucial concepts in action

recognition. In the literature, the temporal modeling is achieved mostly by two main

41

concepts: temporal modeling via recurrent architectures or various pooling strategies,
such models are located mostly at the end of the architectures; hence, they are denoted
as late temporal modeling. The other concept is the 3D CNN architectures which cre-
ate temporal relationships in a more structured way throughout the architecture. The
former one lacks creating a better temporal relationship compared to the latter one.
However, 3D CNN architectures require high memory consumption and utilize lots of
operations, resulting in higher time complexities. Therefore, a significant portion of
the literature focuses on reducing the memory and computation demands, as indicated

before.

Temporal Shift Module (TSM) [41] is introduced to the literature to obtain a higher
accuracy at the level of 3D CNN architectures with the complexity of 2D CNN ar-
chitectures. TSM modules can be plugged in any 2D CNN architectures and they do
not increase the memory need and computational complexity but incurs data move-
ment costs. The main idea behind the TSM is that some of the channel information
belonging to the specific time index is transferred or shifted to the next or previous

time index.

The visualization of the shift module is shown in Figure 2.20] In this figure, the
features belonging to different time frames are shown in different colors. The tensor
is shown along the temporal dimension in vertical, and along the channel dimension
in horizontal. As shown in the middle image of Figure[2.20] the shift of some channels
in both directions is a kind fusion technique between the features of different times.
Shifting in both directions is an offline implementation. In a real-time application, in
order to reduce the latency of the result, the instantaneous frame can be directly fed
into the architecture. Therefore, the next frame is not known, and the shift is possible

only in one direction.

The TSM module can be perceived in a way that the temporal information is pro-
cessed in a structural way throughout the architecture as in 3D CNN architectures but
with only the cost of 2D CNN architectures with an additional latency due to memory
shifts. The penalty of the channel shift operation is calculated as a 13.7 % latency
increase if all of the channels are shifted on a CPU inference. This latency increase is

about 12 % in a P100 architecture.

42

I HW 4
Channel C /¢ . _«—truncate Channel C
[T 7 7 77 ‘Zat 77 7 7

&~ t=0

g & t=1

S =

2 2 _

£ = =

2 s

= g 4 t=
gl- it | ' n
2V ,;|padzer0 T A

Figure 2.20: Left: The classical tensor structure. Middle: The bi-directional shift
(Offline). Right: The uni-directional shift (Online) [41]]

iR G ey S,

(a) In-place TSM. (b) Residual TSM.
Figure 2.21: Proposed TSM shift modules. (a) In-place TSM. (b) Residual TSM [41]]

There are two important design considerations in the TSM module. One point is the
ratio of the channels that are shifted. The other point is where to locate this module
in a typical ResNet architecture. For the ratio of the channels that are shifted, increas-
ing the information flow between different times increases the performance from one
perspective. Nevertheless, from another perspective, increasing temporal information
flow destroys the spatial information existing in the 2D CNN architectures. There-
fore, there is a need to balance the ratio of the channel information flow. Another
point is the location of the channel shift operation in the architecture. There are two
types of proposed TSM modules which are In-place TSM and Residual TSM, which
are illustrated in Figure 2.21] It is observed that Residual TSM yields better results
compared to In-place TSM. One possible reason for this result can be explained as
that the placement of the TSM module to the residual branch does not destroy the

original feature format of the current frame.

The best result of TSM among the possible implementations on the Kinetics dataset
is obtained with }l channel shift ratio with residual TSM. ResNet50 architecture is
selected for the implementation of the TSM module. TSM is applied to every bottle-

neck block. The latency increase of }1 channel shift ratio is between 3 % and 6 % for

43

CPU, TX2, and P100.

In order to understand the pros and cons of these algorithms from the literature, a

separate chapter is devoted to analyze and compare their experimental results, next.

44

CHAPTER 3

EXPERIMENTAL EVALUATION OF LITERATURE

The main motivation of this chapter is to examine and understand the real virtues
and possible drawbacks of the algorithms in AR literature through experimentation.
In this chapter, initially, the datasets for AR research are introduced. Then, the im-
plementation details of the experiments are presented. Then, various analyses are
implemented as two separate chapters which are experiments of 2D CNN architec-
tures and 3D CNN architectures. These analyses cover topics such as late temporal

modeling, input modalities, architecture techniques.

3.1 Datasets for AR Research

For the action classification task, some common datasets are utilized for fairly com-
paring different algorithms. These are UCF-101 [59], HMDB-51 [36]], Kinetics [32],
Something - Something V1 and V2 (SMT) [23]], and IG-Kinetics-65M [19]. UCF-101
and HMDB-51 are relatively older compared to Kinetics and SMT. IG-Kinetics-65M
is different from the other datasets because it is collected in a weakly supervised

manner.

3.1.1 HMDB-51 [36]

HMDB-51 [36]] consists of 51 action classes. These classes are listed under five main
categories. These are general facial actions (such as smiling, laughing, chewing),

facial actions with object manipulations (such as eating, smoking, drinking), body

45

Table 3.1: Summary table for activity recognition datasets

Dataset Name # Samples | # Categories
HMDB - 51 6766 51
UCF - 101 13320 101
Kinetics - 400 306,205 400
Kinetics - 600 495,547 600
Kinetics - 700 650,317 700
Something - Something V1 108,499 174
Something - Something V2 220,847 174
IG-Kinetics-65M (IG65M) | 65,000,000 359

motion only (such as climbing, walking, push up), human-object interaction (such
as throwing, riding a horse, brushing a hair), and human-human interaction (such as
hugging, kissing, punching). There are 6766 clips in total from the 51 action cate-
gories, each containing a minimum of 101 clips. These clips are extracted from the
3312 videos. The videos are mostly collected from movies. For this task, the litera-
ture has reached about 82% topl accuracy for the year 2020. For the evaluation, the
dataset is split into three categories and the results are given as the average over three
splits. For every split, the dataset is divided into two categories which are training

and test. There is not a separate validation division.

3.1.2 UCF-101 [59]

UCEF-101 [59] consists of 101 action classes These classes are divided into five main
categories. These are human-object interaction (such as hammering, applying lip-
stick), body motion only (such as push-ups, baby crawling, swinging), human-human
interaction (such as salsa spin, band marching), playing musical instruments (such
as playing violin, playing guitar, playing flute), and sports such as (surfing, rafting,
rowing). There are 13320 clips in total from 101 action categories. The videos are
mostly collected from Youtube and clips are extracted from the 2500 videos which
suggest that the variation in the dataset is limited. Similar to HMDB-51, the dataset

consists of three splits, and results are given as the mean results of the three splits.

46

3.1.3 Kinetics [32]

Kinetics [32] is the most popular dataset as of 2020 which enables 3D convolution
architectures which have many parameters, requiring lots of samples to train. Due
to the large size of the Kinetics dataset, the performances obtained by using HMDB-
51 and UCF-101 with Kinetics pre-training have also been increased significantly.
The dataset has 3 versions as of 2020, which are Kinetics-400, Kinetics-600, and

Kinetics-700 in which the numbers denote the number of classes in each dataset.

Considering that Kinetics-400 is the first version of the dataset, the specifications of
it are explained in the beginning. In Kinetics-400, there are 306,205 clips which are
extracted from 306,205 videos, suggesting that variation in the dataset is better com-
pared to HMDB-51 and UCF-101. The clip length is about 10 seconds. The actions
can be analyzed under three main categories which are singular person actions (such
as laughing, robot dancing, drinking), person-person actions (such as hugging, shak-
ing hands, kissing), and person-object actions (opening present, dribbling basketball,
mowing lawn, playing violin, washing dishes). There are also some main categories
in which sub-actions exist such that in the music category, playing various instruments
exists as different action classes or in the dance category, various dance classes, such
as salsa, swing, tango exists. The two-category division problem (test and validation
sets are the same) which exists in UCF and HMDB no longer exists in Kinetics (see
next section). For each action, there are 450-1150 clips. From these clips, 50 clips are
for validation and 100 clips are for the test, regardless of the number of clips existing

in the dataset.

Among all the classes, the most challenging ones seem to be the eating classes, such
as eating doughnuts because the objects eaten are very small or partially eaten. Face-
planting, slapping, sneezing, sniffing, drinking, drinking shots, drinking beers, shoot-
ing basketball are among the hardest samples according to the results obtained in
the dataset paper. The most confusing activities are reported as between riding mule
and riding or walking with horse, hockey stop and ice skating, swing dancing and
salsa dancing, strumming guitar and playing guitar, shooting basketball and playing

basketball, and go on.

47

It is also important to analyze what the action classification accuracy ratio is in order
to understand whether motion or spatial information is important for the action. It is
observed with the experiments that motion is crucial for the activities rock scissors pa-
per, sword fighting, robot dancing, air drumming, exercising arm with the flow/RGB
performances 5.3%, 3.1%, 3.1%, 2.8%, and 2.5%, respectively. Spatial information
is significant for the activities making a cake, cooking sausages, sniffing, eating cake,
making a sandwich with the flow/RGB performances 0.1%, 0.1%, 0.1%, 0%, and 0%,

respectively.

The other versions of the dataset, Kinetics-600 [3]] and Kinetics-700 [4] have 495,547
and 650,317 clips, respectively.

3.1.4 Something - Something [23]

Something-something is a dataset that can be used for action classification. There are
2 versions of this dataset as of 2020. Different from the other datasets, the videos are
not collected from movies or Youtube and labeled by crowdsource-workers. Instead,
the crowdsource-workers are required to act. Therefore, the noise in the dataset is
decreased compared to others. The dataset consists of content, such as "opening
[something]" or "holding [something] in front of [something]". Something can be
any object related to the actions and increases variety, which probably increases the
chance of learning instead of memorizing. The important concept about learning the
action (or features related to the temporal domain) is the fact that the action should
not be understandable by using high-level features or a single image. The main aim of
the dataset is to make the models learn good temporal representations and emphasize
the low-level features, instead of high-level features. Another important thing that
the dataset places importance on is temporal resolutions. In order to learn the action
precisely, there should not be an out of context features about the action. Therefore,

clip length is kept small compared to other datasets.

The first version of the dataset contains 108,499 video clips, each of which has a
duration of 2-6 seconds. The train, validation, and test set size ratio is equal to 8:1:1.
The videos from the same crowd-worker occur only one part of the dataset (e.g. only

in the train). There are 23,137 different objects for something keyword in the dataset.

48

For the creation of the dataset, 1133 crowd workers worked and there is a 127.32
crowdsource-workers per class on average. On average, there are 620 clips per class,
ranging from 77 to 986 per class. The targeted classes are basic concepts instead of
cultural things. The owners of the dataset inform us that the action classes aim to teach
a one-year-old child as an analogy. In order to reduce the risk of cheating from the
object type, different activities are implemented with the same object. Otherwise, the
action can be classified directly from the object, which is an undesired fact to learn
better temporally related low-level features. Additionally, some pretending actions
have been added in order to learn complex relations. For example, there are opening
and closing actions, but also pretend to open and close actions. There are also some
confusing classes, such as putting something on to something and putting something
next to something, which requires algorithms to understand the relative positions of

the objects.

The second version of the dataset which is denoted as something-something-V2 con-
sists of 220,847 clips. There are 30,408 unique objects, which was 23,137 in the first
version of the dataset. The number of classes is the same with the first version which
is equal to 174. For the new release, every clip is verified by five crowdsource workers
that the clips contain the description assigned to them. The height of the resolution is

also increased from 100 pixels to 240 pixels.

3.1.5 1IG-Kinetics-65M [19]

IG-Kinetics-65M [19] is a dataset that is collected in a weakly supervised manner.
This dataset belongs to the Facebook Al group. As of 2020 April, there is no re-
leased version available. However released caffe2 pre-trained models with this dataset
which are R(2+1)D [64], ip-CSN, and ir-CSN [63] are availableﬂ The Pytorch model
of R(2+1)D trained with this dataset is also availableﬂ The dataset is important to
analyze how the performance changes with a significant increase in the number of
samples. The dataset is collected from the videos of publicly available Instagram

accounts.

! |github.com/facebookresearch/VMZ,
2 |github.com/moabitcoin/ig65m-pytorch

49

https://github.com/facebookresearch/VMZ
https://github.com/moabitcoin/ig65m-pytorch

The weak supervision of this dataset indicates that there is no direct supervision in
the collection of the dataset, such that there is no person who watches and labels
the videos one by one. The weak supervision is satisfied in a way that the videos
on Instagram are obtained with a related hashtag of a specific activity. For instance,
consider an activity "catching a fish". Then, possible hashtags are "#catchingafish",
"H#catchfish", "#fishcatching".. The activities of IG-Kinetics-65M are selected from
the activity labels of the Kinetics-400 dataset. However, for 41 labels, there is not
a sufficient number of videos in collected Instagram videos, which is denoted as a
minimum number of 50 videos per action, making the number of labels 359. Contrary
to other datasets, the video duration changes up to 60 seconds, indicating that the
temporal noise is very high in the dataset because in a longer video the activity might
be performed anytime in the video. Contrary to IG65M, the duration of videos in the
SMT dataset is very short in order to overcome the temporal noise problem. IG65M
is long-tailed extremely from the number of samples perspective. In other words,
there is a strong imbalance. In order to mitigate this effect, the square root sampling

strategy is followed.

In addition to IG-Kinetics, IG-Noun, IG-Verb, and 1G-Verb-Noun datasets are also
created. For the IG-Noun dateset, 1428 hashtags are found which match the 1000
class of the ImageNet dataset. For the IG-Verb dataset, 438 Verbs from Kinetics
and VerbNet are used. IG-Verb-Noun is created from the combination of 1428 noun
hashtags and 428 Verbs, making 10653 labels in total. These are the pre-trained model
datasets. The success of these pre-trained models of these datasets is dependent on the

similarity between the labels of the fine-tuning dataset and the pre-training dataset.

For the temporal selection perspective, three options are considered. One of them is
short videos, which consist of 1-5 seconds videos; another type is long videos, which
consist of 55-60 seconds videos; and the last type is long-center videos, which are the
center 4 seconds portions of long videos. Short videos are better for localization of
activity, while long videos have better diversity. It is concluded that, for a fixed video
budget, longer videos are better. For a fixed duration video budget, shorter videos are

better.

Another analysis is related to the pre-training options. There are two settings in the

50

pre-training of the architecture in this analysis. The first option is pre-training with 2D
architecture by using images and fine-tuning with the inflated 3D version of the same
2D architecture. The second option is pre-training directly with 3D architecture. It is
concluded that the second option is better if enough number of videos are available.
However, if the Kinetics dataset is utilized in the second option, it is slightly worse

than the first option.

In the paper of 1G-Kinetics [19], various analyses were made. For the effect of the
number of labels of IG-Verb-Noun on the performance, if the architecture is fully
trained, the increase is limited with 1% until 1300 labels and then saturates. However,
if only the fully connected layer is trained, the accuracy increase is about 9%, then
the accuracy saturates. For the effect of the number of labels of IG-Kinetics on the
performance which has comparatively very few labels compared to IG-Verb-Noun,
utilization of fewer labels drastically lower the performance even in fully trained ar-
chitectures. For example, the performance of the utilization of 32 labels is about 6%

less than the utilization of all 359 labels.

3.2 Implementation Details

In this section, implementation details of the experiments are given under six different
subsections which are data augmentation, pre-trained weights, optimization, batch

size selection, validation procedure and input modalities.

3.2.1 Data Augmentation

For data augmentation techniques, the good practices that are utilized in [69] are

primarily followed.

During cropping, random cropping is not used; instead, multi-scale cropping is fol-
lowed which is suggested by [69]]. For multi-scale cropping, there are 13 possible
crop positions, which are center, upper left, upper right, lower left, lower right, top
center, left center, right center, bottom center, upper left quarter, upper right quarter,

lower left quarter, and lower right quarter, which are all shown in Figure The

51

]
|
|
I
Tt

1
|
!
o
1
I
EEE
I
[1]
I
[1]

- - £ 11 HEEE NN .

SN B B e e

(EEI Imm | 0 5 I 1

T R
1

Figure 3.1: The crop positions for multi-scale cropping. Blues are used only infer-

ence.

horizontal flip is also applied with 0.5 probability. For scale augmentation, scales are
determined as 1.0, 0.875, 0.75, 0.66. For both height and width, one of the scales
from the pre-determined scales (1.0, 0.875, 0.75, 0.66) is selected randomly and if
they are at most next to each other (maximum distortion concept), the selected scales
are applied. For example, if the selected scales are (1, 0.875), it is suitable. How-
ever, if the preferred scales are (1,0, 0.75), which are not next to each other, the scale
samples are re-selected. For most of the networks, the videos are resized to 256x340.
Then after scale augmentation implementation, 224x244 input size should be given
to the architecture by resizing the multi-scale cropped features. Similar to the sug-
gestions of [69], a high dropout ratio is applied. The dropout ratio is determined as

0.8 for RGB-streams and 0.7 for flow-streams.

Additionally, similar multi-scale cropping techniques can also be followed during
the inference of the architectures. For this aim, five crops which are center, upper
right, upper left, lower left, and lower right are selected which are shown as blue
boxes in Figure 3.1} With their additional horizontal crops, the extraction of ten clips
is possible for every clip. Therefore, averaging the results of extracted 10 clips is
possible implementation. This procedure during inference is called as fen crop test or

ten crop inference in thesis.

52

3.2.2 Pre-trained Weights

For the training of 2D CNNs, the ImageNet pre-trained weights are used for RGB,
optical-flow, and human pose input modalities. In order to utilize the ImageNet
weight for optical flow inputs, the first layer filters are averaged through the chan-
nel dimension and replicated for the necessary input channel size. In other words,
RGB input has 3 channel dimensions and filter sizes are 3xhxw. Then, the average
across the channel dimension is calculated, which yields 1xhxw. Then, for the nec-
essary input channel size, this average is replicated across channel dimension, such
that C;,xhxw. In a traditional two-stream network, C;n is 20 because there 11 frames
used in optical flow extraction, producing 10 frames optical flow output, and every
frame has two flow channels which are x and y components of optical flow vectors.
However, in this thesis work, generally, only one optical flow frame is used for tem-

poral modeling in 2D CNNs, which results in two input channels.

