
EXPLORING DEEP SPATIO-TEMPORAL FUSION ARCHITECTURES
TOWARDS LATE TEMPORAL MODELING OF HUMAN ACTION

RECOGNITION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUHAMMET ESAT KALFAOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

AUGUST 2020

Approval of the thesis:

EXPLORING DEEP SPATIO-TEMPORAL FUSION ARCHITECTURES
TOWARDS LATE TEMPORAL MODELING OF HUMAN ACTION

RECOGNITION

submitted by MUHAMMET ESAT KALFAOĞLU in partial fulfillment of the re-
quirements for the degree of Master of Science in Electrical and Electronics Engi-
neering Department, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. A. Aydın Alatan
Supervisor, Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Sinan Kalkan
Co-supervisor, Computer Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Fatih Kamışlı
Electrical and Electronics Engineering, METU

Prof. Dr. A. Aydın Alatan
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Nazlı İkizler Cimbiş
Computer Engineering, Hacettepe University

Assist. Prof. Dr. Elif Sürer
Multimedia Informatics, METU

Assist. Prof. Dr. Emre Akbaş
Computer Engineering, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: MUHAMMET ESAT KALFAOĞLU

Signature :

iv

ABSTRACT

EXPLORING DEEP SPATIO-TEMPORAL FUSION ARCHITECTURES
TOWARDS LATE TEMPORAL MODELING OF HUMAN ACTION

RECOGNITION

Kalfaoğlu, Muhammet Esat

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Aydın Alatan

Co-Supervisor : Assoc. Prof. Dr. Sinan Kalkan

August 2020, 126 pages

Visual action recognition (AR) is the problem of identifying the labels of activities
that occur in a video. In this thesis, different spatio-temporal representations are
analyzed and the factors making these representations better suited for AR are deter-
mined. To be specific, three main concepts are analyzed in this thesis study which
are the effects of different architectural selections, the input modalities (RGB, optical
flow, human pose), and temporal modeling concepts. Additionally, the joint utiliza-
tion of BERT-based late temporal modeling with 3D CNN architectures is proposed
and a novel distillation concept is recommended within this approach.

Firstly, for architectural analysis, both 2D and 3D CNN structures are considered. For
3D CNN architectures, the effects of clip length, input spatial resolution, group con-
volution, and separable 3D convolution are analyzed. During this analysis, popular
3D CNN architectures for AR, such as MFNET, SlowFast Networks, R(2+1)D net-
works, I3D, MARS networks (knowledge distillation), and various ResNet architec-
tures are all considered. Temporal shift modules are also investigated as an extension
to 2D CNN architectures.

For input modality analysis, popular two-stream architectures (RGB+Flow) are ana-
lyzed within both 2D and 3D CNN architectures. Moreover, as an extension to RGB

v

and flow modalities, pose input modality is utilized with a different approach from
the literature and studied within the 2D CNN architectures in this thesis.

For the temporal modeling analysis, various techniques are analyzed such as average
pooling, LSTM, convolutional GRU, BERT, and non-local blocks within 2D CNN
architectures.

As a novel extension, conventional 3D convolutions are combined with late temporal
modeling for AR. The popular temporal global average pooling layer (TGAP) at the
end of 3D convolutional architecture is replaced with the recent Bidirectional Encoder
Representations from Transformers (BERT) layer in order to better exploit the atten-
tion mechanism of BERT. Such a replacement is shown to improve the performances
of many popular 3D convolution architectures, including ResNeXt, I3D, SlowFast,
and R(2+1)D. The-state-of-the-art performances are obtained on both HMDB51 and
UCF101 datasets with 85.10% and 98.69% Top-1 accuracy, respectively. Finally, a
novel knowledge distillation concept is proposed using a 3D-BERT architecture that
yields quite promising performances.

Keywords: Activity Recognition, Action Recognition, Temporal Modeling, 3D Con-
volution, Two-Stream Networks, Spatio-Temporal Features

vi

ÖZ

İNSAN AKTİVİTELERİNİ TANIMA İÇİN DERİN UZAM-ZAMANSAL
FÜZYON MİMARİLERİN GEÇ ZAMANSAL MODELLEMEYE YÖNELİK

İNCELENMESİ

Kalfaoğlu, Muhammet Esat

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan

Ortak Tez Yöneticisi : Doç. Dr. Sinan Kalkan

Ağustos 2020 , 126 sayfa

Görsel eylem tanıma (ET), bir videoda meydana gelen eylemlerin ne olduğunu ta-
nımlama problemidir. Bu tezde, farklı uzam-zamansal yapılar analiz edilmiş ve bu
gösterimleri ET için daha uygun hale getiren faktörler belirlenmiştir. Spesifik olmak
gerekirse, bu tez çalışmasında farklı mimari seçimlerin, girdi modalitelerinin (RGB,
optik akış, insan pozu) ve zamansal modelleme kavramlarının etkileri üç ana kavram
olarak ele alınmıştır. Ek olarak, BERT tabanlı geç zamansal modellemenin 3D CNN
mimarileri ile ortak kullanımı önerilmiş ve bu yaklaşım içinde yeni bilgi damıtma
kavramı önerilmiştir.

Mimari analiz için hem 2D hem de 3D Evrişimsel Sinir Ağları (CNN) dikkate alınır.
3D CNN mimarileri için girdi klip uzunluğu, girdi uzamsal çözünürlüğü, grup evri-
şimi ve ayrılabilir 3D evrişim mimarilerinin etkileri analiz edilir. Bu analiz sırasında,
MFNET, SlowFast Networks, R(2 + 1)D ağları, I3D, MARS ağları (bilgi damıtma) ve
çeşitli ResNet mimarileri gibi AR için popüler 3D CNN mimarilerinin tümü dikkate
alınır. Zamansal kayma modülleri ayrıca 2D CNN mimarilerinin bir uzantısı olarak
incelenir.

Girdi modalite analizi için, popüler iki kanallı mimariler (RGB + optik akış) hem 2D
hem de 3D CNN mimarileri içinde analiz edilir. Ayrıca, RGB ve optik akış moda-

vii

litelerinin bir uzantısı olarak, poz girdi modalitesi literatürden farklı bir yaklaşımla
kullanılmıştır ve bu tezde 2D CNN mimarileri dahilinde incelenmiştir.

Zamansal modelleme analizi için, 2D CNN mimarileri içinde ortalama havuzlama,
LSTM, evrişimli GRU, BERT ve Yerel Olmayan blok yapıları gibi çeşitli teknikler
analiz edilir.

Yeni bir öneri olarak, bu çalışmada, ET problemi için 3D evrişim mimarilerinin geç
zamansal modelleme ile birleştirilmesi sunulmuştur. Bu amaçla 3D evrişimsel mi-
marilerinin sonundaki geleneksel zamansal ortalama havuz katmanı (TGAP) Trans-
formatörlerden Çift Yönlü Enkoder Temsilleri (BERT) katmanıyla değiştirilmiş ve
BERT’nin ilgi mekanizmasıyla daha iyi bir geç zamansal modelleme amaçlanmıştır.
Bu değiştirmenin, ResNeXt, I3D, SlowFast ve R(2 + 1)D gibi eylem tanıma için bir-
çok popüler 3D evrişim mimarisinin performansını geliştirdiği gösterilmiştir. Ayrıca,
HMDB51 ve UCF101 veri kümelerinde sırasıyla 85.10% ve 98.69% top-1 doğruluğu
ile literatürdeki en gelişmiş sonuçlar sunulmuştur. Ayrıca, 3D-BERT mimarisi üze-
rinden bir bilgi damıtma yapısı önerilmiş ve analiz edilmiştir.

Anahtar Kelimeler: Aktivite Tespiti, Zamansal Modelleme, 3D Evrişim, İki Kanallı
Ağlar, Uzamsal-Zamansal Öznitelikler

viii

To my beloved family and friends

ix

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my supervisor Prof. Dr.
A. Aydın Alatan for his continuous support, guidance, patience, encouragement in
the path of creation of this thesis. I learnt a lot not only in the perspective of research
but also the ethical concerns and the administration. I thank him for his contribution
to my scientific vision, my writing skills and for the great lab environment that he
provides us. I am very grateful for his immediate responses when I need some help
in anything I have asked for and the great positive communication and understanding
which he provides for me.

Secondly, I want to thank the greatest support to my co-advisor Assoc. Prof. Dr.
Sinan Kalkan for his contribution to my project and my thesis work. I learn to look
at the problems from a different perspective, and I improved my writing skills very
much thanks to his contribution. I am very grateful for his effort to create creative
ideas and his great communication.

I also would like to thank to my friends from Center for Image Analysis (OGAM).
Special thanks to Alp Eren Sarı for his friendship and all kinds of support and help.
We have shared lots of great memories together. He is really a genuine friend for
me. It was a pleasure being in the same project with him. I won’t forget the good
memories of England with him. Thanks to Oğul Can for directing my studies towards
BERT architecture which has strong impact on this thesis and for his good friendship.
Thanks to Dr. Alper Koz, Mustafa Ergül, Yeti Ziya Gürbüz, Dr. Gökhan Koray
Gültekin, Dr Kutalmış Ince and İlker Gürcan for their advices about both the academy
and the personal life. Thanks to Ece Selin Böncü for sharing valuable moments with
me. She has a great personality and I wont forget the day of Bahri Abi with her
and Oğul. Thanks to Ayberk Aydın for his genuine friendship, sharing his profound
knowledge about the literature with us and his child stuff. It was a pleasure to work
back to back with him. Thanks to Ihsan Emre Üstün for the cherries that he brings
from his hometown. He is a very good friend and he has a very kind personality.
Thanks to Aziz Berkay Yeşilyurt for his help and his friendship. Sometimes, his
assistance can be lifesaving. Thanks to Aybüke Erol for her genuine friendship. She
is the one who makes us not forget Aşk-ı Memnu and Titanic. She is the one with
very creative questions and she is very good at multi-tasking. Thanks to İzlen Geneci
for her good friendship. Sometimes, I lose the track of time while chatting with her.
Thanks to Gamze Sever for her friendship and help. I have asked her help many
times about the administrative affairs and she always helps me without reluctance.
Thanks to Mustafa Kütük and Emre Can Kaya for their friendship. They help me a

x

lot in my adaptation to the OGAM environment. Thanks to Ufuk Efe, Ahmet Arslan,
Mert Alp Öcalp, Can Çağlayan Çakırgöz, Aybora Köksal for their valuable times and
friendship. I also should not forget to thank Bahar Şengün and Havva Oğuz for their
sincere help about administrative affairs.

I also would like to present my special thanks to my family who always supports me
in my decisions. The biggest portion of the thank belongs to my beloved mom. She
is the hidden hero of this thesis. She always take care of me whenever and wherever
I need help without considering herself. Secondly, I want to present my thanks to my
father who has significant guidance in my decisions and always gives the freedom in
my choices. Thanks to my sister and brother-in-law who let me stay in their home
and give me a ride when I needed. Thanks to my brother and sister-in-law for being
guarantors for my TÜBİTAK 2210/A scholarship and their support.

I also would like to thank Assoc. Prof. Dr. İpek Gürsel Dino for giving a chance to
work in a project (SISER) which contributes the works in my thesis work. Thanks to
her academic vision, I have lots of academic outputs. It is also a pleasure to work with
Şahin Akın and Orçun Koral İşeri in the same project. They are really hardworking
and problem-solver people.

I also want present my special thanks to my friends Fatih Çağatay Akyön, Ahmet
Safa Öztürk, İbrahim Tanrıöver, İbrahim Kurban Özaslan, Botan Yıldırım and Tuğrul
Görgülü for their sincere friendship and their guidance about academic life. It was a
pleasure to share the same dormitory room with Tuğrul Görgülü.

This work is supported by an Institutional Links grant under the Newton-Katip Çelebi
partnership, Grant No. 217M519 by the Scientific and Technological Research Coun-
cil of Turkey (TÜBİTAK) and ID [352335596] by British Council, UK.

This work is supported by TÜBİTAK within the scope of 2210/A scholarship.

The numerical calculations reported in this paper were partially performed at TÜBİTAK
ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

xi

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xii

LIST OF TABLES . xviii

LIST OF FIGURES . xx

CHAPTERS

1 INTRODUCTION . 1

1.1 Applications of Action Recognition 2

1.2 Scope and Contributions of the Thesis 3

1.3 Outline of the Thesis . 4

2 RELATED WORK . 5

2.1 An Overview of Action Recognition (AR) Literature 5

2.1.1 Pre-deep-learning AR literature 5

2.1.1.1 3D Spatio-temporal Extension of 2D
Spatial Detectors and Descriptors . . . 8

xii

2.1.1.2 Trajectory-based Detectors and Descrip-
tors 9

2.1.2 Deep Learning AR Literature 11

2.1.2.1 2D CNN Architectures 12

2.1.2.2 3D CNN Architectures 13

2.1.2.3 Recurrent Architectures, Pooling and
Fusion Techniques 15

2.1.2.4 Attention 16

2.1.2.5 Optical Flow Networks 17

2.1.2.6 Pose Networks 19

2.1.2.7 Unsupervised and Weakly Supervised
Techniques 20

2.2 Prominent Deep Leaning Based Methods in AR Literature . . 21

2.2.1 BERT [9] . 21

2.2.2 Group Convolution and Depth-wise Convolution . 23

2.2.3 3D Convolution 24

2.2.3.1 Inception Type Architectures 28

2.2.3.2 ResNet Type Architectures 28

2.2.4 Separable 3D Convolution 29

2.2.5 Non-local Neural Networks [72] 32

2.2.6 SlowFast Networks [16] 34

2.2.7 Motion-Augmented RGB Stream Networks (MARS)
[8] . 38

xiii

2.2.8 Multi-Fiber Networks for Video Recognition[6] . . 39

2.2.9 TSM: Temporal Shift Module for Efficient Video
Understanding [41] 41

3 EXPERIMENTAL EVALUATION OF LITERATURE 45

3.1 Datasets for AR Research 45

3.1.1 HMDB-51 [36] 45

3.1.2 UCF-101 [59] . 46

3.1.3 Kinetics [32] . 47

3.1.4 Something - Something [23] 48

3.1.5 IG-Kinetics-65M [19] 49

3.2 Implementation Details . 51

3.2.1 Data Augmentation 51

3.2.2 Pre-trained Weights 53

3.2.3 Optimization . 53

3.2.4 Batch Size Selection 55

3.2.5 Validation Procedure 55

3.2.6 Input Modalities 56

3.3 Experiments on 2D CNN Architectures 56

3.3.1 Late Temporal Modeling of 2D CNN Architectures 57

3.3.2 Feature Fusion from the Different Parts of 2D CNN
Architectures . 59

3.3.3 Effect of Network Depth and Input Modality on
2D CNN Architectures 60

xiv

3.4 Experiments on 3D CNN Architectures 63

3.4.1 Effects of Clip Length and Input Resolution on the
performance of 3D CNN Architectures 63

3.4.2 Two-stream 3D Architectures 64

3.4.3 Comparison of 3D CNN Architectures 66

3.4.4 Computational Complexity and Memory Utiliza-
tion Analysis of the Architectures: 69

4 PROPOSED METHOD: BERT ON 3D CNN ARCHITECTURES . . 73

4.1 Proposed Methods . 74

4.1.1 BERT-based Temporal Modeling with 3D CNNs
for Action Recognition 75

4.1.2 Proposed Feature Reduction Blocks: FRAB & FRMB 77

4.1.3 Proposed BERT Implementations on SlowFast Ar-
chitecture . 78

4.2 Experimental Results . 79

4.2.1 Dataset . 79

4.2.2 Implementation Details 80

4.2.3 Ablation Study 80

4.2.4 Results on Different 3D CNN Architectures 83

4.2.4.1 ResNeXt Architecture 83

4.2.4.2 I3D Architecture 84

4.2.4.3 SlowFast Architecture 85

4.2.4.4 R(2+1)D Architecture 87

xv

4.2.5 Comparison with State-of-the-Art 88

4.3 Discussion . 89

5 PROPOSED METHOD : BERT DISTILLATION 91

5.1 Methodology . 91

5.2 Experimental Results . 92

6 SUMMARY & CONCLUSION . 97

6.1 Summary . 97

6.2 Conclusion . 98

6.3 Future Work . 100

REFERENCES . 103

APPENDICES

A OPTICAL FLOW . 111

A.1 Brightness Consistency Equation 111

A.2 TV-L1 Optical Flow Algorithm 112

B OPENPOSE . 115

C FURTHER DETAILS ABOUT EXPERIMENTS 119

C.1 Frame Selection Procedure for Late Temporal Modeling in
2D CNN Architectures . 119

C.2 Testing Procedures of 3D CNN Architectures 120

C.3 Detailed Experimental Results for Different Clip and Crop
Selections . 120

xvi

C.4 FRMB implementation on 2D CNN Architectures with BERT-
based late temporal modeling 121

APPENDICES

CURRICULUM VITAE . 125

xvii

LIST OF TABLES

TABLES

Table 3.1 Summary table for activity recognition datasets 46

Table 3.2 Optimizer result on RGB-ResNet-18-BERT architecture 54

Table 3.3 Results for temporal modeling on top of the 2D-RGB-ResNet18 on
HMDB-51 . 58

Table 3.4 The Results of fusion types with 2D-RGB-ResNet18 concatenation
pooling on HMDB51 . 59

Table 3.5 The effect of architecture depth on the performance of 2D-RGB
ResNet with concatenation pooling and triple fusion on HMDB51 61

Table 3.6 Top-1 performances of late temporal modeling on ResNet18 back-
bone with optical flow and human pose modalities on HMDB51 62

Table 3.7 Comparing modalities on HMDB51 using Top-1 for AR 63

Table 3.8 Ablation Study on 3D-RGB-ResNet type architectures on Split-1 of
HMDB51 . 63

Table 3.9 Results of Two-stream 3D architectures on HMDB51 Split-1 65

Table 3.10 Performance and Parameter Size Comparison for RGB input modal-
ities on HMDB51 split-1 . 66

Table 4.1 Ablation Study of RGB ResNeXt101 architecture for temporal pool-
ing analysis on HMDB51. FRMB: Feature Reduction with Modified Block. 81

Table 4.2 Ablation Study of BERT late temporal Modeling on HMDB51. . . . 83

Table 4.3 Analysis of ResNeXt101 architecture with and without BERT for
RGB, Flow, and two-stream modalities on HMDB51 split-1 84

Table 4.4 The performance analysis of I3D architecture with and without
BERT for RGB, Flow, and two-stream modalities on HMDB51 split-1 . . 85

xviii

Table 4.5 The performance analysis of SlowFast architecture with and without
BERT for RGB modality on HMDB51 split-1 86

Table 4.6 The performance analysis of R(2+1)D architecture with and without
BERT for RGB modality on HMDB51 split-1 87

Table 4.7 Comparison with the state-of-the-art. 89

Table 5.1 Lambda parameter selection for distillation with unsupervised train-
ing of BERT architecture on split-1 of HMDB51 94

Table 5.2 Distillation with unsupervised training of BERT architectures and
MARS distillations on HMDB51 . 95

Table C.1 RESULTS OF TWO-STREAM ARCHITECTURES ON HMDB51 SPLIT-
1 WITH FOUR TYPES OF TEST RESULTS 121

Table C.2 COMPARISON OF RECENT STATE OF THE ART ARCHITECTURES

ON HMDB51 SPLIT-1 WITH FOUR TYPES OF TEST RESULTS 123

Table C.3 THE RESULTS ON ALL SPLITS OF HMDB51 DATASET 124

Table C.4 THE RESULTS ON ALL SPLITS OF UCF101 DATASET 124

xix

LIST OF FIGURES

FIGURES

Figure 1.1 The visual demonstration of the significance of temporal informa-
tion for the distinction of reverse actions. 2

Figure 2.1 General block diagram of pre-deep learning methods 6

Figure 2.2 The general approach for hand-crafted based learning methods . . . 7

Figure 2.3 Taxonomy of deep learning methods for AR literature. 11

Figure 2.4 Masked LM in BERT [9] . 23

Figure 2.5 The demonstration for group and depth-wise convolution. Each
circular node represents an input or output channel [63]. (a) A conven-
tional convolution, the number of group is one. (b) Group convolution,
where the number of groups is two in the figure. (c) Depth-wise convo-
lution, the number of groups is equal to the number of channels and it is
four in this example. 24

Figure 2.6 Conventional (Top) and group (Bottom) convolution operations.
The image is from Towards data science: Comprehensive introduction to
different types of convolutions in deep learning 25

Figure 2.7 Depth-wise separable convolution. The image is from Eli Bender-
sky’s website: Depthwise separable convolutions for machine learning . . 26

Figure 2.8 2D versus 3D convolution [62] . 27

Figure 2.9 Architectural information about 3D Inception network [5] 28

Figure 2.10 Basic (Left) and Bottleneck (Right) blocks of ResNet architecture
[25] . 29

Figure 2.11 Standard and CSN bottleneck blocks. (a) Standard block. (b) ip-
CSN block. (c) ir-CSN block [63] . 30

Figure 2.12 (a) Conventional 3D convolution. (b) Separable 3D Convolution [64] 31

xx

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/
https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/

Figure 2.13 Proposed alternative separable 3D convolutional bottleneck blocks
[52]. 31

Figure 2.14 Non-local block [72] . 33

Figure 2.15 The modified blocks of the utilized ResNet architecture of non-
local paper. Traditional block (Left), modified block-1 (Middle) and mod-
ified block-2 (Right) . 35

Figure 2.16 The Slowfast Network Architecture [16] 35

Figure 2.17 The details of the SlowFast-50 with α = 8 and β = 1
8

[16] 37

Figure 2.18 Possible bottleneck blocks implementations to ResNet architec-
ture. (a) Basic Block. (b) Bottleneck block of ResNeXt atchitecture. (c)
Multi-Fiber architecture. (d) Multi-fiber with multiplexer. (e) Multiplexer 40

Figure 2.19 (a) The architecture of 3D MFNET. (b) The bottleneck block or
unit of the 3D MFNET architecture. 41

Figure 2.20 Left: The classical tensor structure. Middle: The bi-directional
shift (Offline). Right: The uni-directional shift (Online) [41] 43

Figure 2.21 Proposed TSM shift modules. (a) In-place TSM. (b) Residual TSM
[41] . 43

Figure 3.1 The crop positions for multi-scale cropping. Blues are used only
inference. 52

Figure 3.2 Possible input modalities from the HMDB-51 walking and jump-
ing classes . 56

Figure 3.3 Different Layers and their corresponding Output sizes for ResNet18
Architecture . 60

Figure 4.1 BERT-based late temporal modeling 75

Figure 4.2 The implementations of Feature Reduction with Modified Block
(FRMB) and Feature Reduction with Additional Block (FRAB) 77

Figure 4.3 Early-fusion and late-fusion implementations of BERT on Slow-
Fast architecture. 79

Figure 5.1 BERT-based Distillation . 93

xxi

Figure A.1 Small motion model in a very small time interval Brightness Con-
stancy, 16-385 Computer Vision (Kris Kitani), Carnegie Mellon Univer-
sity . 112

Figure B.1 The Stages of the OpenPose algorithm (Left) and Extracted joints
with OpenPose [2] . 116

xxii

http://www.cs.cmu.edu/~16385/s17/Slides/14.1_Brightness_Constancy.pdf
http://www.cs.cmu.edu/~16385/s17/Slides/14.1_Brightness_Constancy.pdf
http://www.cs.cmu.edu/~16385/s17/Slides/14.1_Brightness_Constancy.pdf

CHAPTER 1

INTRODUCTION

Activity recognition or action recognition (AR) is the task of recognition of pre-

defined actions or activities from "short" video clips ("short" duration is typically

assumed to be between 2 to 15 seconds). There are two important information sources

in a video clip for the action recognition task: spatial information and temporal infor-

mation.

The first information source is the spatial information, which can be defined as what

someone can obtain from a still image or a single frame. In another definition, it is

defined as the static information existing in a single frame, such as entities, objects,

and context. For example, the action ‘swimming’ can be identified from a still image,

if a person in a water body can be recognized.

The other major information source, which is quite critical for AR, is the temporal

information. This information source is based on the relationship between the frames

of a video sequence. For example, if a person is in a water body, it is hard to capture

the difference between the breast crawl and breast stroke, which are two different

swimming styles.

Another typical example in which the temporal information is crucial is discrimina-

tion between opening and closing actions on a window (or door). Assume that only

one frame is extracted from the video sequence consisting of opening and closing

window actions (See Figure 1.1). It is quite hard to recognize whether it belongs

to the opening or closing actions. For this purpose, there is an extra requirement to

understand where a person moves or where a window rotates.

1

(a) A frame sample from the clip of closing win-

dow action.

(b) A frame sample from a the clip of opening

window action.

Figure 1.1: The visual demonstration of the significance of temporal information for

the distinction of reverse actions.

Another challenge is distinguishing actions which are similar but evolving at different

speeds, such as walking and running. As a consequence, in order to perform reliable

action recognition, the representations that are extracted from a video clip should

model both spatial and temporal information simultaneously and the representations

should be aware and invariant of the evolution speed of the performed action.

In any real-world application of AR, not only the classification performance but

also the computational complexity and memory utilization are two important factors.

Tackling such a difficult problem using conventional machine learning techniques

requires huge computational complexity and memory utilization. Therefore, the ul-

timate goal of our AR research is obtaining good performance while considering the

computational complexity and memory utilization.

1.1 Applications of Action Recognition

Action recognition (AR) can be utilized in many different areas and applications, such

as video retrieval, surveillance systems, human-computer interaction, robot percep-

tion, and sign language.

Video retrieval is the problem of finding similar video clips to the given input video

clip. It is an important concept in dealing with huge video archives. Another im-

2

portant area for AR is surveillance. In video surveillance, detecting any problematic

action as early as possible can be crucial for preventing advert events, such as rob-

bery or fights. Human-machine interaction is another domain where AR is crucial.

For instance, in virtual reality or computer games, detecting gestures can be useful.

Similarly, AR can be utilized in automatic sign language recognition.

Another domain where AR can be utilized is robot perception. For robots to be able to

freely interact with humans, AR should be an indispensable part of robot perception,

since the first step of taking proper actions is to comprehend the situation. For exam-

ple, consider an example of robot surgery. This requires having an understanding of

the surgeon to make convenient interventions for the surgery. Another example can

be physiotherapy exercises where the correctness of an exercise can be evaluated by

AR systems.

1.2 Scope and Contributions of the Thesis

This thesis covers various 2D and 3D CNN architectures for the AR problem. 3D

CNN architectures have become quite popular due to their success in the AR liter-

ature. However, 3D CNN architectures have higher computational complexity and

more parameters than their 2D CNN counterparts. Therefore, there are studies which

try to decrease the computational burden of 3D CNNs, while preserving their accu-

racy [64, 76, 6, 24]. For this aim, this thesis makes an in-depth analysis of 2D and

3D CNN architectures with their performances, the number of parameters, and the

number of operations.

A second focus of the thesis is regarding the input modality. There are studies that

show the positive impact of utilizing different input modalities jointly in the perfor-

mance of the AR problem. [57, 17, 5, 48, 71, 49, 8, 64, 76, 68, 12, 13, 78, 7, 18]. For

this aim, the effect of RGB videos, estimated motion vectors (i.e. optical flow field)

of the points in the scene, automatically determined human pose positions and their

joint utilization (two-stream and three-stream) are analyzed in this thesis.

Moreover, the thesis analyzes late temporal modeling of the learned spatio-temporal

representations for both 2D and 3D CNN architectures. Within this context, a novel

3

BERT-based late temporal modeling on 3D CNN architectures is proposed in this

thesis.

Finally, various concepts are examined for the AR problem, such as the effect of

the distillation concept in which one network transfers its knowledge to the other

network, scale of the pre-training dataset, clip length of 3D CNNs, feature fusion.

Additionally, knowledge distillation for AR is extended by using BERT architectures

and this novel method is analyzed by using 3D CNN architectures.

The work presented in the Chapter 4 of the thesis has been disseminated in a paper

[30]:

E. Kalfaoglu, S. Kalkan, A. Alatan, “Late Temporal Modeling in 3D CNN Archi-

tectures with BERT for Action Recognition", ECCV2020 2nd Workshop on Video

Turing Test: Toward Human-Level Video Story Understanding, 2020.

1.3 Outline of the Thesis

In this thesis, the related work from the literature is presented in Chapter 2. In order

to better assess the advantages of the related work, an experimental analysis of the

literature is presented in Chapter 3. In this chapter, datasets, implementation details,

experimental results related with 2D CNN architectures and experiments related with

3D CNN architectures are given in Sections 3.1, 3.2, 3.3 and 3.4 respectively. Next, a

proposed method based on BERT which is applied on 3D CNN architectures is pre-

sented in Chapter 4, where BERT is implemented for late temporal modeling on top of

the 3D CNN architectures. After this chapter, another novel method for BERT-based

knowledge distillation is analyzed in Chapter 5. Finally, the thesis is concluded with

Chapter 6 where the summary and concluding remarks of the thesis are presented.

Some complementary concepts, such as the utilized optical flow and pose estimation

techniques or the experimental details are all presented in the Appendix section of the

thesis.

4

CHAPTER 2

RELATED WORK

In this chapter, the literature related to the scope of this thesis is covered. Firstly,

an overview of action recognition literature is presented. Following this overview,

the prominent deep-learning-based methods and concepts from the literature are pre-

sented in detail in this chapter.

2.1 An Overview of Action Recognition (AR) Literature

In this section, a general overview of the AR literature is presented without giving

detailed explanations. This section is divided into two main parts, which are pre-deep

learning AR literature and deep learning AR literature, while the main focus of this

thesis is more on the latter. Therefore, the analysis of deep learning AR literature will

be more elaborate.

2.1.1 Pre-deep-learning AR literature

Before the introduction of deep learning, action recognition methods depended on

the extracted hand-crafted features. The general block diagram of pre-deep-learning

methods is presented in Figure 2.1. The pre-deep-learning methods for AR consist

of three main stages: spatio-temporal interest point detection, creations of spatio-

temporal description for detected interest points, and the encoding of interest point

descriptions.

As mentioned before, both the spatial information and temporal information are cru-

5

Figure 2.1: General block diagram of pre-deep learning methods

cial for action recognition problem. Therefore, differently from an image classifica-

tion task, there is a need to process also the temporal information for action recogni-

tion. From that perspective, the keyword spatio-temporal should be highlighted for

both interest point detection and description.

The spatio-temporal interest point detectors can be categorized into two from the per-

spective of providing temporal characteristics to spatial detectors. These are spatio-

temporal detectors which the extension of spatial detectors with the temporal dimen-

sion [37, 10, 73, 38] and trajectory-based detectors which are the temporal trajec-

tories of spatial or spatio-temporal interest points. The extension of spatial detectors

with the temporal dimension means that detectors aim to find three-dimensional blobs

or corners in a video. In temporal trajectories, the spatial interest points which are de-

tected from a single frame or spatio-temporal interest points, such as Harris3D are

tracked with KLT, SIFT-matching and optical flow algorithms [45, 46, 29, 66].

The spatio-temporal descriptors can also be categorized into two from providing tem-

poral characteristics to spatial descriptors. These are the extension of spatial descrip-

tions with the temporal dimension [54, 35, 73] and pooling of spatial descriptions

across temporal dimension [66, 38]. For instance, pooling can be a concatenation.

The trajectories themselves can also be descriptors [66, 45].