For 3D CNNs, generally, the pre-trained weights of 3D CNN architectures trained
on the Kinetics dataset are used. In the thesis work, the training on Kinetics is not
implemented and Kinetics pre-trained weights are obtained from the related GitHub

repositories.

3.2.3 Optimization

Optimization is a crucial concept to understand and utilize the true performance of any
learning algorithm. A better algorithm with worse optimization might result in infe-
rior performance compared to a worse algorithm with a better optimization strategy.
In this comparison, ADAM [34], ADAMW [43], SWAT [33] and SGD optimizers are
used. SGD has a constant learning rate in default but might have an adaptive learning
rate with the first-order moment if used with the momentum concept. ADAM applies
adaptive learning rates for different parameters with the first moment and additionally
the second moment of the gradients. ADAMW adds weights regularization concept
to ADAM and is claimed to have better generalization capability than ADAM. SWAT
optimizer is the hybrid optimization of ADAM and SGD. At the initial stage, SWAT
starts with ADAM optimizer but switches to SGD at the later stage of the optimiza-

53

Table 3.2: Optimizer result on RGB-ResNet-18-BERT architecture
ADAM SWAT ADAMW SGD
One Crop Validation | 49.02 49.80 50.20 50.49

Ten Crop Test 51.50 51.11 52.42 50.78

tion.

It is interesting to note that despite the various recent optimizers, SGD has dominated
the action recognition literature among various recent popular models [3, 76,19, [16].
However, it is also known that BERT-based models generally prefer ADAM as the
optimizer, such as [9]], [60]]. Therefore, there is a requirement to analyze the optimizer

and determine one of them for the other training implementations.

The comparison of different optimizers is presented in Table[3.2] Based on this table,
the ten crop test results show that the best result is due to the ADAMW optimizer.
In center-crop validation, SGD is the best with a slight difference in performance
compared to ADAMW. In ten-crop test analysis, the model which shows the best

performance in one-center crop validation is chosen.

During all of the training steps, the learning rate schedule, namely reducing learning
rate on plateau methodology is followed. The main purpose of this method is that
when the desired loss or the desired precision does not change or does not show im-
provement, the learning rate is reduced to obtain better performance. In this method,
there is a parameter, namely patience, which is how many epochs or iterations, learn-
ing rate does not change despite there is not any improvement. This parameter is set
to 5 epochs, which means the learning rate is decreased to one-tenth if there is not
an improvement for 5 epochs. For the best network selection in the validation, Top-1
precision is considered. For SGD, the learning rate is started from 1072, for the rest,
it is started from 10~%. The learning rate schedule is followed according to improve-
ments of Top-1 at the beginning of this thesis but later changed to improvements of

loss because the latter leads to improvements in some architectures such as I3D.

Due to all these results, all of the BERT models are trained with ADAMW, since
ADAMW is faster than SGD and shows better performance. However, in traditional
or standard architectures, SGD has been chosen unless stated otherwise in order to be

consistent with the literature.

54

3.2.4 Batch Size Selection

The batch size of the architectures is selected as 128. However, the batch size of 128
requires significant memory utilization. Therefore, the iteration concept for weight
update is utilized during the training of the architectures. For this concept, the maxi-
mum capacity of the batch size is loaded to the GPU or GPUs. Then, the number of
iterations is set in order to obtain the effect of the batch size of 128. For example, if
the maximum batch size is 8, the iteration size is set to 16 to obtain the same effect
of the batch size of 128. One may argue that for the batch normalization, this might
not show the same effect of direct usage of the batch size of 128. However, this is the

most possible scenario with our resource-limited hardware.

3.2.5 Validation Procedure

For the validation of the architectures, frames or clips are selected from the center
part of the segments. The segment concept is utilized for both of the training and
validation of temporal modeling of the 2D CNN architectures. The detailed explana-
tion of the frame selection procedure is given in Appendix-C Section The loss

function of the architectures is the cross-entropy loss function.

For the selection of the best architecture, the epoch with the best Top-1 result is se-
lected. This selection can be arguable since the calculated loss might be more con-
venient in order to prevent over-fitting. Therefore, the architecture selected with the
best loss might perform better in multiple clip test or 10 crop test, since the validation
is only performed to the fixed frames of the fixed clip of videos. However, the loss
function is also arguable from the perspective the cross-entropy uses hard probabil-
ities, ignoring the similarities between the classes. Therefore, a better option might
be the selection of the best architecture with the mean of topl and top3 results of the
architecture. However, we implemented all the validation according to the best Top-1

result of the architectures.

55

(a) RGB (b) Flow X-component (c) Flow Y-component (d) Pose

Figure 3.2: Possible input modalities from the HMDB-51 walking and jumping

classes

3.2.6 Input Modalities

The input modality concept mainly comes from the two-stream architectures. As
mentioned before, optical flow is complementary information to the RGB input. In
this thesis work, the input modalities are extracted by TV-L1 [79] algorithm (see
Appendix-A). The motion vectors which have a magnitude value higher than 20-pixel
displacement are clipped. Then, -20 and +20 are linearly mapped to O to 255 to rep-
resent the as an image. Additionally, the effects of the pose information are analyzed
on action recognition by the extraction human poses as RGB images with OpenPose
algorithm [2] (see Appendix-B). The visualization of input modalities is provided in
Figure 3.2] X- and Y-components of the flow information are given together to the

architecture as different channels of the input.

3.3 Experiments on 2D CNN Architectures

In this section, a detailed analysis is performed by the utilization of 2D ResNet type
architectures. The first study of this part is the temporal modeling on the extracted
features of 2D CNN architectures and the result of this study is presented in Section
[3.3.1] The temporal modeling on the extracted features is also known as late pooling
strategy in the literature. Secondly, the fusion of features from the different parts of
the architecture is studied. Thirdly, the effect of the architecture depth (i.e. number

of layers) on the performance is performed. Finally, the effect of the input modalities

56

(RGB, optical flow, human pose) on the performance is analyzed and two-stream and
three-stream architectures, which are created by the fusion of these modalities, are
inspected. In this section, the performances are reported as the average performance

over the three splits of HMDBS51, as it is preferred in most of the literature.

3.3.1 Late Temporal Modeling of 2D CNN Architectures

In this part, the following methods are implemented and compared with each other
as late pooling strategies which is to create temporal relationship onto the extracted
features of 2D CNN backbone:

e Convolutional GRU,

e LSTM,

Average pooling,

Concatenation pooling,

Non-local attention,

e BERT.

In this analysis, the ResNetl8 backbone is selected as a 2D CNN backbone with
Image-Net pre-trainings. In this implementation, half of the Image-Net weights of the
ResNet18 blocks are frozen because this is more memory efficient during the training
and there is not a significant performance difference between the full update and half
update of ResNet18 weights. The learning rate is set to e — 4 for all architectures with
ADAMW optimizer. The frame length is set to 16 for all of the ResNet18 + Temporal
Pool Types, except No Pooling which is trained with a single RGB image. 16 frames
are selected with equal intervals during the inference for all of them. The detailed

explanation of the frame selection procedure is given in Section [C.1}

For the settings of the selected late temporal modeling structures, the hidden size of
convolutional GRU is set to 196. The number of inter-channels of non-local blocks

(the dimension of attention mechanism) is set to 512 which is equal to the number of

57

Table 3.3: Results for temporal modeling on top of the 2D-RGB-ResNetl18 on
HMDB-51

Temporal Pool Type Top-1 | Top-3 | # Parameters | # Operations
No Pooling 4431 | 66.49 11.2M 1.82 GFlops
Average Pooling 47.10 | 69.33 11.2M 1.82 GFlops
Non-local + Average Pooling | 47.56 | 69.76 1225 M 1.87 GFlops
Concatenation 51.04 | 72.20 11.59 M 1.82 GFlops
Non-local + Concatenation | 50.04 | 71.50 12.64 M 1.87 GFlops
LSTM 48.50 | 70.54 154 M 1.83 GFlops
Convolutional GRU 46.34 | 68.50 1493 M 2.01 GFlops
BERT 49.17 | 71.31 1436 M 1.83 GFlops

output channels of the ResNet18 backbone. The hidden size of LSTM is set to 512.
BERT is implemented with eight attention heads.

The results of late temporal modeling on top of the RGB 2D- ResNet18 is presented in
Table In this table, Top-1, Top-3 results, the number of parameters, and the num-
ber of operations of ResNet18 + Temporal Pool Types are specified. Firstly, there is a
necessity of highlighting the No Pooling which is denoted as one of the temporal pool
types in Table ResNetl8 is trained with a single RGB image in No Pooling while
the rest of them is trained with 16 RGB images. However, the inference of No Pooling
is implemented similarly with average pooling type with 16 RGB frames. This is to
highlight the importance of the implementation of TSN [71]. The implementation of
TSN (average pooling over no pooling) increases the Top-1 performance with about
%3. The only temporal pool type which worse than average pooling is convolutional
GRU. The addition of non-local increases the performance of average pooling but
worsens the performance of concatenation pooling. The best temporal pool type of
the Table [3.3]is concatenation. This is the only analysis in this thesis that BERT is
not the best. We consider that the best late temporal modeling might be dependent
on both the CNN backbone and the modality. It is also possible that the optimization
of the training of the BERT temporal pooling might not be performed well because
of the sub-optimum hyperparameter for the specific architecture selection such as the

learning rate.

58

Table 3.4: The Results of fusion types with 2D-RGB-ResNet18 concatenation pool-
ing on HMDBS51

Fusion Type Top-1
No fusion 51.04
Dual Fusion 51.87
Triple Fusion 52.02
Quadruplet Fusion | 51.13

3.3.2 Feature Fusion from the Different Parts of 2D CNN Architectures

In this part, the feature fusion from the different parts of the architecture is studied.
Different parts of the architecture imply that instead of using features only from the
end of the architecture, some features are extracted from the intermediate parts of
the architecture as well. In order to convey where the features are created in the
ResNet18 architecture, the ResNet18 architecture is presented in Figure @ There
are four block groups not only in ResNet18 but also in all ResNet architecture, which
are denoted as conv2_x, conv3_x, conv4_x, and conv5_x in Figure The se-
lected baseline for this study is ResNet18 with concatenation pooling which is shown
to the best in Section [3.3.1] The proposed fusion types are dual fusion (conv4_x
and conv5_x), triple fusion (conv3_x, conv4_x and conv5_x), and quadruplet fusion

(conv2_x, conv3_x, conv4_x and conv5_x).

The features at the end of the architecture might not contain all the necessary infor-
mation that is created throughout the architecture, although these final features are
created hierarchically from the features of earlier layers. For instance, the features
of early layers of the architecture have a better spatial resolution. Therefore, fusion

might be a good strategy in order to complement the final features of the architecture

The results of fusion study is presented in Table [3.4l Based on this table, it can be
observed that dual fusion improves the no fusion strategy and triple fusion improves
the dual fusion strategy. However, the addition of the features of the first block group
to the other three features groups even makes worse the architecture than dual fusion.
One possible reason might be the fact that to utilize the earliest blocks, the weight
update is also enabled to the first block group (conv2_x in Figure [3.3), which is dis-

abled in other fusion strategies. Therefore, preserving the Image-Net weights for the

59

Layer Name Output Size ResNet-18

convl 112 x 112 x 64 7 x 7,64, stride 2

3 X 3 max pool, stride 2

conv2_x 56 x 56 x 64 3% 3, 64
X 2
3x 3,64
conv3_x 28 x 28 x 128 3x3,128
| 3x3,128 |
convé_x 14 x 14 x 256 3x3,26 1
| 33,256 |
convb_x 7 % 7 x 512 3x3,512
| 3x3,512 |
average pool 1x1x512 7 x 7 average pool
fully connected 1000 512 x 1000 fully connections
softmax 1000

Figure 3.3: Different Layers and their corresponding Output sizes for ResNet18 Ar-

chitecture

first block group might be crucial.

3.3.3 Effect of Network Depth and Input Modality on 2D CNN Architectures

In this section, the effect of the architecture depth and variations in input modal-
ity on the performance of 2D CNN architectures are studied for action recognition.
Firstly, for RGB input modality, the architecture depth analysis is presented. Next,
the late temporal modeling is studied within the context of optical flow and hu-
man pose modalities. Then, the impact of different input modalities (RGB, optical
flow, human pose) and two-stream (RGB+optical flow) and three-stream architec-
tures(RGB+optical flow+human pose) is finally examined. For further information

about the input modalities, see Section

Effect of Network Depth: For this part, ResNet18, ResNet34, ResNet50 and ResNet101

architectures are selected among all ResNet-based networks. The selected temporal

60

Table 3.5: The effect of architecture depth on the performance of 2D-RGB ResNet

with concatenation pooling and triple fusion on HMDBS51

Architecture | Top-1 | # Parameters | # Operations
ResNet18 52.02 #1191 M | #1.82 GFlops
ResNet34 53.34 #22.02M # 3.68 GFlops
ResNet50 55.44 #2021 M #4.12 GFlops
ResNet101 | 58.80 #4520M | #7.85 GFlops

modeling for this part is triple fusion concatenation temporal modeling. The analysis
are implemented on three splits of HMDBS51 with RGB input modality. The results
of this analysis is presented in Table[3.5] As the architecture depth increases, the top1l
performance also increases but with the cost of memory utilization and computational

complexity,

Late Temporal Modeling on Optical Flow and Human Pose: For the late temporal
modeling of optical flow and human pose modalities, average pooling, concatenation,
concatenation with triple fusion and BERT are selected as possible candidates from

Sections [3.3.1]and [3.3.2] The reason for selecting average pooling is its efficient im-

plementation and its common utilization, and the reason for selecting concatenation,
concatenation with triple fusion, ,and BERT is their success on RGB input modalities
presented in Sections[3.3.1]and [3.3.2]

The result of this analysis is given in Table [3.6] Firstly, the best late temporal mod-
eling strategy is BERT for both modalities. It should be noted that BERT is worse
than the concatenation for RGB modality according to Table[3.3] Additionally, con-
catenation is even worse than the average pooling for optical flow modality. Another
conflicting fact about the optical flow modality with the result of RGB modality is
that triple fusion worsens the performance in concatenation pooling strategy. For
pose modality, concatenation is a better temporal modeling than average pooling and
triple fusion improves the performance of "no fusion", which is coherent with the

result obtained on RGB modality.

Comparison of Modalities: For this part, the performances of different modalities are
compared with each other. Additionally, two-stream (RGB+Flow) and three-stream
(RGB+Flow+Pose) architectures are also analyzed. Two-stream and three-stream are

late fusion strategies between the different modalities. Each stream is trained with

61

Table 3.6: Top-1 performances of late temporal modeling on ResNet18 backbone
with optical flow and human pose modalities on HMDBS51

Architecture Flow - Top-1 | Pose - Top-1
Average Pooling 51.68 44.14
Concatenation - No Fusion 48.58 44.75
Concatenation - Triple Fusion 47.03 45.82
BERT 54.73 46.45

different modality independently, and the normalized class scores of modalities are
averaged during the inference. For this analysis, the temporal modeling type of the
architectures is selected specifically to modality. Concatenation pooling is the best
for RGB, therefore it is selected for this modality. BERT is the best for optical flow

and human pose, therefore it is selected for these modalities.

The performances of different modalities, two-stream, and three-stream architectures
are presented in Table For this analysis two backbones are preferred which are
ResNet18 and ResNet101.

Firstly, The performance increase of RGB modality with the depth of architecture is
more dramatic than optical flow and pose modalities. This result is probably due to
the fact that the pre-trained ImageNet weights are also trained with RGB modality,

resulting in better utilization of RGB modality for the action recognition task.

Secondly, the results indicate that different modalities produce complementary infor-
mation for each other. Two-stream architectures are quite popular in action recog-
nition literature due to their benefits for increasing the performances. In this table,
two-stream architectures (RGB+Flow) increase the maximum Top-1 performance of
single streams about 8% and 6% for ResNet18 and ResNet101, respectively. More-
over, the addition of pose information to two-streams also increases about 3% and
4% of ResNetl8 and ResNetl01 backbones in action recognition, although single

utilization of pose-stream is lower than RGB and optical flow modalities.

62

Table 3.7: Comparing modalities on HMDBS51 using Top-1 for AR

Modalities ResNet18 | ResNet101
RGB Concatenation 52.02 58.80
Flow BERT 54.73 57.58
Pose BERT 46.45 49.59
Two-Stream (RGB concatenation
+ Flow BERT) 62.81 65.21
Three-Stream (RGB concatenation
+ Flow BERT + Pose BERT) 65.56 69.15

Table 3.8: Ablation Study on 3D-RGB-ResNet type architectures on Split-1 of
HMDBS51

Architecture Top-1 | # Parameters | # Operations
ResNet101-16f 61.18 85.35M 13.95 GFlops
ResNeXt101-16f 63.14 47.63 M 9.64 GFlops

ResNet101-64f (16f pre-trained) | 66.67 85.35M 55.80 GFlops
ResNeXt101-64f (16f pre-trained) | 68.56 47.63 M 38.56 GFlops

ResNeXt101-64f 73.07 47.63 M 38.56 GFlops
ResNeXt101-64f-224
(64f-112 pre-trained) 75.23 47.63 M 153.36 GFlops

3.4 Experiments on 3D CNN Architectures

In this section, the effect of 3D convolution on the performance of action recognition
is analyzed. The length of the clips, the input modalities, distillation are some of the
topics covered in this section. Additionally, popular 3D CNN architectures from the
literature are analyzed not only in the perspective of performance but also the time
complexity and memory utilization. All possible test types of 3D CNN architecture

and some other details are given in Appendix[C.2]

3.4.1 Effects of Clip Length and Input Resolution on the performance of 3D
CNN Architectures

In this part, the main focus is on the effect of clip length. However, this section in-
cludes a brief study of input resolution as well. For this analysis, it is considered that
3D CNN versions of ResNet101 and ResNeXt101 architectures [24] are appropriate
for studying the effect of clip length and input resolution. Additionally, in this sec-

63

tion, the effect of group convolution is also analyzed, since ResNeXt101 is the same

version of ResNet101 with group convolution. The result of these studies is shown in

Table 3.8l

There are two types of 3D ResNet backbone in Table [3.8] which are ResNet101 and
ResNeXt101. 16f and 64f are to denote that 16 framed and 64 framed clips are used in
training the architecture, respectively. "16f pre-trained" specified in 64f architectures
is to denote that 64 framed clips are used in the fine-tuning of the HMDBS51 but
the pre-trained weights are obtained by training the architecture on Kinetics with 16
framed clips. The fine-tuning of the architectures are implemented with the Kinetics
pre-trained weights released by the authors of the paper [24], and the same input
sizes (112x112) and the same mean and standard deviation of the authors are applied.
The only exception is "ResNeXt101-64f-224 (64f-112 pre-trained)" where the input
resolution is set to 224x224 during the fine-tuning. The test results are obtained with

multiple crops and multiple clips settings (See Section |[C.2).