Interest point descriptions are obtained by aggregating local descriptions of the de-

tected interest points into fixed-sized video-level features. This can be achieved via

Visual Bag of Words (VBoW), or Fisher Vector Representations [53] or Vector of

Locally Aggregated Descriptors (VLAD) vector. Visual Bag of Words can be imple-

mented via K-means or Gaussian Mixture Models (GMM). The difference between

K-means and GMM is that K-means is the hard assignment of the feature vector to

the clusters and assumes that one feature only belongs to the one cluster of K-means

while GMM is the soft assignment of the feature vector to the clusters and defines

6

probabilities for the assignments of the clusters. Fisher Vectors depends on the idea

that score function can be defined as the gradient of probability modeling and de-

scribes how the parameters of the model should be modified to represent the model

better. For this aim, it uses first-order and second-order statistics assuming the Gaus-

sian model on the data which makes the total number of parameters (2D+1)K where

D is the dimension of the feature vectors and K is the number of clusters in Gaussian

Mixture Model. VLAD is similar to Fisher Vectors but it does not use the second-

order statistics to reduce the number of parameters.

Figure 2.2: The general approach for hand-crafted based learning methods

From this point, crucial pre-deep learning AR studies will be introduced without en-

tering into much detail.

7

2.1.1.1 3D Spatio-temporal Extension of 2D Spatial Detectors and Descriptors

Laptev extends the idea of the Harris corner detector to the spatio-temporal Harris

corner detector [37]. Harris corner detector depends on the idea that the change in a

window will cause sharp changes in both spatial directions around the corner. To do

so, this technique uses first-order approximation and creates a matrix from the first-

order derivatives and investigates the eigenvalues of this matrix for corner detection.

In spatio-temporal Harris detector [37], the dimension is equal to three. Therefore,

for a meaningful corner in the space-time domain, all of the eigenvalues should be

high. For the scale selection, the maximum Laplacian of Gaussian (LoG) value is

searched over the spatio-temporal domain. Next, from the selected scales, the corner

points are re-calculated, which creates a two-step iterative algorithm.

In a different approach [10], the usage of 3D corner detectors is criticized due to

the fact that in some behavior types, such as facial expressions, quite a few spatio-

temporal corners are extracted. It is mentioned that sparseness is desirable to some

extent but a rare number of interest points might not be sufficient for action recogni-

tion. The proposed interest points of [10] depend on the idea of perturbation in the

temporal domain. For this aim, spatial Gaussian convolved with a quadrature pair of

temporal 1D Gabor filters are applied to choose the interest points. Then, from the

selected points, cuboids are defined which are spatio-temporal cubes from the video.

From these cuboids, it is possible to extract various features like normalized pixel

values, gradient information (Gx, Gy, Gt), and optic flow (Vx, Vy). Then, from these

features, the BoW approach is followed for the representation and local histograms

are created in order not to lose all space and time information. 3D-SIFT [54] is a study

where the focus is more on creating 3D descriptors than the finding interest points.

In this work, the interest points are randomly sampled from videos. The difference of

3D-SIFT representation from the 2D counterpart is that one more angle information

also exists in histogram bins and sub-histograms are divided not only in the spatial

domain but also in the temporal domain.

The authors of extended SURF [73] argue that the iterative 3D Harris-Laplace [37]

detector is quite complex and might diverge since the iterative approach is applied

for every feature detected. It is also argued that cuboids [10] are not scale-invariant,

8

since the size of a cuboid is a hyper-parameter. The proposed approach in [73] is that

both the interest point and its scale are determined by the determinant of the Hes-

sian matrix. Moreover, the second-order derivative calculation complexity is reduced

by using the integral video concept. By using some box filters, the second-order

derivatives are calculated and differently sized box filters are used to model the scale.

Moreover, for the extraction of a descriptor, Haar wavelets are preferred and integral

images are utilized for the calculation of these wavelet responses in order to decrease

the complexity.

Another paper that utilizes the 3D Harris corner detector is [38]; however, for scale

selection, a multi-scale approach is followed instead of an iterative algorithm to re-

duce the computational complexity. The cuboid concept is adopted and the scales

of the cuboids are selected according to the scale of interest point. The grid size

in cuboids is chosen as 3x3x2 and Histogram of Oriented Gradient (HOG) and His-

togram of Oriented Flow (HOF) are used as features. Moreover, a spatial pyramid

concept is followed to divide a video into spatial and temporal parts and calculating

BoW separately for every part. For classification, non-linear SVMs are used.

The main focus in [35] is about creating a 3D descriptor which is a similar topic

examined in 3D-SIFT [54]. The authors in [35] argue that the 3D-SIFT description

proposed in [54] creates the problem of singularities at the poles because bins get

smaller and smaller. To solve this problem, they propose making orientation with

regular polyhedrons instead of parallels and meridians approach in the 3D-SIFT de-

scription. Moreover, the gradient calculation for different scale, they propose the

integral gradient image approach, reducing the memory requirements. However, in

my view, this paper does not propose rotation invariance as in 3D-SIFT or 2D-SIFT.

2.1.1.2 Trajectory-based Detectors and Descriptors

As mentioned before, another way of providing spatio-temporal characteristics to

interest points is by creating trajectories from the detected spatial interest points. In-

stead of finding the interest points from the whole volume, trajectory-based interest

point detectors firstly find spatial interest points in specific frames and secondly tracks

them along the temporal dimension with specific temporal length. In order to create

9

trajectories, both KLT trackers [45, 46] and SIFT descriptor matching [29] are used.

Dense Trajectories (DT) [66] is a method that utilizes trajectory-based interest point

detectors. Differently from the previous methods in the literature, it uses optic flow

[15] for tracking instead of KLT tracking or SIFT matching. Another difference from

the previous approaches is that it uses dense sampling for interest point selection

instead of sparse selection. From the location of the detected interest points, the

algorithm defines volumes and extracts three types of features from these volumes.

These features are Histogram of Gradient (HOG), Histogram of Flow (HOF), and

Motion Boundary Histograms (MBH). Among these features, MBH is found to be

the best compared to HOG and HOF. The success behind MBH features is the fact

that it suppresses camera motion. MBH is calculated by the first-order derivative of

optical flow. Additionally, to these three types of features, the trajectories themselves

are added to the created descriptions. In order to provide the DT algorithm with scale

invariance, different trajectories are created from different scales.

Improved Dense Trajectories (IDT) [67] is the improved version of DT. In this im-

plementation, the homography matrix between the consecutive frames is calculated.

As a result of this estimation, camera motion components are removed from optical

flow. Homography matrix calculation is performed with RANSAC on SURF descrip-

tors. Moreover, instead of using the classical BoW method, Fisher vectors are used

to encode the information of descriptors.

All aforementioned techniques have a common drawback: The spatio-temporal fea-

tures are "hand-crafted" which means their design depends on human experience and

intuition. There is no convincing reason to make all these representations yield op-

timal results for the AR problem. The solution to this fundamental problem has

emerged in the last decade as learned representations that are obtained through deep

neural networks. The next section will examine the deep-learning-based solutions

specific to AR research.

10

(a) Architectures with respect to their convolution types (b) Feature Aggregations Techniques

(c) Input Modalities (d) Training Types

Figure 2.3: Taxonomy of deep learning methods for AR literature.

2.1.2 Deep Learning AR Literature

In this section, a general overview of deep learning methods is conveyed. For this aim,

four different categorizations are considered as presented in Figure 2.3. These four

categorizations are determined according to architecture convolution types, feature

aggregation techniques, input modalities, and training types.

For the categorization according to the architecture convolution types, there are four

approaches: 2D CNN [57, 17, 48, 69, 70], 3D CNN [62, 5, 8, 24, 16, 49, 6, 63],

separable 3D CNN and Hybrid CNN[64, 76] in which the mixture of the others can

be implemented.

For the categorization based on the input modalities, there are also four options:

video-only input (RGB Only), extracted optical flow of the video, extracted human

pose [12, 13, 78, 7] of video, and fusion in which the mixture of others can be per-

formed as two-stream and three-stream architectures.

For the categorization in terms of feature aggregation, there are three methods: recur-

rent architectures [48, 11, 13, 40] (Such as LSTM, GRU, and convolutional version of

them), attention architectures [72, 21, 20, 18, 51] (such as Transformers [65], BERT

11

[9] and non-local blocks), and pooling [31, 17, 22] (such as average, concatenation,

minimum and maximum). The attention mechanism can also be performed within the

implementation of recurrent architectures [55, 58, 13, 40].

For the categorization depending on the training types, there are three methods: su-

pervised, weakly supervised, and unsupervised. The supervised approach is the most

general one for the classification task and all samples in a dataset have a specific label.

Weak supervision can simply be defined as noisy labeling. Unsupervised implies the

complete absence of the labels.

From this point, the literature for the deep learning based methods is divided into

general categories in order to emphasize the core idea of the studies for AR problem.

These are 2D CNN architectures (Section 2.1.2.1), 3D CNN architectures (Section

2.1.2.2), recurrent architectures, pooling and fusion techniques (Section 2.1.2.3), at-

tention models (Section 2.1.2.4), optical flow networks (Section 2.1.2.5), pose net-

works (Section 2.1.2.6) and weakly supervised and unsupervised techniques (Section

2.1.2.7). Note that these sections do not strictly follow the categorizations in Figure

2.3.

It is important to note that studies from the different categories might not be unrelated

to each other. On the contrary, they can be strongly related to each other. For example,

2D CNN architectures might exist in all sub-categories. Pose and optical flow are

different input modalities, therefore they cannot be considered independently from

the architecture techniques. Additionally, most attention-based networks are utilized

with the recurrent architectures. The main aim of this categorization is to convey the

main focus of the studies and to relate similar studies to each other.

2.1.2.1 2D CNN Architectures

2D CNN architectures are trained basically with single images. However, it is pos-

sible to combine multiple frames in the channel dimension of 2D CNN architectures

and this idea is implemented for the flow stream of two-stream networks. From that

perspective, this is also in the category of optical flow networks which will be detailed

in Section 2.1.2.5.

12

The breakthrough of deep learning methods for the action recognition problem starts

with the introduction of two-stream networks [57]. The proposed architecture is not a

very deep 2D CNN architecture and consists of only five convolutional layers and two

fully-connected layers. The reason for the “two-stream" naming is the fact that there

are two streams: one stream for RGB images as an input modality while the other

one for optic flow images as an input modality. It is asserted that the RGB stream

emphasizes the appearance of the action while the optical flow stream emphasizes

the temporal information in the action. However, the temporal coverage is limited

because only 11 frames (10 optic flow images) are used within the channel dimension

of the first layer of the 2D CNN architecture.

The methods in [69] and [70] carry the two-stream concepts to deep 2D CNN archi-

tectures. For this aim, various good practices are proposed to train these deep 2D

CNNs. One of the practices is cross-modality training which is training the optic flow

stream with Image-Net pre-trained weights. Another proposed practice is the multi-

scale crop concept as a data augmentation technique which is convenient for action

classification. It is claimed that high dropout is also quite useful for training on an

action dataset.

2.1.2.2 3D CNN Architectures

The first proposed 3D convolution architecture in the literature is C3D [62]. Be-

fore this approach, the temporal modeling with convolution was performed using an

optical flow CNN in two-stream architectures or time-domain pooling architectures;

however, they are restricted to 2D convolution and temporal information is put into

the channel dimension. The difference of 3D convolution is that kernels are designed

in 3D and channels and time information are represented as different dimensions. The

C3D architecture has 8 convolutions, 5 max-pooling, and 2 fully connected parts.

One of the successful implementations of 3D convolution is Inflated 3D (I3D) [5],

in which 3D convolution is modeled in a much deeper fashion compared to C3D.

There are two important novelties in this method. One of them is the introduction of

the Kinetics dataset which is larger than the previously commonly used two datasets,

UCF101[59] and HMDB51[36]. This solves the problem of insufficient data for 3D

13

convolution to some extent. In addition, the designed architecture is the direct 3D

counterpart of Inception V1 architecture, which enables to use of pre-trained Image-

net weights in 3D architecture after some manipulations. In I3D networks, 3D archi-

tectures are trained for both RGB and optical flow input modalities.

Another proposed technique that uses the idea of 3D convolution is ResNet3D [24]

which is very similar to I3D. The only difference is that instead of using the 3D

correspondence of inception architecture, it uses the 3D correspondence of ResNet

architectures. Moreover, this method examines the fact that training 3D architectures

requires more data as in the case of the Kinetics dataset; otherwise, it leads to over-

fitting. Moreover, it investigates the fact that the Kinetics dataset enables performance

gains with deeper architectures as in the case of ImageNet. Different from I3D, this

technique uses a 112x112 input size compared to the usage of 224x224 input size in

I3D.

The downside of the 3D convolution architectures is their requirement for huge com-

putational costs and memory demand. One of the solutions to model 3D convolu-

tion with reduced parameter size is creating pseudo-3D architecture, which is called

Pseudo 3D network (P3D) [52] in which 3x3x3 spatio-temporal kernels are subdi-

vided into 1x3x3 spatial kernel and 3x1x1 temporal kernels. These are also known as

separable 3D convolution.

Another method that applies the separable 3D convolution concept is called R(2+1)D

[64] and it is shown that dividing 3D spatio-temporal convolutions into spatial and

temporal convolutions with the same parameter size has improved the performance

significantly. In their paper, the performance of mixed architectures which consist

of both 3D and 2D convolutions have also been evaluated. These mixed architec-

tures replace certain 3D convolution layers with 2D and examine whether using 3D

convolution in higher layers or lower layers is more beneficial. S3D [76] is the sepa-

rable 3D convolution version of I3D. Similar to the study of [64], [76] also analyses

the performance of mixed architectures which consist of both 3D and 2D convolu-

tions. Additionally, [76] introduces the feature gating concept which seems to be an

attention mechanism on channel dimension, which increases the performance of the

architecture.

14

Another important 3D CNN architecture is Channel-Separated Convolutional Net-

works (CSN) [63], which depends mainly on the idea of depth-wise separable convo-

lution proposed in [28], which is claimed to be a good trade-off between performance

and efficiency. CSN proposes separating the channel interactions and spatio-temporal

interactions, and CSN can be considered as the 3D CNN version of depth-wise sep-

arable convolution. CSN also investigates the group convolution which is similar to

3D ResNeXt architecture used in [24].

2.1.2.3 Recurrent Architectures, Pooling and Fusion Techniques

Pooling is a well-known technique to combine various temporal features; concate-

nation, averaging, maximum, minimum, ROI, feature aggregation techniques, and

time-domain convolution are some of the possible pooling techniques [22, 48].

Fusion frequently used for AR is very similar to pooling. Fusion is sometimes pre-

ferred instead of pooling in order to emphasize pooling location in the architecture or

to differentiate information from different modalities. Late fusion, early fusion and

slow fusion models on 2D CNN architectures can be performed by combining tempo-

ral information along the channel dimension at various points in CNN architectures

[31]. As a method, the two-stream fusion architecture in [17] creates spatio-temporal

relationship with an extra 3D convolution layer inserted towards the end of the archi-

tecture and fuses information from RGB and optical flow streams.

Recurrent networks are also commonly used for temporal integration. LSTMs are

utilized for temporal (sequential) modeling on 2D CNN features extracted from the

frames of a video [48, 11]. E.g., VideoLSTM [40] performs this kind of temporal

modeling by using convolutional LSTM with spatial attention. RSTAN [13] im-

plements both temporal and spatial attention concepts on LSTM and the attention

weights of RGB and optical flow streams are fused.

Moreover, Temporal Segment Networks (TSN) [70] is also an average pooling strat-

egy with 2D CNN architectures. Instead of training the RGB stream with a single

frame, TSN divides the video into segments, selects a frame from each segment and

some segmental consensus are satisfied by averaging the final features of the selected

15

frames. With this implementation, the false labeling problem is reduced to some

extent because the selected frame from a single segment might not contain character-

istics of the action.

Slow-fast networks [16] can be considered as a joint implementation of both fusion

techniques and 3D CNN architectures. There are two streams, namely fast and slow

paths. The slow stream operates at a low frame rate and focuses on the spatial infor-

mation similar to the RGB stream in traditional two-stream architectures, while the

fast stream operates at a high frame rate and focuses on temporal information like the

optical flow stream in traditional two-stream architectures. There is also some flow

of information from the fast stream to the slow stream.

2.1.2.4 Attention

The spatial attention mechanism is firstly used in action recognition research by [55].

Spatial attention tries to direct methods to the related spatial parts of the action. Then

spatially attended features are temporally modeled by LSTM.

Li [40] focuses on the idea of temporal modeling by using convolutional LSTM which

is proposed in [56] for radar map forecasting. Besides, it adds spatial a attention

mechanism to convolutional LSTM.

Another method that can be considered under the category of attention concept is

non-local neural networks [72]. The authors aim to create a long-range relationship

between the different spatio-temporal locations of features which cannot be obtained

by the convolution operation. The method is inspired by non-local means which

creates a relationship between distant pixels as a weighted sum of all pixels. It is

claimed that transformers [65], which is an attention-based method, is the special

case of their proposed algorithm. Their non-local blocks can be put into any CNN

architectures.

Video action transformer network [20], where the transformer is utilized in order to

aggregate contextual information from other people and objects in the surrounding

video for the related bounding box of person. In [51], the multi-head self-attention

mechanism of transformers is utilized as a self-attention mechanism in action recog-

16

nition for low-resolution videos. Actor transformers [18] utilizes transformers as

an attention mechanism between the features of different actors. Differently from

the video action transformer network, the actor transformer utilizes not only bound-

ing box specific queries but also bounding box specific keys and values in the self-

attention mechanism of transformers.

2.1.2.5 Optical Flow Networks

As mentioned before, the optical flow field (see Appendix A) is one of the important

input modalities in two-stream networks. However, extracting optic flow needs pre-

processing of the data and is more computationally complex compared to the RGB

stream. Therefore, some studies focus on reducing the complexity of extraction of

optical flow and enable end-to-end training of two-stream architecture including the

extraction of optic flow.

Zhang et al. [80] use motion vectors instead of optical flow vectors and motion vectors

are coarser and noisy compared to optical flow vectors. Motion vectors are normally

used in video compression for its fast implementation. In their paper, a motion vec-

tor CNN is trained with knowledge distillation [27, 42] which aims to train a student

network by a teacher network. Knowledge distillation aims to obtain with student

network as good performance as with teacher network with much less parameter. In-

stead, in this network, the parameter sizes of two CNN are the same but the quality of

input to the student network is worse compared to the teacher network. This imple-

mentation is claimed to be 20x faster compared to traditional two-stream networks.

Ng et al. (2018) [47] use 3D convolution to learn multi-frame optical flow extraction

and 2D convolution to learn the optical flow of 2 frames jointly with the loss for

action classification. It is shown that the guidance of action classification loss to

optical flow extraction improves the performance compared to the single usage of

optical flow loss for action recognition. The problematic side of this implementation

is that the performance of the algorithm is upper bounded by the traditional optical

flow algorithm which supervises CNN.

Wu et al. (2018) [74] try to use the information of P frames which is used in com-

17

pressed video formats, like MPEG-4 and H264. In video compression, P frames are

referenced to the image frame with motion vectors and residuals. In this work, in-

stead of referencing P frames to the previous frame, they are referenced to the latest

I frame, which reduces the noisy output of motion vectors and residuals and denoted

as accumulated motion vectors and accumulated residuals, respectively. It is claimed

in the paper that with 3 input modalities (I-frames, accumulated motion vectors, and

accumulated residuals), they achieved good performances with low complexity.

Zhu et al. (2017) [81] tries to calculate optical flow with an unsupervised setting. It

claims that supervised training of optic flow is upper bounded by the performance of

optic flow extractor for the loss function. In this work, optic flow extraction is as-

sumed as an image reconstruction problem. Given an image pair, optical flow vectors

are estimated and one of the images of the pair is tried to be constructed by utilizing

both the other image and optical flow vectors. Additionally, the system is trained

with smoothness loss which are the derivatives of optic flow vectors and the Struc-

tural Similarity Index Measure (SSIM) loss. Then, this network is trained with an

end-to-end fashion with an action classification network.

TVNet [14] proposes a good trick to implement the TV-L1 optic flow algorithm with

CNN layers, which reduces computation time (Complexity reduction increases with

larger batch size due to parallelization). Moreover, due to the nature of the imple-

mentation with CNN layers, the parameters of convolutional filters which calculate

the gradient of image and motion vectors and divergence of brightness difference can

be made learnable.

Representation Flow Networks [50] considers the idea of calculating optical flow

vectors from the intermediate features of CNN architectures and extends the TVNet

study for this aim. Moreover, this effort introduces the flow of flow concept which

provides a model with longer-term flow representation. The authors test various layer

outputs to find better flow feature representations. Additionally, the idea of feature

flow is transferred from the 2D convolution domain to the 3D convolution counterpart.

It is claimed that the final network yields very good accuracy results with significantly

less complexity compared to the rival methods of it.

Sun [61] tries to use the relationship between the features of different times, which

18

is similar to [50]. For achieving this, gradient information in the features (calculated

with Sobel operator) and difference information between the features are concate-

nated and conveyed to the upcoming layer. However, it is observed that it does not

yield as good performance as Representation Flow Networks [50]. This might be

derived from the fact that it lacks the iterative process as in TV-L1 (or TVNet).

Another promising idea for the utilization of optical flow information is related to

the distillation concept, namely Motion-Augmented RGB Stream (MARS) [8]. For

the distillation concept, there are two architectures which are called as teacher and

student. The main concept is guiding the student architecture with that of the teacher.

The distillation concept is utilized in the literature to decrease the parameter size and

time complexity, such that the student architecture is less complex architecture than

the teacher architecture and student architecture is aimed to yield the same results

with the teacher architecture. However, in MARS, the goal of distillation is different.

The input modalities of teacher and student architectures are optical flow and RGB,

respectively. The main purpose of the distillation is the obtainment of the similar

features between the student and teacher architectures, one is fed by optical flow

and the other is fed by RGB. As a consequence, the information of the optical flow

architecture is utilized without the burden of extracting the optical flow of the RGB

input, speeding up the architecture, significantly.

2.1.2.6 Pose Networks

Pose networks try to benefit from the pose of the people in a video. In the literature,

it can be observed that pose network concepts are used jointly with the attention

mechanism. One paper that uses this concept is Recurrent Pose-Attention Network

(RPAN) [12]. In this paper, some joints are grouped into parts. According to parts and

joints, different spatial attention parameters are defined. In addition, the loss function

of spatial attention is guided by the pose map of the image.

Another paper, which uses pose attention, is Recurrent Spatial-Temporal Attention

Network (RSTAN) [13]. However, the main focus of the paper is not on the pose

attention concept as in the case of RPAN. In this paper, temporal and spatial attention

concepts are implemented jointly and attention weights are fused between two stream

19

architectures which use both RGB and optic flow as input modalities.

PA3D [78] tries to use the outputs of one of the fast multi-person pose detector, called

OpenPose [2] (see Appendix B). OpenPose tries to estimate Part Affinity Fields (PAF)

which is the part information between the joints and joints themselves. PA3D uses

the features of the CNN backbone, PAFs, and joints as different input modalities. For

the final prediction, the scores of joints, PAFs, and features are fused.

The PoTion is another method that uses OpenPose [7] joint information. Instead of

adding a temporal dimension for every joint, it encodes the temporal information by

colorizing.

2.1.2.7 Unsupervised and Weakly Supervised Techniques

Weak supervision methods and unsupervised methods are one of the crucial parts

of the action recognition, since labeling a huge amount of data is quite challenging,

while extra data is crucial to obtain better performances.

Order Predicting Network (OPN) [39] is one of the methods that use an unsupervised

method. In this work, video frames that contain the large optical flow fields are se-

lected, which is called motion-aware frame selection. Then, the frames are shuffled

and the network tries to predict the real order previous to shuffling. Another similar

work called Video Jigsaw [1] tries not only to predict the temporal order but also to

predict the spatio-temporal order such that three frames are selected and every frame

is divided into 4 patches, which makes the total number of patches equal to 12. How-

ever, instead of trying to predict all 12! cases, it creates sub-samples by maximizing

the Hamming distance between the samples, which reduces the memory and compu-

tation needs.

Additionally, instead of predicting order from per-frame based features, predicting

order from the K-framed clip features is also possible, called as 3DRotNet [77]. It is

claimed that frame chunks or clips contain more information than the group of frames

and guides the ordering network better. To highlight it more clearly, 3DRotNet uses

3D CNNs to extract features, while OPN uses 2D CNNs.

20

Contrastive Bi-directional Transformer (CBT) [60] uses BERT with the Noise Con-

trastive Estimation (NCE) loss. In this paper, 3DRotNet is trained with the S3D

network by using the same unsupervised method in 3DRotNet. Additionally, by uti-

lizing the extracted 40 features from the 16-framed clips, longer context is learned,

which makes the representations more temporally informative.

It is shown in the I3D method [5] that training UCF-101 and HMDB-51 from the

fine-tuned model from Kinetics yields better performances compared to training them

from scratch. The question that comes into mind is whether a larger dataset than Ki-

netics might be more beneficial for learning better representations for AR problems.

However, there is no larger dataset for the time being to test this hypothesis. [19]

considers testing this using weak supervision. Weak supervision can be thought of as

noisy labeling. In this paper, four datasets from Instagram videos have been created

using the hashtags. The maximum amount of video among these datasets within this

study consist of 65M videos which is about 200 times larger than the Kinetics-400

dataset. In this paper, the effects of various factors on the performance are analyzed

such as the dataset types, the number of labels, and the pre-training data format. As

the convolutional architecture, R(2+1)D [64] has been chosen for the experiments.

2.2 Prominent Deep Leaning Based Methods in AR Literature

This chapter examines the following concepts in detail: Bi-directional Encoder Rep-

resentations from Transformers (BERT), group convolution and depth-wise convolu-

tion, 3D convolution, separable 3D convolution, non-local neural networks, SlowFast

networks, motion-augmented RGB stream networks (MARS), multi-fiber networks

(MFNET), and temporal shift modules (TSM).

2.2.1 BERT [9]

Bi-directional Encoder Representations from Transformers (BERT) [9] is a bidirec-

tional self-attention method, which has significant superiority over other attention-

based methods for Natural Language Processing (NLP) tasks. The bidirectional prop-

erty of this method provides BERT to fuse the context from both directions, instead of

21

relying upon only a single direction, as in former recurrent neural networks or other

self-attention methods, such as Transformer [65].

The single head self-attention model of (BERT or Transformer) is in general formu-

lated as:

yi =
1

N(x)

∑
∀j

g(xj)f(xi,xj), (2.1)

where x is the embedding vector that consists of extracted visual feature of the current

frame and its positional encoding; i indicates the index of the target output temporal

position and j defines all possible combinations; and N(x) is the normalization term.

The function g(·) is the linear projection inside self-attention mechanism of BERT,

whereas the function f(·, ·) denotes the similarity between xi and xj. The function

f(·, ·) can be explicitly written as f(xi,xj) = softmax(θ(xi)
Tφ(xj)), where the func-

tions θ(·) and φ(·) are also linear projections from the learned feature space. The

outputs of θ(·), φ(·) and g(·) functions are known as key, queue and values.

Similar work for action recognition is implemented by using the technique entitled

as non-local neural networks (NN) [72]. A non-local NN uses a similar concept in

every bottleneck block of ResNet, except the last block by using 1x1x1 CNN filters

in order to realize g, θ, and φ functions. However, BERT exploits matrices in order to

realize the same functions, utilizes the multi-head attention concept in order to create

multiple relations with self-attention, and utilizes the positional encoding concept in

order to preserve the position of the words.

In Natural Language Processing (NLP) tasks, multi-head attention is used to learn

multiple relations. For example, homophone words are projected into the same em-

bedding. Therefore, there should be a need to learn multiple relations. Contrary to

RNN-based methods, the positional information of the words is lost because of the

summation term in 2.1. Therefore, positional encoding is applied in a way that po-

sition vectors (or embedding) are added to the feature vectors or word embedding.

Positional embedding can be made learnable or fixed. In the original paper that pro-

poses the Transformer concept, it is argued that making it learnable does not make

any difference; however, in BERT paper [9], learnable positional encoding increases

the performances.

22

[CLS] he likes play ##ing [SEP]my dog is cute [SEP]Input

E[CLS] Ehe Elikes Eplay E##ing E[SEP]Emy Edog Eis Ecute E[SEP]
Token
Embeddings

EA EB EB EB EB EBEA EA EA EA EA
Segment
Embeddings

E0 E6 E7 E8 E9 E10E1 E2 E3 E4 E5
Position
Embeddings

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmenta-
tion embeddings and the position embeddings.

The NSP task is closely related to representation-
learning objectives used in Jernite et al. (2017) and
Logeswaran and Lee (2018). However, in prior
work, only sentence embeddings are transferred to
down-stream tasks, where BERT transfers all pa-
rameters to initialize end-task model parameters.

Pre-training data The pre-training procedure
largely follows the existing literature on language
model pre-training. For the pre-training corpus we
use the BooksCorpus (800M words) (Zhu et al.,
2015) and English Wikipedia (2,500M words).
For Wikipedia we extract only the text passages
and ignore lists, tables, and headers. It is criti-
cal to use a document-level corpus rather than a
shuffled sentence-level corpus such as the Billion
Word Benchmark (Chelba et al., 2013) in order to
extract long contiguous sequences.

3.2 Fine-tuning BERT

Fine-tuning is straightforward since the self-
attention mechanism in the Transformer al-
lows BERT to model many downstream tasks—
whether they involve single text or text pairs—by
swapping out the appropriate inputs and outputs.
For applications involving text pairs, a common
pattern is to independently encode text pairs be-
fore applying bidirectional cross attention, such
as Parikh et al. (2016); Seo et al. (2017). BERT
instead uses the self-attention mechanism to unify
these two stages, as encoding a concatenated text
pair with self-attention effectively includes bidi-
rectional cross attention between two sentences.

For each task, we simply plug in the task-
specific inputs and outputs into BERT and fine-
tune all the parameters end-to-end. At the in-
put, sentence A and sentence B from pre-training
are analogous to (1) sentence pairs in paraphras-
ing, (2) hypothesis-premise pairs in entailment, (3)
question-passage pairs in question answering, and

(4) a degenerate text-∅ pair in text classification
or sequence tagging. At the output, the token rep-
resentations are fed into an output layer for token-
level tasks, such as sequence tagging or question
answering, and the [CLS] representation is fed
into an output layer for classification, such as en-
tailment or sentiment analysis.

Compared to pre-training, fine-tuning is rela-
tively inexpensive. All of the results in the pa-
per can be replicated in at most 1 hour on a sin-
gle Cloud TPU, or a few hours on a GPU, starting
from the exact same pre-trained model.7 We de-
scribe the task-specific details in the correspond-
ing subsections of Section 4. More details can be
found in Appendix A.5.

4 Experiments

In this section, we present BERT fine-tuning re-
sults on 11 NLP tasks.

4.1 GLUE
The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018a) is a col-
lection of diverse natural language understanding
tasks. Detailed descriptions of GLUE datasets are
included in Appendix B.1.

To fine-tune on GLUE, we represent the input
sequence (for single sentence or sentence pairs)
as described in Section 3, and use the final hid-
den vector C ∈ RH corresponding to the first
input token ([CLS]) as the aggregate representa-
tion. The only new parameters introduced during
fine-tuning are classification layer weights W ∈
RK×H , whereK is the number of labels. We com-
pute a standard classification loss with C and W ,
i.e., log(softmax(CW T)).

7For example, the BERT SQuAD model can be trained in
around 30 minutes on a single Cloud TPU to achieve a Dev
F1 score of 91.0%.

8See (10) in https://gluebenchmark.com/faq.

Figure 2.4: Masked LM in BERT [9]

The training of BERT consists of two stages. These stages are pre-training and fine-

tuning. In the pre-train step, BERT is trained in an unsupervised manner. The pre-

train stage is performed by a method called Masked LM (MLM). In this stage, some of

the tokens of the words are replaced by a mask token. Then all of the words (masked

or unmasked) are tried to be predicted by the BERT approach. Moreover, during the

pre-train step, two sentences are given, which are either next to each other or irrelevant

to each other and the proposed method is expected to predict that whether these are

next to each other or not. For different sentences, segment (or sentence) embedding is

added in order to provide the information about the relationship of words to sentences.

For the prediction of the next sentence task, an extra classification token is added.

From that position or index, the classification is performed. The MLM procedure in

BERT is illustrated in 2.4.

2.2.2 Group Convolution and Depth-wise Convolution

Group convolution and Depth-wise convolution (DW) can be perceived as a way of

making the architectures with fewer parameters and more computationally efficient.

Group convolution and depth-wise convolution are related to each other. Depth-wise

convolution is a special case of group convolution.

The illustration of group and depth-wise convolution is presented in Figure 2.5. The

main concept for these convolutions is reducing the channel interactions for better

efficiency. Only the channels within the group interact with each other. DW is a

special case of group convolution where the number of groups is equal to the number

of channels. In group convolution, the dimension of the filters changes fromCinxhxw

23

2. Related Work
Group convolution. Group convolution was adopted in
AlexNet [21] as a way to overcome GPU memory lim-
itations. Depthwise convolution was introduced in Mo-
bileNet [18] as an attempt to optimize model size and com-
putational cost for mobile applications. Chollet [7] built an
extreme version of Inception [30] based on 2D depthwise
convolution, named Xception, where the Inception block
was redesigned to include multiple separable convolutions.
Concurrently, Xie et al. proposed ResNeXt [39] by equip-
ping ResNet [17] bottleneck blocks with groupwise convo-
lution. Further architecture improvements have also been
made for mobile applications. ShuffleNet [42] further re-
duced the computational cost of the bottleneck block with
both depthwise and group convolution. MobileNetV2 [27]
improved MobileNet [18] by switching from a VGG-style
to a ResNet-style network, and introducing a “reverted bot-
tleneck” block. All of these architectures are based on 2D
CNNs and are applied to image classification while our
work focuses on 3D group CNNs for video classification.
Video classification. In the last few years, video classi-
fication has seen a major paradigm shift, which involved
moving from hand-designed features [22, 8, 26, 33] to
deep network approaches that learn features and classify
end-to-end [31, 19, 28, 11, 35, 36, 12]. This transforma-
tion was enabled by the introduction of large-scale video
datasets [19, 20] and massively parallel computing hard-
ware, i.e., GPU. Carreira and Zisserman [3] recently pro-
posed to inflate 2D convolutional networks pre-trained on
images to 3D for video classification. Wang et al. [37] pro-
posed non-local neural networks to capture long-range de-
pendencies in videos. ARTNet [34] decouples spatial and
temporal modeling into two parallel branches. Similarly,
3D convolutions can also be decomposed into a Pseudo-3D
convolutional block as in P3D [25] or factorized convolu-
tions as in R(2+1)D [32] or S3D [40]. 3D group convolution
was also applied to video classification in ResNeXt [16] and
Multi-Fiber Networks [5] (MFNet).

Among previous approaches, our work is most closely
related to the following architectures. First, our CSNs
are similar to Xception [7] in the idea of using channel-
separated convolutions. Xception factorizes 2D convolu-
tion in channel and space for object classification, while our
CSNs factorize 3D convolution in channel and space-time
for action recognition. In addition, Xception uses simple
blocks, while our CSNs use bottleneck blocks. The variant
ir-CSN of our model shares similarities with ResNeXt [39]
and its 3D version [16] in the use of bottleneck block with
group/depthwise convolution. The main difference is that
ResNext [39, 16] uses group convolution in its 3×3×3 lay-
ers with a fixed group size (e.g., G = 32), while our ir-CSN
uses depthwise convolutions in all 3×3×3 layers which
makes our architecture fully channel-separated. As we will

a) conv b) group conv c) depthwise conv

input
channel

output
channel

Figure 1. Group convolution. Convolutional filters can be parti-
tioned into groups with each filter receiving input from channels
only within its group. (a) A conventional convolution, which has
only one group. (b) A group convolution with 2 groups. (c) A
depthwise convolution where the number of groups matches the
number of input/output filters, i.e., each group contains only one
channel.

show in section 4.2, making our network fully channel-
separated helps not only to reduce a significant amount of
compute, but also to improve model accuracy by better reg-
ularization. We emphasize that our contribution includes
not only the design of CSN architectures, but also a system-
atic empirical study of the role of channel interactions in the
accuracy of CSNs.

3. Channel-Separated Convolutional Networks
In this section, we discuss the concept of 3D channel-

separated networks. Since channel-separated networks use
group convolution as their main building block, we first pro-
vide some background about group convolution.

3.1. Background

Group convolution. Conventional convolution is imple-
mented with dense connections, i.e., each convolutional fil-
ter receives input from all channels of its previous layer, as
in Figure 1(a). However, in order to reduce the computa-
tional cost and model size, these connections can be sparsi-
fied by grouping convolutional filters into subsets. Filters in
a subset receive signal from only channels within its group
(see Figure 1(b)). Depthwise convolution is the extreme
version of group convolution where the number of groups
is equal to the number of input and output channels (see
figure 1(c)). Xception [7] and MobileNet [18] were among
the first networks to use depthwise convolutions. Figure 1
presents an illustration of conventional, group, and depth-
wise convolutional layers for the case of 4 input channels
and 4 output channels.
Counting FLOPs, parameters, and interactions. Divid-
ing a conventional convolutional filter into G groups re-
duces compute and parameter count by a factor of G. These
reductions occur because each filter in a group receives in-
put from only a fraction 1/G of the channels from the pre-
vious layer. In other words, channel grouping restricts fea-
ture interaction: only channels within a group can inter-
act. If multiple group convolutional layers are stacked di-
rectly on top of each other, this feature segregation is further

Figure 2.5: The demonstration for group and depth-wise convolution. Each circular

node represents an input or output channel [63]. (a) A conventional convolution, the

number of group is one. (b) Group convolution, where the number of groups is two in

the figure. (c) Depth-wise convolution, the number of groups is equal to the number

of channels and it is four in this example.

to Cin

K
xhxw whereCin is the number of input channels, h and w are the horizontal and

vertical dimensions of the filter, andK is the number of groups. In group convolution,

both the number of parameters and computational complexity is reduced to one K-th

of the conventional convolution. A better demonstration of the comparison between

conventional and group convolution is shown in Figure 2.6.

However, it should be noted that reducing the channel interactions is not a good prac-

tice because the channels might contain complementary information and it might be

processed jointly. Especially, in depth-wise convolution, the channel interactions are

reduced to zero. Therefore, the depth-wise convolution is utilized within the con-

cept of depth-wise separable convolution where the 1x1 channel convolutions are

performed after 3x3 depth-wise convolution. Depth-wise separable convolutions are

proposed in MobileNet architectures [28] as efficient CNN implementations. Sim-

ilarly, the group convolution is applied only to 3x3 filters in bottleneck blocks of

ResNet architecture and 1x1 convolutions are implemented conventionally (see Fig-

ure 2.10 for the bottleneck block of ResNet architecture).

2.2.3 3D Convolution

The contribution of 3D CNNs on the AR tasks is very crucial. For example, accord-

ing to the I3D paper [5], the utilization of 3D CNNs has increased the performance

24

Figure 2.6: Conventional (Top) and group (Bottom) convolution operations. The

image is from Towards data science: Comprehensive introduction to different types

of convolutions in deep learning

with approximately 9% and 8% compared to 2D CNNs and LSTM-based architec-

ture on the Kinetics dataset, respectively, all utilizing the Inception-V1 architecture.

The reason behind the success of 3D CNN is the fact that the temporal information

is utilized hierarchically and in an order similar to the spatial information. The pool-

ing methods or recurrent neural network methods create temporal relations only at

the final stage, which lacks successful temporal modeling. However, it should al-

ways be remembered that 3D convolution has quite a high number of parameters,

which requires a huge training dataset in order to obtain successful performances.

For example, in the same paper, it is reported that training from scratch and Kinetics

pre-trained Two-Stream 3D CNN has obtained 66.4% and 81.2% performances on

the HMDB51 dataset, respectively. This fact emphasizes quite clearly that the dataset

is of great importance to benefit from any 3D CNN architecture.

Conceptually, the standard input training data format in 2D convolution consists of

25

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

8/14/2020 Depthwise separable convolutions for machine learning - Eli Bendersky's website

https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/ 8/10

After completing the depthwise convolution, and additional step is performed: a 1x1 convolution across
channels. This is exactly the same operation as the "convolution in 3 dimensions discussed earlier" -
just with a 1x1 spatial filter. This step can be repeated multiple times for different output channels. The
output channels all take the output of the depthwise step and mix it up with different 1x1 convolutions.
Here's the implementation:

Figure 2.7: Depth-wise separable convolution. The image is from Eli Bendersky’s

website: Depthwise separable convolutions for machine learning

B,Cin, H,W , where B, Cin, H , W are to denote the batch size, the number of input

channels, the dimension of height and width, respectively. The filter sizes can be

defined as hxw where h and w are the filter height and width, respectively, and the

real filter size is Cinxhxw if it is not group or depth-wise convolution. The output

of every 2D convolution filter has a dimension of Bx1xHxW . In 3D convolution,

the standard input data format is B,Cin, T,H,W , where T is added as a temporal

dimension (i.e. video frames). The filter sizes can be defined as txhxw where t is the

temporal length of the 3D filter, and the real filter size is Cinxtxhxw. The output of

every 3D convolution filter has a dimension of Bx1xTxHxW . The different between

2D and 3D convolution can be seen in Figure 2.8.

26

https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/
https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/

(a) 2D Convolution

(b) 2D Convolution on multiple frames

(c) 3D Convolution on multiple frames

Figure 2.8: 2D versus 3D convolution [62]

Mainly, there is two popular 3D convolution architecture category. There are Incep-

tion based and ResNet based since there are also popular 2D CNN architectures and

using them enables the utilization of Image-Net pre-trained weights obtained in im-

age classification which is a more mature area compared to the AR. To benefit from

Image-Net, it is possible to consider pseudo-video which consists of the same frame

repeating itself. Then, the weights in 2D CNN filters are repeated in temporal dimen-

sion with 1
t

normalization factor where t is the temporal dimension of the 3D filter.

As a consequence, the output of 2D CNN with the frame is the same with the output

of 3D CNN with the pseudo-video which consists of the repeating same frame. In

[5], it is also shown that starting with Image-Net yields better performance compared

to starting from scratch.

However, it should also be denoted that the Kinetics dataset is sufficient and utilizing

Image-net pre-trained weights as explained in the previous paragraph does not yield

considerable performance improvements.

27

Figure 3. The Inflated Inception-V1 architecture (left) and its detailed inception submodule (right). The strides of convolution and pooling
operators are 1 where not specified, and batch normalization layers, ReLu’s and the softmax at the end are not shown. The theoretical
sizes of receptive field sizes for a few layers in the network are provided in the format “time,x,y” – the units are frames and pixels. The
predictions are obtained convolutionally in time and averaged.

Method #Params
Training Testing

Input Frames Temporal Footprint # Input Frames Temporal Footprint
ConvNet+LSTM 9M 25 rgb 5s 50 rgb 10s

3D-ConvNet 79M 16 rgb 0.64s 240 rgb 9.6s
Two-Stream 12M 1 rgb, 10 flow 0.4s 25 rgb, 250 flow 10s
3D-Fused 39M 5 rgb, 50 flow 2s 25 rgb, 250 flow 10s

Two-Stream I3D 25M 64 rgb, 64 flow 2.56s 250 rgb, 250 flow 10s

Table 1. Number of parameters and temporal input sizes of the models.

the models are applied convolutionally over the whole video
taking 224 × 224 center crops, and the predictions are av-
eraged. We briefly tried spatially-convolutional testing on
the 256 × 256 videos, but did not observe improvement.
Better performance could be obtained by also considering
left-right flipped videos at test time and by adding addi-
tional augmentation, such as photometric, during training.
We leave this to future work.

We computed optical flow with a TV-L1 algorithm [38].

3. The Kinetics Human Action Video Dataset
The Kinetics dataset is focused on human actions (rather

than activities or events). The list of action classes covers:
Person Actions (singular), e.g. drawing, drinking, laugh-
ing, punching; Person-Person Actions, e.g. hugging, kiss-
ing, shaking hands; and, Person-Object Actions, e.g. open-
ing presents, mowing lawn, washing dishes. Some actions
are fine grained and require temporal reasoning to distin-
guish, for example different types of swimming. Other ac-

tions require more emphasis on the object to distinguish, for
example playing different types of wind instruments.

The dataset has 400 human action classes, with 400 or
more clips for each class, each from a unique video, for a
total of 240k training videos. The clips last around 10s, and
there are no untrimmed videos. The test set consists of 100
clips for each class. A full description of the dataset and
how it was built is given in [16].

4. Experimental Comparison of Architectures
In this section we compare the performance of the five ar-

chitectures described in section 2 whilst varying the dataset
used for training and testing.

Table 2 shows the classification accuracy when training
and testing on either UCF-101, HMDB-51 or Kinetics. We
test on the split 1 test sets of UCF-101 and HMDB-51 and
on the held-out test set of Kinetics. There are several note-
worthy observations. First, our new I3D models do best in
all datasets, with either RGB, flow, or RGB+flow modali-

(a) 3D Inception module
Figure 3. The Inflated Inception-V1 architecture (left) and its detailed inception submodule (right). The strides of convolution and pooling
operators are 1 where not specified, and batch normalization layers, ReLu’s and the softmax at the end are not shown. The theoretical
sizes of receptive field sizes for a few layers in the network are provided in the format “time,x,y” – the units are frames and pixels. The
predictions are obtained convolutionally in time and averaged.

Method #Params
Training Testing

Input Frames Temporal Footprint # Input Frames Temporal Footprint
ConvNet+LSTM 9M 25 rgb 5s 50 rgb 10s

3D-ConvNet 79M 16 rgb 0.64s 240 rgb 9.6s
Two-Stream 12M 1 rgb, 10 flow 0.4s 25 rgb, 250 flow 10s
3D-Fused 39M 5 rgb, 50 flow 2s 25 rgb, 250 flow 10s

Two-Stream I3D 25M 64 rgb, 64 flow 2.56s 250 rgb, 250 flow 10s

Table 1. Number of parameters and temporal input sizes of the models.

the models are applied convolutionally over the whole video
taking 224 × 224 center crops, and the predictions are av-
eraged. We briefly tried spatially-convolutional testing on
the 256 × 256 videos, but did not observe improvement.
Better performance could be obtained by also considering
left-right flipped videos at test time and by adding addi-
tional augmentation, such as photometric, during training.
We leave this to future work.

We computed optical flow with a TV-L1 algorithm [38].

3. The Kinetics Human Action Video Dataset
The Kinetics dataset is focused on human actions (rather

than activities or events). The list of action classes covers:
Person Actions (singular), e.g. drawing, drinking, laugh-
ing, punching; Person-Person Actions, e.g. hugging, kiss-
ing, shaking hands; and, Person-Object Actions, e.g. open-
ing presents, mowing lawn, washing dishes. Some actions
are fine grained and require temporal reasoning to distin-
guish, for example different types of swimming. Other ac-

tions require more emphasis on the object to distinguish, for
example playing different types of wind instruments.

The dataset has 400 human action classes, with 400 or
more clips for each class, each from a unique video, for a
total of 240k training videos. The clips last around 10s, and
there are no untrimmed videos. The test set consists of 100
clips for each class. A full description of the dataset and
how it was built is given in [16].

4. Experimental Comparison of Architectures
In this section we compare the performance of the five ar-

chitectures described in section 2 whilst varying the dataset
used for training and testing.

Table 2 shows the classification accuracy when training
and testing on either UCF-101, HMDB-51 or Kinetics. We
test on the split 1 test sets of UCF-101 and HMDB-51 and
on the held-out test set of Kinetics. There are several note-
worthy observations. First, our new I3D models do best in
all datasets, with either RGB, flow, or RGB+flow modali-

(b) 3D Inception-based CNN architecture: Inflated 3D (I3D)

Figure 2.9: Architectural information about 3D Inception network [5]

2.2.3.1 Inception Type Architectures

The inception-based methods consist of Inception blocks. There are two important

aspects of this block. The first aspect is that it concatenates the outputs of differently

sized filters, which creates diversity in the output. The second aspect is that before

applying differently sized filters, it applies point-wise convolution, which reduces the

size of the parameters of the network. The point-wise convolution is implemented

with 1x1 sized filters. The 3D Inception module used in [5] is given in Figure 2.9a.

The overall architecture of Inception-based 3D CNN architecture, namely Inflated 3D

(I3D) can be examined in Figure 2.9b.

2.2.3.2 ResNet Type Architectures

The ResNet-based methods consist of basic or bottleneck blocks and these are two

and three convolution operations, respectively [25]. A bottleneck block increases

the number of filters with expansion size compared the basic block. These blocks

gets the input, and apply a function f(·) and adds to itself, which can be shown

in mathematical terminology as x + f(x) or g(x) + f(x), where g(·) is optionally

applied where there is mismatch in channel sizes. Basic and Bottleneck blocks of 2D

CNN architectures are shown in Figure 2.10.

ResNeXt [75] is a ResNet type architecture which includes a group convolution im-

plementation (See Section 2.2.2 for more information about group convolution). The

28

model top-1 err. top-5 err.

VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.

VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that

3x3, 64

1x1, 64

relu

1x1, 256

relu

relu

3x3, 64

3x3, 64

relu

relu

64-d 256-d

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56×56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1×1, 3×3, and 1×1 convolutions, where the 1×1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3×3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.

6

Figure 2.10: Basic (Left) and Bottleneck (Right) blocks of ResNet architecture [25]

group convolution filter sizes are Cin

K
xhxw in 2D convolution or Cin

K
xtxhxw in 3D

convolution, where K is the number of groups and called cardinality of the archi-

tecture. It has been denoted that the ResNeXt-50 gets 1.7% higher results compared

to ResNet-50 in Image-Net, which have nearly equal parameter sizes [75]. It is also

shown that 3D ResNeXt is better than 3D ResNet architecture in activity classification

tasks obtained on Kinetics-400 dataset [24].

Channel Separated Convolutional Networks (CSN) [63] is the depth-wise convolu-

tion version of 3D ResNet (see Section 2.2.2 for more information about depth-wise

convolution). There are two proposed CSN architectures. The difference between

the two architectures lies in the implementation of bottleneck blocks. These bottle-

neck blocks are called as Interaction-preserved channel-separated bottleneck block

(ip-CSN) and Interaction-reduced channel-separated bottleneck block (ir-CSN). ip-

CSN adds 1x1x1 convolution before the depth-wise convolution in order not to lose

the relationship between the channels. The bottleneck blocks of ip-CSN and ir-CSN

is visualized in Figure 2.11.

2.2.4 Separable 3D Convolution

Separable 3D convolution is the two-step implementation of classical 3D convolu-

tions such that 3D convolution which has a filter size of Cinxtxhxw is replaced with

the successive implementation of spatial filters which have size of Cinx1xhxw and

temporal filters which have size of Cin2xtx1x1, respectively, and Cin2 is equal to the

number of filter of spatial filters before the temporal filters. The 3D convolution and

29

1x1x1

3x3x3(dw)

1x1x1

1x1x1

3x3x3

1x1x1

1x1x1

3x3x3(dw)

1x1x1

1x1x1

a) b) c)
Figure 2. Standard vs. channel-separated convolutional blocks.
(a) A standard ResNet bottleneck block. (b) An interaction-
preserved bottleneck block: a bottleneck block where the 3×3×3
convolution in (a) is replaced by a 1×1×1 standard convolution
and a 3×3×3 depthwise convolution (shown in dashed box). (c)
An interaction-reduced bottleneck block, a bottleneck block where
the 3×3×3 convolution in (a) is replaced with a depthwise convo-
lution (shown in dashed box). We note that channel interaction is
preserved in (b) by the 1×1×1 convolution, while (c) lost all of
the channel interaction in its 3×3×3 convolution after factoriza-
tion. Batch norm and ReLU are used after each convolution layer.
For simplicity, we omit the skip connections.

a) simple b) simple-G c) simple-D

3x3x3

3x3x3

3x3x3(gc)

3x3x3(gc)

1x1x1

3x3x3(dw)

3x3x3(dw)

Figure 3. ResNet simple block transformed by group convo-
lution. (a) Simple block: a standard ResNet simple block with
two 3×3×3 convolutional layers. (b) Simple-G block: a ResNet
simple block with two 3×3×3 group convolutional layers. (c)
Simple-D block: a ResNet simple block with two 3×3×3 depth-
wise convolutional layers with an optional 1×1×1 convolutional
layer (shown in dashed box) added when increasing number of
filters is needed. Batch norm and ReLU are used after each con-
volution layer. For simplicity, we omit the skip connections.

presents a ResNet [17] simple block consisting of two
3×3×3 convolutional layers. Figure 3(b) shows the simple-
G block, where the 3×3×3 layers now use grouped convo-
lution. Likewise, Figure 3(c) presents simple-D, with two
depthwise layers. Because depthwise convolution requires
the same number of input and output channels, we option-
ally add a 1×1×1 convolutional layer (shown in the dashed
rectangle) in blocks that change the number of channels.

Figure 4(a) presents a ResNet bottleneck block con-
sisting of two 1×1×1 and one 3×3×3 convolutional lay-
ers. Figures 4(b-c) present bottleneck-G and bottleneck-
D where the 3×3×3 convolutions are grouped and depth-
wise, respectively. If we further apply group convolution
to the two 1×1×1 convolutional layers, the block becomes

1x1x1

3x3x3

1x1x1

1x1x1(gc)

3x3x3(dw)

1x1x1(gc)

a) bottleneck

1x1x1

1x1x1

3x3x3(dw)

1x1x1

1x1x1

3x3x3(gc)

b) bottleneck-G c) bottleneck-D d) bottleneck-DG

Figure 4. ResNet bottleneck block transformed by group con-
volution. (a) A standard ResNet bottleneck block. (b) Bottleneck-
G: a ResNet bottleneck block with a 3×3×3 group convolutional
layer. (c) Bottleneck-D: a bottleneck block with a 3×3×3 depth-
wise convolution (previously named as ir-CSN, the new name of
Bottleneck-D is used here for simplicity and analogy with other
blocks). (d) Bottleneck-DG: a ResNet bottleneck block with a
3×3×3 depthwise convolution and two 1×1×1 group convolu-
tions. We note that from (a) to (d), we gradually apply group
convolution to the 3×3×3 convolutional layer and then the two
1×1×1 convolutional layers. Batch norm and ReLU are used af-
ter each convolution layer. For simplicity, in the illustration we
omit to show skip connections.

a bottleneck-DG, as illustrated in Figure 4(d). In all cases,
the 3×3×3 convolutional layers always have the same num-
ber of input and output channels.

There are some deliberate analogies to existing archi-
tectures here. First, bottleneck-G (Figure 4(b)) is exactly
a ResNeXt block [39], and bottleneck-D is its depthwise
variant. Bottleneck-DG (Figure 4(d)) resembles the Shuf-
fleNet block [42], without the channel shuffle and without
the downsampling projection by average pooling and con-
catenation. The progression from simple to simple-D is
similar to moving from ResNet to Xception (though Xcep-
tion has many more 1×1×1 convolutions). We omit certain
architecture-specific features in order to better understand
the role of grouping and channel interactions.

4. Ablation Experiment
This empirical study will allow us to cast some light

on the important factors in the performance of channel-
separated network and will lead us to two main findings:

1. We will empirically demonstrate that within the fam-
ily of architectures we consider, similar depth and sim-
ilar amount of channel interaction implies similar ac-
curacy. In particular, the interaction-preserving blocks
reduce compute significantly but preserve channel in-
teractions, with only a slight loss in accuracy for shal-
low networks and an increase in accuracy for deeper
networks.

2. In traditional 3×3×3 convolutions all feature maps in-
teract with each other. For deeper networks, we show

Figure 2.11: Standard and CSN bottleneck blocks. (a) Standard block. (b) ip-CSN

block. (c) ir-CSN block [63]

separable 3D convolution is shown in Figure 2.12.

The pioneering work in this area is Pseudo-3D Nets (P3D) [52]. The traditional 3D

bottleneck and proposed bottlenecks are shown in Figure 2.13. The performances

are relatively close to each other, but the performance of P3D-A is a little bit higher,

while it is a little bit less complex compared to others. Moreover, it is also possible

to use all of them in the same architecture by following some order. It is claimed that

using in the order of P3D-A, P3D-B, and P3D-C and again, increase the performance

a little bit more compared to using only one type.

R(2+1)D [64] is another prominent work that follows the same idea with P3D. Ad-

ditionally, R(2+1)D tries to analyze mixing 3D and 2D convolutions in the same

architectures. It has been shown that R(2+1)D shows the best performance among

all mixture variations of 3D and 2D CNN convolutions with the same number of lay-

ers. The bottleneck blocks utilized in the architecture are the same as the blocks of

P3D-A. The 3D basic block of ResNet is also modified similarly. They argue that one

of the positive aspects of separable 3D convolution is that it doubles the number of

non-linear functions for the same number of parameters, resulting in learning more

complex functions. Also, it is claimed that separable 3D convolution facilitates the

optimization of the architecture.

30

t x d x d

1 x d x d

t x 1 x 1
Mi

a) b)
Figure 2. (2+1)D vs 3D convolution. The illustration is given for
the simplified setting where the input consists of a spatiotemporal
volume with a single feature channel. (a) Full 3D convolution is
carried out using a filter of size t× d× d where t denotes the tem-
poral extent and d is the spatial width and height. (b) A (2+1)D
convolutional block splits the computation into a spatial 2D con-
volution followed by a temporal 1D convolution. We choose the
numbers of 2D filters (Mi) so that the number of parameters in our
(2+1)D block matches that of the full 3D convolutional block.

using 2D convolutions in the top layers. Since in this work
we consider 3D ResNets (R3D) having 5 groups of convo-
lutions (see Table 1), our first variant consists in replacing
all 3D convolutions in group 5 with 2D convolutions. We
denote this variant with MC5 (Mixed Convolutions). We
design a second variant that uses 2D convolutions in group
4 and 5, and name this model MC4 (meaning from group 4
and deeper layers all convolutions are 2D). Following this
pattern, we also create MC3 and MC2 variations. We omit
to consider MC1 since it is equivalent to a 2D ResNet (f-
R2D) applied to clip inputs. This type of CNN architec-
tures is illustrated in Figure 1(b). An alternative hypoth-
esis is that temporal modeling may be more beneficial in
the deep layers, with early capturing appearance informa-
tion via 2D convolutions. To account for such possibility,
we also experiment with “Reversed” Mixed Convolutions.
Following the naming convention of MC models, we de-
note these models as rMC2, rMC3, rMC4, and rMC5. Thus,
rMC3 would include 2D convolutions in block 1 and 2, and
3D convolutions in group 3 and deeper groups. This type of
CNN architecture is illustrated in Figure 1(c).

3.5. R(2+1)D: (2+1)D convolutions

Another possible theory is that full 3D convolutions may
be more conveniently approximated by a 2D convolution
followed by a 1D convolution, decomposing spatial and
temporal modeling into two separate steps. We thus design
a network architecture named R(2+1)D, where we replace
the Ni 3D convolutional filters of size Ni−1 × t × d × d
with a (2+1)D block consisting of Mi 2D convolutional fil-
ters of size Ni−1 × 1 × d × d and Ni temporal convolu-
tional filters of size Mi × t × 1 × 1. The hyperparameter
Mi determines the dimensionality of the intermediate sub-
space where the signal is projected between the spatial and

0 10 20 30 40 50
epoch

0

0.2

0.4

0.6

0.8

1

er
ro

r (
%

)

R3D-18 train
R3D-18 val
R(2+1)D-18 train
R(2+1)D-18 val

0 10 20 30 40 50
epoch

0

0.2

0.4

0.6

0.8

1

er
ro

r (
%

)

R3D-34 train
R3D-34 val
R(2+1)D-34 train
R(2+1)D-34 val

Figure 3. Training and testing errors for R(2+1)D and R3D.
Results are reported for ResNets of 18 layers (left) and 34 layers
(right). It can be observed that the training error (thin lines) is
smaller for R(2+1)D compared to R3D, particularly for the net-
work with larger depth (right). This suggests that the the spatial-
temporal decomposition implemented by R(2+1)D eases the opti-
mization, especially as depth is increased.

the temporal convolutions. We choose Mi = b td2Ni−1Ni

d2Ni−1+tNi
c

so that the number of parameters in the (2+1)D block is
approximately equal to that implementing full 3D convolu-
tion. We note that this spatiotemporal decomposition can
be applied to any 3D convolutional layer. An illustration
of this decomposition is given in Figure 2 for the simplified
setting where the input tensor zi−1 contains a single channel
(i.e., Ni−1 = 1). If the 3D convolution has spatial or tem-
poral striding (implementing downsampling), the striding is
correspondingly decomposed into its spatial or temporal di-
mensions. This architecture is illustrated in Figure 1(e).

Compared to full 3D convolution, our (2+1)D decom-
position offers two advantages. First, despite not changing
the number of parameters, it doubles the number of nonlin-
earities in the network due to the additional ReLU between
the 2D and 1D convolution in each block. Increasing the
number of nonlinearities increases the complexity of func-
tions that can be represented, as also noted in VGG net-
works [30] which approximate the effect of a big filter by
applying multiple smaller filters with additional nonlinear-
ities in between. The second benefit is that forcing the 3D
convolution into separate spatial and temporal components
renders the optimization easier. This is manifested in lower
training error compared to 3D convolutional networks of the
same capacity. This is illustrated in Figure 3 which shows
training and testing errors for R3D and R(2+1)D having 18
(left) and 34 (right) layers. It can be seen that, for the same
number of layers (and parameters), R(2+1)D yields not only
lower testing error but also lower training error compared to
R3D. This is an indication that optimization becomes easier
when spatiotemporal filters are factorized. The gap in the
training losses is particularly large for the nets having 34
layers, which suggests that the facilitation in optimization
increases as the depth becomes larger.