The architecture changes from ResNet101-16f to ResNeXt101-16f and ResNet101-
64f (with 16f pre-trained) to ResNeXt101-64f (with 16f pre-trained) increase Top-
1 performance with about 2%, which shows the effectiveness of group convolu-
tion. Increasing the clip length from 16 to 64 during fine-tuning even though pre-
trained weights are still obtained with the training of 16-framed clips on the Kinet-
ics dataset increases the performance with about 5.5% increase in both ResNet101
and ResNeXt101 architectures. If both of the pre-training and fine-tuning are imple-
mented with 64 frames, the performance reaches up to 73.07%, which is about 4.7%
more compared to ResNeXt101-64f (16f pre-trained) and about 10% more compared
to ResNeXt101-16f training. Increasing the input resolution from 112 to 224 by fine-
tuning increases the topl performance by about 2% and it is expected that increasing
the input resolution from 112 to 224 also in pre-training would increase the perfor-

mance even more but with the cost of computational complexity.

3.4.2 Two-stream 3D Architectures

Two stream architectures consist of two replicas of the same architectures, where one

stream is fed by RGB, and the other stream is fed by optical flow. The information

64

Table 3.9: Results of Two-stream 3D architectures on HMDBS51 Split-1

Method Modality | Top-1 | Top-3
ResNeXt101 RGB 73.07 | 90.20
ResNeXt101 Flow 79.80 | 91.63
ResNeXt101 | Two-Stream | 82.35 | 94.38

13D RGB 75.42 | 91.57
13D Flow 77.97 | 92.22
13D Two-Stream | 82.03 | 93.99

about input modalities can be reached in Section [3.2.6] For the test of two-stream
architectures, two architectures are selected for comparison. These are ResNeXt101
architecture (see Section and 13D architecture (see Section [2.2.3.1). The
implementation details of the architecture i given in Section [3.2] The only exception
is that the I3D architectures are trained by the learning rate 10~! instead of 1072

because of the difficulty in the training.

Top-1 and Top-3 results of RGB, flow and two-stream of the ResNeXt101 and I3D
architectures are tabulated in Table In this table, the results of Top-1 and Top-3
results are given. The detailed view of this table is presented in Table[C.I]in Appendix
C.

For the comparison of RGB stream, I3D seems to be better than ResNeXt101 ar-
chitecture. However, for flow stream and two-stream, ResNeXt101 architecture is
better than I3D architecture. As can be observed from Table the optical flow field
yields better results compared to the RGB streams of the architecture, such that about
a 6.7% increase in ResNeXt101 architecture and 2.5% increase in 13D architecture.
The fact that the optical flow stream is better than the RGB stream is also related to
the characteristics of the HMDBS51 dataset, where severe camera motions do not ex-
ist. Comparably, the camera motion is more severe in the Kinetics dataset, resulting

in low performances in the optical flow stream compared to the RGB stream [3]].

In order to emphasize the importance of the dataset in pre-training, there is a need to
highlight the difference of the fine-tuning results of I3D on HMDBS51 splitl between
the pre-trained Kinetics and pre-trained ImageNet. In the 13D paper [35], [3D-RGB,
I3D-Flow, and I3D-two-stream obtain 49.8, 61.9, and 66.4, respectively. However,
according to the result of Table I3D-RGB, I3D-Flow, and I3D-two-stream obtain

65

Table 3.10: Performance and Parameter Size Comparison for RGB input modalities
on HMDB51 split-1

Method Top-1 | Top-3 | # Parameters | # Operations
ResNeXt101
112x112 16f 63.33 | 82.61 47.63 M 9.64 GMac
ResNeXt101
112x112 64f 73.07 | 90.20 47.63 M 38.56 GMac
MFENET
224x224 16f 70.20 | 87.58 7.73 M 11.25 GMac
Rep-Flow-50
224x224 32f 72.42 | 89.54 29.09 M 44.59 GMac
TSM-50
224x224 8f 66.80 | 87.25 23.61 M 32.96 GMac
TSM-50
224x224 8x8f 72.03 | 89.54 23.61 M 32.96 GMac
TSM-SOH
224x224 8x8f 73.79 | 90.13 23.61 M 32.96 GMac
Modified ResNet50
224x224 32x2f 71.44 | 88.69 2733 M 33.05 GMac
Modified ResNet50
Non-local 224x224 32x2f | 72.88 | 91.44 34.69 M 38.22 GMac
Modified ResNet50
224x224 64f 73.79 | 91.70 2733 M 66.10 GMac
Modified ResNet50
Non-local 224x224 64f | 73.27 | 90.26 34.69 M 76.43 GMac
I3D
224x224 64f 7490 | 91.63 12.34 M 111.33 GMac
SlowFast-50 (8x8)
224x224 64f 78.37 | 92.68 3376 M 50.72 GMac
MARS ResNext101
112x112 64f 80.72 | 92.75 47.63 M 38.56 GMac
R(2+1)D ResNet34[
112x112 32f 81.76 | 93.86 63.52 M 152.95 GMac

75.42,77.97, and 82.03, respectively.

3.4.3 Comparison of 3D CNN Architectures

3 The selection procedure of frames in pre-training is as in [70]]. Three splits topl average is denoted as 73.5

66

In this section, various CNN architectures with RGB input modalities are compared.
These are ResNext architectures (Section [2.2.3.2), MFNET (Section [2.2.8)), Rep-
Flow architecture [S0], TSM architectures (Section[2.2.9), Modified ResNet architec-
ture (Section [2.2.5)), I3D architecture (Section [2.2.3.1)), SlowFast architectures (Sec-
tion [2.2.6), MARS architectures (Section and R(2+1)D architectures (Section
[2.2.4). 1t should be denoted that TSM is not a 3D convolution architecture but there
is a temporal information transfer with shifting operations (Section for more
details).

Top-1 and Top-3 results on HMDB-51 split with RGB input modality is presented in
Table[3.10] The results in Table[3.10]are calculated by using non-overlapping multiple
clips and 10 crop settings. The detailed view of the table with all four different test
settings is presented in Appendix-C Table [C.2] For all of the architectures, Kinetics
pre-trained weights released by the related GitHub repositories are utilized, except the
R(2+1)D in which the IG-65M dataset is utilized (Section [3.1.5). The normalization
parameters and input sizes are determined suitably with the pre-training schemes of
the architecture. The implementation details explained in Section [3.2] are followed.
The only difference is that for the training of Rep-Flow, the effective batch size is set
to 24, and the learning rate of the flow layer is set to 1/100 of the learning rate of the

other layers of the architecture as suggested in [50].

As indicated in the footnote 2, one of TSM architecture is pre-trained with a segment-
based sampling of the frames as implemented in [/1], instead of dense sampling
strategy followed in the pre-training of other architectures. Another point is related to
the number of frames in the selected clips. 64f is to denote that the clips consist of 64
frames. Additionally, 32x2f is to denote that the clips consist of 32 frames but frame
selection is implemented with a stride of two, resulting in a 64 frame length coverage

with 32 frames. 8x8f similarly covers 64 frame length.

It should be highlighted that Table indicates that the utilization of ten crops bene-

ficial for nearly half of the architecture from the top1 performance perspective. From

% in [41]. The frame selection in fine-tuning and test seems ambiguous for me.

4 The pre-training is implemented with IG-65M, while the pre-training of other methods are implemented
with Kinetics-400. Therefore, the dataset has also effect on obtaining the best performance in the table. Topl
result of R(2+1)D with Kinetics pre-training is denoted as 74.4 % in [49]]. Therefore, about 7.7 % increase seems
to be the result of the change in pre-training dataset.

67

the Top-3 performance perspective, it can be concluded that utilization of ten crops
is mostly beneficial but with the expense of ten times computational complexity. The
utilization of multiple clips is always beneficial since it includes different parts of the

action.

The best result in Table [3.10]is obtained with R(2+1)D ResNet34 architecture. How-
ever, it should be denoted that this architecture is pre-trained with IG-65 while the
others are pre-trained with Kinetics 400. It should not be ignored that the dataset has
a significant effect on the increase in the performance of this architecture. As indi-
cated in the footnote &, the performance improvement brought by IG-65M is about
6-7%. In MARS architecture, the significant benefits of the distillation concept are
observed. As it is explained in Section [2.2.7] the only difference of MARS ResNeXt
from the traditional ResNeXt is the training procedure in which the features of RGB
architecture is distilled with the features of optical flow architecture. Therefore, dur-
ing the inference, with the same computational complexity and memory consumption,
the Top-1 performance of the architecture has increased with 5%. If the effect of the
IG-65M dataset and the distillation are ignored, it might be possible to conclude that

the best 3D architecture is SlowFast.

Another point that needs attention is the utilization of non-local blocks. For the results
of the modified ResNet50 architectures, non-local has improved the performance of
32x2f, but not the 64f preference. In [[72]], non-local blocks are shown to increase the
performance of not only the activity recognition tasks but also object detection and
segmentation tasks. One of the possible reasons for not observing the performance
improvement in 64f settings might be that the pre-training weights are obtained with
32x2f settings. Another conclusion from the results of modified ResNet50 architec-
tures is that 64f architectures result in better performances although 32x2f and 64f
architectures cover the same duration. Therefore, it can be concluded that even the

utilization of skipped frames might be important.

For TSM architectures, with the same budget of the same number of frames, the
sparse selection of frames is shown to results in significant performance increases, up
to about 5% increase in Top-1 and 2% increase in Top-3 results from 8f to 8x8f im-

plementation. Additionally, segment-based selection 2 in pre-training results in better

68

performance in the performance of TSM architecture, as indicated in the GitHub page

of the paper.

For SlowFast networks, the benefits of parallel fast architecture are demonstrated
clearly in Table [3.10] Despite that slow path is the same as the traditional ResNet
architecture, the addition of the fast path and the lateral connection from fast to slow
path boosts the performance significantly. The (8x8) of SlowFast architecture corre-

sponds to o = 8 and § = 71; in architecture settings (See Section [2.2.6).

As an additional note, the ensemble of the best three architectures results in 85.62%
and 95.82% Top-1 and Top-3 results on Split-1 of the HMDBS51 dataset with single
clip single crop settings. The top-1 result of the ensemble of the architectures is about
4% more than the best architecture in Table [3.10] Therefore, it can be concluded that
different architectures might learn complementary information to each other. The
ensemble of the architectures can be perceived as a different utilization of two-stream
architectures in a sense that it is a three-stream architecture where streams are not

identical to each other and which are fed with only RGB input.

3.4.4 Computational Complexity and Memory Utilization Analysis of the Ar-

chitectures:

Apart from the recognition performances, the number of parameters and the number
of operations are two other important factors for the selection of the architectures. For
many practical applications of these methods, there might be some memory limita-
tions or time considerations. The results of these analyses are shown in Table[3.10] In
order to calculate the number of parameters and the number of operations a GitHub
repoE] is utilized. Denoting the number of operations, Multiply - Accumulate Opera-
tion (Mac) is utilized as a unit, which assumes a * x 4 b as one operation according to
the repo. Comparing the Mac unit with the FLOP unit in the literature [6,[19], it can
be concluded that one Mac is equal to one FLOP.

It should be noted that in multiple clips tests (instead of single clip tests), the concept

of the number of clips appears. This concept is important for a fair comparison. In

5 |github.com/sovrasov/flops-counter.pytorch

69

https://github.com/sovrasov/flops-counter.pytorch

order to make it more clear; for instance, the number of clips for 16f and 64f to

process a video with 64 frames are four and one, respectively.

There are some possible choices of giving clips as inputs to architectures. One possi-
ble way is to give them at once by increasing the batch size, resulting in a proportional
increase in memory usage with the number of clips. Another way is giving them se-
quentially, resulting in a proportional increase in time complexity with the number of
clips. A compromise between memory utilization and time complexity is also possi-
ble. If the number of clips factor is ignored, the comparison between the architectures

with different frames would be unfair.

For instance, consider MFNET 16f and 13D 64f architectures. A video with 64 frames
is handled with only one clip with I3D but with four clips with MFNET. Therefore,
the three possible ways of MFNET would be 7.73x4 M parameters with the time com-
plexity of 11.25 GMac, or 7.73x2 M parameters with the time complexity of 11.25x2
GMac, or 7.73M parameters with the time complexity of 11.25x4 GMac. A more re-
alistic comparison in this table should not also ignore this factor. To perceive it from
another perspective, there is a need to highlight the difference between time com-
plexity and computational complexity. Changing the batch size of the architecture
does not change the total computational complexity of architecture for a given video.
However, there can be a trade-off between memory utilization and time complexity
by changing the batch size. For instance, MFNET has 11.25x4 GMac computational

complexity to get the result of 64 framed video.

Based on the results of Table [3.10] the architecture with the least number of parame-
ters is MENET 16f (7.73M) and the architecture with the least number of operations
i1s ResNeXt 16f (9.64 GMac). However, ResNeXt Top-1 performance is about 8%
lower compared to the MFNET architecture; therefore, 1.64 GMac computational in-
crease for 8% Top1 performance increase seems to be a fair deal. As a result, it might
be concluded that MFNET is one of the best efficient architecture of this table. How-
ever, the clip length factor of MFNET should not be forgotten while comparing with

the other architectures.

For the performance of TSM architectures, it seems that the utilization of 2D CNN

architectures does not provide significant benefits in the reduction of parameter size

70

and complexity when compared with MFNET or modified ResNet50 32x2f. How-
ever, one of the advantages of TSM architectures is that the early decision can be
made directly with the first frame of the architecture, which decreases the number
of operations to 32.96/8 GMac. Therefore, TSM can be utilized in any application
where the low latency is crucial. However, the performance of the early frames is not

investigated in this thesis work.

Aside, I3D has a very efficient memory utilization but its computational complex-
ity is significantly worse compared to the other architectures, except the R(2+1)D
ResNet34 architecture. For the comparison between SlowFast-50 and MARS archi-
tectures, SlowFast is better from the memory utilization perspective but worse in the
computational complexity perspective. However, it should be highlighted that the uti-
lization of 112x112 input size results in better computational complexity. Therefore
another reason for the less computational complexity of ResNeXt from Inception 13D

is the input size, not purely the architecture itself.

71

72

CHAPTER 4

PROPOSED METHOD: BERT ON 3D CNN ARCHITECTURES

Action Recognition (AR) pertains to identifying the label of the action or the activity
observed in a video clip. With cameras everywhere, AR has become essential in
many domains, such as video retrieval, surveillance, human-computer interaction,

and robotics.

A video clip contains two critical pieces of information for AR: Spatial and temporal
information. Spatial information represents the static information in the scene, such
as objects, context, entities, etc., which are visible in a single frame of the video,
whereas temporal information, obtained by integrating the spatial information over

frames, mostly captures the dynamic nature of the action.

In this work, the joint utilization of two temporal modeling concepts from the litera-
ture, which are 3D convolution and late temporal modeling, is proposed and analyzed.
Briefly, 3D convolution is a way of generating a temporal relationship hierarchically
from the beginning to the end of CNN architectures. On the other hand, late tem-
poral modeling is typically utilized with 2D CNN architectures, where the features
extracted by 2D CNN architectures from the selected frames are usually modeled

with recurrent architectures, such as LSTM, Conv LSTM.

Despite its advantages, the temporal global average pooling (TGAP) layer which is
used at the end of all 3D CNN architectures [5, 6} 16} 24, 149, 63| |64, [76]] hinders the
richness of final temporal information. The features before TGAP can be considered
as features of different temporal regions of a clip or video. Although the receptive

field might cover the whole clip, the effective receptive field has a Gaussian distribu-

73

tion [44], producing features focusing on different temporal regions of a clip. In order
to discriminate actions, one part of the temporal feature might be more important than
the others or the order of the temporal features might be more beneficial than simply
averaging the temporal information. Therefore, TGAP ignores this ordering and fails

to fully exploit the temporal information.

Therefore, we propose using the attention mechanism of BERT for better temporal
modeling than TGAP. BERT determines which temporal features are more important

with its multi-head attention mechanism.

To the best of our knowledge, our work is the first to propose replacing TGAP in 3D
CNN architectures with late temporal modeling. We also consider that this study is
the first to utilize BERT as a temporal pooling strategy in AR. We show that BERT
performs better temporal pooling than average pooling, concatenation pooling, and
standard LSTM. Moreover, we demonstrate that late temporal modeling with BERT
improves the performances of various popular 3D CNN architectures for AR which
are ResNeXt101, 13D, SlowFast, and R(2+1)D by using the split-1 of the HMDB51
dataset. Using BERT R(2+1)D architecture, we obtain the new state of the art re-
sults; 85.10% and 98.69% Top-1 performances in HMDBS51 and UCF101 datasets,

respectively.