We note that our factorization is closely related to
Pseudo-3D blocks (P3D) [25], which were proposed to
adapt the bottleneck block of R2D to video classification.
Three different pseudo-3D blocks were introduced: P3D-A,

Figure 2.12: (a) Conventional 3D convolution. (b) Separable 3D Convolution [64]

+

1x1 conv

1x1 conv

3x3 conv

ReLU

ReLU

ReLU

(a) Residual Unit [7]

+

1x1x1 conv

1x1x1 conv

1x3x3 conv

ReLU

ReLU

3x1x1 conv

ReLU

ReLU

(b) P3D-A

+

1x1x1 conv

1x1x1 conv

ReLU

ReLU

1x3x3 conv 3x1x1 conv

+
ReLU

ReLU

(c) P3D-B

+

1x1x1 conv

1x1x1 conv

1x3x3 conv

ReLU

ReLU

3x1x1 conv

ReLU
+

ReLU

(d) P3D-C

Figure 3. Bottleneck building blocks of Residual Unit and our Pseudo-3D.

shortcut connection from S to the final output, making the

output xt+1 as

(I+ S+T · S) ·xt := xt +S (xt) +T (S (xt)) = xt+1. (5)

Bottleneck architectures. When specifying the archi-

tecture of 2D Residual Unit, the basic 2D block is modified

with a bottleneck design for reducing the computation com-

plexity. In particular, as shown in Figure 3(a), instead of a

single spatial 2D filters (3 × 3 convolutions), the Residual

Unit adopts a stack of 3 layers including 1 × 1, 3 × 3, and

1×1 convolutions, where the first and last 1×1 convolution-

al layers are applied for reducing and restoring dimensions

of input sample, respectively. Such bottleneck design makes

the middle 3 × 3 convolutions as a bottleneck with smaller

input and output dimensions. Thus, we follow this elegan-

t recipe and utilize the bottleneck design to implement our

proposed P3D blocks. Similar in spirit, for each P3D block

which purely consists of one spatial 2D filters (1 × 3 × 3
convolutions) and one temporal 1D filters (3× 1× 1 convo-

lutions), we additionally place two 1 × 1 × 1 convolutions

at both ends of the path, which are responsible for reduc-

ing and then increasing the dimensions. Accordingly, the

dimensions of the input and output of both the spatial 2D

and temporal 1D filters are reduced with this bottleneck de-

sign. The detailed bottleneck building architectures on all

the three P3D blocks are illustrated in Figure 3(b) to 3(d).

3.3. Pseudo3D ResNet

In order to verify the merit of the three P3D blocks,

we first develop three P3D ResNet variants, i.e., P3D-A

ResNet, P3D-B ResNet and P3D-C ResNet by replacing

all the Residual Units in a 50-layer ResNet (ResNet-50)

[7] with one certain kind of P3D block, respectively. The

comparisons of performance and time efficiency between

the basic ResNet-50 and the three P3D ResNet variants are

presented. Then, a complete version of P3D ResNet is pro-

posed by mixing all the three P3D blocks from the view-

point of structural diversity.

Table 1. Comparisons of ResNet-50 and different Pseudo-3D

ResNet variants in terms of model size, speed, and accuracy on

UCF101 (split1). The speed is reported on one NVidia K40 GPU.

Method Model size Speed Accuracy

ResNet-50 92MB 15.0 frame/s 80.8%

P3D-A ResNet 98MB 9.0 clip/s 83.7%

P3D-B ResNet 98MB 8.8 clip/s 82.8%

P3D-C ResNet 98MB 8.6 clip/s 83.0%

P3D ResNet 98MB 8.8 clip/s 84.2%

Comparisons between P3D ResNet variants. The

comparisons are conducted on UCF101 [27] video ac-

tion recognition dataset. Specifically, the architecture of

ResNet-50 is fine-tuned on UCF101 video data. We set the

input as 224× 224 image which is randomly cropped from

the resized 240 × 320 video frame. Moreover, following

[36], we freeze the parameters of all Batch Normalization

layers except for the first one and add an extra dropout lay-

er with 0.9 dropout rate to reduce the effect of over-fitting.

After fine-tuning ResNet-50, the networks will predict one

score for each frame and the video-level prediction score

is calculated by averaging all frame-level scores. The ar-

chitectures of three P3D ResNet variants are all initialized

with ResNet-50 except for the additional temporal convo-

lutions and are further fine-tuned on UCF101. For each

P3D ResNet variant, the dimension of input video clip is

set as 16 × 160 × 160 which is randomly cropped from

the resized non-overlapped 16-frame clip with the size of

16 × 182 × 242. Each frame/clip is randomly horizontally

flipped for data augmentation. In the training stage, we set

each mini-batch as 128 frames/clips, which are implement-

ed with multiple GPUs in parallel. The network parameters

are optimized by standard SGD and the initial learning rate

is set as 0.001, which is divided by 10 after every 3K itera-

tions. The training is stopped after 7.5K iterations.

Table 1 shows the performance and time efficiency of

ResNet-50 and our Pseudo-3D ResNet variants on UCF101.

Overall, all the three P3D ResNet variants (i.e., P3D-A

ResNet, P3D-B ResNet and P3D-C ResNet) exhibit better

performance than ResNet-50 with only a small increase in

5536

Figure 2.13: Proposed alternative separable 3D convolutional bottleneck blocks [52].

A quite similar idea is implemented in S3D architecture [76] which is the implemen-

tation of separable 3D convolution on I3D architecture.

In order to give more detail about the architecture of R(2+1)D [64], the classical

spatio-temporal 3D convolution which has a filter size of 3x3x3 is converted into sep-

arable 3D convolution which consists of spatial convolution which has a filter size of

1x3x3 and temporal convolution which has a filter size of 3x1x1, respectively. In the

utilization of this separable convolution, there is also a hyperparameter, namely the

number of mid-plane channels, which is the number of channels between the spatial

and temporal filters in separable 3D convolution. The number of mid-plane channels

31

in this architecture is determined in a way that the number of learnable parameters

will be the same between the spatio-temporal 3D convolution and separable 3D con-

volution. The number of parameters in classical 3D convolution is IxOx3x3x3 and

the number of parameters in separable 3D convolution is IxMx3x3 +Mx3xO, where

I is the number of input channels, O is the number of output channels, and M is the

number of mid-plane channels. Therefore, M is set to IxOx3x3x3
Ix3x3+3xO in order to equal

the number of parameters between classical and separable 3D convolution. Besides,

at the beginning of the R(2+1)D architecture, 45 2D filters of size 1x7x7 and 64 1D

filters of size 3x1x1 are applied instead of utilizing 64 3D filters of size 3x7x7, both

implementations have an equal number of parameters. However, it should be noted

that some 3D ResNet architectures in the literature apply 64 3D filters of size 5x7x7

and 7x7x7 at the beginning of the architecture.

2.2.5 Non-local Neural Networks [72]

Convolution operations are applied within the local neighborhoods of the architec-

tures. For capturing the long range dependencies, convolutions are applied hierarchi-

cally with stride and max pooling to capture long range dependencies layer-by-layer.

A non-local operation concept is proposed [72] in order to capture long range depen-

dencies directly within the layer. One possible advantage of using non-local is that

the long-range relationship is created without losing the spatial context and detail as

in CNN architectures. The non-local means concept is a traditional algorithm that re-

lates all the pixels of an image to each other with some weighting. On the other hand,

non-local neural networks aim the same on features instead of pixels and without a

huge complexity. It should also be denoted that non-local concept is directly related

with the attention concept.

The main idea behind the non-local concept can be explained by Equation 4.1. The

general structure of a non-local block is showed in Figure 2.14. In the figure, T , H ,

W denote the dimension of spatio-temporal feature and are time, height, and width,

respectively. 1024 in the figure is to denote the number of channels. This is given

as an example, therefore 1024 may change depending on the layer on which a non-

local block is implemented. With the help of θ(·) and φ(·) functions, the similarity is

32

i is often based only on the current and the latest time steps
(e.g., j = i or i− 1).

The non-local operation is also different from a fully-
connected (fc) layer. Eq.(1) computes responses based on
relationships between different locations, whereas fc uses
learned weights. In other words, the relationship between xj
and xi is not a function of the input data in fc, unlike in non-
local layers. Furthermore, our formulation in Eq.(1) supports
inputs of variable sizes, and maintains the corresponding
size in the output. On the contrary, an fc layer requires a
fixed-size input/output and loses positional correspondence
(e.g., that from xi to yi at the position i).

A non-local operation is a flexible building block and can
be easily used together with convolutional/recurrent layers.
It can be added into the earlier part of deep neural networks,
unlike fc layers that are often used in the end. This allows us
to build a richer hierarchy that combines both non-local and
local information.

3.2. Instantiations
Next we describe several versions of f and g. Interest-

ingly, we will show by experiments (Table 2a) that our non-
local models are not sensitive to these choices, indicating
that the generic non-local behavior is the main reason for the
observed improvements.

For simplicity, we only consider g in the form of a linear
embedding: g(xj) = Wgxj , where Wg is a weight matrix
to be learned. This is implemented as, e.g., 1×1 convolution
in space or 1×1×1 convolution in spacetime.

Next we discuss choices for the pairwise function f .

Gaussian. Following the non-local mean [4] and bilateral
filters [47], a natural choice of f is the Gaussian function. In
this paper we consider:

f(xi,xj) = ex
T
i xj . (2)

Here xTi xj is dot-product similarity. Euclidean distance as
used in [4, 47] is also applicable, but dot product is more
implementation-friendly in modern deep learning platforms.
The normalization factor is set as C(x) =

∑
∀j f(xi,xj).

Embedded Gaussian. A simple extension of the Gaussian
function is to compute similarity in an embedding space. In
this paper we consider:

f(xi,xj) = eθ(xi)
Tφ(xj). (3)

Here θ(xi) = Wθxi and φ(xj) = Wφxj are two embed-
dings. As above, we set C(x) =

∑
∀j f(xi,xj).

We note that the self-attention module [49] recently pre-
sented for machine translation is a special case of non-local
operations in the embedded Gaussian version. This can be
seen from the fact that for a given i, 1

C(x)f(xi,xj) becomes
the softmax computation along the dimension j. So we have

θ: 1×1×1 φ: 1×1×1 g: 1×1×1

1×1×1

softmax

z

T×H×W×1024

T×H×W×512 T×H×W×512 T×H×W×512

THW×512 512×THW

THW×THW

THW×512

THW×512

T×H×W×512

T×H×W×1024

x
Figure 2. A spacetime non-local block. The feature maps are
shown as the shape of their tensors, e.g., T×H×W×1024 for
1024 channels (proper reshaping is performed when noted). “⊗”
denotes matrix multiplication, and “⊕” denotes element-wise sum.
The softmax operation is performed on each row. The blue boxes de-
note 1×1×1 convolutions. Here we show the embedded Gaussian
version, with a bottleneck of 512 channels. The vanilla Gaussian
version can be done by removing θ and φ, and the dot-product
version can be done by replacing softmax with scaling by 1/N .

y = softmax(xTWT
θ Wφx)g(x), which is the self-attention

form in [49]. As such, our work provides insight by relating
this recent self-attention model to the classic computer vision
method of non-local means [4], and extends the sequential
self-attention network in [49] to a generic space/spacetime
non-local network for image/video recognition in computer
vision.

Despite the relation to [49], we show that the attentional
behavior (due to softmax) is not essential in the applications
we study. To show this, we describe two alternative versions
of non-local operations next.

Dot product. f can be defined as a dot-product similarity:

f(xi,xj) = θ(xi)
Tφ(xj). (4)

Here we adopt the embedded version. In this case, we set the
normalization factor as C(x) = N , whereN is the number of
positions in x, rather than the sum of f , because it simplifies
gradient computation. A normalization like this is necessary
because the input can have variable size.

The main difference between the dot product and embed-
ded Gaussian versions is the presence of softmax, which
plays the role of an activation function.

Concatenation. Concatenation is used by the pairwise func-
tion in Relation Networks [40] for visual reasoning. We also
evaluate a concatenation form of f :

f(xi,xj) = ReLU(wT
f [θ(xi), φ(xj)]). (5)

Here [·, ·] denotes concatenation and wf is a weight vector
that projects the concatenated vector to a scalar. As above,
we set C(x) = N . In this case, we adopt ReLU [35] in f .

Figure 2.14: Non-local block [72]

calculated for every possible spatio-temporal positions of X. These can be thought of

as the relation of every position with the other all positions in spatio-temporal domain.

Then, with the g(·) function, the features created across the channel dimension is

moved to another domain that the aggregation of g(X) accordingly with the calculated

relation parameters yields good representations for every location in features space.

The reason for the reduction of 1024 to 512 in the example of Figure 2.14 is due to

the aim of the reduction of complexity of the architecture. It should be denoted that

the output of a non-local block is added to the input. Therefore, this approach enables

the utilization of pre-trained weights of any architecture.

When the architecture [72] is inspected, the authors implement non-local blocks in

the second and third bottleneck groups (this is also called as layers in ResNet ar-

chitectures). It should be noted that ResNet architectures have 4 bottleneck groups.

For example, ResNet50 architectures consist of 3,4,6 and 3 bottleneck blocks for the

bottleneck groups of 1,2,3 and 4, respectively. Moreover, in the bottleneck groups,

33

non-local blocks are not applied to all bottlenecks. Instead, odd numbers in the or-

der are applied. For example, in the second bottleneck group which has 4 bottleneck

blocks, the first and third one contains the non-local block.

The PyTorch implementation1 of Non-Local ResNet50 architecture includes some

modification with respect to the original ResNet architectures. Firstly, the bottleneck

blocks which is originally implemented as 1x1x1, 3x3x3, and 1x1x1 is implemented

as (3x1x1 or 1x1x1), 1x3x3, and 1x1x1, respectively (See Figure 2.15). The selection

of bottleneck block types which are modified block-1 or modified block-2 (see Fig-

ure 2.15 for these types) is determined according to the block position in bottleneck

group and these two types are used alternatively in specific group, one by one. As

an exception to the first bottleneck group, all bottleneck blocks are modified block-2.

Moreover, contrary to the traditional ResNet architectures [24], temporal stride is not

implemented in the second, third, and fourth bottleneck groups. In this way, the aim

can be preserving the temporal information throughout the CNN layers. The temporal

size reduction is eight at the end of the architecture, which is 16 in ResNets of [24].

The filter size of the first convolutional layer is 5x7x7, which is 7x7x7 in ResNets of

[24].

In this thesis, this explained architecture is denoted as "Modified ResNet50" and is

analyzed in Chapter 3. Additionally, for φ(·) and g(·) functions, max-pooling applied

to the spatial domain (H and W) contrary the information given in Figure 2.14. The

aim is to reduce the computational cost of the architecture.

2.2.6 SlowFast Networks [16]

SlowFast Networks [16] is a different perspective to the two-stream architectures.

Instead of utilizing a two-stream or two-path structure for different modalities, Slow-

Fast utilizes two-stream for a single modality and these two streams are not identical

to each other (See Figure 2.16). As easily realizable from the architecture title, there

are both slow and fast streams of pathways. The slow stream operates at a low frame

rate and focuses on spatial information, such as RGB stream in traditional two-stream

architectures, while the fast stream operates at a high frame rate and focuses on tem-
1 github.com/Tushar-N/pytorch-resnet3d

34

https://github.com/Tushar-N/pytorch-resnet3d

Figure 2.15: The modified blocks of the utilized ResNet architecture of non-local pa-

per. Traditional block (Left), modified block-1 (Middle) and modified block-2 (Right)

SlowFast Networks for Video Recognition

Christoph Feichtenhofer Haoqi Fan Jitendra Malik Kaiming He

Facebook AI Research (FAIR)

Abstract

We present SlowFast networks for video recognition. Our
model involves (i) a Slow pathway, operating at low frame
rate, to capture spatial semantics, and (ii) a Fast path-
way, operating at high frame rate, to capture motion at
fine temporal resolution. The Fast pathway can be made
very lightweight by reducing its channel capacity, yet can
learn useful temporal information for video recognition.
Our models achieve strong performance for both action
classification and detection in video, and large improve-
ments are pin-pointed as contributions by our SlowFast con-
cept. We report state-of-the-art accuracy on major video
recognition benchmarks, Kinetics, Charades and AVA. Code
has been made available at: https://github.com/
facebookresearch/SlowFast.

1. Introduction
It is customary in the recognition of images I(x, y) to

treat the two spatial dimensions x and y symmetrically. This
is justified by the statistics of natural images, which are to
a first approximation isotropic—all orientations are equally
likely—and shift-invariant [41, 26]. But what about video
signals I(x, y, t)? Motion is the spatiotemporal counterpart
of orientation [2], but all spatiotemporal orientations are
not equally likely. Slow motions are more likely than fast
motions (indeed most of the world we see is at rest at a given
moment) and this has been exploited in Bayesian accounts of
how humans perceive motion stimuli [58]. For example, if
we see a moving edge in isolation, we perceive it as moving
perpendicular to itself, even though in principle it could
also have an arbitrary component of movement tangential to
itself (the aperture problem in optical flow). This percept is
rational if the prior favors slow movements.

If all spatiotemporal orientations are not equally likely,
then there is no reason for us to treat space and time sym-
metrically, as is implicit in approaches to video recognition
based on spatiotemporal convolutions [49, 5]. We might
instead “factor” the architecture to treat spatial structures
and temporal events separately. For concreteness, let us
study this in the context of recognition. The categorical
spatial semantics of the visual content often evolve slowly.

T

C

H,W

prediction

High frame rate

C

αT

C
C

αT
αT βC

βC

βC

T
T

T
Low frame rate

Figure 1. A SlowFast network has a low frame rate, low temporal
resolution Slow pathway and a high frame rate, α× higher temporal
resolution Fast pathway. The Fast pathway is lightweight by using
a fraction (β, e.g., 1/8) of channels. Lateral connections fuse them.

For example, waving hands do not change their identity as
“hands” over the span of the waving action, and a person
is always in the “person” category even though he/she can
transit from walking to running. So the recognition of the cat-
egorical semantics (as well as their colors, textures, lighting
etc.) can be refreshed relatively slowly. On the other hand,
the motion being performed can evolve much faster than
their subject identities, such as clapping, waving, shaking,
walking, or jumping. It can be desired to use fast refreshing
frames (high temporal resolution) to effectively model the
potentially fast changing motion.

Based on this intuition, we present a two-pathway
SlowFast model for video recognition (Fig. 1). One path-
way is designed to capture semantic information that can be
given by images or a few sparse frames, and it operates at
low frame rates and slow refreshing speed. In contrast, the
other pathway is responsible for capturing rapidly changing
motion, by operating at fast refreshing speed and high tem-
poral resolution. Despite its high temporal rate, this pathway
is made very lightweight, e.g., ∼20% of total computation.
This is because this pathway is designed to have fewer chan-
nels and weaker ability to process spatial information, while
such information can be provided by the first pathway in a
less redundant manner. We call the first a Slow pathway and
the second a Fast pathway, driven by their different temporal
speeds. The two pathways are fused by lateral connections.

ar
X

iv
:1

81
2.

03
98

2v
3

 [
cs

.C
V

]
 2

9
O

ct
 2

01
9

Figure 2.16: The Slowfast Network Architecture [16]

35

poral information as an optical flow stream in traditional two-stream architectures.

Conceptually, when a person waves or shakes a hand, the spatial information does

not vary much; in other words, the hand is still mostly the same appearance and

its properties (color, textural, brightness) evolve slowly in the time. On the other

hand, the movement of the hand is also quite fast. Due to this fact, the fast stream

does not focus on spatial information very much, the channel capacity can be less,

therefore does not require temporal pooling in order to decrease the computational

complexity. In other words, there is a trade-off between higher channel capacity and

higher temporal resolution throughout the architecture, and preference is given to

higher channel capacity in the slow pathway, and higher temporal resolution in the

fast pathway.

It should also be noted that SlowFast architecture shares some similarities with the

retinal ganglion cells in the primary visual cortex. The studies claim that about 80

% of these cells are Parvocellular (P-type) and 15-20 % are Magnocellular (M-type).

P-cells provide fine spatial detail and color but have a slow response ability to stimuli.

On the other hand, M-cells can respond in a faster manner but have a lower spatial

ability. The analogy with the architecture is that the channel capacity is more on the

slow pathway as the ratio of P-cells is much higher. As M-cell, the fast pathway has

a faster response ability but has a low spatial ability, and as P-cells, the slow pathway

has a slower response ability but has a better spatial ability.

Some of the hyperparameters of SlowFast architecture can be analyzed in Figure 2.16.

As seen from the figure, the fast pathway has a lower channel capacity, such that β

times of the channel capacity of the slow pathway. However, it has a higher temporal

resolution, such that α times of the temporal resolution of the slow pathway. There

are also lateral connections between the architecture which flows information from

the fast stream to the slow stream. The typical α and β values utilized in SlowFast

architectures are 4 or 8 for α, and 1
8

for β.

The architecture utilized for the implementation of the SlowFast network is ResNet

architecture. The details of an example SlowFast architecture with ResNet-50 is

shown in Figure 2.17. As it can be observed in the figure, the slow stream is the

same with the traditional ResNet architecture, such that the number of channels is set

36

High temporal resolution features. Our Fast pathway not
only has a high input resolution, but also pursues high-
resolution features throughout the network hierarchy. In
our instantiations, we use no temporal downsampling lay-
ers (neither temporal pooling nor time-strided convolutions)
throughout the Fast pathway, until the global pooling layer
before classification. As such, our feature tensors always
have αT frames along the temporal dimension, maintaining
temporal fidelity as much as possible.

Low channel capacity. Our Fast pathway also distin-
guishes with existing models in that it can use significantly
lower channel capacity to achieve good accuracy for the
SlowFast model. This makes it lightweight.

In a nutshell, our Fast pathway is a convolutional network
analogous to the Slow pathway, but has a ratio of β (β < 1)
channels of the Slow pathway. The typical value is β = 1/8
in our experiments. Notice that the computation (floating-
number operations, or FLOPs) of a common layer is often
quadratic in term of its channel scaling ratio. This is what
makes the Fast pathway more computation-effective than
the Slow pathway. In our instantiations, the Fast pathway
typically takes ∼20% of the total computation. Interestingly,
as mentioned in Sec. 1, evidence suggests that ∼15-20% of
the retinal cells in the primate visual system are M-cells (that
are sensitive to fast motion but not color or spatial detail).

The low channel capacity can also be interpreted as a
weaker ability of representing spatial semantics. Technically,
our Fast pathway has no special treatment on the spatial
dimension, so its spatial modeling capacity should be lower
than the Slow pathway because of fewer channels. The good
results of our model suggest that it is a desired tradeoff for
the Fast pathway to weaken its spatial modeling ability while
strengthening its temporal modeling ability.

Motivated by this interpretation, we also explore different
ways of weakening spatial capacity in the Fast pathway, in-
cluding reducing input spatial resolution and removing color
information. As we will show by experiments, these versions
can all give good accuracy, suggesting that a lightweight Fast
pathway with less spatial capacity can be made beneficial.

3.3. Lateral connections

The information of the two pathways is fused, so one
pathway is not unaware of the representation learned by the
other pathway. We implement this by lateral connections,
which have been used to fuse optical flow-based, two-stream
networks [12, 13]. In image object detection, lateral con-
nections [35] are a popular technique for merging different
levels of spatial resolution and semantics.

Similar to [12, 35], we attach one lateral connection be-
tween the two pathways for every “stage" (Fig. 1). Specif-
ically for ResNets [24], these connections are right after
pool1, res2, res3, and res4. The two pathways have different
temporal dimensions, so the lateral connections perform a

stage Slow pathway Fast pathway output sizes T×S2

raw clip - - 64×2242

data layer stride 16, 12 stride 2, 12 Slow : 4×2242

Fast : 32×2242

conv1
1×72, 64 5×72, 8 Slow : 4×1122

Fast : 32×1122stride 1, 22 stride 1, 22

pool1
1×32 max 1×32 max Slow : 4×562

Fast : 32×562stride 1, 22 stride 1, 22

res2

 1×12, 64
1×32, 64
1×12, 256

×3

 3×12, 8
1×32, 8
1×12, 32

×3 Slow : 4×562

Fast : 32×562

res3

 1×12, 128
1×32, 128
1×12, 512

×4

 3×12, 16
1×32, 16
1×12, 64

×4 Slow : 4×282

Fast : 32×282

res4

 3×12, 256
1×32, 256

1×12, 1024

×6

 3×12, 32
1×32, 32

1×12, 128

×6 Slow : 4×142

Fast : 32×142

res5

 3×12, 512
1×32, 512

1×12, 2048

×3

 3×12, 64
1×32, 64

1×12, 256

×3 Slow : 4×72

Fast : 32×72

global average pool, concate, fc # classes

Table 1. An example instantiation of the SlowFast network. The
dimensions of kernels are denoted by {T×S2, C} for temporal,
spatial, and channel sizes. Strides are denoted as {temporal stride,
spatial stride2}. Here the speed ratio is α = 8 and the channel
ratio is β = 1/8. τ is 16. The green colors mark higher temporal
resolution, and orange colors mark fewer channels, for the Fast
pathway. Non-degenerate temporal filters are underlined. Residual
blocks are shown by brackets. The backbone is ResNet-50.

transformation to match them (detailed in Sec. 3.4). We
use unidirectional connections that fuse features of the Fast
pathway into the Slow one (Fig. 1). We have experimented
with bidirectional fusion and found similar results.

Finally, a global average pooling is performed on each
pathway’s output. Then two pooled feature vectors are con-
catenated as the input to the fully-connected classifier layer.

3.4. Instantiations

Our idea of SlowFast is generic, and it can be instanti-
ated with different backbones (e.g., [45, 47, 24]) and im-
plementation specifics. In this subsection, we describe our
instantiations of the network architectures.

An example SlowFast model is specified in Table 1. We
denote spatiotemporal size by T×S2 where T is the tempo-
ral length and S is the height and width of a square spatial
crop. The details are described next.

Slow pathway. The Slow pathway in Table 1 is a temporally
strided 3D ResNet, modified from [12]. It has T = 4 frames
as the network input, sparsely sampled from a 64-frame raw
clip with a temporal stride τ = 16. We opt to not perform
temporal downsampling in this instantiation, as doing so
would be detrimental when the input stride is large.

Unlike typical C3D / I3D models, we use non-degenerate
temporal convolutions (temporal kernel size > 1, underlined
in Table 1) only in res4 and res5; all filters from conv1 to
res3 are essentially 2D convolution kernels in this pathway.

Figure 2.17: The details of the SlowFast-50 with α = 8 and β = 1
8

[16]

to 64, 128, 256, and 512 at the beginning of the bottleneck blocks for the first, sec-

ond, third and fourth bottleneck groups in ResNet architecture, respectively and the

bottleneck expansion is set to 4. However, for the fast stream, the number of channels

is reduced β times, such that are these are 8, 16, 32, and 64 for β = 1
8
. Generally, for

the SlowFast architectures, 32 frames with stride 2 are selected for the fast pathway,

as in the implementation of non-local paper (See Section 2.2.5). The information

about the lateral connections that fuse the information from the fast pathway to the

slow pathway is not shown in Figure 2.17. The lateral connections are applied before

every bottleneck group, namely res2, res3, res4, and res5 in Figure 2.17. In the lat-

eral connections, the output of the fast stream is applied to another 3D convolution.

For the 3D convolutions in lateral connections, there is also another parameter, called

fusion convolutional channel ratio (FCCR). This parameter increases the channel

capacity of the features of the fast stream before fusion. Therefore, the additional

channel information fused to the slow pathway is the βxFCCR times the number of

37

channels existing in the slow stream. Hence, the starting number of channels of first

bottleneck blocks of the bottleneck groups (res2, res3, res4, and res5) are 80, 160, 320

and 640 instead of 64, 128, 256 and 512 for β = 1
8

and FCCR = 2.

2.2.7 Motion-Augmented RGB Stream Networks (MARS) [8]

For AR tasks, the combination of the information from RGB and optical flow is quit

beneficial in increasing the accuracy of the architectures. These architectures are

known as two-stream architectures. However, extracting accurate optical flow vectors

from the RGB input is an expensive process, resulting in a significant increase in the

computational complexity of the architectures, limiting the utilization of two-stream

architectures in real-life scenarios. During recent years, the researchers in this field

put an effort to obtain the performance of the two-stream architectures without the

need for the optical flow pre-processing.

Another brilliant idea for the aim of obtaining the performance of two-stream ar-

chitectures without the additional complexity of optical flow calculation is Motion-

Augmented RGB Stream Networks (MARS) [8]. The idea is related to the distillation

concept in the related literature. Distillation denotes transferring the knowledge from

a teacher network to a student network and it is first proposed by [27]. In this network,

a student network is trained not only with the cross-entropy loss of the hard labels but

also the cross-entropy loss with the soft labels of the teacher network which is pre-

trained on the same task. In addition, some of the performance improvement brought

by ensemble learning is partially obtained by the distillation of ensemble architecture

to single architecture. Another form of distillation is the transfer of privilege informa-

tion [42]. The utilization of privileged information depends on the idea that student

and teacher architectures have different inputs but have the same purpose. By using

this methodology, the regularization or another perspective from the teacher architec-

ture to the problem might increase the performance of the student architecture.

In MARS, teacher architecture is the one that gets optical flow images, and student

architecture is the one that gets RGB images. The aim in the distillation of MARS

is to transfer the information from the flow architecture to the RGB architecture. In

this setting, optical flow is the privilege information; however, it should be denoted

38

that the distillation is not implemented in the level of soft classification labels but

in the level of the output features of the backbone. The final aim is obtaining the

performance of flow architecture without the complexity of the extraction of optical

flow inputs.

For distillation, there are also two types of implementation. The first one is Motion-

Emulated RGB Stream (MERS) in which there is only MSE error between the ex-

tracted features of flow and RGB architectures. In MARS, additional classification

loss from the RGB architecture is also backpropagated. The general loss function of

the method can be defined as:

Loss = CrossEntropy(sRGB, y) + λ||(fRGB − fflow)||2, (2.2)

where fRGB and fflow are the final outputs of the RGB and flow architectures, F (·)
and G(·), respectively, for a given input image x. sRGB is the predicted classification

of the RGB architecture, which can be defined as:

sRGB = arg max C(F (x)) = arg max C(fRGB), (2.3)

where C(.) is the classification function from the features. Larger α values drive

the architecture to MERS, while smaller one makes it more MARS type. For the

selection of the architecture, ResNeXt101 is chosen as the base architecture which is

also utilized in [24] (See Section 2.2.3.2).

2.2.8 Multi-Fiber Networks for Video Recognition[6]

Multi-Fiber Networks (MFNET) [6] are proposed in order to reduce the number of

parameters and the number of operations in the bottleneck blocks of the ResNet ar-

chitectures. The idea of MFNET depends on the idea of group convolution which is

used in ResNeXt [75] and Mobile Networks [28]. In Mobile Networks, the cardinality

(group number) is equal to the number of input channels, namely depth-wise sepa-

rable convolution. However, the authors of MFNET claims that despite the group

convolution, the most of the architecture is not sliced (meaning not grouped) and

dominates the computational cost.

In order to understand the advantage of group convolution better, consider the Figure

2.18a and Figure 2.18c which are basic block and multi-fiber block. Assume that

39

4 Y. Chen, Y. Kalantidis, J. Li, S. Yan and J. Feng

3 × 3

3 × 3

3 × 3

3 × 3

3 × 3

3 × 3

Fiber 1 Fiber 2 Fiber 3 Fiber 1 Fiber 2 Fiber 3

Multiplexer

1 × 1

1 × 1

(a) (b) (c) (d)

3 × 3 Conv

3 × 3 Conv

Min

Mout

Mmid 3 × 3

3 × 3

3 × 3

3 × 3

3 × 3

3 × 3

Multiplexer

3 × 3 3 × 3 3 × 3

1 × 1

1 × 1

(e)

Fig. 1. From ResNet to multi-fiber. (a) A residual unit with two 3 × 3 convolution
layers. (b) Conventional Multi-Path design, e.g. ResNeXt [28]. (c) The proposed multi-
fiber design consisting of multiple separated lightweight residual units, called fibers. (d)
The proposed multi-fiber architecture with a multiplexer for transferring information
across separated fibers. (e) The architecture details of a multiplexer. It consists of
two linear projection layers, one for dimension reduction and the other for dimension
expansion.