4.1 Proposed Methods

In this part, the proposed methods of this study are introduced. Firstly, the main
proposed method, namely BERT-based temporal modeling with 3D CNN for activity
recognition, is presented in Section m Next, some novel feature reduction blocks
are proposed in Section 4.1.2] These blocks are utilized to reduce the number of
parameters of the proposed BERT-based temporal modeling. Thirdly, the proposed
BERT-based temporal modeling implementations on SlowFast architecture are ex-
amined in Section 4.1.3] The reason to re-consider the BERT-based late temporal
modeling on SlowFast architecture is due to its different two-stream structure from

other 3D CNN architectures.

74

c
k<]
g 5
c = o
% Keis ; yo\s T "ﬁ
<] fi L ®
e o Y &)
ol £ X4 - VA
Z f2 k! &
c
o = & [| x> 8 ||
' © c
Q : g g
: « - 8 : < :
[} '5 1 o [}
L o o] [] [y} L
g fi o T
o Xun = yN
5 2
[t
BERT

Figure 4.1: BERT-based late temporal modeling

4.1.1 BERT-based Temporal Modeling with 3D CNNs for Action Recognition

Bi-directional Encoder Representations from Transformers (BERT) [9] is a bidirec-
tional self-attention method, which has provided unprecedented success in many
downstream Natural Language Processing (NLP) tasks. The bidirectional property
enables BERT to fuse the contextual information from both directions, instead of re-
lying upon only a single direction, as in former recurrent neural networks or other self-
attention methods, such as Transformer [65]. Moreover, BERT introduces challeng-
ing unsupervised pre-training tasks which leads to useful representations for many

tasks.

Our architecture utilizes BERT-based temporal pooling as shown in Figure[d.1] In this
architecture, the selected K frames from the input sequence are propagated through a
3D CNN architecture without applying temporal global average pooling at the end of
the architecture. Then, in order to preserve the positional information, a learned po-
sitional encoding is added to the extracted features. In order to perform classification
with BERT, additional classification embedding (x.is) is appended as in [9] (repre-
sented as red box in Figure @.1)). The classification of the architecture is implemented
with the corresponding classification vector y.js which is given to the fully connected

layer, producing the predicted output label .
The general single head self-attention model of BERT as explained in Section 2.2.1]

75

is formulated as:

1
yi=PFFN (W %:Q(Xj)f(xiaxj)>) 4.1)

where x; values are the embedding vectors that consists of extracted temporal visual
information and its positional encoding; ¢ indicates the index of the target output tem-
poral position; j denotes all possible combinations; and N(x) is the normalization
term. Function ¢(-) is the linear projection inside the self-attention mechanism of
BERT, whereas function f(-, -) denotes the similarity between x; and x;: f(x;,X;) =
softmax; (6(x;)” ¢(x;)), where the functions 6(-) and ¢(-) are also linear projections.
The learnable functions g(-), 6(-) and ¢(-) try to project the feature embedding vectors
to a better space where the attention mechanism works more efficiently. The outputs
of g(+), 0(-) and ¢(-) functions are also defined as value, query and key, respectively
[65]. PFFN(-) is Position-wise Feed-forward Network applied to all positions sepa-
rately and identically: PFFN(x) = WoGELU(W1x+bl)+b2, where GELU(+)

is the Gaussian Error Linear Unit (GELU) activation function [26]].

The final decision of classification is performed with one more linear layer which

takes y.js as input. The explicit form of y.js can be written as:

1
Yes = PFFN (W vZjg<Xj)f(XclsaXj)) . (42)

Therefore, our use of the temporal attention mechanism for BERT is not only to learn
the convenient subspace where the attention mechanism works efficiently but also to
learn the classification embedding which learns how to attend the temporal features

of the 3D CNN architecture properly.

A similar work for action recognition is implemented with non-local neural networks
(NN) [[72]. The main aim of non-local block is to create global spatio-temporal rela-
tions, since convolution operation is limited to local regions. For this aim, non-local
blocks use a similar attention concept by using 1x1x1 CNN filters, in order to realize
g(+), 0() and ¢(-) functions. The main difference between the non-local and the pro-
posed BERT attention is that non-local concept [72] is preferred to be utilized not at
the end of the architecture, but some preferred locations inside the architecture. How-

ever, our BERT-based temporal pooling is implemented on the extracted features of

76

ResNeXt101
Backbone

ResNeXt101 ResNeXt101 1x1x1, 1024
Backbone Backbone 3x3x3, 1024, C=32

1x1x1, 2048
Final Bottleneck Block

1x1x1, 256

1x1x1, 1024 _
3x3x3, 1024, C=32 3x3x3, 256, C=32

1x1x1, 2048

1x1x1, 512

Modified Final
Bottleneck Block

Final Bottleneck Block

1x1x1, 256
3x3x3, 256, C=32
1x1x1, 512

Additional Block

Y

(a) Original (b) FRMB (c) FRAB
Figure 4.2: The implementations of Feature Reduction with Modified Block (FRMB)
and Feature Reduction with Additional Block (FRAB)

the 3D CNN architecture and utilizes multi-head attention concept to create multiple
relations with self-attention mechanism. Moreover, it utilizes positional encoding in

order to preserve the order information and utilizes learnable classification token.

Another similar study for action recognition is the video action transformer network
[20] where the transformer is utilized in order to aggregate contextual information
from other people and objects in the surrounding video. The video action transformer
network deals with both action localization and action recognition; therefore, its prob-
lem formulation is different from ours and its attention mechanism needs to be refor-
mulated for the late temporal modeling for action recognition. Differently from the
video action transformer network, our proposed BERT-based late temporal modeling
utilizes the learnable classification token, instead of using the pooled feature of the

output of the backbone architecture.

4.1.2 Proposed Feature Reduction Blocks: FRAB & FRMB

The computational complexity of BERT has a quadratic increase with the dimension
of the output feature of the CNN backbone. As a result, if the dimension of the
output feature is not reduced for specific backbones, the BERT module might have

more parameters than the backbone itself. For instance, if the dimension of the output

77

feature is 512, the single-layer BERT module has about 3 Million parameters, while
the parameter size would be about 50 Million for the output feature dimension of

2048.

Therefore, in order to utilize BERT architecture in a more parameter efficient man-
ner, two feature reduction blocks are proposed. These are Feature Reduction with
Modified Block (FRMB) and Feature Reduction with Additional Block (FRAB). In
FRMB, the final unit block of the CNN backbone is replaced with a novel unit block
with the aim of feature dimension reduction. In FRAB, an additional unit block is
appended to the backbone to reduce the dimension. An example implementation of

FRMB and FRAB on ResNeXt101 backbone is presented in Figure [4.2]

The benefit of FRMB implementation is its better computational complexity and pa-
rameter efficiency over the FRAB implementation. Moreover, FRMB has even a bet-
ter computational complexity and parameter efficiency than the original backbone.
One possible downside of FRMB over FRAB is that the final block does not bene-
fit from the pre-trained weights of the larger dataset if the feature reduction block is

implemented only in the fine-tuning step but not in the pre-training.

4.1.3 Proposed BERT Implementations on SlowFast Architecture

SlowFast architecture [[16] introduces a different perspective for the two-stream ar-
chitectures. Instead of utilizing two different modalities as two identical streams, the
overall architecture includes two different streams (namely fast and slow streams or
paths) with different capabilities for a single modality. In SlowFast architecture, the
slow stream has a better spatial capability, while the fast stream has a better temporal
capability. The fast stream has better temporal resolution and less channel capacity

compared to the slow stream.

Due to its two-stream structure with different temporal resolutions, direct implemen-
tation of BERT-based late temporal modeling explained in Section 1S not pos-
sible. Therefore, two alternative solutions are proposed in order to carry out BERT-
based late temporal modeling on SlowFast architecture: Early-fusion BERT and late-

fusion BERT. In early-fusion BERT, the temporal features are concatenated before

78

oo}
Fast Stream o
(FRAB) = =

N
‘ 3]

Slow Stream
(FRAB) E> '

SlowFast

Temporal
Reduction
8x128

c
o
-
®©
c
[7]
2
®©
o
c
Q
O

(a) Early-fusion

©
'e]
8 = o s
~ > .o s
Fast Stream |:> > E"> x - = S
o) c g
™ Q =
© 3
| nydt 2
b o
Slow Stream N = L o
= R = -
(FRAB) > w
@
[ee]

SlowFast

(b) Late-fusion
Figure 4.3: Early-fusion and late-fusion implementations of BERT on SlowFast ar-

chitecture.

the BERT layer and only a single BERT module is utilized. To make the concatena-
tion feasible, the temporal resolution of the fast stream is decreased to the temporal
resolution of the slow stream. In late-fusion BERT, two different BERT modules are
utilized, one for each stream and the outputs of two BERT modules from two streams

are concatenated. The figure for early-fusion and late-fusion is shown in Figure

4.2 Experimental Results

In this part, dataset, implementation details, ablation study, results on different archi-

tectures, and comparison with state-of-the-art sections are presented, respectively.

4.2.1 Dataset

For analyzing the improvements of BERT on individual architectures (Section {4.2.4),
split 1 of the HMDBS51 dataset is used, whereas the comparisons against the-state-of-
the-art (See Sectiond.2.5) are performed by using the three splits of the HMDB51 and
UCF101 datasets. Additionally, the ablation study (See Section 4.2.3)) is conducted

79

using the three splits of HMDBS51. Moreover, Kinetics-400 and IG65M are used for
pre-trained weights of the architectures before fine-tuning on HMDBS51 and UCF101.
The pre-trained weights are obtained from the authors of architectures, which are
ResNeXt, 13D, Slowfast, and R(2+1)D. Among these architectures, R(2+1)D is pre-
trained with IG65M but the rest of the architectures are pre-trained with Kinetics-400.

4.2.2 Implementation Details

For the standard architectures (with TGAP and without any modification to architec-
tures), SGD with learning rate 10~2 is utilized, except I3D in which the learning rate
is set to 10~! empirically. For architectures with BERT, the ADAMW optimizer [43]
with learning rate 10~ is utilized except I3D for which the learning rate is set to 1074
empirically. For all training runs, the “reducing learning rate on the plateau" schedule
is followed. The data normalization schemes are selected conforming with the data
normalization schemes of the pre-training of the architectures in order to benefit fully
from pre-training weights. A multi-scale cropping scheme is applied for fine-tuning
and testing of all architectures [69]]. In the test time, the scores of non-overlapping
clips are averaged. The optical flow of the frames is extracted with the TV-L1 algo-

rithm (Appendix A).

In the BERT architecture, there are eight attention heads and one transformer block.
The dropout ratio in PFFN(-) is set to 0.9. Mask operation is applied with 0.2
probability. Instead of using a mask token, the attention weight of the masked feature
is set to zero. The classification token (x.js) and the learned positional embeddings
are initialized as the zero-mean normal weight with 0.02 standard deviation. Default
Torch linear layer initialization is used. Different from the I3D-BERT architecture,
the linear layers of BERT are also initialized as the zero-mean normal weight with

0.02 standard deviation since it yields better results for I3D-BERT.

4.2.3 Ablation Study

In this section, we will analyze each step of our proposals and examine how our

method compares with alternative pooling strategies (see Table[d.1). In this analysis,

80

Table 4.1: Ablation Study of RGB ResNeXt101 architecture for temporal pooling
analysis on HMDBS51. FRMB: Feature Reduction with Modified Block.
Type of FRMB | Optimizer | Topl # of # of
Temporal Pooling (%) | Params | Operations

A Pooli
verage “o0Hng SGD | 74.46 | 47.63 M | 38.56 GFlops

(Baseline)

Average Pooling ADAMW | 75.99 | 47.63 M | 38.56 GFlops
Average Pooling v ADAMW | 7497 | 4422 M | 38.36 GFlops
Concatenation v ADAMW | 76.49 | 4430 M | 38.36 GFlops
LSTM v ADAMW | 74.18 | 47.58 M | 38.37 GFlops

Concatenation +
Fully Connected Layer v ADAMW | 76.84 | 47.45 M | 38.36 GFlops

Non-local +

Concatenation + v ADAMW | 76.36 | 47.35 M | 38.43 GFlops

Fully Connected Layer
BERT pooling (Ours) v ADAMW | 77.49 | 47.38 M | 38.37 GFlops

the ResNeXt101 backbone is utilized with the RGB modality, with a 112x112 input
image size, and with 64-frame clips. In Table temporal pool types, the existence
of Feature Reduction with Modified Block (FRMB), the type of the optimizer, topl
performances, the number of parameters, and the number of operations are presented

as the columns of the analysis.

One important issue is the optimizer. For training BERT architectures in NLP tasks,
the ADAM optimizer is usually selected [9]. However, SGD is preferred for 3D CNN
architectures [24, 15,116,164} 8]. Therefore, for training BERT, we select ADAMW (i.e.
not ADAM), since ADAMW improves the generalization capability of ADAM [43].
In this ablation study, ResNeXt101 architecture (with Average Pooling in Table
is also trained with ADAMW in Tabled.Twhich shows 1.5% increase in performance
compared to SGD.

In this ablation study, FRMB implementation is selected for two reasons over FRAB.
Firstly, FRMB yields about 0.5% better topl performance than FRAB. Secondly,
FRMB has better computational complexity and parameter efficiency than FRAB.
From the experiments of the ablation study, it is observed that FRMB has lower com-
putational complexity and better parameter efficiency at the cost of ~1% decrease

in Top-1 performance compared to the standard backbone (Table 4.1)). The impact

81

of FRMB on 2D CNN architectures with BERT-based late temporal modeling is ex-
plained in Appendix [C.4]

For a fair comparison, we set the hyper-parameters of the other pooling strategies
(LSTM, concatenation + fully connected layer, and non-local + concatenation + fully
connected layer) such that the number of parameters and the number of operations of
these temporal pooling strategies is almost the same compared to the proposed BERT
pooling. LSTM is implemented in two stacks and with a hidden-layer size 450. The
dimension of the inter-channel of a non-local attention block (the dimension size of
the attention mechanism) is set equal to the input size to the non-local block which
is 512. The number of nodes of a fully connected layer is determined according to
the need for equal parameter size with the proposed BERT temporal pooling for a fair

comparison.

When Table is analyzed, one can observe that among the six different alterna-
tives (with FRMB), BERT has the best temporal pooling strategy. Additionally, the
proposed FRMB-ResNeXt101-BERT provides 3% better Top-1 accuracy than the
ResNeXt101 average pooling (Baseline) despite the fact that FRMB-ResNeXt101-
BERT has better computational complexity and parameter efficiency compared to
ResNeXt101 average pooling (Baseline) (see Table 4.1). The BERT layer itself has
about 3M parameters and negligible computational complexity with respect to the
ResNeXt101 backbone. For the other temporal pooling strategies, LSTM worsens
the performance with respect to the temporal average pooling. Concatenation and
concatenation + fully connected layer are also other successful strategies in order to
utilize the temporal features better than the average pooling. The addition of a non-
local attention block before the concatenation + fully connected layer also decreases
the performance compared to only concatenation + fully connected layer pooling im-
plementation. It should be highlighted that the original implementation of the non-
local study [72] also prefers not to utilize the non-local block at the end of the final
three bottleneck blocks, which is a consistent fact with the experimental result of this

study related with non-local implementation.

In addition, the ablation study of BERT late temporal modeling is performed and pre-

sented in Table @ These results examine the effects of the number of layers, the

82

Table 4.2: Ablation Study of BERT late temporal Modeling on HMDBS51.

Number of Number of Learnable Classification Token | Topl
BERT Layers | Attention Heads against Pooled Features (%)

1 8 76.07

1 1 v 76.97

1 8 v 77.49

2 8 v 77.24

number of heads, and utilization of learnable classification token instead of the aver-
age pooled feature. Initially, the experiment of replacing the average of extracted tem-
poral features with learnable classification token results in a 1.42% Top-1 accuracy
boost. Next, utilization of multi-head attention with eight attention heads improves
the Top-1 performance of single-head attention with 0.52%. Thirdly, increasing the
number of layers from one to two worsens the topl performance with 0.25%. More-
over, the memory trade-off of every layer of BERT is about 3M. The reason behind
the deterioration might be the fact that late temporal modeling is not as much complex
as capturing rich linguistic information and a single layer might be enough to capture

the temporal relationship between the output features of 3D CNN architectures.

4.2.4 Results on Different 3D CNN Architectures

In this section, the improvements obtained by replacing TGAP with BERT pooling
on popular 3D convolution architectures for action recognition is presented, including

ResNeXt101 [24], I3D [5], SlowFast[16] and R(2+1)D [64].

4.2.4.1 ResNeXt Architecture

ResNeXt architecture is essentially ResNet with group convolutions [24]. For testing
this architecture, the input size is selected as 112x112 as in the study of [24, |8] and
64 frame length is utilized.

The results of the ResNeXt101 architecture is presented in Table 4.3] The perfor-
mance of the architectures is compared over RGB modality, (optical) flow modality,

and both (two-stream) in which both RGB and flow-streams are utilized, and the

83

Table 4.3: Analysis of ResNeXt101 architecture with and without BERT for RGB,
Flow, and two-stream modalities on HMDBS51 split-1
’ BERT \ Modality \ Top-1 \ # Parameters | # Operations

RGB 74.38 47.63 M 38.56 GFlops
v RGB 77.25 4738 M 38.37 GFlops
Flow 79.48 47.60 M 34.16 GFlops
v Flow 82.03 4736 M 33.97 GFlops
Both 82.09 95.23 M 72.72 GFlops
v Both 83.99 94.74 M 72.34 GFlops

scores are summed from each stream. In this table, the number of parameters and
operations of the architectures are also presented. For feature reduction, FRMB is
chosen instead of FRAB and its reasoning is explained in Section (see Section
M.1.2|for more details about FRAB and FRMB). Based on the results in Table 4.3] the
most important observation is the improvement of the performance by using BERT

over the standard architectures (without BERT) in al/l modalities.

4.2.4.2 13D Architecture

I3D architecture is an Inception-type architecture. During I3D experiments, the input
size is selected as 224x224 and 64 frame length is used conforming with the 13D study
[5]. The result of BERT experiments on I3D architecture is given in Table[d.4] In this
table, there are two BERT implementations that are with and without FRAB. For I3D-
BERT architectures with FRAB, the final feature dimension of the I3D backbone is
reduced from 1024 to 512 in order to utilize BERT in a more parameter efficient
manner. However, contrary to the ResNeXt101-BERT architecture, FRAB is selected
instead of FRMB, because FRAB obtains about 3.6% better Top-1 result for RGB-
I3D-BERT architecture on splitl of HMDBS1.

The experimental results in Table 4.4 indicate that BERT increases the performance
of I3D architectures in all modalities. However, the increase in RGB modality is
quite limited. For the Flow modality, although there is a performance improvement
for BERT without FRAB, the implementation of BERT with FRAB performs worse
than the standard I3D architecture, implying that preserving the feature size is more

important for flow modality compared to RGB modality in 13D architecture. For

84

Table 4.4: The performance analysis of I3D architecture with and without BERT for

RGB, Flow, and two-stream modalities on HMDBS51 split-1

BERT | Modality Rifli::tli.zn Top-1 | # Parameters | # Operations
RGB X 75.42 12.34 M 111.33 GFlops

v RGB FRAB 75.75 16.40 M 111.72 GFlops

v RGB X 75.69 2495 M 111.44 GFlops
Flow X 77.97 12.32 M 102.52 GFlops

v Flow FRAB 77.25 16.37M 102.91 GFlops
v Flow X 78.37 2492 M 102.63 GFlops
Both X 82.03 24.66 M 213.85 GFlops

v Both FRAB 82.68 32.77TM 214.63 GFlops
v Both X 82.68 49.87T M 214.07 GFlops

the two-stream setting, both of the proposed BERT architectures perform equally
with each other and perform better than standard 13D with 0.65% Top-1 performance
increase. Comparing with the ResNeXt101 architecture, the performance improve-

ments brought by BERT temporal modeling is lower in 13D architecture.

4.2.4.3 SlowFast Architecture

The SlowFast architecture in these experiments is derived from a ResNet-50 architec-
ture. The channel capacity of the fast streams is one-eighth of the channel capacity of
the slow stream. The temporal resolution of the fast stream is four times the temporal
resolution for the slow stream. The input size is selected as 224x224 and 64-frame
length is utilized with the SlowFast architecture conforming with the SlowFast study
[16]]. Although it might be possible to utilize SlowFast architecture with also optical
flow modality, the authors of SlowFast did not consider this strategy in their study.
Therefore, in this effort, the analysis of BERT is also implemented by only consider-

ing the RGB modality.

In order to utilize BERT architecture with fewer parameters, the final feature dimen-
sion of SlowFast backbone is reduced similar to the ResNeXt101-BERT and I3D-
BERT architectures. Similar to the I3D-BERT architecture, FRAB is chosen instead
of FRMB since FRAB obtains about 1.5% better Top-1 result for SlowFast-BERT ar-
chitecture on the splitl of HMDBS51 (see Section for more details about FRAB

85

Table 4.5: The performance analysis of SlowFast architecture with and without BERT
for RGB modality on HMDBS51 split-1

BERT Top-1 | # Parameters | # Operations
79.41 33.76 M 50.72 GFlops
v (early-fusion) | 79.54 43.17M 52.39 GFlops
v (late-fusion) | 80.78 42.04 M 52.14 GFlops

and FRMB). For early-fusion BERT, the feature dimension of the slow stream is re-
duced from 2048 to 512 and the feature dimension of the fast stream is reduced from
256 to 128. For late-fusion BERT, only the feature dimension of the slow stream is
reduced from 2048 to 512. The details about the size of the dimensions are presented
in Figure The proposed implementation of BERT-based late temporal modeling

on SlowFast architecture is presented in Section[4.1.3]

The results for BERT on SlowFast architecture are given in Table @ First of all,
both BERT solutions perform better than the standard SlowFast architecture but the
improvement of early-fusion method is quite limited. Late-fusion BERT improves
the topl performance of standard SlowFast architecture with about 1.3 %. From the
number of parameters perspective, the implementation of BERT on SlowFast archi-
tecture is not as much as efficient in comparison to ResNeXt101 architecture because
of the FRAB implementation instead of FRMB as in the case of [3D-BERT. More-
over, the parameter increase of RGB-SlowFast-BERT is even higher than RGB-13D-
BERT because of the two-stream implementation of SlowFast network for RGB input
modality. The increase in the number of operations is also higher in the implementa-
tion of SlowFast-BERT than the I3D-BERT and ResNeXt101-BERT because of the
higher temporal resolution in SlowFast architecture and two-stream implementation

for RGB modality.

For the two alternatives proposed BERT solution in Table [4.5] late-fusion yields bet-
ter performance with better computational complexity in contrast with early-fusion
BERT. Although the attention mechanism is implemented jointly on the concatenated
features, the destruction of the temporal richness of fast stream to some degree might

be the reason for the inferior performance of the early-fusion BERT.

86

Table 4.6: The performance analysis of R(2+1)D architecture with and without BERT
for RGB modality on HMDBS51 split-1

BERT | Top-1 | # Parameters | # Operations
82.81 63.67 M 152.95 GFlops
v 84.77 66.67 M 152.97 GFlops

4.2.4.4 R(2+1)D Architecture

R(2+1)D [64] architecture is a ResNet-type architecture consisting of separable 3D
convolutions in which temporal and spatial convolutions are implemented separately.
For this architecture, 112x112 input dimensions are applied following the paper, and
32-frame length is applied instead of 64-frame because of the huge memory demand
of this architecture and to be consistent with the paper [64]. The selected R(2+1)D
architecture has 34 layers and implemented with basic block type instead of bottle-
neck block type (for further details about block types, see [24]). The most important
difference of R(2+1)D experiments from the previous architectures is the utilization
of the IG65M pre-trained weights, instead of Kinetics pre-trained weights (see Sec-
tion for details). Therefore, this information should always be considered while
comparing this architecture with the aforementioned ones. The analysis of R(2+1)D
BERT architecture is limited to RGB modality, since the study [19] of the IG65M
dataset where R(2+1)D architecture is preferred is limited to RGB modality.

The experiments for BERT on R(2+1)D architecture are presented in Table The
feature dimension of R(2+1)D architecture is already 512 which is the same with
the reduced feature dimension of ResNeXt101 and I3D backbones for BERT imple-
mentations. Therefore, we do not use FRMB or FRAB for R(2+1)D. There is an
increase of about 3M parameters and the increase in the number of operations is still
negligible. The performance increase of BERT on R(2+1)D architecture is about 2%
which is a significant increase for RGB modality as in the case of ResNeXt101-BERT

architecture.

87

4.2.5 Comparison with State-of-the-Art

In this section, the results of the best BERT architectures from the previous section
are compared against the state-of-the-art methods. For this aim, two leading BERT ar-
chitectures are selected among all the test methods: Two-Stream BERT ResNeXt101
and RGB BERT R(2+1)D (see Section 4.2.4). Note that these two architectures use
different pre-training datasets, namely 1G65 and Kinetics-400 for ResNext101 and
R(2+1)D, respectively.

The results of the architectures on HMDBS51 and UCF101 datasets are presented in
Table The table indicates if an architecture employs explicit optical flow. More-

over, the table lists the pre-training dataset used by the methods.

As shown in Table BERT increases the Top-1 performance of the two-stream
ResNeXt101 with 1.77% and 0.41% in HMDBS51 and UCF101, respectively. Addi-
tionally, BERT improves the Top-1 performance of RGB R(2+1)D (32f) with 3.5
% and 0.48% in HMDBS51 and UCF101, respectively, where 32f corresponds to
32-frame length. The results obtained by the R(2+1)D BERT (64f) architecture
pre-trained with the IG65M dataset is the current state-of-the-art result in AR for
HMDBS51 and UCF101, to the best of our knowledge.

Among the architectures pre-trained in Kinetics-400, the two-stream ResNeXt101
BERT is again the best in HMDBS51 but the second-best in the UCF101 dataset. This
might be owing to the fact that HMDBS5]1 involves some actions that can be resolved

only using temporal reasoning and therefore benefits from BERT’s capacity.

An important point to note from the table is the effect of pre-training with the IG65M
dataset. RGB R(2+1)D (32f) (without Flow) pre-trained with IG65M obtains about
6% and 1.4% better Top-1 performance in HMDBS51 and UCF101, respectively than
the one pre-trained with Kinetics-400, indicating the importance of the number of
samples in the pre-training dataset even if the samples are collected in a weakly-

supervised manner.

88

Table 4.7: Comparison with the state-of-the-art.

Uses Extra
Model Flow? | Training Data | HMDBS51 | UCF101

IDT [67] v 61.70 -
Two-Stream [57]] v ImageNet 59.40 88.00
Two-stream Fusion + IDT [[17]] v ImageNet 69.20 93.50
ActionVlad + IDT [22] v ImageNet 69.80 93.60
TSN [71] v ImageNet 71.00 94.90
RSTAN + IDT [13] v ImageNet 79.90 95.10
TSM [41]] Kinetics-400 73.50 95.90
R(2+1)D [64] Kinetics-400 74.50 96.80
R(2+1)D [64] v Kinetics-400 78.70 97.30
13D [5]] v Kinetics-400 80.90 97.80
MARS + RGB + Flow [§]] v Kinetics-400 80.90 98.10

FcF [50]] Kinetics-400 81.10 -
ResNeXt101 v Kinetics-400 81.78 97.46

EvaNet [49]] v Kinetics-400 82.3 -

HAF+BoW/FV halluc [68]] Kinetics-400 82.48 -
ResNeXt101 BERT (Ours) v Kinetics-400 83.55 97.87
R(2+1)D (32f) IG65M 80.54 98.17
R(2+1)D BERT (32f) (Ours) IG65M 83.99 98.65
R(2+1)D BERT (64f) (Ours) IG65M 85.10 98.69

4.3 Discussion

This study combines the two major components from AR literature, namely late tem-
poral modeling and 3D convolution. Although there are many pooling, fusion, and
recurrent modeling strategies that are applied to the features from 2D CNN architec-
tures, we firmly believe that this manuscript is the first study that removes temporal
global average pooling (TGAP) and better employs temporal information at the out-
put of 3D CNN architectures. To utilize these temporal features, an attention-based
mechanism namely BERT is selected. The effectiveness of this idea is proven on
most of the popular 3D CNN architectures which are ResNeXt, I3D, SlowFast, and
R(2+1)D. In addition, significant improvements over the-state-of-the-art techniques

are obtained in HMDBS51 and UCF101 datasets.

89

90

CHAPTER 5

PROPOSED METHOD : BERT DISTILLATION

The superiority of BERT in Natural Language Processing (NLP) tasks is substantially
related to its unsupervised pre-training procedure. During this pre-training, BERT ar-
chitecture is guided to predict some of the masked words which increase its learning
capacity for creating a relationship between the words with its attention mechanism.
For this aim, we aim to discover the potential of unsupervised training of BERT archi-
tecture on the action recognition task by using the distillation concept. In this chapter,
the joint utilization of distillation and unsupervised training concepts are shown to be

beneficial even with the small action recognition dataset HMDBS]1.

5.1 Methodology

In NLP tasks, training of BERT architectures is implemented in two steps, which are
pre-training and fine-tuning. In the pre-training part, the aim is to train the architec-
ture to predict the words which are masked. Then, these pre-trained weights of BERT
are utilized in other NLP tasks in a supervised manner, such as sentiment analysis or

question-answer problems.

In this study, unsupervised training of BERT architecture is utilized in a slightly dif-
ferent manner and combined with the distillation concept. The distillation concept is
initially utilized in MARS [8]] architecture in order to transfer knowledge of flow ar-
chitecture to RGB architecture in the action recognition task. This approach is shown
to be quite useful. Similar to this approach, instead of implementing the similarity

loss and classification loss separately as two different phases of training procedure of

91

BERT, they are combined into a single loss function in BERT distillation (5.1)

N

Loss(s.§..2) = CrossEntropy(s,) + A llyi—=|, IIyill = [l = 1 (5.1)
=1

where s is the ground truth classification output, y;s are the output of the BERT archi-
tecture and ¢ denotes the temporal index as seen in Figure and 7 is the predicted
classification label obtained from v, feature which can be seen in Figure[5.1]. From
the distillation perspective, BERT architecture is student architecture. z;s are the out-
puts of the teacher 3D CNN architecture without temporal global average pooling
and characteristically similar to the outputs f;s. This teacher architecture can be any
architecture that is typically considered to be beneficial to improve the performance
of student BERT architecture, such as flow version of the student architecture or RGB
architecture with better capacity than student BERT architecture. It should be empha-
sized that the teacher architecture is pre-trained before the implementation of BERT
distillation and weight update is not applied to teacher architecture during the distil-

lation training of BERT architecture.

5.2 Experimental Results

In this section, the experiments of the concept of distillation with unsupervised train-
ing of BERT architecture is presented. In the first step, there is a necessity of deter-
mining the value of A in (5.1)). For this purpose, the student architecture is selected as
RGB-ResNeXt-101-BERT with FRMB, whereas the teacher architecture is selected
as Flow-ResNeXt-101-BERT with FRMB. The result of this analysis is presented in
Table For the selection of the best result, we pick the best value of A according
to Top-1 + Top-3 score. The reason to follow such an approach is to reduce the noisy
results of the specified A\. The better analysis would be the three-split-average results

but we do not want to follow it due to the computational complexity perspective.

The results of the distillation tests are presented in Table [5.2] The upper part of the
table belongs to result of our proposed BERT distillation and the below part of the
table belongs to MARS distillations.

92

= S5
=] = -a
z|lc 2 L
<] @
a : :
= => -=:>.ﬁ=>:>-;
= : E g
M =
1 %] ' (=] [=
! E 3 : 3
' 2= o ' 3
2 T
: z
s S
[=]
£
S
[=]
Z|ia
ZG.I
o MSE LOSS
o
Ettor ‘2
xtrac)q,
Flow S
m—
&
o
5
'—

Figure 5.1: BERT-based Distillation

In the BERT distillation part, two architectures are selected as RGB-ResNeXt101-
BERT FRMB and RGB-ResNeXt101-BERT FRAB. For the teacher architectures,
Flow-ResNeXt101-BERT FRMB and RGB-R(2+1)D-BERT-(32x2f) are chosen and
their Top-1 performances are 81.29% and 83.03%, respectively. Firstly, it can be
observed that distillation from Flow-ResNeXt101-BERT-FRMB improves the per-
formance of both RGB-ResNeXt101-BERT FRMB and RGB-ResNeXt101-BERT
FRAB with about 0.8% and 1.6%, respectively. In addition, RGB-ResNeXt101-
BERT-FRAB is distilled as a student architecture with Flow-ResNeXt101-BERT-
FRMB and RGB-R(2+1)D-BERT-(32x2f) and Top-1 performances are improved with
1.6% and 1.0%, respectively. Although Top-1 performance of RGB-R(2+1)D-BERT
is higher than Flow-ResNeXt101-BERT-FRMB, the latter is better, when it is used as
a teacher architecture. This might be resulted due to the fact that different modality

might contain more complementary information.

93

Table 5.1: Lambda parameter selection for distillation with unsupervised training of
BERT architecture on split-1 of HMDB51

lambda (\) | Top-1 | Top-3 | Top-1 + Top-3
25k 77.45 | 91.50 168.95
50k 78.69 | 91.11 169.80
100k 78.17 | 92.22 170.39
250k 78.37 | 91.44 169.81
500k 78.63 | 91.18 169.81

A comparison between MARS and BERT distillations can be stated based on the re-
sults of two (i.e. above and below) parts of Table[5.2] The most important difference
between them is as follows: MARS distillation affects the features of classification
directly, while BERT distillation affects indirectly because the distilled parts of BERT
is not utilized directly in the classification layer. When MARS distillation is imple-
mented in HMDBS51 directly, it decreases the performance due to overfitting. How-
ever, such an overfitting problem is not observed during BERT distillation. This result
might be observed because of the difference in the direct-indirect impact of BERT and
MARS distillations. Howeuver, it is also shown that when MARS distillation is im-
plemented by using the Kinetics dataset, the over-fitting problem disappears due to a

large number of samples in the dataset and Top-1 accuracy improves significantly.

94

Table 5.2: Distillation with unsupervised training of BERT architectures and MARS
distillations on HMDBS51

Stl}dent Tez}cher Top-1 Distillation

Architecture Architecture Dataset
RG}?;?:S;};OL (No Distillation) | 77.49
RG]];TTS_E;);;OL (No Distillation) | 77.10
RGB-ResNeXt101- | Flow-ResNeXt101-

BER"CFS—FI:MB OI;NEReTS—FIZMB 78.30 | HMDB5I
RGB-ResNeXt101- | Flow-ResNeXt101-

BER?FS-F;AB OI;VER?FS-F;MB 7872 | HMDB5I
RGB-ResNeXt101- | RGB-R(2+1)D-

BER?FS—FICQAB BERT—E3;x;f) 78.15 | HMDB5I
RGB-ResNeXt101 (No Distillation) 74.46
RGB'&??ZX“OI Flow-ResNeXt101 | 71.15 | HMDB5I
RGB _;iig)(t 101 Flow-ResNeXt101 | 81.22 Kinetics

95

96

CHAPTER 6

SUMMARY & CONCLUSION

6.1 Summary

This thesis proposes novel neural network architectures for AR problem. Two recent
techniques, namely BERT and distillation, are applied to conventional 3D CNNs in

order to achieve late temporal modeling for the recognition task.

2D CNN architectures are presented in Section[3.3] starting with late temporal pooling
strategies being examined on ResNetl8 architecture with RGB modality in Section
[3.3.1] Such late temporal modeling techniques cover the following: No-pooling, av-
erage pooling, non-local block + average pooling, concatenation, non-local block +
concatenation, LSTM, Convolutional GRU, and BERT structures. Then, the impact
of the additional fusion of intermediate features of 2D CNN architectures to final fea-
ture representation is analyzed in Section[3.3.2] Additionally, the impact of the depth
of the CNN architecture is investigated for RGB modality in Section [3.3.3] Continu-
ing this section, the impact of other input modalities, such as Flow and Pose, and joint
utilization of all two modalities (RGB + Flow) and three modalities (RGB + Flow +
Pose) are examined. For flow and pose modality, the impact of late temporal and
fusion is also investigated in less detail compared to the analysis on RGB modality.
It should be emphasized that the utilization of pose information is different from the

literature; i,e. pose information is converted into RGB image which is explained in

detail in Section [3.2.6)).