3 Multi-Fiber Networks

The success of models that utilize spatio-temporal convolutions [7,1,2,8,9] sug-
gests that it is crucial to have kernels spanning both the spatial and temporal
dimensions. Spatio-temporal reasoning, however, comes at a cost: Both the con-
volutional kernels and the input-output tensors are multiple times larger.

In this section, we start by describing the basic module of our proposed
model, i.e., the multi-fiber unit. This unit can effectively reduce the number of
connections within the network and enhance the model efficiency. It is generic
and compatible with both 2D and 3D CNNs. For clearer illustration, we first
demonstrate its effectiveness by embedding it into 2D convolutional architec-
tures and evaluating its efficiency benefits for image recognition tasks. We then
introduce its spatio-temporal 3D counterpart and discuss specific design choices
for video recognition tasks.

3.1 The Multi-fiber Unit

The proposed multi-fiber unit is based on the highly modularized residual unit [3],
which is easy to train and deploy. As shown in Figure 1(a), the conventional resid-
ual unit uses two convolutional layers to learn features, which is straightforward
but computationally expensive. To see this, let Min denote the number of in-
put channels, Mmid denote the number of middle channels, and Mout denote the
number of output channels. Then the total number of connections between these
two layers can be computed as

Connections = Min ×Mmid + Mmid ×Mout. (1)

Figure 2.18: Possible bottleneck blocks implementations to ResNet architecture. (a)

Basic Block. (b) Bottleneck block of ResNeXt atchitecture. (c) Multi-Fiber architec-

ture. (d) Multi-fiber with multiplexer. (e) Multiplexer

the number of input channels to the first convolution is Min, the number of output

channels of the first convolution, and the number of input channels to the second

convolution is Mmid and the number of output channels of the second convolution is

Mout. The complexity of basic block can be written as K (MinxMmid +MmidxMout)

whereK is constant related with the size of filter and the input tensor. However, when

the group convolution concept is applied as in multi-fiber networks, the complexity is

KxN(Min

N
xMmid

N
+ Mmid

N
xMout

N
) which indicates that group convolution has N times

less complexity whereN is the number of groups, cardinality or branch. However, the

utilization of group convolution without creating a relationship between the channels

possibly reduces the performance because preserving the complete channel interac-

tion is also significant. With the aim of complete channel interaction, a new module

namely multiplexer is added as in Figure 2.18d and this multiplexer module is demon-

strated in 2.18e. The reason to use two convolutional operations instead of one is to

reduce the complexity cost. When the number of channels between the two 1x1 con-

volutions is reduced by k, the computational gain is k
2
.

For the 3D implementation of MFNET, original ResNet34 is modified in a way that

the number of channels is changed. In the first convolution layer of MFNET, the

preferred number of channels is reduced from 64 to 16 in order to reduce the com-

putational complexity and the number of parameters because in the first layer the

image resolution is quite high. Different from 3D ResNets implemented in [24], the

temporal stride is implemented only one time at the beginning of the first bottleneck

40

8 Y. Chen, Y. Kalantidis, J. Li, S. Yan and J. Feng

(a) 3D Multi-fiber Network (b) 3D Multi-fiber Unit

Multiplexer

1 × 1× 1

1 × 1× 1

...

...

Previous Unit

3 × 3× 3

1 × 3× 3

Fiber 1

3 × 3× 3

1 × 3× 3

Fiber 2

3 × 3× 3

1 × 3× 3

Fiber N

...

Multiplexer

...

Next Unit

Video Conv 3×5×5
stride (1,2,2)

Pool 1×3×3
stride (1,2,2)

3D Multi-
Fiber Unit

stride (2,1,1)

3D Multi-
Fiber Unit

3D Multi-
Fiber Unit

stride (1,2,2)

Global Pool
(average)

3D Multi-
Fiber Unit

3D Multi-
Fiber Unit

stride (1,2,2)

3D Multi-
Fiber Unit

3D Multi-
Fiber Unit

FC Layer
(classifier)

3D Multi-
Fiber Unit

stride (1,2,2)

× 2

× 3× 5

× 2

Prediction

Fig. 3. Architecture of 3D multi-fiber network. (a) The overall architecture of 3D Multi-
fiber Network. (b) The internal structure of each Multi-fiber Unit. Note that only the
first 3 × 3 convolution layer has expanded on the 3rd temporal dimension for lower
computational cost.

3.3 Spatio-temporal Multi-fiber Networks

In this subsection, we extend out multi-fiber architecture to spatio-temporal
inputs and present a new architecture for 3D convolutional networks and video
recognition tasks. The design of our spatio-temporal multi-fiber network follows
that of the “ResNet-34” [3] model, with a slightly different number of channels
for lower GPU memory cost on processing videos. In particular, we reduce the
number of channels in the first convolution layer, i.e. “Conv1”, and increase the
number of channels in the following layers, i.e. “Conv2-5”, as shown in Table 2.
This is because the feature maps in the first several layers have high resolutions
and consume exponentially more GPU memory than the following layers for
both training and testing.

The detailed network design is shown in Table 2, where we first design a 2D
MF-Net and then “inflate” [1] its 2D convolutional kernels to 3D ones to build
the 3D MF-Net. The 2D MF-Net is used as a pre-trained model for initializing
the 3D MF-Net. Several recent works advocate separable convolution which uses
two separate layers to replace one 3 × 3 layer [2,8]. Even though it may further
reduce the computational cost and increase the accuracy, we do not use the
separable convolution due to its high GPU memory consumption, considering
video recognition application.

Figure 3 shows the inner structure of each 3D multi-fiber unit after the “infla-
tion” from 2D to 3D. We note that all convolutional layers use 3D convolutions
thus the input and output features contain an additional temporal dimension
for preserving motion information.

4 Experiments

We evaluate the proposed multi-fiber network on three benchmark datasets,
Kinetics [20], UCF-101 [34] and HMDB51 [35], and compare the results with
other state-of-the-art models. All experiments are conducted using PyTorch [36]

Figure 2.19: (a) The architecture of 3D MFNET. (b) The bottleneck block or unit of

the 3D MFNET architecture.

group. It should be remembered that the numbers of bottleneck blocks in the bottle-

neck groups are 2,3,5 and 2 for the first, second, third, and fourth bottleneck groups,

respectively. Preserving the temporal dimension as much as possible might be im-

portant in order to create a better temporal relationship. The temporal size reduction

is 2, which is 8 in modified ResNet50 (Section 2.2.5) and 16 in ResNet of [24]. The

filter size of the first convolutional layer is 3x5x5. Generally, the traditional ResNet

architectures have an output dimension of 2048, Inception type architectures have an

output dimension of 1024 [5], while MFNET architecture has an output dimension of

768. The overall architecture and bottleneck block of MFNET architecture are shown

in Figure 2.19.

A possible criticism of MFNET can be the preference of (224x224) input size di-

mension instead of using (112x112) dimension. For action recognition, utilization

of the input size of (112x112) is frequently observed in popular architectures, such

as [24, 64, 63, 19]. The selection of (112x112) over (224x224) as input dimension

significantly reduces the time complexity of the architecture. One of the main aims

of the MFNET architecture is stated as the reduction in the time complexity of the ar-

chitecture. Therefore, the analysis for the input dimension of (112x112) should also

be covered in the paper in my opinion.

2.2.9 TSM: Temporal Shift Module for Efficient Video Understanding [41]

Modeling the temporal information is one of the most crucial concepts in action

recognition. In the literature, the temporal modeling is achieved mostly by two main

41

concepts: temporal modeling via recurrent architectures or various pooling strategies,

such models are located mostly at the end of the architectures; hence, they are denoted

as late temporal modeling. The other concept is the 3D CNN architectures which cre-

ate temporal relationships in a more structured way throughout the architecture. The

former one lacks creating a better temporal relationship compared to the latter one.

However, 3D CNN architectures require high memory consumption and utilize lots of

operations, resulting in higher time complexities. Therefore, a significant portion of

the literature focuses on reducing the memory and computation demands, as indicated

before.

Temporal Shift Module (TSM) [41] is introduced to the literature to obtain a higher

accuracy at the level of 3D CNN architectures with the complexity of 2D CNN ar-

chitectures. TSM modules can be plugged in any 2D CNN architectures and they do

not increase the memory need and computational complexity but incurs data move-

ment costs. The main idea behind the TSM is that some of the channel information

belonging to the specific time index is transferred or shifted to the next or previous

time index.

The visualization of the shift module is shown in Figure 2.20. In this figure, the

features belonging to different time frames are shown in different colors. The tensor

is shown along the temporal dimension in vertical, and along the channel dimension

in horizontal. As shown in the middle image of Figure 2.20, the shift of some channels

in both directions is a kind fusion technique between the features of different times.

Shifting in both directions is an offline implementation. In a real-time application, in

order to reduce the latency of the result, the instantaneous frame can be directly fed

into the architecture. Therefore, the next frame is not known, and the shift is possible

only in one direction.

The TSM module can be perceived in a way that the temporal information is pro-

cessed in a structural way throughout the architecture as in 3D CNN architectures but

with only the cost of 2D CNN architectures with an additional latency due to memory

shifts. The penalty of the channel shift operation is calculated as a 13.7 % latency

increase if all of the channels are shifted on a CPU inference. This latency increase is

about 12 % in a P100 architecture.

42

TSM: Temporal Shift Module for Efficient Video Understanding

Ji Lin
MIT

jilin@mit.edu

Chuang Gan
MIT-IBM Watson AI Lab
ganchuang@csail.mit.edu

Song Han
MIT

songhan@mit.edu

Abstract

The explosive growth in video streaming gives rise to
challenges on performing video understanding at high accu-
racy and low computation cost. Conventional 2D CNNs
are computationally cheap but cannot capture temporal
relationships; 3D CNN based methods can achieve good
performance but are computationally intensive, making it
expensive to deploy. In this paper, we propose a generic
and effective Temporal Shift Module (TSM) that enjoys both
high efficiency and high performance. Specifically, it can
achieve the performance of 3D CNN but maintain 2D CNN’s
complexity. TSM shifts part of the channels along the tempo-
ral dimension; thus facilitate information exchanged among
neighboring frames. It can be inserted into 2D CNNs to
achieve temporal modeling at zero computation and zero
parameters. We also extended TSM to online setting, which
enables real-time low-latency online video recognition and
video object detection. TSM is accurate and efficient: it
ranks the first place on the Something-Something leader-
board upon publication; on Jetson Nano and Galaxy Note8,
it achieves a low latency of 13ms and 35ms for online video
recognition. The code is available at: https://github.
com/mit-han-lab/temporal-shift-module.

1. Introduction
Hardware-efficient video understanding is an important

step towards real-world deployment, both on the cloud and
on the edge. For example, there are over 105 hours of videos
uploaded to YouTube every day to be processed for recom-
mendation and ads ranking; tera-bytes of sensitive videos
in hospitals need to be processed locally on edge devices to
protect privacy. All these industry applications require both
accurate and efficient video understanding.

Deep learning has become the standard for video under-
standing over the years [45, 48, 4, 49, 61, 53, 58]. One key
difference between video recognition and image recognition
is the need for temporal modeling. For example, to distin-
guish between opening and closing a box, reversing the order
will give opposite results, so temporal modeling is critical.

Channel C

Te
m

po
ra

l T

(a) The original ten-
sor without shift.

pad zerote
m

po
ra

l s
hi

ft

truncate
T

C

H,W

(b) Offline temporal
shift (bi-direction).

t=0

t=3
…

t=1

t=2

Channel C

(c) Online temporal
shift (uni-direction).

Figure 1. Temporal Shift Module (TSM) performs efficient tem-
poral modeling by moving the feature map along the temporal
dimension. It is computationally free on top of a 2D convolution,
but achieves strong temporal modeling ability. TSM efficiently
supports both offline and online video recognition. Bi-directional
TSM mingles both past and future frames with the current frame,
which is suitable for high-throughput offline video recognition.
Uni-directional TSM mingles only the past frame with the current
frame, which is suitable for low-latency online video recognition.

Existing efficient video understanding approaches directly
use 2D CNN [24, 39, 48, 58]. However, 2D CNN on individ-
ual frames cannot well model the temporal information. 3D
CNNs [45, 4] can jointly learn spatial and temporal features
but the computation cost is large, making the deployment on
edge devices difficult; it cannot be applied to real-time on-
line video recognition. There are works to trade off between
temporal modeling and computation, such as post-hoc fu-
sion [13, 9, 58, 7] and mid-level temporal fusion [61, 53, 46].
Such methods sacrifice the low-level temporal modeling for
efficiency, but much of the useful information is lost during
the feature extraction before the temporal fusion happens.

In this paper, we propose a new perspective for effi-
cient temporal modeling in video understanding by propos-
ing a novel Temporal Shift Module (TSM). Concretely, an
activation in a video model can be represented as A ∈
RN×C×T×H×W , where N is the batch size, C is the num-
ber of channels, T is the temporal dimension, H and W are
the spatial resolutions. Traditional 2D CNNs operate inde-
pendently over the dimension T ; thus no temporal modeling
takes effects (Figure 1a). In contrast, our Temporal Shift
Module (TSM) shifts the channels along the temporal dimen-
sion, both forward and backward. As shown in Figure 1b,
the information from neighboring frames is mingled with
the current frame after shifting. Our intuition is: the convo-

1

ar
X

iv
:1

81
1.

08
38

3v
3

 [
cs

.C
V

]
 2

2
A

ug
 2

01
9

Figure 2.20: Left: The classical tensor structure. Middle: The bi-directional shift

(Offline). Right: The uni-directional shift (Online) [41]shift convX Y

X Y+ X Y+

X Y+
conv1 shift conv2

shift conv
shift conv

(a) In-place TSM.

shift convX Y

X Y+ X Y+

X Y+
conv1 shift conv2

shift conv
shift conv

(b) Residual TSM.

Figure 3. Residual shift is better than in-place shift. In-place shift
happens before a convolution layer (or a residual block). Residual
shift fuses temporal information inside a residual branch.

200 warm-up runs. We show the overhead of the shift opera-
tion as the percentage of the original 2D CNN inference time
in 2a. We observe the same overhead trend for different de-
vices. If we shift all the channels, the latency overhead takes
up to 13.7% of the inference time on CPU, which is defi-
nitely non-negligible during inference. On the other hand,
if we only shift a small proportion of the channels, e.g., 1/8,
we can limit the latency overhead to only 3%. Therefore,
we use partial shift strategy in our TSM implementation to
significantly bring down the memory movement cost.

Keeping Spatial Feature Learning Capacity. We need
to balance the model capacity for spatial feature learning
and temporal feature learning. A straight-forward way to
apply TSM is to insert it before each convolutional layer
or residual block, as illustrated in Figure 3a. We call such
implementation in-place shift. It harms the spatial feature
learning capability of the backbone model, especially when
we shift a large amount of channels, since the information
stored in the shifted channels is lost for the current frame.

To address such issue, we propose a variant of the shift
module. Instead of inserting it in-place, we put the TSM
inside the residual branch in a residual block. We denote
such version of shift as residual shift as shown in 3b. Resid-
ual shift can address the degraded spatial feature learning
problem, as all the information in the original activation is
still accessible after temporal shift through identity mapping.

To verify our assumption, we compared the performance
of in-place shift and residual shift on Kinetics [25] dataset.
We studied the experiments under different shift proportion
setting. The results are shown in 2b. We can see that residual
shift achieves better performance than in-place shift for all
shift proportion. Even we shift all the channels to neighbor-
ing frames, due to the shortcut connection, residual shift still
achieves better performance than the 2D baseline. Another
finding is that the performance is related to the proportion
of shifted channels: if the proportion is too small, the ability
of temporal reasoning may not be enough to handle compli-
cated temporal relationships; if too large, the spatial feature
learning ability may be hurt. For residual shift, we found
that the performance reaches the peak when 1/4 (1/8 for
each direction) of the channels are shifted. Therefore, we
use this setting for the rest of the paper.

Ft

Conv

Feature

Feature

… Cached in
Memory

Shift out Replace

Feature

Feature

Ft+1

Shift out Replace

Feature

Feature

FN

…

…

…

yt yt+1 yN

Conv

Conv

Conv

Conv

Conv

… …

Figure 4. Uni-directional TSM for online video recognition.

4. TSM Video Network

4.1. Offline Models with Bi-directional TSM

We insert bi-directional TSM to build offline video recog-
nition models. Given a video V , we first sample T frames
Fi, F1, ..., FT from the video. After frame sampling, 2D
CNN baselines process each of the frames individually, and
the output logits are averaged to give the final prediction.
Our proposed TSM model has exactly the same parameters
and computation cost as 2D model. During the inference of
convolution layers, the frames are still running independently
just like the 2D CNNs. The difference is that TSM is inserted
for each residual block, which enables temporal information
fusion at no computation. For each inserted temporal shift
module, the temporal receptive field will be enlarged by 2, as
if running a convolution with the kernel size of 3 along the
temporal dimension. Therefore, our TSM model has a very
large temporal receptive field to conduct highly complicated
temporal modeling. In this paper, we used ResNet-50 [17]
as the backbone unless otherwise specified.

A unique advantage of TSM is that it can easily convert
any off-the-shelf 2D CNN model into a pseudo-3D model
that can handle both spatial and temporal information, with-
out adding additional computation. Thus the deployment
of our framework is hardware friendly: we only need to
support the operations in 2D CNNs, which are already well-
optimized at both framework level (CuDNN [6], MKL-DNN,
TVM [5]) and hardware level (CPU/GPU/TPU/FPGA).

4.2. Online Models with Uni-directional TSM

Video understanding from online video streams is im-
portant in real-life scenarios. Many real-time applications
requires online video recognition with low latency, such as
AR/VR and self-driving. In this section, we show that we
can adapt TSM to achieve online video recognition while
with multi-level temporal fusion.

As shown in Figure 1, offline TSM shifts part of the
channels bi-directionally, which requires features from future
frames to replace the features in the current frame. If we
only shift the feature from previous frames to current frames,
we can achieve online recognition with uni-directional TSM.

Figure 2.21: Proposed TSM shift modules. (a) In-place TSM. (b) Residual TSM [41]

There are two important design considerations in the TSM module. One point is the

ratio of the channels that are shifted. The other point is where to locate this module

in a typical ResNet architecture. For the ratio of the channels that are shifted, increas-

ing the information flow between different times increases the performance from one

perspective. Nevertheless, from another perspective, increasing temporal information

flow destroys the spatial information existing in the 2D CNN architectures. There-

fore, there is a need to balance the ratio of the channel information flow. Another

point is the location of the channel shift operation in the architecture. There are two

types of proposed TSM modules which are In-place TSM and Residual TSM, which

are illustrated in Figure 2.21. It is observed that Residual TSM yields better results

compared to In-place TSM. One possible reason for this result can be explained as

that the placement of the TSM module to the residual branch does not destroy the

original feature format of the current frame.

The best result of TSM among the possible implementations on the Kinetics dataset

is obtained with 1
4

channel shift ratio with residual TSM. ResNet50 architecture is

selected for the implementation of the TSM module. TSM is applied to every bottle-

neck block. The latency increase of 1
4

channel shift ratio is between 3 % and 6 % for

43

CPU, TX2, and P100.

In order to understand the pros and cons of these algorithms from the literature, a

separate chapter is devoted to analyze and compare their experimental results, next.

44

CHAPTER 3

EXPERIMENTAL EVALUATION OF LITERATURE

The main motivation of this chapter is to examine and understand the real virtues

and possible drawbacks of the algorithms in AR literature through experimentation.

In this chapter, initially, the datasets for AR research are introduced. Then, the im-

plementation details of the experiments are presented. Then, various analyses are

implemented as two separate chapters which are experiments of 2D CNN architec-

tures and 3D CNN architectures. These analyses cover topics such as late temporal

modeling, input modalities, architecture techniques.

3.1 Datasets for AR Research

For the action classification task, some common datasets are utilized for fairly com-

paring different algorithms. These are UCF-101 [59], HMDB-51 [36], Kinetics [32],

Something - Something V1 and V2 (SMT) [23], and IG-Kinetics-65M [19]. UCF-101

and HMDB-51 are relatively older compared to Kinetics and SMT. IG-Kinetics-65M

is different from the other datasets because it is collected in a weakly supervised

manner.

3.1.1 HMDB-51 [36]

HMDB-51 [36] consists of 51 action classes. These classes are listed under five main

categories. These are general facial actions (such as smiling, laughing, chewing),

facial actions with object manipulations (such as eating, smoking, drinking), body

45

Table 3.1: Summary table for activity recognition datasets
Dataset Name # Samples # Categories
HMDB - 51 6766 51
UCF - 101 13320 101

Kinetics - 400 306,205 400
Kinetics - 600 495,547 600
Kinetics - 700 650,317 700

Something - Something V1 108,499 174
Something - Something V2 220,847 174
IG-Kinetics-65M (IG65M) 65,000,000 359

motion only (such as climbing, walking, push up), human-object interaction (such

as throwing, riding a horse, brushing a hair), and human-human interaction (such as

hugging, kissing, punching). There are 6766 clips in total from the 51 action cate-

gories, each containing a minimum of 101 clips. These clips are extracted from the

3312 videos. The videos are mostly collected from movies. For this task, the litera-

ture has reached about 82% top1 accuracy for the year 2020. For the evaluation, the

dataset is split into three categories and the results are given as the average over three

splits. For every split, the dataset is divided into two categories which are training

and test. There is not a separate validation division.

3.1.2 UCF-101 [59]

UCF-101 [59] consists of 101 action classes These classes are divided into five main

categories. These are human-object interaction (such as hammering, applying lip-

stick), body motion only (such as push-ups, baby crawling, swinging), human-human

interaction (such as salsa spin, band marching), playing musical instruments (such

as playing violin, playing guitar, playing flute), and sports such as (surfing, rafting,

rowing). There are 13320 clips in total from 101 action categories. The videos are

mostly collected from Youtube and clips are extracted from the 2500 videos which

suggest that the variation in the dataset is limited. Similar to HMDB-51, the dataset

consists of three splits, and results are given as the mean results of the three splits.

46

3.1.3 Kinetics [32]

Kinetics [32] is the most popular dataset as of 2020 which enables 3D convolution

architectures which have many parameters, requiring lots of samples to train. Due

to the large size of the Kinetics dataset, the performances obtained by using HMDB-

51 and UCF-101 with Kinetics pre-training have also been increased significantly.

The dataset has 3 versions as of 2020, which are Kinetics-400, Kinetics-600, and

Kinetics-700 in which the numbers denote the number of classes in each dataset.

Considering that Kinetics-400 is the first version of the dataset, the specifications of

it are explained in the beginning. In Kinetics-400, there are 306,205 clips which are

extracted from 306,205 videos, suggesting that variation in the dataset is better com-

pared to HMDB-51 and UCF-101. The clip length is about 10 seconds. The actions

can be analyzed under three main categories which are singular person actions (such

as laughing, robot dancing, drinking), person-person actions (such as hugging, shak-

ing hands, kissing), and person-object actions (opening present, dribbling basketball,

mowing lawn, playing violin, washing dishes). There are also some main categories

in which sub-actions exist such that in the music category, playing various instruments

exists as different action classes or in the dance category, various dance classes, such

as salsa, swing, tango exists. The two-category division problem (test and validation

sets are the same) which exists in UCF and HMDB no longer exists in Kinetics (see

next section). For each action, there are 450-1150 clips. From these clips, 50 clips are

for validation and 100 clips are for the test, regardless of the number of clips existing

in the dataset.

Among all the classes, the most challenging ones seem to be the eating classes, such

as eating doughnuts because the objects eaten are very small or partially eaten. Face-

planting, slapping, sneezing, sniffing, drinking, drinking shots, drinking beers, shoot-

ing basketball are among the hardest samples according to the results obtained in

the dataset paper. The most confusing activities are reported as between riding mule

and riding or walking with horse, hockey stop and ice skating, swing dancing and

salsa dancing, strumming guitar and playing guitar, shooting basketball and playing

basketball, and go on.

47

It is also important to analyze what the action classification accuracy ratio is in order

to understand whether motion or spatial information is important for the action. It is

observed with the experiments that motion is crucial for the activities rock scissors pa-

per, sword fighting, robot dancing, air drumming, exercising arm with the flow/RGB

performances 5.3%, 3.1%, 3.1%, 2.8%, and 2.5%, respectively. Spatial information

is significant for the activities making a cake, cooking sausages, sniffing, eating cake,

making a sandwich with the flow/RGB performances 0.1%, 0.1%, 0.1%, 0%, and 0%,

respectively.

The other versions of the dataset, Kinetics-600 [3] and Kinetics-700 [4] have 495,547

and 650,317 clips, respectively.

3.1.4 Something - Something [23]

Something-something is a dataset that can be used for action classification. There are

2 versions of this dataset as of 2020. Different from the other datasets, the videos are

not collected from movies or Youtube and labeled by crowdsource-workers. Instead,

the crowdsource-workers are required to act. Therefore, the noise in the dataset is

decreased compared to others. The dataset consists of content, such as "opening

[something]" or "holding [something] in front of [something]". Something can be

any object related to the actions and increases variety, which probably increases the

chance of learning instead of memorizing. The important concept about learning the

action (or features related to the temporal domain) is the fact that the action should

not be understandable by using high-level features or a single image. The main aim of

the dataset is to make the models learn good temporal representations and emphasize

the low-level features, instead of high-level features. Another important thing that

the dataset places importance on is temporal resolutions. In order to learn the action

precisely, there should not be an out of context features about the action. Therefore,

clip length is kept small compared to other datasets.

The first version of the dataset contains 108,499 video clips, each of which has a

duration of 2-6 seconds. The train, validation, and test set size ratio is equal to 8:1:1.

The videos from the same crowd-worker occur only one part of the dataset (e.g. only

in the train). There are 23,137 different objects for something keyword in the dataset.

48

For the creation of the dataset, 1133 crowd workers worked and there is a 127.32

crowdsource-workers per class on average. On average, there are 620 clips per class,

ranging from 77 to 986 per class. The targeted classes are basic concepts instead of

cultural things. The owners of the dataset inform us that the action classes aim to teach

a one-year-old child as an analogy. In order to reduce the risk of cheating from the

object type, different activities are implemented with the same object. Otherwise, the

action can be classified directly from the object, which is an undesired fact to learn

better temporally related low-level features. Additionally, some pretending actions

have been added in order to learn complex relations. For example, there are opening

and closing actions, but also pretend to open and close actions. There are also some

confusing classes, such as putting something on to something and putting something

next to something, which requires algorithms to understand the relative positions of

the objects.

The second version of the dataset which is denoted as something-something-V2 con-

sists of 220,847 clips. There are 30,408 unique objects, which was 23,137 in the first

version of the dataset. The number of classes is the same with the first version which

is equal to 174. For the new release, every clip is verified by five crowdsource workers

that the clips contain the description assigned to them. The height of the resolution is

also increased from 100 pixels to 240 pixels.

3.1.5 IG-Kinetics-65M [19]

IG-Kinetics-65M [19] is a dataset that is collected in a weakly supervised manner.

This dataset belongs to the Facebook AI group. As of 2020 April, there is no re-

leased version available. However released caffe2 pre-trained models with this dataset

which are R(2+1)D [64], ip-CSN, and ir-CSN [63] are available1. The Pytorch model

of R(2+1)D trained with this dataset is also available2. The dataset is important to

analyze how the performance changes with a significant increase in the number of

samples. The dataset is collected from the videos of publicly available Instagram

accounts.

1 github.com/facebookresearch/VMZ
2 github.com/moabitcoin/ig65m-pytorch

49

https://github.com/facebookresearch/VMZ
https://github.com/moabitcoin/ig65m-pytorch

The weak supervision of this dataset indicates that there is no direct supervision in

the collection of the dataset, such that there is no person who watches and labels

the videos one by one. The weak supervision is satisfied in a way that the videos

on Instagram are obtained with a related hashtag of a specific activity. For instance,

consider an activity "catching a fish". Then, possible hashtags are "#catchingafish",

"#catchfish", "#fishcatching".. The activities of IG-Kinetics-65M are selected from

the activity labels of the Kinetics-400 dataset. However, for 41 labels, there is not

a sufficient number of videos in collected Instagram videos, which is denoted as a

minimum number of 50 videos per action, making the number of labels 359. Contrary

to other datasets, the video duration changes up to 60 seconds, indicating that the

temporal noise is very high in the dataset because in a longer video the activity might

be performed anytime in the video. Contrary to IG65M, the duration of videos in the

SMT dataset is very short in order to overcome the temporal noise problem. IG65M

is long-tailed extremely from the number of samples perspective. In other words,

there is a strong imbalance. In order to mitigate this effect, the square root sampling

strategy is followed.

In addition to IG-Kinetics, IG-Noun, IG-Verb, and IG-Verb-Noun datasets are also

created. For the IG-Noun dateset, 1428 hashtags are found which match the 1000

class of the ImageNet dataset. For the IG-Verb dataset, 438 Verbs from Kinetics

and VerbNet are used. IG-Verb-Noun is created from the combination of 1428 noun

hashtags and 428 Verbs, making 10653 labels in total. These are the pre-trained model

datasets. The success of these pre-trained models of these datasets is dependent on the

similarity between the labels of the fine-tuning dataset and the pre-training dataset.

For the temporal selection perspective, three options are considered. One of them is

short videos, which consist of 1-5 seconds videos; another type is long videos, which

consist of 55-60 seconds videos; and the last type is long-center videos, which are the

center 4 seconds portions of long videos. Short videos are better for localization of

activity, while long videos have better diversity. It is concluded that, for a fixed video

budget, longer videos are better. For a fixed duration video budget, shorter videos are

better.

Another analysis is related to the pre-training options. There are two settings in the

50

pre-training of the architecture in this analysis. The first option is pre-training with 2D

architecture by using images and fine-tuning with the inflated 3D version of the same

2D architecture. The second option is pre-training directly with 3D architecture. It is

concluded that the second option is better if enough number of videos are available.

However, if the Kinetics dataset is utilized in the second option, it is slightly worse

than the first option.

In the paper of IG-Kinetics [19], various analyses were made. For the effect of the

number of labels of IG-Verb-Noun on the performance, if the architecture is fully

trained, the increase is limited with 1% until 1300 labels and then saturates. However,

if only the fully connected layer is trained, the accuracy increase is about 9%, then

the accuracy saturates. For the effect of the number of labels of IG-Kinetics on the

performance which has comparatively very few labels compared to IG-Verb-Noun,

utilization of fewer labels drastically lower the performance even in fully trained ar-

chitectures. For example, the performance of the utilization of 32 labels is about 6%

less than the utilization of all 359 labels.

3.2 Implementation Details

In this section, implementation details of the experiments are given under six different

subsections which are data augmentation, pre-trained weights, optimization, batch

size selection, validation procedure and input modalities.

3.2.1 Data Augmentation

For data augmentation techniques, the good practices that are utilized in [69] are

primarily followed.

During cropping, random cropping is not used; instead, multi-scale cropping is fol-

lowed which is suggested by [69]. For multi-scale cropping, there are 13 possible

crop positions, which are center, upper left, upper right, lower left, lower right, top

center, left center, right center, bottom center, upper left quarter, upper right quarter,

lower left quarter, and lower right quarter, which are all shown in Figure 3.1. The

51

Figure 3.1: The crop positions for multi-scale cropping. Blues are used only infer-

ence.

horizontal flip is also applied with 0.5 probability. For scale augmentation, scales are

determined as 1.0, 0.875, 0.75, 0.66. For both height and width, one of the scales

from the pre-determined scales (1.0, 0.875, 0.75, 0.66) is selected randomly and if

they are at most next to each other (maximum distortion concept), the selected scales

are applied. For example, if the selected scales are (1, 0.875), it is suitable. How-

ever, if the preferred scales are (1,0, 0.75), which are not next to each other, the scale

samples are re-selected. For most of the networks, the videos are resized to 256x340.

Then after scale augmentation implementation, 224x244 input size should be given

to the architecture by resizing the multi-scale cropped features. Similar to the sug-

gestions of [69], a high dropout ratio is applied. The dropout ratio is determined as

0.8 for RGB-streams and 0.7 for flow-streams.

Additionally, similar multi-scale cropping techniques can also be followed during

the inference of the architectures. For this aim, five crops which are center, upper

right, upper left, lower left, and lower right are selected which are shown as blue

boxes in Figure 3.1. With their additional horizontal crops, the extraction of ten clips

is possible for every clip. Therefore, averaging the results of extracted 10 clips is

possible implementation. This procedure during inference is called as ten crop test or

ten crop inference in thesis.

52

3.2.2 Pre-trained Weights

For the training of 2D CNNs, the ImageNet pre-trained weights are used for RGB,

optical-flow, and human pose input modalities. In order to utilize the ImageNet

weight for optical flow inputs, the first layer filters are averaged through the chan-

nel dimension and replicated for the necessary input channel size. In other words,

RGB input has 3 channel dimensions and filter sizes are 3xhxw. Then, the average

across the channel dimension is calculated, which yields 1xhxw. Then, for the nec-

essary input channel size, this average is replicated across channel dimension, such

that Cinxhxw. In a traditional two-stream network, Cin is 20 because there 11 frames

used in optical flow extraction, producing 10 frames optical flow output, and every

frame has two flow channels which are x and y components of optical flow vectors.

However, in this thesis work, generally, only one optical flow frame is used for tem-

poral modeling in 2D CNNs, which results in two input channels.

For 3D CNNs, generally, the pre-trained weights of 3D CNN architectures trained

on the Kinetics dataset are used. In the thesis work, the training on Kinetics is not

implemented and Kinetics pre-trained weights are obtained from the related GitHub

repositories.

3.2.3 Optimization

Optimization is a crucial concept to understand and utilize the true performance of any

learning algorithm. A better algorithm with worse optimization might result in infe-

rior performance compared to a worse algorithm with a better optimization strategy.

In this comparison, ADAM [34], ADAMW [43], SWAT [33] and SGD optimizers are

used. SGD has a constant learning rate in default but might have an adaptive learning

rate with the first-order moment if used with the momentum concept. ADAM applies

adaptive learning rates for different parameters with the first moment and additionally

the second moment of the gradients. ADAMW adds weights regularization concept

to ADAM and is claimed to have better generalization capability than ADAM. SWAT

optimizer is the hybrid optimization of ADAM and SGD. At the initial stage, SWAT

starts with ADAM optimizer but switches to SGD at the later stage of the optimiza-

53

Table 3.2: Optimizer result on RGB-ResNet-18-BERT architecture
ADAM SWAT ADAMW SGD

One Crop Validation 49.02 49.80 50.20 50.49
Ten Crop Test 51.50 51.11 52.42 50.78

tion.

It is interesting to note that despite the various recent optimizers, SGD has dominated

the action recognition literature among various recent popular models [5, 76, 19, 16].

However, it is also known that BERT-based models generally prefer ADAM as the

optimizer, such as [9], [60]. Therefore, there is a requirement to analyze the optimizer

and determine one of them for the other training implementations.

The comparison of different optimizers is presented in Table 3.2. Based on this table,

the ten crop test results show that the best result is due to the ADAMW optimizer.

In center-crop validation, SGD is the best with a slight difference in performance

compared to ADAMW. In ten-crop test analysis, the model which shows the best

performance in one-center crop validation is chosen.

During all of the training steps, the learning rate schedule, namely reducing learning

rate on plateau methodology is followed. The main purpose of this method is that

when the desired loss or the desired precision does not change or does not show im-

provement, the learning rate is reduced to obtain better performance. In this method,

there is a parameter, namely patience, which is how many epochs or iterations, learn-

ing rate does not change despite there is not any improvement. This parameter is set

to 5 epochs, which means the learning rate is decreased to one-tenth if there is not

an improvement for 5 epochs. For the best network selection in the validation, Top-1

precision is considered. For SGD, the learning rate is started from 10−2, for the rest,

it is started from 10−4. The learning rate schedule is followed according to improve-

ments of Top-1 at the beginning of this thesis but later changed to improvements of

loss because the latter leads to improvements in some architectures such as I3D.

Due to all these results, all of the BERT models are trained with ADAMW, since

ADAMW is faster than SGD and shows better performance. However, in traditional

or standard architectures, SGD has been chosen unless stated otherwise in order to be

consistent with the literature.

54

3.2.4 Batch Size Selection

The batch size of the architectures is selected as 128. However, the batch size of 128

requires significant memory utilization. Therefore, the iteration concept for weight

update is utilized during the training of the architectures. For this concept, the maxi-

mum capacity of the batch size is loaded to the GPU or GPUs. Then, the number of

iterations is set in order to obtain the effect of the batch size of 128. For example, if

the maximum batch size is 8, the iteration size is set to 16 to obtain the same effect

of the batch size of 128. One may argue that for the batch normalization, this might

not show the same effect of direct usage of the batch size of 128. However, this is the

most possible scenario with our resource-limited hardware.

3.2.5 Validation Procedure

For the validation of the architectures, frames or clips are selected from the center

part of the segments. The segment concept is utilized for both of the training and

validation of temporal modeling of the 2D CNN architectures. The detailed explana-

tion of the frame selection procedure is given in Appendix-C Section C.1. The loss

function of the architectures is the cross-entropy loss function.

For the selection of the best architecture, the epoch with the best Top-1 result is se-

lected. This selection can be arguable since the calculated loss might be more con-

venient in order to prevent over-fitting. Therefore, the architecture selected with the

best loss might perform better in multiple clip test or 10 crop test, since the validation

is only performed to the fixed frames of the fixed clip of videos. However, the loss

function is also arguable from the perspective the cross-entropy uses hard probabil-

ities, ignoring the similarities between the classes. Therefore, a better option might

be the selection of the best architecture with the mean of top1 and top3 results of the

architecture. However, we implemented all the validation according to the best Top-1

result of the architectures.

55

(a) RGB (b) Flow X-component (c) Flow Y-component (d) Pose

Figure 3.2: Possible input modalities from the HMDB-51 walking and jumping

classes

3.2.6 Input Modalities

The input modality concept mainly comes from the two-stream architectures. As

mentioned before, optical flow is complementary information to the RGB input. In

this thesis work, the input modalities are extracted by TV-L1 [79] algorithm (see

Appendix-A). The motion vectors which have a magnitude value higher than 20-pixel

displacement are clipped. Then, -20 and +20 are linearly mapped to 0 to 255 to rep-

resent the as an image. Additionally, the effects of the pose information are analyzed

on action recognition by the extraction human poses as RGB images with OpenPose

algorithm [2] (see Appendix-B). The visualization of input modalities is provided in

Figure 3.2. X- and Y-components of the flow information are given together to the

architecture as different channels of the input.

3.3 Experiments on 2D CNN Architectures

In this section, a detailed analysis is performed by the utilization of 2D ResNet type

architectures. The first study of this part is the temporal modeling on the extracted

features of 2D CNN architectures and the result of this study is presented in Section

3.3.1. The temporal modeling on the extracted features is also known as late pooling

strategy in the literature. Secondly, the fusion of features from the different parts of

the architecture is studied. Thirdly, the effect of the architecture depth (i.e. number

of layers) on the performance is performed. Finally, the effect of the input modalities

56

(RGB, optical flow, human pose) on the performance is analyzed and two-stream and

three-stream architectures, which are created by the fusion of these modalities, are

inspected. In this section, the performances are reported as the average performance

over the three splits of HMDB51, as it is preferred in most of the literature.

3.3.1 Late Temporal Modeling of 2D CNN Architectures

In this part, the following methods are implemented and compared with each other

as late pooling strategies which is to create temporal relationship onto the extracted

features of 2D CNN backbone:

• Convolutional GRU,

• LSTM,

• Average pooling,

• Concatenation pooling,

• Non-local attention,

• BERT.

In this analysis, the ResNet18 backbone is selected as a 2D CNN backbone with

Image-Net pre-trainings. In this implementation, half of the Image-Net weights of the

ResNet18 blocks are frozen because this is more memory efficient during the training

and there is not a significant performance difference between the full update and half

update of ResNet18 weights. The learning rate is set to e−4 for all architectures with

ADAMW optimizer. The frame length is set to 16 for all of the ResNet18 + Temporal

Pool Types, except No Pooling which is trained with a single RGB image. 16 frames

are selected with equal intervals during the inference for all of them. The detailed

explanation of the frame selection procedure is given in Section C.1.

For the settings of the selected late temporal modeling structures, the hidden size of

convolutional GRU is set to 196. The number of inter-channels of non-local blocks

(the dimension of attention mechanism) is set to 512 which is equal to the number of

57

Table 3.3: Results for temporal modeling on top of the 2D-RGB-ResNet18 on
HMDB-51

Temporal Pool Type Top-1 Top-3 # Parameters # Operations
No Pooling 44.31 66.49 11.2 M 1.82 GFlops

Average Pooling 47.10 69.33 11.2 M 1.82 GFlops
Non-local + Average Pooling 47.56 69.76 12.25 M 1.87 GFlops

Concatenation 51.04 72.20 11.59 M 1.82 GFlops
Non-local + Concatenation 50.04 71.50 12.64 M 1.87 GFlops

LSTM 48.50 70.54 15.4 M 1.83 GFlops
Convolutional GRU 46.34 68.50 14.93 M 2.01 GFlops

BERT 49.17 71.31 14.36 M 1.83 GFlops

output channels of the ResNet18 backbone. The hidden size of LSTM is set to 512.

BERT is implemented with eight attention heads.

The results of late temporal modeling on top of the RGB 2D- ResNet18 is presented in

Table 3.3. In this table, Top-1, Top-3 results, the number of parameters, and the num-

ber of operations of ResNet18 + Temporal Pool Types are specified. Firstly, there is a

necessity of highlighting the No Pooling which is denoted as one of the temporal pool

types in Table 3.3. ResNet18 is trained with a single RGB image in No Pooling while

the rest of them is trained with 16 RGB images. However, the inference of No Pooling

is implemented similarly with average pooling type with 16 RGB frames. This is to

highlight the importance of the implementation of TSN [71]. The implementation of

TSN (average pooling over no pooling) increases the Top-1 performance with about

%3. The only temporal pool type which worse than average pooling is convolutional

GRU. The addition of non-local increases the performance of average pooling but

worsens the performance of concatenation pooling. The best temporal pool type of

the Table 3.3 is concatenation. This is the only analysis in this thesis that BERT is

not the best. We consider that the best late temporal modeling might be dependent

on both the CNN backbone and the modality. It is also possible that the optimization

of the training of the BERT temporal pooling might not be performed well because

of the sub-optimum hyperparameter for the specific architecture selection such as the

learning rate.

58

Table 3.4: The Results of fusion types with 2D-RGB-ResNet18 concatenation pool-
ing on HMDB51

Fusion Type Top-1
No fusion 51.04

Dual Fusion 51.87
Triple Fusion 52.02

Quadruplet Fusion 51.13

3.3.2 Feature Fusion from the Different Parts of 2D CNN Architectures

In this part, the feature fusion from the different parts of the architecture is studied.

Different parts of the architecture imply that instead of using features only from the

end of the architecture, some features are extracted from the intermediate parts of

the architecture as well. In order to convey where the features are created in the

ResNet18 architecture, the ResNet18 architecture is presented in Figure 3.3. There

are four block groups not only in ResNet18 but also in all ResNet architecture, which

are denoted as conv2_x, conv3_x, conv4_x, and conv5_x in Figure 3.3. The se-

lected baseline for this study is ResNet18 with concatenation pooling which is shown

to the best in Section 3.3.1. The proposed fusion types are dual fusion (conv4_x

and conv5_x), triple fusion (conv3_x, conv4_x and conv5_x), and quadruplet fusion

(conv2_x, conv3_x, conv4_x and conv5_x).

The features at the end of the architecture might not contain all the necessary infor-

mation that is created throughout the architecture, although these final features are

created hierarchically from the features of earlier layers. For instance, the features

of early layers of the architecture have a better spatial resolution. Therefore, fusion

might be a good strategy in order to complement the final features of the architecture

The results of fusion study is presented in Table 3.4. Based on this table, it can be

observed that dual fusion improves the no fusion strategy and triple fusion improves

the dual fusion strategy. However, the addition of the features of the first block group

to the other three features groups even makes worse the architecture than dual fusion.

One possible reason might be the fact that to utilize the earliest blocks, the weight

update is also enabled to the first block group (conv2_x in Figure 3.3), which is dis-

abled in other fusion strategies. Therefore, preserving the Image-Net weights for the

59

Sensors 2018, 18, 209 6 of 15

increasing the depth [50]. For instance, the ResNet-50 architecture is about 20 times and eight times
deeper than AlexNet and VGGNet, respectively.

In particular, the network architecture adopted in this paper is based on the ResNet-18
architecture, which represents a good trade-off between depth (that is computational time) and
performance. The network architecture includes five convolutional stages (see Table 1 for further
details). The network is pre-trained on the set of images defined by the ILSVRC 2015 challenge.
The goal of this challenge is to identify the scene and object categories depicted in a photograph.
The total number of categories is 1000. Although the network is pre-trained on scene and object images,
it has demonstrated, in preliminary experiments, to work much better than a ResNet-18 pre-trained
on texture images [47,51]. The visual appearance of textures is certainly more similar to the visual
appearance of the SEM images considered in this paper. Notwithstanding this, the performance
obtained by exploiting the texture-domain network are much worse than the performance obtained
using a scene- and object-domain one. Actually, recognizing scenes and objects is more complicated
than recognizing textures, and thus the network trained to recognize scenes and objects is more capable
of recognizing unexpected anomalous patterns within SEM images.

Table 1. ResNet-18 Architecture.

Layer Name Output Size ResNet-18

conv1 112× 112× 64 7× 7, 64, stride 2

conv2_x 56× 56× 64
3× 3 max pool, stride 2[

3× 3, 64

3× 3, 64

]
× 2

conv3_x 28× 28× 128

[
3× 3, 128

3× 3, 128

]
× 2

conv4_x 14× 14× 256

[
3× 3, 256

3× 3, 256

]
× 2

conv5_x 7× 7× 512

[
3× 3, 512

3× 3, 512

]
× 2

average pool 1× 1× 512 7× 7 average pool

fully connected 1000 512× 1000 fully connections

softmax 1000

Given the network, the output of a given layer is linearized to be used as a feature vector.
We experiment with the use of two different layers of the network: the linearized output of the fifth
convolutional stage (that is conv5_x) and the output of the average pooling layer (that is avgpool).
The size of the feature vector is 25,088 (that is 7 × 7 × 512) in the case of the conv5_x layer and
512 in the case of the avgpool layer. The size of the feature vector affects the computational cost;
then, the size is therefore reduced by applying dimensionality reduction techniques such as Principal
Component Analysis.

4.2. Dictionary Building

The degree of abnormality of a patch is obtained by computing the visual similarity between the
given patch and a reference dictionaryW of normal subregions. The dictionary is built from the set
of training images I train = {I1, · · · , IL}. For each image Il , T patches {P1, · · · , PT} of size wt × ht are
extracted following a regular grid and using a stride s. The total amount of patches extracted from the

Figure 3.3: Different Layers and their corresponding Output sizes for ResNet18 Ar-

chitecture

first block group might be crucial.

3.3.3 Effect of Network Depth and Input Modality on 2D CNN Architectures

In this section, the effect of the architecture depth and variations in input modal-

ity on the performance of 2D CNN architectures are studied for action recognition.

Firstly, for RGB input modality, the architecture depth analysis is presented. Next,

the late temporal modeling is studied within the context of optical flow and hu-

man pose modalities. Then, the impact of different input modalities (RGB, optical

flow, human pose) and two-stream (RGB+optical flow) and three-stream architec-

tures(RGB+optical flow+human pose) is finally examined. For further information

about the input modalities, see Section 3.2.6.

Effect of Network Depth: For this part, ResNet18, ResNet34, ResNet50 and ResNet101

architectures are selected among all ResNet-based networks. The selected temporal

60

Table 3.5: The effect of architecture depth on the performance of 2D-RGB ResNet
with concatenation pooling and triple fusion on HMDB51

Architecture Top-1 # Parameters # Operations
ResNet18 52.02 # 11.91 M # 1.82 GFlops
ResNet34 53.34 # 22.02 M # 3.68 GFlops
ResNet50 55.44 # 26.21 M # 4.12 GFlops

ResNet101 58.80 # 45.20 M # 7.85 GFlops

modeling for this part is triple fusion concatenation temporal modeling. The analysis

are implemented on three splits of HMDB51 with RGB input modality. The results

of this analysis is presented in Table 3.5. As the architecture depth increases, the top1

performance also increases but with the cost of memory utilization and computational

complexity,

Late Temporal Modeling on Optical Flow and Human Pose: For the late temporal

modeling of optical flow and human pose modalities, average pooling, concatenation,

concatenation with triple fusion and BERT are selected as possible candidates from

Sections 3.3.1 and 3.3.2. The reason for selecting average pooling is its efficient im-

plementation and its common utilization, and the reason for selecting concatenation,

concatenation with triple fusion, ,and BERT is their success on RGB input modalities

presented in Sections 3.3.1 and 3.3.2.

The result of this analysis is given in Table 3.6. Firstly, the best late temporal mod-

eling strategy is BERT for both modalities. It should be noted that BERT is worse

than the concatenation for RGB modality according to Table 3.3. Additionally, con-

catenation is even worse than the average pooling for optical flow modality. Another

conflicting fact about the optical flow modality with the result of RGB modality is

that triple fusion worsens the performance in concatenation pooling strategy. For

pose modality, concatenation is a better temporal modeling than average pooling and

triple fusion improves the performance of "no fusion", which is coherent with the

result obtained on RGB modality.

Comparison of Modalities: For this part, the performances of different modalities are

compared with each other. Additionally, two-stream (RGB+Flow) and three-stream

(RGB+Flow+Pose) architectures are also analyzed. Two-stream and three-stream are

late fusion strategies between the different modalities. Each stream is trained with

61

Table 3.6: Top-1 performances of late temporal modeling on ResNet18 backbone
with optical flow and human pose modalities on HMDB51

Architecture Flow - Top-1 Pose - Top-1
Average Pooling 51.68 44.14

Concatenation - No Fusion 48.58 44.75
Concatenation - Triple Fusion 47.03 45.82

BERT 54.73 46.45

different modality independently, and the normalized class scores of modalities are

averaged during the inference. For this analysis, the temporal modeling type of the

architectures is selected specifically to modality. Concatenation pooling is the best

for RGB, therefore it is selected for this modality. BERT is the best for optical flow

and human pose, therefore it is selected for these modalities.

The performances of different modalities, two-stream, and three-stream architectures

are presented in Table 3.7. For this analysis two backbones are preferred which are

ResNet18 and ResNet101.

Firstly, The performance increase of RGB modality with the depth of architecture is

more dramatic than optical flow and pose modalities. This result is probably due to

the fact that the pre-trained ImageNet weights are also trained with RGB modality,

resulting in better utilization of RGB modality for the action recognition task.

Secondly, the results indicate that different modalities produce complementary infor-

mation for each other. Two-stream architectures are quite popular in action recog-

nition literature due to their benefits for increasing the performances. In this table,

two-stream architectures (RGB+Flow) increase the maximum Top-1 performance of

single streams about 8% and 6% for ResNet18 and ResNet101, respectively. More-

over, the addition of pose information to two-streams also increases about 3% and

4% of ResNet18 and ResNet101 backbones in action recognition, although single

utilization of pose-stream is lower than RGB and optical flow modalities.

62

Table 3.7: Comparing modalities on HMDB51 using Top-1 for AR
Modalities ResNet18 ResNet101

RGB Concatenation 52.02 58.80
Flow BERT 54.73 57.58
Pose BERT 46.45 49.59

Two-Stream (RGB concatenation
62.81 65.21

+ Flow BERT)
Three-Stream (RGB concatenation

65.56 69.15
+ Flow BERT + Pose BERT)

Table 3.8: Ablation Study on 3D-RGB-ResNet type architectures on Split-1 of
HMDB51

Architecture Top-1 # Parameters # Operations
ResNet101-16f 61.18 85.35 M 13.95 GFlops

ResNeXt101-16f 63.14 47.63 M 9.64 GFlops
ResNet101-64f (16f pre-trained) 66.67 85.35 M 55.80 GFlops

ResNeXt101-64f (16f pre-trained) 68.56 47.63 M 38.56 GFlops
ResNeXt101-64f 73.07 47.63 M 38.56 GFlops

ResNeXt101-64f-224
(64f-112 pre-trained) 75.23 47.63 M 153.36 GFlops

3.4 Experiments on 3D CNN Architectures

In this section, the effect of 3D convolution on the performance of action recognition

is analyzed. The length of the clips, the input modalities, distillation are some of the

topics covered in this section. Additionally, popular 3D CNN architectures from the

literature are analyzed not only in the perspective of performance but also the time

complexity and memory utilization. All possible test types of 3D CNN architecture

and some other details are given in Appendix C.2.

3.4.1 Effects of Clip Length and Input Resolution on the performance of 3D

CNN Architectures

In this part, the main focus is on the effect of clip length. However, this section in-

cludes a brief study of input resolution as well. For this analysis, it is considered that

3D CNN versions of ResNet101 and ResNeXt101 architectures [24] are appropriate

for studying the effect of clip length and input resolution. Additionally, in this sec-

63

tion, the effect of group convolution is also analyzed, since ResNeXt101 is the same

version of ResNet101 with group convolution. The result of these studies is shown in

Table 3.8.

There are two types of 3D ResNet backbone in Table 3.8, which are ResNet101 and

ResNeXt101. 16f and 64f are to denote that 16 framed and 64 framed clips are used in

training the architecture, respectively. "16f pre-trained" specified in 64f architectures

is to denote that 64 framed clips are used in the fine-tuning of the HMDB51 but

the pre-trained weights are obtained by training the architecture on Kinetics with 16

framed clips. The fine-tuning of the architectures are implemented with the Kinetics

pre-trained weights released by the authors of the paper [24], and the same input

sizes (112x112) and the same mean and standard deviation of the authors are applied.

The only exception is "ResNeXt101-64f-224 (64f-112 pre-trained)" where the input

resolution is set to 224x224 during the fine-tuning. The test results are obtained with

multiple crops and multiple clips settings (See Section C.2).

The architecture changes from ResNet101-16f to ResNeXt101-16f and ResNet101-

64f (with 16f pre-trained) to ResNeXt101-64f (with 16f pre-trained) increase Top-

1 performance with about 2%, which shows the effectiveness of group convolu-

tion. Increasing the clip length from 16 to 64 during fine-tuning even though pre-

trained weights are still obtained with the training of 16-framed clips on the Kinet-

ics dataset increases the performance with about 5.5% increase in both ResNet101

and ResNeXt101 architectures. If both of the pre-training and fine-tuning are imple-

mented with 64 frames, the performance reaches up to 73.07%, which is about 4.7%

more compared to ResNeXt101-64f (16f pre-trained) and about 10% more compared

to ResNeXt101-16f training. Increasing the input resolution from 112 to 224 by fine-

tuning increases the top1 performance by about 2% and it is expected that increasing

the input resolution from 112 to 224 also in pre-training would increase the perfor-

mance even more but with the cost of computational complexity.

3.4.2 Two-stream 3D Architectures

Two stream architectures consist of two replicas of the same architectures, where one

stream is fed by RGB, and the other stream is fed by optical flow. The information

64

Table 3.9: Results of Two-stream 3D architectures on HMDB51 Split-1
Method Modality Top-1 Top-3

ResNeXt101 RGB 73.07 90.20
ResNeXt101 Flow 79.80 91.63
ResNeXt101 Two-Stream 82.35 94.38

I3D RGB 75.42 91.57
I3D Flow 77.97 92.22
I3D Two-Stream 82.03 93.99

about input modalities can be reached in Section 3.2.6. For the test of two-stream

architectures, two architectures are selected for comparison. These are ResNeXt101

architecture (see Section 2.2.3.2) and I3D architecture (see Section 2.2.3.1). The

implementation details of the architecture i given in Section 3.2. The only exception

is that the I3D architectures are trained by the learning rate 10−1 instead of 10−2

because of the difficulty in the training.

Top-1 and Top-3 results of RGB, flow and two-stream of the ResNeXt101 and I3D

architectures are tabulated in Table 3.9. In this table, the results of Top-1 and Top-3

results are given. The detailed view of this table is presented in Table C.1 in Appendix

C.

For the comparison of RGB stream, I3D seems to be better than ResNeXt101 ar-

chitecture. However, for flow stream and two-stream, ResNeXt101 architecture is

better than I3D architecture. As can be observed from Table 3.9, the optical flow field

yields better results compared to the RGB streams of the architecture, such that about

a 6.7% increase in ResNeXt101 architecture and 2.5% increase in I3D architecture.

The fact that the optical flow stream is better than the RGB stream is also related to

the characteristics of the HMDB51 dataset, where severe camera motions do not ex-

ist. Comparably, the camera motion is more severe in the Kinetics dataset, resulting

in low performances in the optical flow stream compared to the RGB stream [5].

In order to emphasize the importance of the dataset in pre-training, there is a need to

highlight the difference of the fine-tuning results of I3D on HMDB51 split1 between

the pre-trained Kinetics and pre-trained ImageNet. In the I3D paper [5], I3D-RGB,

I3D-Flow, and I3D-two-stream obtain 49.8, 61.9, and 66.4, respectively. However,

according to the result of Table 3.9, I3D-RGB, I3D-Flow, and I3D-two-stream obtain

65

Table 3.10: Performance and Parameter Size Comparison for RGB input modalities
on HMDB51 split-1

Method Top-1 Top-3 # Parameters # Operations
ResNeXt101
112x112 16f 63.33 82.61 47.63 M 9.64 GMac
ResNeXt101
112x112 64f 73.07 90.20 47.63 M 38.56 GMac

MFNET
224x224 16f 70.20 87.58 7.73 M 11.25 GMac

Rep-Flow-50
224x224 32f 72.42 89.54 29.09 M 44.59 GMac

TSM-50
224x224 8f 66.80 87.25 23.61 M 32.96 GMac

TSM-50
224x224 8x8f 72.03 89.54 23.61 M 32.96 GMac

TSM-50 3

224x224 8x8f 73.79 90.13 23.61 M 32.96 GMac

Modified ResNet50
224x224 32x2f 71.44 88.69 27.33 M 33.05 GMac

Modified ResNet50
Non-local 224x224 32x2f 72.88 91.44 34.69 M 38.22 GMac

Modified ResNet50
224x224 64f 73.79 91.70 27.33 M 66.10 GMac

Modified ResNet50
Non-local 224x224 64f 73.27 90.26 34.69 M 76.43 GMac

I3D
224x224 64f 74.90 91.63 12.34 M 111.33 GMac

SlowFast-50 (8x8)
224x224 64f 78.37 92.68 33.76 M 50.72 GMac

MARS ResNext101
112x112 64f 80.72 92.75 47.63 M 38.56 GMac

R(2+1)D ResNet34 4

112x112 32f 81.76 93.86 63.52 M 152.95 GMac

75.42, 77.97, and 82.03, respectively.

3.4.3 Comparison of 3D CNN Architectures

3 The selection procedure of frames in pre-training is as in [70]. Three splits top1 average is denoted as 73.5

66

In this section, various CNN architectures with RGB input modalities are compared.

These are ResNext architectures (Section 2.2.3.2), MFNET (Section 2.2.8), Rep-

Flow architecture [50], TSM architectures (Section 2.2.9), Modified ResNet architec-

ture (Section 2.2.5), I3D architecture (Section 2.2.3.1), SlowFast architectures (Sec-

tion 2.2.6), MARS architectures (Section 2.2.7) and R(2+1)D architectures (Section

2.2.4). It should be denoted that TSM is not a 3D convolution architecture but there

is a temporal information transfer with shifting operations (Section 2.2.9 for more

details).

Top-1 and Top-3 results on HMDB-51 split with RGB input modality is presented in

Table 3.10. The results in Table 3.10 are calculated by using non-overlapping multiple

clips and 10 crop settings. The detailed view of the table with all four different test

settings is presented in Appendix-C Table C.2. For all of the architectures, Kinetics

pre-trained weights released by the related GitHub repositories are utilized, except the

R(2+1)D in which the IG-65M dataset is utilized (Section 3.1.5). The normalization

parameters and input sizes are determined suitably with the pre-training schemes of

the architecture. The implementation details explained in Section 3.2 are followed.

The only difference is that for the training of Rep-Flow, the effective batch size is set

to 24, and the learning rate of the flow layer is set to 1/100 of the learning rate of the

other layers of the architecture as suggested in [50].

As indicated in the footnote 3, one of TSM architecture is pre-trained with a segment-

based sampling of the frames as implemented in [71], instead of dense sampling

strategy followed in the pre-training of other architectures. Another point is related to

the number of frames in the selected clips. 64f is to denote that the clips consist of 64

frames. Additionally, 32x2f is to denote that the clips consist of 32 frames but frame

selection is implemented with a stride of two, resulting in a 64 frame length coverage

with 32 frames. 8x8f similarly covers 64 frame length.

It should be highlighted that Table C.2 indicates that the utilization of ten crops bene-

ficial for nearly half of the architecture from the top1 performance perspective. From

% in [41]. The frame selection in fine-tuning and test seems ambiguous for me.
4 The pre-training is implemented with IG-65M, while the pre-training of other methods are implemented

with Kinetics-400. Therefore, the dataset has also effect on obtaining the best performance in the table. Top1
result of R(2+1)D with Kinetics pre-training is denoted as 74.4 % in [49]. Therefore, about 7.7 % increase seems
to be the result of the change in pre-training dataset.

67

the Top-3 performance perspective, it can be concluded that utilization of ten crops

is mostly beneficial but with the expense of ten times computational complexity. The

utilization of multiple clips is always beneficial since it includes different parts of the

action.

The best result in Table 3.10 is obtained with R(2+1)D ResNet34 architecture. How-

ever, it should be denoted that this architecture is pre-trained with IG-65 while the

others are pre-trained with Kinetics 400. It should not be ignored that the dataset has

a significant effect on the increase in the performance of this architecture. As indi-

cated in the footnote 4, the performance improvement brought by IG-65M is about

6-7%. In MARS architecture, the significant benefits of the distillation concept are

observed. As it is explained in Section 2.2.7, the only difference of MARS ResNeXt

from the traditional ResNeXt is the training procedure in which the features of RGB

architecture is distilled with the features of optical flow architecture. Therefore, dur-

ing the inference, with the same computational complexity and memory consumption,

the Top-1 performance of the architecture has increased with 5%. If the effect of the

IG-65M dataset and the distillation are ignored, it might be possible to conclude that

the best 3D architecture is SlowFast.