About 3D CNN architectures (Section [3.4)), some of the basic notions, such as the

effect of clip length and input image resolution are initially investigated. The (pos-

97

itive) impact of group convolution is analyzed by comparing ResNet and ResNeXct.
Additionally, the differences between applying these notions to both pre-training and
fine-tuning, and only fine-tuning is compared. Next, two-stream architectures (RGB
+ Flow) is investigated by using ResNeXt and I3D architectures. Finally, the per-
formance, memory utilization and computational complexity analysis of 3D CNN
architectures are examined in Section [3.4.3] and Section [3.4.4] This analysis covers
the architectures of ResNext, MFNET, Rep-Flow, TSM (Not 3DCNN but novel 2D
CNN idea), Modified ResNet, I3D, SlowFast, MARS, and R(2+1)D architectures.

In this thesis, two novel solutions are proposed. In the first proposed method, which
is presented in Chapter 4 a combination of late temporal modeling is approached
from the perspective of 3D CNN architectures. However, the focus of this section is
on using BERT as a late temporal pooling strategy. In this part of the thesis, BERT
is compared against some of the late temporal pooling strategies, which are average
pooling, LSTM, concatenation, concatenation + fully connected layer, non-local +
concatenation + fully connected layer. In this chapter, in order to utilize BERT ar-
chitecture in a more parameter efficient way, feature reduction methods (FRMB and
FRAB) are proposed. The positive impact of BERT as a late temporal pooling strategy
is shown on the architectures of ResNeXt, I3D, SlowFast, and R(2+1)D architectures.
Moreover, for SlowFast architecture, two possible implementations are proposed for

the implementation of BERT.

In the second proposed method, BERT is approached from the distillation concept
perspective and the information of one architecture is transferred to another architec-

ture by using the unsupervised training concept of BERT.

6.2 Conclusion

To begin with, one of the most important contributions of this thesis is the utilization
of late temporal modeling for AR. In this thesis, late temporal modeling is covered
for both 2D and 3D CNN architectures. Firstly, the success of the late temporal
modeling strategy is dependent on both architecture and the modality. For instance,

BERT is a better strategy than concatenation pooling for RGB 3D-ResNeXt101 but

98

vice versa for RGB 2D-ResNet18. On the other hand, BERT is a better strategy than
concatenation pooling for flow and pose on 2D-ResNet18, but vice versa for RGB 2D-
ResNetl8. Additionally, one can argue that BERT is a better strategy than standard
LSTM, average pooling, convolutional GRU. Moreover, fusing the final extracted
features of 2D CNN architectures with its intermediate features demonstrates positive

performance for both pose and RGB modality.

Another important conclusion is based on the comparison of 3D CNN architectures.
The architectures are compared from the perspective of Top-1 accuracy, number of
parameters, and number of operations. It can be concluded that from Top-1 accu-
racy perspective, SlowFast-50 is the best architecture among ResNeXt101, MFNET,
Rep-Flow-50, TSM-50 (Not 3D CNN), Modified ResNet-50 7] 13D, and R(2+1)D]
Besides, MFNET is a parameter efficient architecture, and the implementations of
ResNeXt (64f), TSM (8x8f), and Modified ResNet-50 (32x2f) are good architectures

from a computational complexity perspective.

On the other hand, some of the factors, which increase the performance of 3D CNN
architectures, are determined by using split-1 of HMDBS51 with RGB modality. In-
creasing the clip length from 16 to 64 increases the Top-1 accuracy of ResNeXt about
10%, whereas increasing the input resolution from 112 to 224 only in fine-tuning
increases Top-1 accuracy of ResNeXt by about 2%. The implementation of group
convolution (change from ResNet to ResNeXt) increases Top-1 accuracy by around
2%. The utilization of the MARS distillation concept on ResNeXt101 architecture
increases Top-1 accuracy with about 7%. Pre-training of R(2+1)D architecture with
IG65M dataset increases the performance of the one with Kinetics-400 increases the
performance with about 6%, indicating that the scale of the pre-training dataset is
also important. The concept of BERT distillation is proposed and it improves Top-
1 performance of RGB-ResNeXt-BERT by 1.6%. The improvements of distillation
and pre-training dataset are important from the perspective that the inference time

complexity of the architectures does not change.

Another conclusive statement of this thesis is that architectures trained with different

1 "Modified ResNet-50" name is coined by the author. This architecture is the one used in the non-local

paper and has similar characteristics with R(2+1)D architecture. This architecture cannot be called as non-local
architecture, since non-local is an attention concept and can be utilized with any architecture.
2 R(2+1) Kinetics-400 pre-trained Top-1 performance is reported from another paper

99

modalities learn complementary information. In addition, this complementary infor-
mation can be revealed even with a simple score fusion strategy. Considering the all
of the 2D and 3D CNN experiments, two-stream (RGB + Flow) increases the Top-1
performance of the RGB stream from 6% to 10%, and the flow stream from 2% to
8 % in the HMDBS51 dataset. Moreover, the utilization of RGB pose images created
by the OpenPose algorithm as pose modality increases the Top-1 performance of 2D
two-stream architectures by 3-4 % in the HMDBS51 dataset, indicating that pose archi-

tectures are able to learn complementary information to RGB and Flow architectures.

For the utilization of non-local blocks, it is observed that utilizing non-local block
does not always result in performance improvements. For instance, when we apply
the original non-local block implementation as in the paper, the experiment result of
32x2 frame selection has been improved, but 64 frame selection becomes worse. In
this thesis study, a non-local block is also utilized as an attention mechanism just
before the late temporal modeling concept, such as concatenation or average pooling.
It is observed that utilization with concatenation deteriorates the performance both
in 2D and 3D CNN experiments. However, the utilization of non-local blocks with

average pooling in 2D CNN has improved the performance.

To highlight, utilizing BERT as a late temporal modeling concept, utilization of late
temporal modeling on 3D CNN architectures other than average pooling and the
method of utilization of pose information are two novel parts of this thesis study.
Moreover, this thesis fills some of the experiments gaps existing in the literature such

as the experiments of SlowFast and modified ResNet on the HMDBS51 dataset.

6.3 Future Work

A possible research direction might be proposals for parameter efficient BERT im-
plementations that do not need feature reduction blocks (FRMB or FRAB) which
decreases the capabilities of the final extracted features because of the reduction in

the dimension of features.

One of the deficits of this thesis study is the lack of experiments of the proposed

BERT-based late temporal modeling on a dataset which needs more temporal order

100

reasoning than HMDBS51 and UCF101, such as something-something dataset.

The real benefits of BERT architecture rise to the surface with unsupervised tech-
niques. For this reason, we have implemented proposed BERT-based distillation in
order to benefit from unsupervised concepts. However, distillation is not a complete
unsupervised training because the distilled architecture needs to be trained with su-
pervised concepts. Therefore, as future work, better unsupervised concepts can still

be proposed on BERT 3D CNN architectures.

Moreover, the experiments of the BERT-based distillation should be performed on
a larger dataset than HMDBS1, such as Kinetics because distillation is partially un-
supervised techniques as argued in the previous paragraph and the benefits of the

unsupervised techniques is proportional with the scale of the dataset.

101

102

REFERENCES

[1] U. Ahsan, R. Madhok, and I. Essa. Video jigsaw: Unsupervised learning of spa-
tiotemporal context for video action recognition. In Proceedings - 2019 IEEE
Winter Conference on Applications of Computer Vision, WACV 2019, pages
179-189. Institute of Electrical and Electronics Engineers Inc., 3 2019.

[2] Z.Cao, G. Hidalgo Martinez, T. Simon, S.-E. Wei, and Y. A. Sheikh. OpenPose:
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages 1-1, 7 2019.

[3] J. Carreira, E. Noland, A. Banki-Horvath, C. Hillier, and A. Zisserman. A Short
Note about Kinetics-600. 8 2018.

[4] J. Carreira, E. Noland, C. Hillier, and A. Zisserman. A Short Note on the
Kinetics-700 Human Action Dataset. 7 2019.

[5] J. Carreira and A. Zisserman. Quo Vadis, action recognition? A new model
and the kinetics dataset. In Proceedings - 30th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, volume 2017-Janua, pages 4724—
4733. Institute of Electrical and Electronics Engineers Inc., 11 2017.

[6] Y. Chen, Y. Kalantidis, J. Li, S. Yan, and J. Feng. Multi-fiber Networks for
Video Recognition. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 11205 LNCS, pages 364-380. Springer Verlag, 7 2018.

[7] V. Choutas, P. Weinzaepfel, J. Revaud, and C. Schmid. PoTion: Pose MoTion
Representation for Action Recognition. In Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, pages 7024—
7033. IEEE Computer Society, 12 2018.

[8] N. Crasto, P. Weinzaepfel, K. Alahari, and C. Schmid. MARS: Motion-
augmented rgb stream for action recognition. In Proceedings of the IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition, volume
2019-June, pages 7874-7883. IEEE Computer Society, 6 2019.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. 10 2018.

[10] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via
sparse spatio-temporal features. In 2005 IEEE International Workshop on Vi-

103

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

sual Surveillance and Performance Evaluation of Tracking and Surveillance,
pages 65-72, 10 2005.

J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadarrama,
K. Saenko, and T. Darrell. Long-Term Recurrent Convolutional Networks for
Visual Recognition and Description. [EEE Transactions on Pattern Analysis
and Machine Intelligence, 39(4):677-691, 4 2017.

W. Du, Y. Wang, and Y. Qiao. RPAN: An End-to-End Recurrent Pose-Attention
Network for Action Recognition in Videos. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, volume 2017-Octob, pages 3745-3754.
Institute of Electrical and Electronics Engineers Inc., 12 2017.

W. Du, Y. Wang, and Y. Qiao. Recurrent spatial-temporal attention network

for action recognition in videos. [EEE Transactions on Image Processing,
27(3):1347-1360, 3 2018.

L. Fan, W. Huang, C. Gan, S. Ermon, B. Gong, and J. Huang. End-to-End
Learning of Motion Representation for Video Understanding. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, pages 6016-6025. IEEE Computer Society, 12 2018.

G. Farnebick. Two-frame motion estimation based on polynomial expansion.
Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics), 2003.

C. Feichtenhofer, H. Fan, J. Malik, and K. He. Slowfast networks for video
recognition. In Proceedings of the IEEE International Conference on Computer
Vision, volume 2019-October, pages 6201-6210. Institute of Electrical and Elec-
tronics Engineers Inc., 10 2019.

C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional Two-Stream Net-
work Fusion for Video Action Recognition. In Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, volume
2016-Decem, pages 1933-1941. IEEE Computer Society, 12 2016.

K. Gavrilyuk, R. Sanford, M. Javan, and C. G. M. Snoek. Actor-Transformers
for Group Activity Recognition. pages 836—845, 3 2020.

D. Ghadiyaram, M. Feiszli, D. Tran, X. Yan, H. Wang, and D. Mahajan. Large-
scale weakly-supervised pre-training for video action recognition. Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2019-June:12038-12047, 5 2019.

R. Girdhar, J. Carreira, C. Doersch, and A. Zisserman. Video Action Trans-
former Network. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2019-June:244-253, 12 2018.

104

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

R. Girdhar and D. Ramanan. Attentional pooling for action recognition. In Ad-
vances in Neural Information Processing Systems, volume 2017-Decem, pages
34-45. Neural information processing systems foundation, 2017.

R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell. ActionVLAD:
Learning spatio-temporal aggregation for action classification. In Proceedings
- 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, 2017.

R. Goyal, S. E. Kahou, V. Michalski, J. Materzynska, S. Westphal, H. Kim,
V. Haenel, 1. Fruend, P. Yianilos, M. Mueller-Freitag, F. Hoppe, C. Thurau,
I. Bax, and R. Memisevic. The "something something" video database for learn-

ing and evaluating visual common sense. Proceedings of the IEEE International
Conference on Computer Vision, 2017-Octob:5843-5851, 6 2017.

K. Hara, H. Kataoka, and Y. Satoh. Can Spatiotemporal 3D CNNs Retrace the
History of 2D CNNs and ImageNet? In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 6546—
6555. IEEE Computer Society, 12 2018.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, volume 2016-Decem, pages 770-778. IEEE
Computer Society, 12 2016.

D. Hendrycks and K. Gimpel. Gaussian Error Linear Units (GELUs). 6 2016.

G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural Net-
work. 3 2015.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. MobileNets: Efficient Convolutional Neural Net-
works for Mobile Vision Applications. 4 2017.

Ju Sun, Xiao Wu, Shuicheng Yan, L.-F. Cheong, T.-S. Chua, and Jintao Li.
Hierarchical spatio-temporal context modeling for action recognition. pages
2004-2011. Institute of Electrical and Electronics Engineers (IEEE), 3 2010.

M. E. Kalfaoglu, S. Kalkan, and A. A. Alatan. Late Temporal Modeling in 3D
CNN Architectures with BERT for Action Recognition. In European Confer-
ence on Computer Vision. Springer, 2020.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F. F. Li.
Large-scale video classification with convolutional neural networks. In Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2014.

105

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan,
F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman, and A. Zisserman. The
Kinetics Human Action Video Dataset. 5 2017.

N. S. Keskar and R. Socher. Improving Generalization Performance by Switch-
ing from Adam to SGD. 12 2017.

D. P. Kingma and J. L. Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015 - Confer-
ence Track Proceedings. International Conference on Learning Representations,
ICLR, 12 2015.

A. Klaeser, M. Marszalek, and C. Schmid. A Spatio-Temporal Descriptor Based
on 3D-Gradients. In Procedings of the British Machine Vision Conference 2008,
2008.

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: A large
video database for human motion recognition. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages 2556-2563, 2011.

I. Laptev. On Space-Time Interest Points. International Journal of Computer
Vision, 64(2):107-123, 9 2005.

I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic hu-
man actions from movies. In 2008 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1-8, 6 2008.

H. Y. Lee, J. B. Huang, M. Singh, and M. H. Yang. Unsupervised Representa-
tion Learning by Sorting Sequences. In Proceedings of the IEEE International
Conference on Computer Vision, volume 2017-Octob, pages 667-676. Institute
of Electrical and Electronics Engineers Inc., 12 2017.

Z. Li, K. Gavrilyuk, E. Gavves, M. Jain, and C. G. Snoek. VideoLSTM con-
volves, attends and flows for action recognition. Computer Vision and Image
Understanding, 166:41-50, 1 2018.

J. Lin, C. Gan, and S. Han. TSM: Temporal Shift Module for Efficient Video
Understanding. Proceedings of the IEEE International Conference on Com-
puter Vision, 2019-October:7082-7092, 11 2018.

D. Lopez-Paz, L. Bottou, B. Scholkopf, and V. Vapnik. Unifying distillation
and privileged information. 4th International Conference on Learning Repre-
sentations, ICLR 2016 - Conference Track Proceedings, 11 2015.

I. Loshchilov and F. Hutter. Decoupled Weight Decay Regularization. 7th In-
ternational Conference on Learning Representations, ICLR 2019, 11 2017.

106

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

W. Luo, Y. Li, R. Urtasun, and R. Zemel. Understanding the Effective Receptive
Field in Deep Convolutional Neural Networks. Advances in Neural Information
Processing Systems, pages 4905-4913, 1 2017.

P. Matikainen, M. Hebert, and R. Sukthankar. Trajectons: Action recognition
through the motion analysis of tracked features. In 2009 IEEE 12th Inter-
national Conference on Computer Vision Workshops, ICCV Workshops 2009,
pages 514-521, 20009.

R. Messing, C. Pal, and H. Kautz. Activity recognition using the velocity histo-
ries of tracked keypoints. In Proceedings of the IEEE International Conference
on Computer Vision, pages 104—-111, 20009.

J. Y. H. Ng, J. Choi, J. Neumann, and L. S. Davis. ActionFlowNet: Learn-
ing motion representation for action recognition. In Proceedings - 2018 IEEE
Winter Conference on Applications of Computer Vision, WACV 2018, volume
2018-Janua, pages 1616—1624. Institute of Electrical and Electronics Engineers
Inc., 5 2018.

J. Y. H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and
G. Toderici. Beyond short snippets: Deep networks for video classification. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, volume 07-12-June, pages 4694-4702. IEEE Computer
Society, 10 2015.

A. Piergiovanni, A. Angelova, A. Toshev, and M. S. Ryoo. Evolving Space-
Time Neural Architectures for Videos. Proceedings of the IEEE International
Conference on Computer Vision, 2019-October:1793-1802, 11 2018.

A. Piergiovanni and M. S. Ryoo. Representation Flow for Action Recognition.
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2019-June:9937-9945, 10 2018.

D. Purwanto, R. Renanda Adhi Pramono, Y. T. Chen, and W. H. Fang. Extreme
low resolution action recognition with spatial-temporal multi-head self-attention
and knowledge distillation. In Proceedings - 2019 International Conference on
Computer Vision Workshop, ICCVW 2019, pages 961-969. Institute of Electri-
cal and Electronics Engineers Inc., 10 2019.

Z. Qiu, T. Yao, and T. Mei. Learning Spatio-Temporal Representation with
Pseudo-3D Residual Networks. In Proceedings of the IEEE International Con-
ference on Computer Vision, volume 2017-Octob, pages 5534-5542. Institute of
Electrical and Electronics Engineers Inc., 12 2017.

J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with

the fisher vector: Theory and practice. International Journal of Computer Vi-
sion, 105(3):222-245, 12 2013.

107

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

P. Scovanner, S. Ali, and M. Shah. A 3-dimensional sift descriptor and its appli-
cation to action recognition. In Proceedings of the 15th international conference
on Multimedia - MULTIMEDIA *07, 2007.