Another point that needs attention is the utilization of non-local blocks. For the results

of the modified ResNet50 architectures, non-local has improved the performance of

32x2f, but not the 64f preference. In [72], non-local blocks are shown to increase the

performance of not only the activity recognition tasks but also object detection and

segmentation tasks. One of the possible reasons for not observing the performance

improvement in 64f settings might be that the pre-training weights are obtained with

32x2f settings. Another conclusion from the results of modified ResNet50 architec-

tures is that 64f architectures result in better performances although 32x2f and 64f

architectures cover the same duration. Therefore, it can be concluded that even the

utilization of skipped frames might be important.

For TSM architectures, with the same budget of the same number of frames, the

sparse selection of frames is shown to results in significant performance increases, up

to about 5% increase in Top-1 and 2% increase in Top-3 results from 8f to 8x8f im-

plementation. Additionally, segment-based selection 3 in pre-training results in better

68

performance in the performance of TSM architecture, as indicated in the GitHub page

of the paper.

For SlowFast networks, the benefits of parallel fast architecture are demonstrated

clearly in Table 3.10. Despite that slow path is the same as the traditional ResNet

architecture, the addition of the fast path and the lateral connection from fast to slow

path boosts the performance significantly. The (8x8) of SlowFast architecture corre-

sponds to α = 8 and β = 1
4

in architecture settings (See Section 2.2.6).

As an additional note, the ensemble of the best three architectures results in 85.62%

and 95.82% Top-1 and Top-3 results on Split-1 of the HMDB51 dataset with single

clip single crop settings. The top-1 result of the ensemble of the architectures is about

4% more than the best architecture in Table 3.10. Therefore, it can be concluded that

different architectures might learn complementary information to each other. The

ensemble of the architectures can be perceived as a different utilization of two-stream

architectures in a sense that it is a three-stream architecture where streams are not

identical to each other and which are fed with only RGB input.

3.4.4 Computational Complexity and Memory Utilization Analysis of the Ar-

chitectures:

Apart from the recognition performances, the number of parameters and the number

of operations are two other important factors for the selection of the architectures. For

many practical applications of these methods, there might be some memory limita-

tions or time considerations. The results of these analyses are shown in Table 3.10. In

order to calculate the number of parameters and the number of operations a GitHub

repo5 is utilized. Denoting the number of operations, Multiply - Accumulate Opera-

tion (Mac) is utilized as a unit, which assumes a ∗x+ b as one operation according to

the repo. Comparing the Mac unit with the FLOP unit in the literature [6, 19], it can

be concluded that one Mac is equal to one FLOP.

It should be noted that in multiple clips tests (instead of single clip tests), the concept

of the number of clips appears. This concept is important for a fair comparison. In

5 github.com/sovrasov/flops-counter.pytorch

69

https://github.com/sovrasov/flops-counter.pytorch

order to make it more clear; for instance, the number of clips for 16f and 64f to

process a video with 64 frames are four and one, respectively.

There are some possible choices of giving clips as inputs to architectures. One possi-

ble way is to give them at once by increasing the batch size, resulting in a proportional

increase in memory usage with the number of clips. Another way is giving them se-

quentially, resulting in a proportional increase in time complexity with the number of

clips. A compromise between memory utilization and time complexity is also possi-

ble. If the number of clips factor is ignored, the comparison between the architectures

with different frames would be unfair.

For instance, consider MFNET 16f and I3D 64f architectures. A video with 64 frames

is handled with only one clip with I3D but with four clips with MFNET. Therefore,

the three possible ways of MFNET would be 7.73x4 M parameters with the time com-

plexity of 11.25 GMac, or 7.73x2 M parameters with the time complexity of 11.25x2

GMac, or 7.73M parameters with the time complexity of 11.25x4 GMac. A more re-

alistic comparison in this table should not also ignore this factor. To perceive it from

another perspective, there is a need to highlight the difference between time com-

plexity and computational complexity. Changing the batch size of the architecture

does not change the total computational complexity of architecture for a given video.

However, there can be a trade-off between memory utilization and time complexity

by changing the batch size. For instance, MFNET has 11.25x4 GMac computational

complexity to get the result of 64 framed video.

Based on the results of Table 3.10, the architecture with the least number of parame-

ters is MFNET 16f (7.73M) and the architecture with the least number of operations

is ResNeXt 16f (9.64 GMac). However, ResNeXt Top-1 performance is about 8%

lower compared to the MFNET architecture; therefore, 1.64 GMac computational in-

crease for 8% Top1 performance increase seems to be a fair deal. As a result, it might

be concluded that MFNET is one of the best efficient architecture of this table. How-

ever, the clip length factor of MFNET should not be forgotten while comparing with

the other architectures.

For the performance of TSM architectures, it seems that the utilization of 2D CNN

architectures does not provide significant benefits in the reduction of parameter size

70

and complexity when compared with MFNET or modified ResNet50 32x2f. How-

ever, one of the advantages of TSM architectures is that the early decision can be

made directly with the first frame of the architecture, which decreases the number

of operations to 32.96/8 GMac. Therefore, TSM can be utilized in any application

where the low latency is crucial. However, the performance of the early frames is not

investigated in this thesis work.

Aside, I3D has a very efficient memory utilization but its computational complex-

ity is significantly worse compared to the other architectures, except the R(2+1)D

ResNet34 architecture. For the comparison between SlowFast-50 and MARS archi-

tectures, SlowFast is better from the memory utilization perspective but worse in the

computational complexity perspective. However, it should be highlighted that the uti-

lization of 112x112 input size results in better computational complexity. Therefore

another reason for the less computational complexity of ResNeXt from Inception I3D

is the input size, not purely the architecture itself.

71

72

CHAPTER 4

PROPOSED METHOD: BERT ON 3D CNN ARCHITECTURES

Action Recognition (AR) pertains to identifying the label of the action or the activity

observed in a video clip. With cameras everywhere, AR has become essential in

many domains, such as video retrieval, surveillance, human-computer interaction,

and robotics.

A video clip contains two critical pieces of information for AR: Spatial and temporal

information. Spatial information represents the static information in the scene, such

as objects, context, entities, etc., which are visible in a single frame of the video,

whereas temporal information, obtained by integrating the spatial information over

frames, mostly captures the dynamic nature of the action.

In this work, the joint utilization of two temporal modeling concepts from the litera-

ture, which are 3D convolution and late temporal modeling, is proposed and analyzed.

Briefly, 3D convolution is a way of generating a temporal relationship hierarchically

from the beginning to the end of CNN architectures. On the other hand, late tem-

poral modeling is typically utilized with 2D CNN architectures, where the features

extracted by 2D CNN architectures from the selected frames are usually modeled

with recurrent architectures, such as LSTM, Conv LSTM.

Despite its advantages, the temporal global average pooling (TGAP) layer which is

used at the end of all 3D CNN architectures [5, 6, 16, 24, 49, 63, 64, 76] hinders the

richness of final temporal information. The features before TGAP can be considered

as features of different temporal regions of a clip or video. Although the receptive

field might cover the whole clip, the effective receptive field has a Gaussian distribu-

73

tion [44], producing features focusing on different temporal regions of a clip. In order

to discriminate actions, one part of the temporal feature might be more important than

the others or the order of the temporal features might be more beneficial than simply

averaging the temporal information. Therefore, TGAP ignores this ordering and fails

to fully exploit the temporal information.

Therefore, we propose using the attention mechanism of BERT for better temporal

modeling than TGAP. BERT determines which temporal features are more important

with its multi-head attention mechanism.

To the best of our knowledge, our work is the first to propose replacing TGAP in 3D

CNN architectures with late temporal modeling. We also consider that this study is

the first to utilize BERT as a temporal pooling strategy in AR. We show that BERT

performs better temporal pooling than average pooling, concatenation pooling, and

standard LSTM. Moreover, we demonstrate that late temporal modeling with BERT

improves the performances of various popular 3D CNN architectures for AR which

are ResNeXt101, I3D, SlowFast, and R(2+1)D by using the split-1 of the HMDB51

dataset. Using BERT R(2+1)D architecture, we obtain the new state of the art re-

sults; 85.10% and 98.69% Top-1 performances in HMDB51 and UCF101 datasets,

respectively.

4.1 Proposed Methods

In this part, the proposed methods of this study are introduced. Firstly, the main

proposed method, namely BERT-based temporal modeling with 3D CNN for activity

recognition, is presented in Section 4.1.1. Next, some novel feature reduction blocks

are proposed in Section 4.1.2. These blocks are utilized to reduce the number of

parameters of the proposed BERT-based temporal modeling. Thirdly, the proposed

BERT-based temporal modeling implementations on SlowFast architecture are ex-

amined in Section 4.1.3. The reason to re-consider the BERT-based late temporal

modeling on SlowFast architecture is due to its different two-stream structure from

other 3D CNN architectures.

74

Figure 4.1: BERT-based late temporal modeling

4.1.1 BERT-based Temporal Modeling with 3D CNNs for Action Recognition

Bi-directional Encoder Representations from Transformers (BERT) [9] is a bidirec-

tional self-attention method, which has provided unprecedented success in many

downstream Natural Language Processing (NLP) tasks. The bidirectional property

enables BERT to fuse the contextual information from both directions, instead of re-

lying upon only a single direction, as in former recurrent neural networks or other self-

attention methods, such as Transformer [65]. Moreover, BERT introduces challeng-

ing unsupervised pre-training tasks which leads to useful representations for many

tasks.

Our architecture utilizes BERT-based temporal pooling as shown in Figure 4.1. In this

architecture, the selected K frames from the input sequence are propagated through a

3D CNN architecture without applying temporal global average pooling at the end of

the architecture. Then, in order to preserve the positional information, a learned po-

sitional encoding is added to the extracted features. In order to perform classification

with BERT, additional classification embedding (xcls) is appended as in [9] (repre-

sented as red box in Figure 4.1). The classification of the architecture is implemented

with the corresponding classification vector ycls which is given to the fully connected

layer, producing the predicted output label ŷ.

The general single head self-attention model of BERT as explained in Section 2.2.1

75

is formulated as:

yi = PFFN

(
1

N(x)

∑
∀j

g(xj)f(xi,xj)

)
, (4.1)

where xi values are the embedding vectors that consists of extracted temporal visual

information and its positional encoding; i indicates the index of the target output tem-

poral position; j denotes all possible combinations; and N(x) is the normalization

term. Function g(·) is the linear projection inside the self-attention mechanism of

BERT, whereas function f(·, ·) denotes the similarity between xi and xj: f(xi,xj) =

softmaxj(θ(xi)
Tφ(xj)), where the functions θ(·) and φ(·) are also linear projections.

The learnable functions g(·), θ(·) and φ(·) try to project the feature embedding vectors

to a better space where the attention mechanism works more efficiently. The outputs

of g(·), θ(·) and φ(·) functions are also defined as value, query and key, respectively

[65]. PFFN(·) is Position-wise Feed-forward Network applied to all positions sepa-

rately and identically: PFFN(x) = W2GELU(W1x+b1)+b2, where GELU(·)
is the Gaussian Error Linear Unit (GELU) activation function [26].

The final decision of classification is performed with one more linear layer which

takes ycls as input. The explicit form of ycls can be written as:

ycls = PFFN

(
1

N(x)

∑
∀j

g(xj)f(xcls,xj)

)
. (4.2)

Therefore, our use of the temporal attention mechanism for BERT is not only to learn

the convenient subspace where the attention mechanism works efficiently but also to

learn the classification embedding which learns how to attend the temporal features

of the 3D CNN architecture properly.

A similar work for action recognition is implemented with non-local neural networks

(NN) [72]. The main aim of non-local block is to create global spatio-temporal rela-

tions, since convolution operation is limited to local regions. For this aim, non-local

blocks use a similar attention concept by using 1x1x1 CNN filters, in order to realize

g(·), θ(·) and φ(·) functions. The main difference between the non-local and the pro-

posed BERT attention is that non-local concept [72] is preferred to be utilized not at

the end of the architecture, but some preferred locations inside the architecture. How-

ever, our BERT-based temporal pooling is implemented on the extracted features of

76

(a) Original (b) FRMB (c) FRAB

Figure 4.2: The implementations of Feature Reduction with Modified Block (FRMB)

and Feature Reduction with Additional Block (FRAB)

the 3D CNN architecture and utilizes multi-head attention concept to create multiple

relations with self-attention mechanism. Moreover, it utilizes positional encoding in

order to preserve the order information and utilizes learnable classification token.

Another similar study for action recognition is the video action transformer network

[20] where the transformer is utilized in order to aggregate contextual information

from other people and objects in the surrounding video. The video action transformer

network deals with both action localization and action recognition; therefore, its prob-

lem formulation is different from ours and its attention mechanism needs to be refor-

mulated for the late temporal modeling for action recognition. Differently from the

video action transformer network, our proposed BERT-based late temporal modeling

utilizes the learnable classification token, instead of using the pooled feature of the

output of the backbone architecture.

4.1.2 Proposed Feature Reduction Blocks: FRAB & FRMB

The computational complexity of BERT has a quadratic increase with the dimension

of the output feature of the CNN backbone. As a result, if the dimension of the

output feature is not reduced for specific backbones, the BERT module might have

more parameters than the backbone itself. For instance, if the dimension of the output

77

feature is 512, the single-layer BERT module has about 3 Million parameters, while

the parameter size would be about 50 Million for the output feature dimension of

2048.

Therefore, in order to utilize BERT architecture in a more parameter efficient man-

ner, two feature reduction blocks are proposed. These are Feature Reduction with

Modified Block (FRMB) and Feature Reduction with Additional Block (FRAB). In

FRMB, the final unit block of the CNN backbone is replaced with a novel unit block

with the aim of feature dimension reduction. In FRAB, an additional unit block is

appended to the backbone to reduce the dimension. An example implementation of

FRMB and FRAB on ResNeXt101 backbone is presented in Figure 4.2.

The benefit of FRMB implementation is its better computational complexity and pa-

rameter efficiency over the FRAB implementation. Moreover, FRMB has even a bet-

ter computational complexity and parameter efficiency than the original backbone.

One possible downside of FRMB over FRAB is that the final block does not bene-

fit from the pre-trained weights of the larger dataset if the feature reduction block is

implemented only in the fine-tuning step but not in the pre-training.

4.1.3 Proposed BERT Implementations on SlowFast Architecture

SlowFast architecture [16] introduces a different perspective for the two-stream ar-

chitectures. Instead of utilizing two different modalities as two identical streams, the

overall architecture includes two different streams (namely fast and slow streams or

paths) with different capabilities for a single modality. In SlowFast architecture, the

slow stream has a better spatial capability, while the fast stream has a better temporal

capability. The fast stream has better temporal resolution and less channel capacity

compared to the slow stream.

Due to its two-stream structure with different temporal resolutions, direct implemen-

tation of BERT-based late temporal modeling explained in Section 4.1.1 is not pos-

sible. Therefore, two alternative solutions are proposed in order to carry out BERT-

based late temporal modeling on SlowFast architecture: Early-fusion BERT and late-

fusion BERT. In early-fusion BERT, the temporal features are concatenated before

78

(a) Early-fusion

(b) Late-fusion

Figure 4.3: Early-fusion and late-fusion implementations of BERT on SlowFast ar-

chitecture.

the BERT layer and only a single BERT module is utilized. To make the concatena-

tion feasible, the temporal resolution of the fast stream is decreased to the temporal

resolution of the slow stream. In late-fusion BERT, two different BERT modules are

utilized, one for each stream and the outputs of two BERT modules from two streams

are concatenated. The figure for early-fusion and late-fusion is shown in Figure 4.3.

4.2 Experimental Results

In this part, dataset, implementation details, ablation study, results on different archi-

tectures, and comparison with state-of-the-art sections are presented, respectively.

4.2.1 Dataset

For analyzing the improvements of BERT on individual architectures (Section 4.2.4),

split 1 of the HMDB51 dataset is used, whereas the comparisons against the-state-of-

the-art (See Section 4.2.5) are performed by using the three splits of the HMDB51 and

UCF101 datasets. Additionally, the ablation study (See Section 4.2.3) is conducted

79

using the three splits of HMDB51. Moreover, Kinetics-400 and IG65M are used for

pre-trained weights of the architectures before fine-tuning on HMDB51 and UCF101.

The pre-trained weights are obtained from the authors of architectures, which are

ResNeXt, I3D, Slowfast, and R(2+1)D. Among these architectures, R(2+1)D is pre-

trained with IG65M but the rest of the architectures are pre-trained with Kinetics-400.

4.2.2 Implementation Details

For the standard architectures (with TGAP and without any modification to architec-

tures), SGD with learning rate 10−2 is utilized, except I3D in which the learning rate

is set to 10−1 empirically. For architectures with BERT, the ADAMW optimizer [43]

with learning rate 10−5 is utilized except I3D for which the learning rate is set to 10−4

empirically. For all training runs, the “reducing learning rate on the plateau" schedule

is followed. The data normalization schemes are selected conforming with the data

normalization schemes of the pre-training of the architectures in order to benefit fully

from pre-training weights. A multi-scale cropping scheme is applied for fine-tuning

and testing of all architectures [69]. In the test time, the scores of non-overlapping

clips are averaged. The optical flow of the frames is extracted with the TV-L1 algo-

rithm (Appendix A).

In the BERT architecture, there are eight attention heads and one transformer block.

The dropout ratio in PFFN(·) is set to 0.9. Mask operation is applied with 0.2

probability. Instead of using a mask token, the attention weight of the masked feature

is set to zero. The classification token (xcls) and the learned positional embeddings

are initialized as the zero-mean normal weight with 0.02 standard deviation. Default

Torch linear layer initialization is used. Different from the I3D-BERT architecture,

the linear layers of BERT are also initialized as the zero-mean normal weight with

0.02 standard deviation since it yields better results for I3D-BERT.

4.2.3 Ablation Study

In this section, we will analyze each step of our proposals and examine how our

method compares with alternative pooling strategies (see Table 4.1). In this analysis,

80

Table 4.1: Ablation Study of RGB ResNeXt101 architecture for temporal pooling
analysis on HMDB51. FRMB: Feature Reduction with Modified Block.

Type of FRMB Optimizer Top1 # of # of
Temporal Pooling (%) Params Operations
Average Pooling

SGD 74.46 47.63 M 38.56 GFlops
(Baseline)

Average Pooling ADAMW 75.99 47.63 M 38.56 GFlops
Average Pooling X ADAMW 74.97 44.22 M 38.36 GFlops
Concatenation X ADAMW 76.49 44.30 M 38.36 GFlops

LSTM X ADAMW 74.18 47.58 M 38.37 GFlops
Concatenation +

X ADAMW 76.84 47.45 M 38.36 GFlops
Fully Connected Layer

Non-local +
X ADAMW 76.36 47.35 M 38.43 GFlopsConcatenation +

Fully Connected Layer
BERT pooling (Ours) X ADAMW 77.49 47.38 M 38.37 GFlops

the ResNeXt101 backbone is utilized with the RGB modality, with a 112x112 input

image size, and with 64-frame clips. In Table 4.1, temporal pool types, the existence

of Feature Reduction with Modified Block (FRMB), the type of the optimizer, top1

performances, the number of parameters, and the number of operations are presented

as the columns of the analysis.

One important issue is the optimizer. For training BERT architectures in NLP tasks,

the ADAM optimizer is usually selected [9]. However, SGD is preferred for 3D CNN

architectures [24, 5, 16, 64, 8]. Therefore, for training BERT, we select ADAMW (i.e.

not ADAM), since ADAMW improves the generalization capability of ADAM [43].

In this ablation study, ResNeXt101 architecture (with Average Pooling in Table 4.1)

is also trained with ADAMW in Table 4.1 which shows 1.5% increase in performance

compared to SGD.

In this ablation study, FRMB implementation is selected for two reasons over FRAB.

Firstly, FRMB yields about 0.5% better top1 performance than FRAB. Secondly,

FRMB has better computational complexity and parameter efficiency than FRAB.

From the experiments of the ablation study, it is observed that FRMB has lower com-

putational complexity and better parameter efficiency at the cost of ∼1% decrease

in Top-1 performance compared to the standard backbone (Table 4.1). The impact

81

of FRMB on 2D CNN architectures with BERT-based late temporal modeling is ex-

plained in Appendix C.4.

For a fair comparison, we set the hyper-parameters of the other pooling strategies

(LSTM, concatenation + fully connected layer, and non-local + concatenation + fully

connected layer) such that the number of parameters and the number of operations of

these temporal pooling strategies is almost the same compared to the proposed BERT

pooling. LSTM is implemented in two stacks and with a hidden-layer size 450. The

dimension of the inter-channel of a non-local attention block (the dimension size of

the attention mechanism) is set equal to the input size to the non-local block which

is 512. The number of nodes of a fully connected layer is determined according to

the need for equal parameter size with the proposed BERT temporal pooling for a fair

comparison.

When Table 4.1 is analyzed, one can observe that among the six different alterna-

tives (with FRMB), BERT has the best temporal pooling strategy. Additionally, the

proposed FRMB-ResNeXt101-BERT provides 3% better Top-1 accuracy than the

ResNeXt101 average pooling (Baseline) despite the fact that FRMB-ResNeXt101-

BERT has better computational complexity and parameter efficiency compared to

ResNeXt101 average pooling (Baseline) (see Table 4.1). The BERT layer itself has

about 3M parameters and negligible computational complexity with respect to the

ResNeXt101 backbone. For the other temporal pooling strategies, LSTM worsens

the performance with respect to the temporal average pooling. Concatenation and

concatenation + fully connected layer are also other successful strategies in order to

utilize the temporal features better than the average pooling. The addition of a non-

local attention block before the concatenation + fully connected layer also decreases

the performance compared to only concatenation + fully connected layer pooling im-

plementation. It should be highlighted that the original implementation of the non-

local study [72] also prefers not to utilize the non-local block at the end of the final

three bottleneck blocks, which is a consistent fact with the experimental result of this

study related with non-local implementation.

In addition, the ablation study of BERT late temporal modeling is performed and pre-

sented in Table 4.2. These results examine the effects of the number of layers, the

82

Table 4.2: Ablation Study of BERT late temporal Modeling on HMDB51.
Number of Number of Learnable Classification Token Top1

BERT Layers Attention Heads against Pooled Features (%)
1 8 76.07
1 1 X 76.97
1 8 X 77.49
2 8 X 77.24

number of heads, and utilization of learnable classification token instead of the aver-

age pooled feature. Initially, the experiment of replacing the average of extracted tem-

poral features with learnable classification token results in a 1.42% Top-1 accuracy

boost. Next, utilization of multi-head attention with eight attention heads improves

the Top-1 performance of single-head attention with 0.52%. Thirdly, increasing the

number of layers from one to two worsens the top1 performance with 0.25%. More-

over, the memory trade-off of every layer of BERT is about 3M. The reason behind

the deterioration might be the fact that late temporal modeling is not as much complex

as capturing rich linguistic information and a single layer might be enough to capture

the temporal relationship between the output features of 3D CNN architectures.

4.2.4 Results on Different 3D CNN Architectures

In this section, the improvements obtained by replacing TGAP with BERT pooling

on popular 3D convolution architectures for action recognition is presented, including

ResNeXt101 [24], I3D [5], SlowFast[16] and R(2+1)D [64].

4.2.4.1 ResNeXt Architecture

ResNeXt architecture is essentially ResNet with group convolutions [24]. For testing

this architecture, the input size is selected as 112x112 as in the study of [24, 8] and

64 frame length is utilized.

The results of the ResNeXt101 architecture is presented in Table 4.3. The perfor-

mance of the architectures is compared over RGB modality, (optical) flow modality,

and both (two-stream) in which both RGB and flow-streams are utilized, and the

83

Table 4.3: Analysis of ResNeXt101 architecture with and without BERT for RGB,
Flow, and two-stream modalities on HMDB51 split-1

BERT Modality Top-1 # Parameters # Operations
RGB 74.38 47.63 M 38.56 GFlops

X RGB 77.25 47.38 M 38.37 GFlops

Flow 79.48 47.60 M 34.16 GFlops
X Flow 82.03 47.36 M 33.97 GFlops

Both 82.09 95.23 M 72.72 GFlops
X Both 83.99 94.74 M 72.34 GFlops

scores are summed from each stream. In this table, the number of parameters and

operations of the architectures are also presented. For feature reduction, FRMB is

chosen instead of FRAB and its reasoning is explained in Section 4.2.3. (see Section

4.1.2 for more details about FRAB and FRMB). Based on the results in Table 4.3, the

most important observation is the improvement of the performance by using BERT

over the standard architectures (without BERT) in all modalities.

4.2.4.2 I3D Architecture

I3D architecture is an Inception-type architecture. During I3D experiments, the input

size is selected as 224x224 and 64 frame length is used conforming with the I3D study

[5]. The result of BERT experiments on I3D architecture is given in Table 4.4. In this

table, there are two BERT implementations that are with and without FRAB. For I3D-

BERT architectures with FRAB, the final feature dimension of the I3D backbone is

reduced from 1024 to 512 in order to utilize BERT in a more parameter efficient

manner. However, contrary to the ResNeXt101-BERT architecture, FRAB is selected

instead of FRMB, because FRAB obtains about 3.6% better Top-1 result for RGB-

I3D-BERT architecture on split1 of HMDB51.

The experimental results in Table 4.4 indicate that BERT increases the performance

of I3D architectures in all modalities. However, the increase in RGB modality is

quite limited. For the Flow modality, although there is a performance improvement

for BERT without FRAB, the implementation of BERT with FRAB performs worse

than the standard I3D architecture, implying that preserving the feature size is more

important for flow modality compared to RGB modality in I3D architecture. For

84

Table 4.4: The performance analysis of I3D architecture with and without BERT for
RGB, Flow, and two-stream modalities on HMDB51 split-1

BERT Modality
Feature

Top-1 # Parameters # Operations
Reduction

RGB X 75.42 12.34 M 111.33 GFlops
X RGB FRAB 75.75 16.40 M 111.72 GFlops
X RGB X 75.69 24.95 M 111.44 GFlops

Flow X 77.97 12.32 M 102.52 GFlops
X Flow FRAB 77.25 16.37 M 102.91 GFlops
X Flow X 78.37 24.92 M 102.63 GFlops

Both X 82.03 24.66 M 213.85 GFlops
X Both FRAB 82.68 32.77 M 214.63 GFlops
X Both X 82.68 49.87 M 214.07 GFlops

the two-stream setting, both of the proposed BERT architectures perform equally

with each other and perform better than standard I3D with 0.65% Top-1 performance

increase. Comparing with the ResNeXt101 architecture, the performance improve-

ments brought by BERT temporal modeling is lower in I3D architecture.

4.2.4.3 SlowFast Architecture

The SlowFast architecture in these experiments is derived from a ResNet-50 architec-

ture. The channel capacity of the fast streams is one-eighth of the channel capacity of

the slow stream. The temporal resolution of the fast stream is four times the temporal

resolution for the slow stream. The input size is selected as 224x224 and 64-frame

length is utilized with the SlowFast architecture conforming with the SlowFast study

[16]. Although it might be possible to utilize SlowFast architecture with also optical

flow modality, the authors of SlowFast did not consider this strategy in their study.

Therefore, in this effort, the analysis of BERT is also implemented by only consider-

ing the RGB modality.

In order to utilize BERT architecture with fewer parameters, the final feature dimen-

sion of SlowFast backbone is reduced similar to the ResNeXt101-BERT and I3D-

BERT architectures. Similar to the I3D-BERT architecture, FRAB is chosen instead

of FRMB since FRAB obtains about 1.5% better Top-1 result for SlowFast-BERT ar-

chitecture on the split1 of HMDB51 (see Section 4.1.2 for more details about FRAB

85

Table 4.5: The performance analysis of SlowFast architecture with and without BERT
for RGB modality on HMDB51 split-1

BERT Top-1 # Parameters # Operations
79.41 33.76 M 50.72 GFlops

X(early-fusion) 79.54 43.17 M 52.39 GFlops
X(late-fusion) 80.78 42.04 M 52.14 GFlops

and FRMB). For early-fusion BERT, the feature dimension of the slow stream is re-

duced from 2048 to 512 and the feature dimension of the fast stream is reduced from

256 to 128. For late-fusion BERT, only the feature dimension of the slow stream is

reduced from 2048 to 512. The details about the size of the dimensions are presented

in Figure 4.3. The proposed implementation of BERT-based late temporal modeling

on SlowFast architecture is presented in Section 4.1.3.

The results for BERT on SlowFast architecture are given in Table 4.5. First of all,

both BERT solutions perform better than the standard SlowFast architecture but the

improvement of early-fusion method is quite limited. Late-fusion BERT improves

the top1 performance of standard SlowFast architecture with about 1.3 %. From the

number of parameters perspective, the implementation of BERT on SlowFast archi-

tecture is not as much as efficient in comparison to ResNeXt101 architecture because

of the FRAB implementation instead of FRMB as in the case of I3D-BERT. More-

over, the parameter increase of RGB-SlowFast-BERT is even higher than RGB-I3D-

BERT because of the two-stream implementation of SlowFast network for RGB input

modality. The increase in the number of operations is also higher in the implementa-

tion of SlowFast-BERT than the I3D-BERT and ResNeXt101-BERT because of the

higher temporal resolution in SlowFast architecture and two-stream implementation

for RGB modality.

For the two alternatives proposed BERT solution in Table 4.5, late-fusion yields bet-

ter performance with better computational complexity in contrast with early-fusion

BERT. Although the attention mechanism is implemented jointly on the concatenated

features, the destruction of the temporal richness of fast stream to some degree might

be the reason for the inferior performance of the early-fusion BERT.

86

Table 4.6: The performance analysis of R(2+1)D architecture with and without BERT
for RGB modality on HMDB51 split-1

BERT Top-1 # Parameters # Operations
82.81 63.67 M 152.95 GFlops

X 84.77 66.67 M 152.97 GFlops

4.2.4.4 R(2+1)D Architecture

R(2+1)D [64] architecture is a ResNet-type architecture consisting of separable 3D

convolutions in which temporal and spatial convolutions are implemented separately.

For this architecture, 112x112 input dimensions are applied following the paper, and

32-frame length is applied instead of 64-frame because of the huge memory demand

of this architecture and to be consistent with the paper [64]. The selected R(2+1)D

architecture has 34 layers and implemented with basic block type instead of bottle-

neck block type (for further details about block types, see [24]). The most important

difference of R(2+1)D experiments from the previous architectures is the utilization

of the IG65M pre-trained weights, instead of Kinetics pre-trained weights (see Sec-

tion 4.2.1 for details). Therefore, this information should always be considered while

comparing this architecture with the aforementioned ones. The analysis of R(2+1)D

BERT architecture is limited to RGB modality, since the study [19] of the IG65M

dataset where R(2+1)D architecture is preferred is limited to RGB modality.