S. Sharma, R. Kiros, and R. Salakhutdinov. Action Recognition using Visual
Attention. 11 2015.

X. Shi, Z. Chen, H. Wang, D. Y. Yeung, W. K. Wong, and W. C. Woo.
Convolutional LSTM network: A machine learning approach for precipitation
nowcasting. In Advances in Neural Information Processing Systems, volume

2015-Janua, pages 802—810. Neural information processing systems foundation,
2015.

K. Simonyan and A. Zisserman. Two-stream convolutional networks for action
recognition in videos. In Advances in Neural Information Processing Systems,
volume 1, pages 568-576. Neural information processing systems foundation,
2014.

S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu. An end-to-end spatio-temporal
attention model for human action recognition from skeleton data. In 31st AAAI
Conference on Artificial Intelligence, AAAI 2017, pages 4263-4270. AAAI
press, 2017.

K. Soomro, A. R. Zamir, and M. Shah. UCFI101: A Dataset of 101 Human
Actions Classes From Videos in The Wild. 12 2012.

C. Sun, F. Baradel, K. Murphy, and C. Schmid. Learning Video Representations
using Contrastive Bidirectional Transformer. 6 2019.

S. Sun, Z. Kuang, W. Ouyang, L. Sheng, and W. Zhang. Optical Flow Guided
Feature: A Fast and Robust Motion Representation for Video Action Recog-
nition. Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 1390-1399, 11 2017.

D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spa-
tiotemporal features with 3D convolutional networks. In Proceedings of the
IEEFE International Conference on Computer Vision, 2015.

D. Tran, H. Wang, M. Feiszli, and L. Torresani. Video classification with
channel-separated convolutional networks. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, volume 2019-Octob, pages 5551-5560.
Institute of Electrical and Electronics Engineers Inc., 4 2019.

D. Tran, H. Wang, L. Torresani, J. Ray, Y. Lecun, and M. Paluri. A Closer Look
at Spatiotemporal Convolutions for Action Recognition. In Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, pages 6450-6459. IEEE Computer Society, 12 2018.

108

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
A. Kaiser, and L. Polosukhin. Attention is all you need. In Advances in Neu-
ral Information Processing Systems, volume 2017-Decem, pages 5999-6009.
Neural information processing systems foundation, 2017.

H. Wang, A. Kléaser, C. Schmid, and C. L. Liu. Dense trajectories and motion
boundary descriptors for action recognition. International Journal of Computer
Vision, 2013.

H. Wang and C. Schmid. Action recognition with improved trajectories. In
Proceedings of the IEEE International Conference on Computer Vision, 2013.

L. Wang, P. Koniusz, and D. Q. Huynh. Hallucinating IDT Descriptors and 13D
Optical Flow Features for Action Recognition with CNNs. Proceedings of the
IEEE International Conference on Computer Vision, 2019-October:8697-8707,
6 2019.

L. Wang, Y. Xiong, Z. Wang, and Y. Qiao. Towards Good Practices for Very
Deep Two-Stream ConvNets. 7 2015.

L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. van Gool. Tem-
poral segment networks: Towards good practices for deep action recognition.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), 2016.

L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool. Tem-
poral Segment Networks for Action Recognition in Videos, 2018.

X. Wang, R. Girshick, A. Gupta, and K. He. Non-local Neural Networks. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 7794—7803. IEEE Computer Society, 12 2018.

G. Willems, T. Tuytelaars, and L. Van Gool. An efficient dense and scale-
invariant spatio-temporal interest point detector. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2008.

C. Y. Wu, M. Zaheer, H. Hu, R. Manmatha, A. J. Smola, and P. Krahenbuhl.
Compressed Video Action Recognition. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 6026—
6035. IEEE Computer Society, 12 2018.

S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated residual trans-
formations for deep neural networks. In Proceedings - 30th IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2017, volume 2017-

Janua, pages 5987-5995. Institute of Electrical and Electronics Engineers Inc.,
11 2017.

109

[76]

[77]

[78]

[79]

[80]

[81]

S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy. Rethinking spatiotemporal
feature learning: Speed-accuracy trade-offs in video classification. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), volume 11219 LNCS, pages
318-335. Springer Verlag, 2018.

D. Xu, J. Xiao, Z. Zhao, J. Shao, D. Xie, and Y. Zhuang. Self-supervised spa-
tiotemporal learning via video clip order prediction. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, vol-
ume 2019-June, pages 10326-10335. IEEE Computer Society, 6 2019.

A. Yan, Y. Wang, and Z. Li. PA3D : Pose-Action 3D Machine for Video Recog-
nition. /IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 7922-7931, 2019.

C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime TV-
L1 optical flow. In Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 4713 LNCS, pages 214-223, 2007.

B. Zhang, L. Wang, Z. Wang, Y. Qiao, and H. Wang. Real-Time Action Recog-
nition with Enhanced Motion Vector CNNs. In Proceedings of the IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition, volume
2016-Decem, pages 2718-2726. IEEE Computer Society, 12 2016.

Y. Zhu, Z. Lan, S. Newsam, and A. G. Hauptmann. Hidden Two-Stream Convo-
lutional Networks for Action Recognition. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 11363 LNCS:363-378, 4 2017.

110

APPENDIX A

OPTICAL FLOW

In this section, the brightness consistency equation in optical flow will be explained.
Then the details about the TV-L1 algorithm will be given. TV-L1 is the most popu-
lar algorithm in the action classification literature. It depends on the total variation

concept.

A.1 Brightness Consistency Equation

Brightness Consistency Equation depends on the two assumptions. The first one is the
brightness consistency assumption which mainly depends on the idea that the mov-
ing pixel (projection of a point of the object to the camera plane) always has the same
brightness. In a mathematical terminology, this can be givenas I (z (t) ,y (t),t) = C.
The second assumption is the small motion assumption so that the function can be ap-
proximated by first-order Taylor series expansion. For the small motion assumption,
assume that the time interval between the frames is dt. Assume that the speed of
the moving pixel is v and v for the x and y coordinates, respectively. Therefore, the
pixel which is in the position of (z,y) in the previous frame, is in the position of
(x + udt,y + vot) in the next frame. The visualization of this small motion model
can be seen in Figure

Then, from the brightness consistency approach, the pixel intensity will be the same

for these frames such that
I(z,y,t) = I(x 4+ udt,y + vot,t + ot). (A.1)
Then, the function [can be linearized because the time interval d¢ is very small. The

111

(x + udt,y + vét)

. /

(z,v) (z,y)

I(z,y,t) I(z,y,t+ 6t)

Figure A.1: Small motion model in a very small time interval Brightness Constancy,

16-385 Computer Vision (Kris Kitani), Carnegie Mellon University

multi-variate Taylor expansion for the function f is

f(xa y) = f(aa b) + fac(aa b)(l’ - CL) + fy<a7 b)(l’ - b) (Az)
Then, the Taylor series expansion of (A.IJ) is
I I t I t
I(z,y,t) = I(x+udt, y+vdt, t+0t) = I(x, vy, t)—l—a (9, t)6x+a (2.9,)5y—|—a (2,9, >5t.
ox dy ot
(A.3)
The result of (A.3)) is
ol (z,y,1) ol (x,y,t) ol (z,y,1)
————=0t=0. A4
pe ox + By oy + 5 ot=0 (A.4)
The division of (A.4)) with dt yields
Ol(x,y,t)0x Ol(x,y,t)doy = Ol(v,y,t)
it 24 P). A.
or ot oy ot ot 0 (A-5)
The final form of these steps is
Lu+1Iv =1, (A.6)

which is called as brightness consistency equation and I, I, and I, are the image
derivatives which can be calculated by any derivative filter like Sobel filter. v and v

are the desired motion flow vectors.

A.2 TV-L1 Optical Flow Algorithm

In the previous section, the final form of brightness consistency equation is high-

lighted in (A.6). There are two unknowns in this equation, however there is only one

112

http://www.cs.cmu.edu/~16385/s17/Slides/14.1_Brightness_Constancy.pdf
http://www.cs.cmu.edu/~16385/s17/Slides/14.1_Brightness_Constancy.pdf

formula. Therefore, there is a need for extra constraint to solve this problem. This is
known as aperture problem. Horn and Schunck solved this problem to some extent

by adding L2 regularization term such that

wmin (/ (IVul* + |Vo[?) d +)\/ (I (z + udt,y + vot,t + 6t) — I (x,y,1)) dQ) ,

SV . (A7)
where €2 denotes the number of pixels used for the optical flow estimation, u and v are
horizontal and vertical parts of the motion vectors. In the first term is regular-
ization term and these second term optical flow term. The regularization term is also
known as variational formulation. However, it is mentioned in [[/9] that penalizing
deviations in a quadratic way does not allow discontinuities in motion. In this thesis,
it is claimed that L,; norm is much better than L, norm to handle such discontinuity

problem. Denoting the intensities at time ¢+t as I; and at time ¢ as I, the L1 version

of (A.7) is
min (/ (IVu| + |Vvl]) dQ + /\/ | (z+u,y +v) — Iy (z,y)] dQ) . (A8)
u,v Q 0

This optimization problem is tackled by adding a auxiliary variable (k,[), the new

form of the function becomes

/Q (V| + Vo)) + 2_19 (= kP + (0= 1) + Alp(k, D] 2% (A9)

Then, this is solved by two step iterative approach. One of the iteration to update u is

min/ (|Vu|)+%(u—k:)2. (A.10)
voJa

The other step is to update auxiliary variable &, which is

: 1 2
mkln/Q%(u—k) + Xp(k,)] (A.11)

This is to update u and k couple, but the procedure is the same with v and [couple.

The further details about the solution this problem can be found in [79].

113

114

APPENDIX B

OPENPOSE

OpenPose [2] is a multi-person 2D pose estimator that utilizes deep architectures to
estimate the positions of 25 predetermined joints. This technique is shown to perform
quite promising during independent detection of the poses for every frame. Open-
Pose owes its popularity to the speed advantage compared to the other human pose

extractor and is known as the first real-time multi-person 2D pose estimator.

OpenPose algorithm consists of three main stages. These stages can be seen on the
left side of Figure These stages are extraction of Part Affinity Fields (PAF), Part
Confidence Maps (PCM), and Bipartite Matching. PAFs are to encode the part re-
lations between the pre-defined joint relations (Limb). PAFs features preserve both
the orientation and the positions. To make it clear, assume j1 and ;2 are two joints.
Then, define a unit vector that is oriented from j1 to j2. PAFs consists of the pixels
which are located within the width of the limb. To encode the orientation informa-
tion, two-channel is utilized. These channels encode the x and y components of limb
orientation separately for the selected pixels. PCM is to denote the joints. The esti-
mation of the joint locations is done by PCM. The ground truth joint locations are put
as Gaussian locations to these maps. The pre-defined joints are shown in Figure
The number of PCM is equal to the number of pre-defined joints. Bipartite matching
is related to the matching of the two joints according to a score calculated from the

PAF.

To put it in a more clear way, assume that L = (L, Lo, ...L¢) are the PAF, where
C' is the number of pre-defined limbs, and S = (S;,Ss, ...S;) are PCM, where J is
the number of joints. OpenPose has 25 joints and 26 limbs. S; is a confidence map

for a joint j and is a sample from R“*". L; is a part affinity field for a limb ¢ and

115

(a) Part Affinity Fields(PAF)

YRR

(b) Part Confidence Maps (PCM)

(c) Bipartite Matching (d) Extracted Joints by OpenPose

Figure B.1: The Stages of the OpenPose algorithm (Left) and Extracted joints with
OpenPose [2]

116

is a sample from. R“*"*2_ Note that, PAFs are two dimensional vector for every
pixel, while PCMs are scalar for every pixel. Assuming that x; ;, are the ground truth

location for the j-th joint of the k-th person, 57, can be defined as

2
* P—Xjk
ik(P) = exp lIp = %ll> 02] [k (B.1)
where p is the two dimensional location coordinate on PCM or PAF, and
L}, (p) = vif pisonlimb, 0 otherwise. (B.2)

where v = (Xj, » — X;,.x)/||Xj, & — Xj,.k||2- Being on the limb condition is defined as
0<v-(p—xXj,%) <lpand v, - (p—X;, 1) <0 (B.3)

where v is the perpendicular vector vector of v. [.; denotes the length of the c-th

limb of k-th person. oy is to denote the width of the limb.

For the details of the algorithm, the features of an image I is extracted by a function
f(). This function is estimated by VGG-19 architecture in the paper. Then, PAFs of
the [are tried to be estimated in an iterative manner by using the extracted features
and previously estimated PAFs. Then, PCMs are tried to be estimated in an iterative
manner by using the features, PAFs, and previously estimated PCMs. To explain it

more clearly,

F = f(I)
L' = ¢'(F)
L' =¢'(F,L""") V2<t<T, (B.4)

ST = p!'(F, L")

S'=p'(F,L™ S VT,<t<T,+T.
is the general form of the deep learning architecture, where ¢ is a PAF estimator and
p is PCM estimator and 7, and 7}, shows the number of iterations for PAF and PCM

estimation, respectively.

The loss function for this iterative deep learning architecture is determined as

Losst7—22||m L:(p)ll
Lossg —ZZHS““ S;(p)]l

(B.5)

117

where S} (p) = max Six(p) and L7 (p) = #(p) >+ Lek(p) and n.(p) denotes the

number of people for the pixel coordinate p.

In bipartite matching stage of OpenPose, the joints which belongs to the same person
are aimed to be connected together. This is called multi-person parsing. For bipartite
matching, firstly, there is a need to calculate the score (confidence) of association. For
this score calculation, both PAF and PCM outputs are utilizes. The main idea behind
this score metric is that the vector between the two joints in PCM has possibly the
same direction encoding in PAF. The score function can be denoted as

Score = ZL le Xia (B.6)

HXh X, |

where X;, and X;, are the estimate of the locations of the joints j; andj,, respectively

and is the set of pixels between the corresponding pixel locations of j; andjs.

After calculating the confidence of the associations for every possible tuple (limb),
the global solution can be obtained by maximizing the graph total score. However,
in OpenPose the whole pose graph structure is subdivided into the multiple bipartite
graphs. Therefore, every association is created independently from the other con-
nected joints. This reduces the computation time during the inference of a pose. It
is claimed that unconnected nodes are modeled by CNN architecture implicitly. To
implement the multi-person parsing, firstly all connected parts are sorted following
the score calculated in (B.6). Then every part is independently connected. When con-
necting the parts, if a person contradiction appears, such that the connected graph is

already assigned to a different person, that part is ignored and not connected.

118

APPENDIX C

FURTHER DETAILS ABOUT EXPERIMENTS

C.1 Frame Selection Procedure for Late Temporal Modeling in 2D CNN Ar-

chitectures

For temporal modeling, two main implementation types are applied in the literature.
The first one is called the clip-based approach, for which clips consist of N number of
frames without skipping any frames, such as [11]. During training, the clip is selected
from a random position in a video sequence. During inference, multiple N-number
of framed clips are extracted (with or without overlapping) from a video and the final
decision is obtained as the mean average of the video clips. The main disadvantage

of this scheme is that it has a high time complexity for the inference.

The other possible implementation is a video-based approach in which N number of
frames are selected from the whole video [[71, [13]]. This selection can be with or
without an equal interval between the frames. For the comparison of clip-based and
video-based approaches, both of them are implemented by using LSTM. The clip-
based approach yields 42.68% performance, while the video-based approach yields
47.12% performance on the split 1 of HMDBS51. These results show that the uti-
lization of the video-based approach is advantageous for both time complexity and

performance.

During the training of the video-based approach, the video is divided into N number
of segments, and a frame is selected randomly from each segment, resulting in frames
without equal interval. During the inference, the same procedure is applied with a

minor difference. Instead of selecting randomly, these frames are picked from the

119

middle of the segments. For both training and inference, multi-scale cropping is

followed which is explained in Section [3.2]

C.2 Testing Procedures of 3D CNN Architectures

There are two important points during the test of any 3D CNN architecture. One of
them is single-clip vs. multiple-clip settings. For the training of 3D CNN architec-
tures, a clip is selected in a video at a random position. However, during the inference,
it is possible to use multiple clips by averaging the results from every clip in a video.
In multiple-clip settings, the clips are selected from a video in a non-overlapping
manner. The number of clips in a video is equal to the floor of the division of the
number of frames of a video to the number of frames of the clips. The other impor-
tant setting is related to single-crop vs. ten-crops extraction from every clip. The
information about ten crop test is presented in Section [3.2] Therefore, four possible
test combinations are single clip - single crop, single clip - ten crops, multiple clips -

single crop, and multiple clips - ten crops.

It should be emphasized that ten-crops might bring some performance improvements

on the architectures but this technique comes with a ten-times computational increase.

C.3 Detailed Experimental Results for Different Clip and Crop Selections

The detailed view of the ResNeXt and I3D architectures on RGB, flow, and two-
stream modalities is presented in Table [C.1] In this table, the input size of the archi-
tectures, the number of frames in the clips, the input types of the architecture, and the
architecture itself is shown in the column of the method. The other columns show the
test types of architectures. The red color and blue color indicate the best Top-3 and

Top-1 results of a specific method, respectively, among the four test types.

Topl1 result is denoted as 73.5 % in [8]]. Three splits top1 average is denoted as 70.2 % in [24]
Topl1 result is denoted as 75.9 % in [8]
Topl1 result is denoted as 79.8 % in [8]
Topl1 result is denoted as 74.8 % in [49]. Three splits topl average is denoted as 74.8 % and 74.3 % for
Imagenet+Kinetics and Kinetics pre-trainings, respectively in [S]

5 Topl result is denoted as 77.1 % in [49]. Three splits topl average is denoted as 77.1 % and 77.3 % for
Imagenet+Kinetics and Kinetics pre-trainings, respectively in [3]]

s oW oo =

120

Table C.1: RESULTS OF TWO-STREAM ARCHITECTURES ON HMDBS51 SpPLIT-1
WITH FOUR TYPES OF TEST RESULTS

Multiple Clips | Multiple Clips | Single Clip | Single Clip

Method Ten Crops Single Crop Ten Crops | Single Crop
ResNeXt101 RGB Top3: 90.20 Top3: 89.41 | Top3: 89.87 | Top3: 88.89
112x112 64fﬂ Topl: 73.07 Topl: 73.73 | Topl: 72.88 | Topl: 73.20
ResNeXt101 Flow Top3: 91.63 Top3: 90.72 | Top3: 91.18 | Top3: 90.20
112x112 64f Topl: 79.80 Topl: 79.74 | Topl: 78.50 | Topl: 78.50
ResNeXt101 Two-stream | Top3: 94.38 Top3: 94.12 | Top3: 94.05 | Top3: 93.86
112x112 64f Topl: 82.35 Topl: 81.83 | Topl: 81.96 | Topl: 81.24
I3D Top3: 91.63 Top3: 90.59 | Top3: 91.50 | Top3: 90.26
224x224 64fﬂ Topl: 74.90 Topl: 74.64 | Topl: 74.51 | Topl: 74.51
I3D Flow Top3: 91.18 Top3: 91.50 | Top3: 90.98 | Top3: 91.24
224x224 64f Topl: 76.21 Topl: 77.06 | Topl: 75.36 | Topl: 75.88
I3D Two-stream Top3: 93.59 Top3: 93.53 | Top3: 93.46 | Top3: 93.40
224x224 64fﬁ Topl: 80.59 Topl: 80.46 | Topl: 80.59 | Topl: 80.20

C.4 FRMB implementation on 2D CNN Architectures with BERT-based late

temporal modeling

An important detail about the usage of the BERT layer is the number of parameters
of the BERT layer. This number is only 3M for ResNet18, while it reaches up to S0M
for ResNet101, because of the difference in the dimension of the output sizes. S0M is
a significantly larger and inefficient parameter size for any late pooling strategy since

the ResNet101 backbone has a 45.20 M parameter which is less than the BERT layer.

Therefore, one possible remedy is to reduce the output size of the ResNet101 back-

6 Topl result is denoted as 80.1 % in [49]. Three splits topl average is denoted as 80.7 % and 80.9 % for
Imagenet+Kinetics and Kinetics pre-trainings, respectively in [5]

" Topl result is denoted as 66.7 % in [§]. Three splits top1 average is denoted as 63.8 % in [24]

8 Topl result is denoted as 73.5 % in []. Three splits top1 average is denoted as 70.2 % in [24]

9 Three splits top1 average is denoted as 75.4 % in [6]. The released weights of the authors also yields similar
results with our reported results in our test scheme.

10" Three splits top1 average is denoted as 77.4 % in [50]

11 The selection procedure of frames in pre-training is as in [[70]]. Three splits top1 average is denoted as 73.5
% in [41]. The frame selection in fine-tuning and test seems ambiguous for me.

12 Topl result is denoted as 74.8 % in [49]. Three splits topl average is denoted as 74.8 % and 74.3 % for
Imagenet+Kinetics and Kinetics pre-trainings, respectively in [S]

13 Topl1 result is denoted as 80.1 % in [8]

14" The pre-training is implemented with IG-65M, while the pre-training of other methods are implemented
with Kinetics-400. Therefore, the dataset has also effect on obtaining the best performance in the table. Topl
result of R(2+1)D with Kinetics pre-training is denoted as 74.4 % in [49]]. Therefore, about 7.7 % increase seems
to be the result of the change in pre-training dataset.

121

bone. Such a decrease is possible by modifying the last block of ResNet101 or the
addition of another block to the backbone just before the BERT layer. For this aim,
Feature Reduction with Modified Block (FRMB) and Feature Reduction with Addi-
tional Block (FRAB) are proposed which are both explained in Section for 3D
architectures. The visual diagram for FRMB and FRAB is presented in Figure @4.2]
This implementation reduces the number of parameters of the BERT layer from 50M
to 3M again for the ResNet101 backbone. Moreover, FRMB reduces the number of

parameters of the backbone as well.

Top-1 performances of flow BERT, pose BERT, two-stream and three-streams are
59.13%, 48.56%, 65.73%, and 68.62%, respectively, for ResNet101 with FRMB
implementation. FRMB implementation increases the flow BERT and two-stream
implementation about 1.5% and 0.5% amount, respectively; but decreases the pose

BERT and three-stream implementation about 1% and 0.5%, respectively (See Table

B.7).

122

Table C.2: COMPARISON OF RECENT STATE OF THE ART ARCHITECTURES ON
HMDBS51 SPLIT-1 WITH FOUR TYPES OF TEST RESULTS

Multiple Clips | Multiple Clips | Single Clip | Single Clip

Method Ten Crops Single Crop Ten Crops | Single Crop
ResNeXt101 Top3: 82.61 Top3: 82.35 | Top3: 81.05 | Top3: 80.33
112x112 16f|7| Topl: 63.33 Topl: 62.09 | Topl: 62.35 | Topl: 60.65
ResNeXt101 Top3: 90.20 Top3: 89.41 | Top3: 89.87 | Top3: 88.89
112x112 64f Topl: 73.07 Topl: 73.73 | Topl: 72.88 | Topl: 73.20
MFNET Top3: 87.58 Top3: 87.52 | Top3: 86.34 | Top3: 88.82
224x224 16f|§| Topl: 70.20 Topl: 70.52 | Topl: 68.24 | Topl: 68.37
Rep-Flow-50 Top3: 89.54 Top3: 89.02 | Top3: 88.04 | Top3:87.39
224x224 64f Topl: 72.42 Topl: 71.57 | Topl: 70.00 | Top1:69.35
TSM Top3: 87.25 Top3: 87.45 | Top3: 84.84 | Top3: 85.10
224x224 8f Topl: 66.80 Topl: 67.97 | Topl: 64.12 | Topl: 64.71
TSM Top3: 89.54 Top3: 89.15 | Top3: 89.35 | Top3: 89.02
224x224 8x8f Topl: 72.03 Topl: 72.81 | Topl: 72.03 | Topl: 72.88
TSMH Top3: 90.13 Top3: 89.28 | Top3: 89.87 | Top3: 89.15
224x224 8x8f Topl: 73.79 Topl: 73.14 | Topl: 73.73 | Topl: 72.94
Modified ResNet50 Top3: 88.69 Top3: 88.76 | Top3: 88.69 | Top3: 88.56
224x224 32x2f Topl: 71.44 Topl: 71.57 | Topl: 71.44 | Topl: 71.31
Modified ResNet50 Top3: 91.44 Top3: 90.33 | Top3: 91.31 | Top3: 90.26
Non-Local 224x224 32x2f | Topl: 72.88 Topl: 72.61 | Topl: 72.55 | Topl: 73.07
Modified ResNet50 Top3: 91.70 Top3: 90.92 | Top3: 91.44 | Top3: 90.78
224x224 64f Topl: 73.79 Topl: 74.12 | Topl: 73.92 | Topl: 73.92
Modified ResNet50 Top3: 90.26 Top3: 89.54 | Top3: 89.87 | Top3: 89.22
Non-Local 224x224 64f Topl: 73.27 Topl: 73.14 | Topl: 73.01 | Topl: 72.81
I3D Top3: 91.63 Top3: 90.59 | Top3: 91.50 | Top3: 90.26
224x224 64f Topl: 74.90 Topl: 74.64 | Topl: 74.51 | Topl: 74.51
SlowFast-50 Top3: 92.68 Top3: 92.22 | Top3: 92.61 | Top3: 92.16
224x224 64f Topl: 78.37 Topl: 78.69 | Topl: 77.65 | Topl: 78.43
MARS ResNext101 Top3: 92.75 Top3: 92.03 | Top3: 92.35 | Top3: 91.44
112x112 64f|ﬁ| Topl: 80.72 Topl: 80.07 | Topl: 80.26 | Topl: 79.80
R(2+1)D ResNet34 Top3: 93.86 Top3: 93.46 | Top3: 93.07 | Top3: 92.81
112x112 32f Topl: 81.76 Topl: 82.16 | Topl: 81.83 | Topl: 82.22

123

Table C.3: THE RESULTS ON ALL SPLITS OF HMDB51 DATASET

BERT split-1 split-2 split-3 Average
R(2+1)D ResNet34 Top3: 93.86 | Top3: 93.99 | Top3: 93.07 | Top3: 93.64
112x112 32f Topl: 81.76 | Topl: 82.03 | Topl: 79.87 | Topl: 81.22
R(2+1)D ResNet34 v Top3: 95.16 | Top3: 95.23 | Top3: 94.71 | Top3: 95.03
112x112 32f Topl: 84.77 | Topl: 84.18 | Topl: 83.01 | Topl: 83.99
ResNeXt101 RGB Top3: 90.20 | Top3: 87.97 | Top3: 90.39 | Top3: 89.52
112x112 64f Topl: 73.07 | Topl: 73.46 | Topl: 76.14 | Topl: 74.22
ResNeXt101 RGB v Top3: 92.75 | Top3: 91.24 | Top3: 91.31 | Top3: 91.77
112x112 64f Topl: 77.25 | Topl: 77.52 | Topl: 77.71 | Topl: 77.49
ResNeXt101 Flow Top3: 91.63 | Top3: 90.65 | Top3: 91.70 | Top3: 91.32
112x112 64f Topl: 79.80 | Topl: 77.97 | Topl: 80.07 | Topl: 79.28
ResNeXt101 Flow v Top3: 92.88 | Top3: 92.29 | Top3: 92.42 | Top3: 92.53
112x112 64f Topl: 81.76 | Topl: 81.18 | Topl: 80.92 | Topl: 81.29
ResNeXt101 Two-Stream Top3: 94.38 | Top3: 92.16 | Top3: 93.27 | Top3: 93.27
112x112 64f Topl: 82.35 | Topl: 79.93 | Topl: 83.07 | Topl: 81.78
ResNeXt101 Two-Stream v Top3: 94.90 | Top3: 94.18 | Top3: 93.92 | Top3: 94.33
112x112 64f Topl: 83.99 | Topl: 83.46 | Topl: 83.20 | Topl: 83.55
Table C.4: THE RESULTS ON ALL SPLITS OF UCF101 DATASET
BERT split-1 split-2 split-3 Average

R(2+1)D ResNet34 Top3: 99.26 | Top3: 99.68 | Top3: 99.84 | Top3: 99.59
112x112 32f Topl: 97.46 | Topl: 98.55 | Topl: 98.51 | Topl: 98.17
R(2+1)D ResNet34 v Top3: 99.87 | Top3: 99.73 | Top3: 99.76 | Top3: 99.79
112x112 32f Topl: 98.63 | Topl: 98.90 | Topl: 98.43 | Topl: 98.65
ResNeXt101 RGB Top3: 98.55 | Top3: 98.77 | Top3: 99.03 | Top3: 98.78
112x112 64f Topl: 94.61 | Topl: 94.62 | Topl: 95.48 | Topl: 94.90
ResNeXt101 RGB v Top3: 98.89 | Top3: 99.09 | Top3: 99.32 | Top3: 99.1
112x112 64f Topl: 95.80 | Topl: 96.63 | Topl: 96.29 | Topl: 96.24
ResNeXt101 Flow Top3: 98.68 | Top3: 99.12 | Top3: 99.08 | Top3: 98.96
112x112 64f Topl: 95.56 | Topl: 95.96 | Topl: 96.35 | Topl: 95.95
ResNeXt101 Flow v Top3: 99.07 | Top3: 99.25 | Top3: 99.27 | Top3: 99.20
112x112 64f Topl: 95.74 | Topl: 96.92 | Topl: 96.83 | Topl: 96.49
ResNeXt101 Two-Stream Top3: 99.10 | Top3: 99.54 | Top3: 99.89 | Top3: 99.51
112x112 64f Topl: 97.20 | Topl: 97.38 | Topl: 97.81 | Topl: 97.46
ResNeXt101 Two-Stream v Top3: 99.60 | Top3: 99.29 | Top3: 99.89 | Top3: 99.59
112x112 64f Topl: 98.21 | Topl: 97.49 | Topl: 97.92 | Topl: 97.87

124

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Kalfaoglu, Muhammet Esat
Nationality: Turkish (TC)

Date and Place of Birth: 24.05.1994, Meram
Marital Status: Single

Phone: 0 555 6644177

EDUCATION
Degree Institution Year of Graduation
B.S. Bogazici University 2017

Exchange The University of Texas at Austin 2015

PROFESSIONAL EXPERIENCE

Year Place Enrollment
2018 - 2020 OGAM Project Personnel
2016 Aselsan Intern

PUBLICATIONS

[1] M. E. Kalfaoglu, O. Can, B. Yildirim, and A. A. Alatan, "Antenna scan pe-
riod estimation of radars with cepstrum and scoring," in 2019 27th Signal Process-

ing and Communications Applications Conference (SIU), Apr. 2019, pp. 1-4. doi:

125

10.1109/S1U.2019.8806564.

[2] I. G. Dino, E. Kalfaoglu, A. E. Sari, S. Akin, O. K. Iseri, A. A. Alatan, S. Kalkan,
and B. Erdogan, "Video content analysis-based detection of occupant presence for
building energy modelling," in CIB W78: Advances in ICT in Design, Construc-
tion and Management in Architecture, Engineering, Construction and Operations

(AECO), 2019.

[3] I. G. Dino, A. E. Sari, E. Kalfaoglu, S. Akin, O. K. Iseri, A. A. Alatan, S. Kalkan,
and B. Erdogan, "Automated building energy modeling for existing buildings using
computer vision," in CIB W78: Advances in ICT in Design, Construction and Man-

agement in Architecture, Engineering, Construction and Operations (AECQO), 2019.

[4] F. C. Akyon and E. Kalfaoglu, "Instagram Fake and Automated Account Detec-
tion," Proceedings - 2019 Innovations in Intelligent Systems and Applications Confer-

ence, ASYU 2019, Sep. 2019. [Online]. Available: http://arxiv.org/abs/1910.03090.

[5] E. Kalfaoglu, I. G. Dino, O. K. Iseri, S. Akin, A. E. Sari, B. Erdogan, S. Kalkan, A.
A. Alatan, Vision-Based Lighting State Detection and Curtain Openness Ratio Pre-
diction in Symposium on Simulation for Architecture and Urban Design (SimAUD),

2020

[6] E. Kalfaoglu, S. Kalkan, A. A. Alatan, Late Temporal Modeling in 3D CNN Ar-
chitectures with BERT for Action Recognition, /16th European Conference on Com-
puter Vision (ECCV), The 2nd Workshop on Video Turing Test: Toward Human-Level
Video Story Understanding, 2020

126

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	introduction
	Applications of Action Recognition
	Scope and Contributions of the Thesis
	Outline of the Thesis

	Related Work
	An Overview of Action Recognition (AR) Literature
	Pre-deep-learning AR literature
	3D Spatio-temporal Extension of 2D Spatial Detectors and Descriptors
	Trajectory-based Detectors and Descriptors

	Deep Learning AR Literature
	2D CNN Architectures
	3D CNN Architectures
	Recurrent Architectures, Pooling and Fusion Techniques
	Attention
	Optical Flow Networks
	Pose Networks
	Unsupervised and Weakly Supervised Techniques

	Prominent Deep Leaning Based Methods in AR Literature
	BERT Devlin2018
	Group Convolution and Depth-wise Convolution
	3D Convolution
	Inception Type Architectures
	ResNet Type Architectures

	Separable 3D Convolution
	Non-local Neural Networks Wang2018a
	SlowFast Networks Feichtenhofer2019SlowfastRecognition
	Motion-Augmented RGB Stream Networks (MARS) Crasto2019MARS:Recognition
	Multi-Fiber Networks for Video RecognitionChen2018Multi-fiberRecognition
	TSM: Temporal Shift Module for Efficient Video Understanding Lin2018TSM:Understanding

	Experimental Evaluation of Literature
	Datasets for AR Research
	HMDB-51 Kuehne2011
	UCF-101 Soomro2012
	Kinetics Kay2017
	Something - Something Goyal2017
	IG-Kinetics-65M Ghadiyaram2019Large-scaleRecognition

	Implementation Details
	Data Augmentation
	Pre-trained Weights
	Optimization
	Batch Size Selection
	Validation Procedure
	Input Modalities

	Experiments on 2D CNN Architectures
	Late Temporal Modeling of 2D CNN Architectures
	Feature Fusion from the Different Parts of 2D CNN Architectures
	Effect of Network Depth and Input Modality on 2D CNN Architectures

	Experiments on 3D CNN Architectures
	Effects of Clip Length and Input Resolution on the performance of 3D CNN Architectures
	Two-stream 3D Architectures
	Comparison of 3D CNN Architectures
	Computational Complexity and Memory Utilization Analysis of the Architectures:

	Proposed Method: BERT on 3D CNN Architectures
	Proposed Methods
	BERT-based Temporal Modeling with 3D CNNs for Action Recognition
	Proposed Feature Reduction Blocks: FRAB & FRMB
	Proposed BERT Implementations on SlowFast Architecture

	Experimental Results
	Dataset
	Implementation Details
	Ablation Study
	Results on Different 3D CNN Architectures
	ResNeXt Architecture
	I3D Architecture
	SlowFast Architecture
	R(2+1)D Architecture

	Comparison with State-of-the-Art

	Discussion

	Proposed Method : BERT Distillation
	Methodology
	Experimental Results

	Summary & Conclusion
	Summary
	Conclusion
	Future Work

	REFERENCES
	APPENDICES
	Optical Flow
	Brightness Consistency Equation
	TV-L1 Optical Flow Algorithm

	OpenPose
	Further Details About Experiments
	Frame Selection Procedure for Late Temporal Modeling in 2D CNN Architectures
	Testing Procedures of 3D CNN Architectures
	Detailed Experimental Results for Different Clip and Crop Selections
	FRMB implementation on 2D CNN Architectures with BERT-based late temporal modeling

	APPENDICES
	CURRICULUM VITAE