The experiments for BERT on R(2+1)D architecture are presented in Table 4.6. The

feature dimension of R(2+1)D architecture is already 512 which is the same with

the reduced feature dimension of ResNeXt101 and I3D backbones for BERT imple-

mentations. Therefore, we do not use FRMB or FRAB for R(2+1)D. There is an

increase of about 3M parameters and the increase in the number of operations is still

negligible. The performance increase of BERT on R(2+1)D architecture is about 2%

which is a significant increase for RGB modality as in the case of ResNeXt101-BERT

architecture.

87

4.2.5 Comparison with State-of-the-Art

In this section, the results of the best BERT architectures from the previous section

are compared against the state-of-the-art methods. For this aim, two leading BERT ar-

chitectures are selected among all the test methods: Two-Stream BERT ResNeXt101

and RGB BERT R(2+1)D (see Section 4.2.4). Note that these two architectures use

different pre-training datasets, namely IG65 and Kinetics-400 for ResNext101 and

R(2+1)D, respectively.

The results of the architectures on HMDB51 and UCF101 datasets are presented in

Table 4.7. The table indicates if an architecture employs explicit optical flow. More-

over, the table lists the pre-training dataset used by the methods.

As shown in Table 4.7, BERT increases the Top-1 performance of the two-stream

ResNeXt101 with 1.77% and 0.41% in HMDB51 and UCF101, respectively. Addi-

tionally, BERT improves the Top-1 performance of RGB R(2+1)D (32f) with 3.5

% and 0.48% in HMDB51 and UCF101, respectively, where 32f corresponds to

32-frame length. The results obtained by the R(2+1)D BERT (64f) architecture

pre-trained with the IG65M dataset is the current state-of-the-art result in AR for

HMDB51 and UCF101, to the best of our knowledge.

Among the architectures pre-trained in Kinetics-400, the two-stream ResNeXt101

BERT is again the best in HMDB51 but the second-best in the UCF101 dataset. This

might be owing to the fact that HMDB51 involves some actions that can be resolved

only using temporal reasoning and therefore benefits from BERT’s capacity.

An important point to note from the table is the effect of pre-training with the IG65M

dataset. RGB R(2+1)D (32f) (without Flow) pre-trained with IG65M obtains about

6% and 1.4% better Top-1 performance in HMDB51 and UCF101, respectively than

the one pre-trained with Kinetics-400, indicating the importance of the number of

samples in the pre-training dataset even if the samples are collected in a weakly-

supervised manner.

88

Table 4.7: Comparison with the state-of-the-art.
Uses Extra

Model Flow? Training Data HMDB51 UCF101
IDT [67] X 61.70 -

Two-Stream [57] X ImageNet 59.40 88.00
Two-stream Fusion + IDT [17] X ImageNet 69.20 93.50

ActionVlad + IDT [22] X ImageNet 69.80 93.60
TSN [71] X ImageNet 71.00 94.90

RSTAN + IDT [13] X ImageNet 79.90 95.10
TSM [41] Kinetics-400 73.50 95.90

R(2+1)D [64] Kinetics-400 74.50 96.80
R(2+1)D [64] X Kinetics-400 78.70 97.30

I3D [5] X Kinetics-400 80.90 97.80
MARS + RGB + Flow [8] X Kinetics-400 80.90 98.10

FcF [50] Kinetics-400 81.10 -
ResNeXt101 X Kinetics-400 81.78 97.46
EvaNet [49] X Kinetics-400 82.3 -

HAF+BoW/FV halluc [68] Kinetics-400 82.48 -
ResNeXt101 BERT (Ours) X Kinetics-400 83.55 97.87

R(2+1)D (32f) IG65M 80.54 98.17
R(2+1)D BERT (32f) (Ours) IG65M 83.99 98.65
R(2+1)D BERT (64f) (Ours) IG65M 85.10 98.69

4.3 Discussion

This study combines the two major components from AR literature, namely late tem-

poral modeling and 3D convolution. Although there are many pooling, fusion, and

recurrent modeling strategies that are applied to the features from 2D CNN architec-

tures, we firmly believe that this manuscript is the first study that removes temporal

global average pooling (TGAP) and better employs temporal information at the out-

put of 3D CNN architectures. To utilize these temporal features, an attention-based

mechanism namely BERT is selected. The effectiveness of this idea is proven on

most of the popular 3D CNN architectures which are ResNeXt, I3D, SlowFast, and

R(2+1)D. In addition, significant improvements over the-state-of-the-art techniques

are obtained in HMDB51 and UCF101 datasets.

89

90

CHAPTER 5

PROPOSED METHOD : BERT DISTILLATION

The superiority of BERT in Natural Language Processing (NLP) tasks is substantially

related to its unsupervised pre-training procedure. During this pre-training, BERT ar-

chitecture is guided to predict some of the masked words which increase its learning

capacity for creating a relationship between the words with its attention mechanism.

For this aim, we aim to discover the potential of unsupervised training of BERT archi-

tecture on the action recognition task by using the distillation concept. In this chapter,

the joint utilization of distillation and unsupervised training concepts are shown to be

beneficial even with the small action recognition dataset HMDB51.

5.1 Methodology

In NLP tasks, training of BERT architectures is implemented in two steps, which are

pre-training and fine-tuning. In the pre-training part, the aim is to train the architec-

ture to predict the words which are masked. Then, these pre-trained weights of BERT

are utilized in other NLP tasks in a supervised manner, such as sentiment analysis or

question-answer problems.

In this study, unsupervised training of BERT architecture is utilized in a slightly dif-

ferent manner and combined with the distillation concept. The distillation concept is

initially utilized in MARS [8] architecture in order to transfer knowledge of flow ar-

chitecture to RGB architecture in the action recognition task. This approach is shown

to be quite useful. Similar to this approach, instead of implementing the similarity

loss and classification loss separately as two different phases of training procedure of

91

BERT, they are combined into a single loss function in BERT distillation (5.1)

Loss(s, ŷ,y, z) = CrossEntropy(s, ŷ) +λ
N∑
i=1

||yi−zi||2, ||yi|| = ||zi|| = 1 (5.1)

where s is the ground truth classification output, yis are the output of the BERT archi-

tecture and i denotes the temporal index as seen in Figure 5.1, and ŷ is the predicted

classification label obtained from ycls feature which can be seen in Figure 5.1 . From

the distillation perspective, BERT architecture is student architecture. zis are the out-

puts of the teacher 3D CNN architecture without temporal global average pooling

and characteristically similar to the outputs fis. This teacher architecture can be any

architecture that is typically considered to be beneficial to improve the performance

of student BERT architecture, such as flow version of the student architecture or RGB

architecture with better capacity than student BERT architecture. It should be empha-

sized that the teacher architecture is pre-trained before the implementation of BERT

distillation and weight update is not applied to teacher architecture during the distil-

lation training of BERT architecture.

5.2 Experimental Results

In this section, the experiments of the concept of distillation with unsupervised train-

ing of BERT architecture is presented. In the first step, there is a necessity of deter-

mining the value of λ in (5.1). For this purpose, the student architecture is selected as

RGB-ResNeXt-101-BERT with FRMB, whereas the teacher architecture is selected

as Flow-ResNeXt-101-BERT with FRMB. The result of this analysis is presented in

Table 5.1. For the selection of the best result, we pick the best value of λ according

to Top-1 + Top-3 score. The reason to follow such an approach is to reduce the noisy

results of the specified λ. The better analysis would be the three-split-average results

but we do not want to follow it due to the computational complexity perspective.

The results of the distillation tests are presented in Table 5.2. The upper part of the

table belongs to result of our proposed BERT distillation and the below part of the

table belongs to MARS distillations.

92

Figure 5.1: BERT-based Distillation

In the BERT distillation part, two architectures are selected as RGB-ResNeXt101-

BERT FRMB and RGB-ResNeXt101-BERT FRAB. For the teacher architectures,

Flow-ResNeXt101-BERT FRMB and RGB-R(2+1)D-BERT-(32x2f) are chosen and

their Top-1 performances are 81.29% and 83.03%, respectively. Firstly, it can be

observed that distillation from Flow-ResNeXt101-BERT-FRMB improves the per-

formance of both RGB-ResNeXt101-BERT FRMB and RGB-ResNeXt101-BERT

FRAB with about 0.8% and 1.6%, respectively. In addition, RGB-ResNeXt101-

BERT-FRAB is distilled as a student architecture with Flow-ResNeXt101-BERT-

FRMB and RGB-R(2+1)D-BERT-(32x2f) and Top-1 performances are improved with

1.6% and 1.0%, respectively. Although Top-1 performance of RGB-R(2+1)D-BERT

is higher than Flow-ResNeXt101-BERT-FRMB, the latter is better, when it is used as

a teacher architecture. This might be resulted due to the fact that different modality

might contain more complementary information.

93

Table 5.1: Lambda parameter selection for distillation with unsupervised training of
BERT architecture on split-1 of HMDB51

lambda (λ) Top-1 Top-3 Top-1 + Top-3
25k 77.45 91.50 168.95
50k 78.69 91.11 169.80

100k 78.17 92.22 170.39
250k 78.37 91.44 169.81
500k 78.63 91.18 169.81

A comparison between MARS and BERT distillations can be stated based on the re-

sults of two (i.e. above and below) parts of Table 5.2. The most important difference

between them is as follows: MARS distillation affects the features of classification

directly, while BERT distillation affects indirectly because the distilled parts of BERT

is not utilized directly in the classification layer. When MARS distillation is imple-

mented in HMDB51 directly, it decreases the performance due to overfitting. How-

ever, such an overfitting problem is not observed during BERT distillation. This result

might be observed because of the difference in the direct-indirect impact of BERT and

MARS distillations. However, it is also shown that when MARS distillation is im-

plemented by using the Kinetics dataset, the over-fitting problem disappears due to a

large number of samples in the dataset and Top-1 accuracy improves significantly.

94

Table 5.2: Distillation with unsupervised training of BERT architectures and MARS
distillations on HMDB51

Student Teacher
Top-1

Distillation
Architecture Architecture Dataset

RGB-ResNeXt101-
(No Distillation) 77.49

BERT-FRMB
RGB-ResNeXt101-

(No Distillation) 77.10
BERT-FRAB

RGB-ResNeXt101- Flow-ResNeXt101-
78.30 HMDB51

BERT-FRMB BERT-FRMB
RGB-ResNeXt101- Flow-ResNeXt101-

78.72 HMDB51
BERT-FRAB BERT-FRMB

RGB-ResNeXt101- RGB-R(2+1)D-
78.15 HMDB51

BERT-FRAB BERT-(32x2f)

RGB-ResNeXt101 (No Distillation) 74.46

RGB-ResNeXt101
Flow-ResNeXt101 71.15 HMDB51

MARS
RGB-ResNeXt101

Flow-ResNeXt101 81.22 Kinetics
MARS

95

96

CHAPTER 6

SUMMARY & CONCLUSION

6.1 Summary

This thesis proposes novel neural network architectures for AR problem. Two recent

techniques, namely BERT and distillation, are applied to conventional 3D CNNs in

order to achieve late temporal modeling for the recognition task.

2D CNN architectures are presented in Section 3.3, starting with late temporal pooling

strategies being examined on ResNet18 architecture with RGB modality in Section

3.3.1. Such late temporal modeling techniques cover the following: No-pooling, av-

erage pooling, non-local block + average pooling, concatenation, non-local block +

concatenation, LSTM, Convolutional GRU, and BERT structures. Then, the impact

of the additional fusion of intermediate features of 2D CNN architectures to final fea-

ture representation is analyzed in Section 3.3.2. Additionally, the impact of the depth

of the CNN architecture is investigated for RGB modality in Section 3.3.3. Continu-

ing this section, the impact of other input modalities, such as Flow and Pose, and joint

utilization of all two modalities (RGB + Flow) and three modalities (RGB + Flow +

Pose) are examined. For flow and pose modality, the impact of late temporal and

fusion is also investigated in less detail compared to the analysis on RGB modality.

It should be emphasized that the utilization of pose information is different from the

literature; i,e. pose information is converted into RGB image which is explained in

detail in Section 3.2.6).

About 3D CNN architectures (Section 3.4), some of the basic notions, such as the

effect of clip length and input image resolution are initially investigated. The (pos-

97

itive) impact of group convolution is analyzed by comparing ResNet and ResNeXt.

Additionally, the differences between applying these notions to both pre-training and

fine-tuning, and only fine-tuning is compared. Next, two-stream architectures (RGB

+ Flow) is investigated by using ResNeXt and I3D architectures. Finally, the per-

formance, memory utilization and computational complexity analysis of 3D CNN

architectures are examined in Section 3.4.3 and Section 3.4.4. This analysis covers

the architectures of ResNext, MFNET, Rep-Flow, TSM (Not 3DCNN but novel 2D

CNN idea), Modified ResNet, I3D, SlowFast, MARS, and R(2+1)D architectures.

In this thesis, two novel solutions are proposed. In the first proposed method, which

is presented in Chapter 4, a combination of late temporal modeling is approached

from the perspective of 3D CNN architectures. However, the focus of this section is

on using BERT as a late temporal pooling strategy. In this part of the thesis, BERT

is compared against some of the late temporal pooling strategies, which are average

pooling, LSTM, concatenation, concatenation + fully connected layer, non-local +

concatenation + fully connected layer. In this chapter, in order to utilize BERT ar-

chitecture in a more parameter efficient way, feature reduction methods (FRMB and

FRAB) are proposed. The positive impact of BERT as a late temporal pooling strategy

is shown on the architectures of ResNeXt, I3D, SlowFast, and R(2+1)D architectures.

Moreover, for SlowFast architecture, two possible implementations are proposed for

the implementation of BERT.

In the second proposed method, BERT is approached from the distillation concept

perspective and the information of one architecture is transferred to another architec-

ture by using the unsupervised training concept of BERT.

6.2 Conclusion

To begin with, one of the most important contributions of this thesis is the utilization

of late temporal modeling for AR. In this thesis, late temporal modeling is covered

for both 2D and 3D CNN architectures. Firstly, the success of the late temporal

modeling strategy is dependent on both architecture and the modality. For instance,

BERT is a better strategy than concatenation pooling for RGB 3D-ResNeXt101 but

98

vice versa for RGB 2D-ResNet18. On the other hand, BERT is a better strategy than

concatenation pooling for flow and pose on 2D-ResNet18, but vice versa for RGB 2D-

ResNet18. Additionally, one can argue that BERT is a better strategy than standard

LSTM, average pooling, convolutional GRU. Moreover, fusing the final extracted

features of 2D CNN architectures with its intermediate features demonstrates positive

performance for both pose and RGB modality.

Another important conclusion is based on the comparison of 3D CNN architectures.

The architectures are compared from the perspective of Top-1 accuracy, number of

parameters, and number of operations. It can be concluded that from Top-1 accu-

racy perspective, SlowFast-50 is the best architecture among ResNeXt101, MFNET,

Rep-Flow-50, TSM-50 (Not 3D CNN), Modified ResNet-50 1, I3D, and R(2+1)D 2.

Besides, MFNET is a parameter efficient architecture, and the implementations of

ResNeXt (64f), TSM (8x8f), and Modified ResNet-50 (32x2f) are good architectures

from a computational complexity perspective.

On the other hand, some of the factors, which increase the performance of 3D CNN

architectures, are determined by using split-1 of HMDB51 with RGB modality. In-

creasing the clip length from 16 to 64 increases the Top-1 accuracy of ResNeXt about

10%, whereas increasing the input resolution from 112 to 224 only in fine-tuning

increases Top-1 accuracy of ResNeXt by about 2%. The implementation of group

convolution (change from ResNet to ResNeXt) increases Top-1 accuracy by around

2%. The utilization of the MARS distillation concept on ResNeXt101 architecture

increases Top-1 accuracy with about 7%. Pre-training of R(2+1)D architecture with

IG65M dataset increases the performance of the one with Kinetics-400 increases the

performance with about 6%, indicating that the scale of the pre-training dataset is

also important. The concept of BERT distillation is proposed and it improves Top-

1 performance of RGB-ResNeXt-BERT by 1.6%. The improvements of distillation

and pre-training dataset are important from the perspective that the inference time

complexity of the architectures does not change.

Another conclusive statement of this thesis is that architectures trained with different

1 "Modified ResNet-50" name is coined by the author. This architecture is the one used in the non-local
paper and has similar characteristics with R(2+1)D architecture. This architecture cannot be called as non-local
architecture, since non-local is an attention concept and can be utilized with any architecture.

2 R(2+1) Kinetics-400 pre-trained Top-1 performance is reported from another paper

99

modalities learn complementary information. In addition, this complementary infor-

mation can be revealed even with a simple score fusion strategy. Considering the all

of the 2D and 3D CNN experiments, two-stream (RGB + Flow) increases the Top-1

performance of the RGB stream from 6% to 10%, and the flow stream from 2% to

8 % in the HMDB51 dataset. Moreover, the utilization of RGB pose images created

by the OpenPose algorithm as pose modality increases the Top-1 performance of 2D

two-stream architectures by 3-4 % in the HMDB51 dataset, indicating that pose archi-

tectures are able to learn complementary information to RGB and Flow architectures.

For the utilization of non-local blocks, it is observed that utilizing non-local block

does not always result in performance improvements. For instance, when we apply

the original non-local block implementation as in the paper, the experiment result of

32x2 frame selection has been improved, but 64 frame selection becomes worse. In

this thesis study, a non-local block is also utilized as an attention mechanism just

before the late temporal modeling concept, such as concatenation or average pooling.

It is observed that utilization with concatenation deteriorates the performance both

in 2D and 3D CNN experiments. However, the utilization of non-local blocks with

average pooling in 2D CNN has improved the performance.

To highlight, utilizing BERT as a late temporal modeling concept, utilization of late

temporal modeling on 3D CNN architectures other than average pooling and the

method of utilization of pose information are two novel parts of this thesis study.

Moreover, this thesis fills some of the experiments gaps existing in the literature such

as the experiments of SlowFast and modified ResNet on the HMDB51 dataset.

6.3 Future Work

A possible research direction might be proposals for parameter efficient BERT im-

plementations that do not need feature reduction blocks (FRMB or FRAB) which

decreases the capabilities of the final extracted features because of the reduction in

the dimension of features.

One of the deficits of this thesis study is the lack of experiments of the proposed

BERT-based late temporal modeling on a dataset which needs more temporal order

100

reasoning than HMDB51 and UCF101, such as something-something dataset.

The real benefits of BERT architecture rise to the surface with unsupervised tech-

niques. For this reason, we have implemented proposed BERT-based distillation in

order to benefit from unsupervised concepts. However, distillation is not a complete

unsupervised training because the distilled architecture needs to be trained with su-

pervised concepts. Therefore, as future work, better unsupervised concepts can still

be proposed on BERT 3D CNN architectures.

Moreover, the experiments of the BERT-based distillation should be performed on

a larger dataset than HMDB51, such as Kinetics because distillation is partially un-

supervised techniques as argued in the previous paragraph and the benefits of the

unsupervised techniques is proportional with the scale of the dataset.

101

102

REFERENCES

[1] U. Ahsan, R. Madhok, and I. Essa. Video jigsaw: Unsupervised learning of spa-
tiotemporal context for video action recognition. In Proceedings - 2019 IEEE
Winter Conference on Applications of Computer Vision, WACV 2019, pages
179–189. Institute of Electrical and Electronics Engineers Inc., 3 2019.

[2] Z. Cao, G. Hidalgo Martinez, T. Simon, S.-E. Wei, and Y. A. Sheikh. OpenPose:
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages 1–1, 7 2019.

[3] J. Carreira, E. Noland, A. Banki-Horvath, C. Hillier, and A. Zisserman. A Short
Note about Kinetics-600. 8 2018.

[4] J. Carreira, E. Noland, C. Hillier, and A. Zisserman. A Short Note on the
Kinetics-700 Human Action Dataset. 7 2019.

[5] J. Carreira and A. Zisserman. Quo Vadis, action recognition? A new model
and the kinetics dataset. In Proceedings - 30th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, volume 2017-Janua, pages 4724–
4733. Institute of Electrical and Electronics Engineers Inc., 11 2017.

[6] Y. Chen, Y. Kalantidis, J. Li, S. Yan, and J. Feng. Multi-fiber Networks for
Video Recognition. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 11205 LNCS, pages 364–380. Springer Verlag, 7 2018.

[7] V. Choutas, P. Weinzaepfel, J. Revaud, and C. Schmid. PoTion: Pose MoTion
Representation for Action Recognition. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 7024–
7033. IEEE Computer Society, 12 2018.

[8] N. Crasto, P. Weinzaepfel, K. Alahari, and C. Schmid. MARS: Motion-
augmented rgb stream for action recognition. In Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, volume
2019-June, pages 7874–7883. IEEE Computer Society, 6 2019.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. 10 2018.

[10] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via
sparse spatio-temporal features. In 2005 IEEE International Workshop on Vi-

103

sual Surveillance and Performance Evaluation of Tracking and Surveillance,
pages 65–72, 10 2005.

[11] J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadarrama,
K. Saenko, and T. Darrell. Long-Term Recurrent Convolutional Networks for
Visual Recognition and Description. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39(4):677–691, 4 2017.

[12] W. Du, Y. Wang, and Y. Qiao. RPAN: An End-to-End Recurrent Pose-Attention
Network for Action Recognition in Videos. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, volume 2017-Octob, pages 3745–3754.
Institute of Electrical and Electronics Engineers Inc., 12 2017.

[13] W. Du, Y. Wang, and Y. Qiao. Recurrent spatial-temporal attention network
for action recognition in videos. IEEE Transactions on Image Processing,
27(3):1347–1360, 3 2018.

[14] L. Fan, W. Huang, C. Gan, S. Ermon, B. Gong, and J. Huang. End-to-End
Learning of Motion Representation for Video Understanding. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, pages 6016–6025. IEEE Computer Society, 12 2018.

[15] G. Farnebäck. Two-frame motion estimation based on polynomial expansion.
Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics), 2003.

[16] C. Feichtenhofer, H. Fan, J. Malik, and K. He. Slowfast networks for video
recognition. In Proceedings of the IEEE International Conference on Computer
Vision, volume 2019-October, pages 6201–6210. Institute of Electrical and Elec-
tronics Engineers Inc., 10 2019.

[17] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional Two-Stream Net-
work Fusion for Video Action Recognition. In Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, volume
2016-Decem, pages 1933–1941. IEEE Computer Society, 12 2016.

[18] K. Gavrilyuk, R. Sanford, M. Javan, and C. G. M. Snoek. Actor-Transformers
for Group Activity Recognition. pages 836–845, 3 2020.

[19] D. Ghadiyaram, M. Feiszli, D. Tran, X. Yan, H. Wang, and D. Mahajan. Large-
scale weakly-supervised pre-training for video action recognition. Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2019-June:12038–12047, 5 2019.

[20] R. Girdhar, J. Carreira, C. Doersch, and A. Zisserman. Video Action Trans-
former Network. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2019-June:244–253, 12 2018.

104

[21] R. Girdhar and D. Ramanan. Attentional pooling for action recognition. In Ad-
vances in Neural Information Processing Systems, volume 2017-Decem, pages
34–45. Neural information processing systems foundation, 2017.

[22] R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell. ActionVLAD:
Learning spatio-temporal aggregation for action classification. In Proceedings
- 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, 2017.

[23] R. Goyal, S. E. Kahou, V. Michalski, J. Materzyńska, S. Westphal, H. Kim,
V. Haenel, I. Fruend, P. Yianilos, M. Mueller-Freitag, F. Hoppe, C. Thurau,
I. Bax, and R. Memisevic. The "something something" video database for learn-
ing and evaluating visual common sense. Proceedings of the IEEE International
Conference on Computer Vision, 2017-Octob:5843–5851, 6 2017.

[24] K. Hara, H. Kataoka, and Y. Satoh. Can Spatiotemporal 3D CNNs Retrace the
History of 2D CNNs and ImageNet? In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 6546–
6555. IEEE Computer Society, 12 2018.

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, volume 2016-Decem, pages 770–778. IEEE
Computer Society, 12 2016.

[26] D. Hendrycks and K. Gimpel. Gaussian Error Linear Units (GELUs). 6 2016.

[27] G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural Net-
work. 3 2015.

[28] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. MobileNets: Efficient Convolutional Neural Net-
works for Mobile Vision Applications. 4 2017.

[29] Ju Sun, Xiao Wu, Shuicheng Yan, L.-F. Cheong, T.-S. Chua, and Jintao Li.
Hierarchical spatio-temporal context modeling for action recognition. pages
2004–2011. Institute of Electrical and Electronics Engineers (IEEE), 3 2010.

[30] M. E. Kalfaoglu, S. Kalkan, and A. A. Alatan. Late Temporal Modeling in 3D
CNN Architectures with BERT for Action Recognition. In European Confer-
ence on Computer Vision. Springer, 2020.

[31] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F. F. Li.
Large-scale video classification with convolutional neural networks. In Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2014.

105

[32] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan,
F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman, and A. Zisserman. The
Kinetics Human Action Video Dataset. 5 2017.

[33] N. S. Keskar and R. Socher. Improving Generalization Performance by Switch-
ing from Adam to SGD. 12 2017.

[34] D. P. Kingma and J. L. Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015 - Confer-
ence Track Proceedings. International Conference on Learning Representations,
ICLR, 12 2015.

[35] A. Klaeser, M. Marszalek, and C. Schmid. A Spatio-Temporal Descriptor Based
on 3D-Gradients. In Procedings of the British Machine Vision Conference 2008,
2008.

[36] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: A large
video database for human motion recognition. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages 2556–2563, 2011.

[37] I. Laptev. On Space-Time Interest Points. International Journal of Computer
Vision, 64(2):107–123, 9 2005.

[38] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic hu-
man actions from movies. In 2008 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8, 6 2008.

[39] H. Y. Lee, J. B. Huang, M. Singh, and M. H. Yang. Unsupervised Representa-
tion Learning by Sorting Sequences. In Proceedings of the IEEE International
Conference on Computer Vision, volume 2017-Octob, pages 667–676. Institute
of Electrical and Electronics Engineers Inc., 12 2017.

[40] Z. Li, K. Gavrilyuk, E. Gavves, M. Jain, and C. G. Snoek. VideoLSTM con-
volves, attends and flows for action recognition. Computer Vision and Image
Understanding, 166:41–50, 1 2018.

[41] J. Lin, C. Gan, and S. Han. TSM: Temporal Shift Module for Efficient Video
Understanding. Proceedings of the IEEE International Conference on Com-
puter Vision, 2019-October:7082–7092, 11 2018.

[42] D. Lopez-Paz, L. Bottou, B. Schölkopf, and V. Vapnik. Unifying distillation
and privileged information. 4th International Conference on Learning Repre-
sentations, ICLR 2016 - Conference Track Proceedings, 11 2015.

[43] I. Loshchilov and F. Hutter. Decoupled Weight Decay Regularization. 7th In-
ternational Conference on Learning Representations, ICLR 2019, 11 2017.

106

[44] W. Luo, Y. Li, R. Urtasun, and R. Zemel. Understanding the Effective Receptive
Field in Deep Convolutional Neural Networks. Advances in Neural Information
Processing Systems, pages 4905–4913, 1 2017.

[45] P. Matikainen, M. Hebert, and R. Sukthankar. Trajectons: Action recognition
through the motion analysis of tracked features. In 2009 IEEE 12th Inter-
national Conference on Computer Vision Workshops, ICCV Workshops 2009,
pages 514–521, 2009.

[46] R. Messing, C. Pal, and H. Kautz. Activity recognition using the velocity histo-
ries of tracked keypoints. In Proceedings of the IEEE International Conference
on Computer Vision, pages 104–111, 2009.

[47] J. Y. H. Ng, J. Choi, J. Neumann, and L. S. Davis. ActionFlowNet: Learn-
ing motion representation for action recognition. In Proceedings - 2018 IEEE
Winter Conference on Applications of Computer Vision, WACV 2018, volume
2018-Janua, pages 1616–1624. Institute of Electrical and Electronics Engineers
Inc., 5 2018.

[48] J. Y. H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and
G. Toderici. Beyond short snippets: Deep networks for video classification. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, volume 07-12-June, pages 4694–4702. IEEE Computer
Society, 10 2015.

[49] A. Piergiovanni, A. Angelova, A. Toshev, and M. S. Ryoo. Evolving Space-
Time Neural Architectures for Videos. Proceedings of the IEEE International
Conference on Computer Vision, 2019-October:1793–1802, 11 2018.

[50] A. Piergiovanni and M. S. Ryoo. Representation Flow for Action Recognition.
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2019-June:9937–9945, 10 2018.

[51] D. Purwanto, R. Renanda Adhi Pramono, Y. T. Chen, and W. H. Fang. Extreme
low resolution action recognition with spatial-temporal multi-head self-attention
and knowledge distillation. In Proceedings - 2019 International Conference on
Computer Vision Workshop, ICCVW 2019, pages 961–969. Institute of Electri-
cal and Electronics Engineers Inc., 10 2019.

[52] Z. Qiu, T. Yao, and T. Mei. Learning Spatio-Temporal Representation with
Pseudo-3D Residual Networks. In Proceedings of the IEEE International Con-
ference on Computer Vision, volume 2017-Octob, pages 5534–5542. Institute of
Electrical and Electronics Engineers Inc., 12 2017.

[53] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with
the fisher vector: Theory and practice. International Journal of Computer Vi-
sion, 105(3):222–245, 12 2013.

107

[54] P. Scovanner, S. Ali, and M. Shah. A 3-dimensional sift descriptor and its appli-
cation to action recognition. In Proceedings of the 15th international conference
on Multimedia - MULTIMEDIA ’07, 2007.

[55] S. Sharma, R. Kiros, and R. Salakhutdinov. Action Recognition using Visual
Attention. 11 2015.

[56] X. Shi, Z. Chen, H. Wang, D. Y. Yeung, W. K. Wong, and W. C. Woo.
Convolutional LSTM network: A machine learning approach for precipitation
nowcasting. In Advances in Neural Information Processing Systems, volume
2015-Janua, pages 802–810. Neural information processing systems foundation,
2015.

[57] K. Simonyan and A. Zisserman. Two-stream convolutional networks for action
recognition in videos. In Advances in Neural Information Processing Systems,
volume 1, pages 568–576. Neural information processing systems foundation,
2014.

[58] S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu. An end-to-end spatio-temporal
attention model for human action recognition from skeleton data. In 31st AAAI
Conference on Artificial Intelligence, AAAI 2017, pages 4263–4270. AAAI
press, 2017.

[59] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A Dataset of 101 Human
Actions Classes From Videos in The Wild. 12 2012.

[60] C. Sun, F. Baradel, K. Murphy, and C. Schmid. Learning Video Representations
using Contrastive Bidirectional Transformer. 6 2019.

[61] S. Sun, Z. Kuang, W. Ouyang, L. Sheng, and W. Zhang. Optical Flow Guided
Feature: A Fast and Robust Motion Representation for Video Action Recog-
nition. Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 1390–1399, 11 2017.

[62] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spa-
tiotemporal features with 3D convolutional networks. In Proceedings of the
IEEE International Conference on Computer Vision, 2015.

[63] D. Tran, H. Wang, M. Feiszli, and L. Torresani. Video classification with
channel-separated convolutional networks. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, volume 2019-Octob, pages 5551–5560.
Institute of Electrical and Electronics Engineers Inc., 4 2019.

[64] D. Tran, H. Wang, L. Torresani, J. Ray, Y. Lecun, and M. Paluri. A Closer Look
at Spatiotemporal Convolutions for Action Recognition. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, pages 6450–6459. IEEE Computer Society, 12 2018.

108

[65] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Å. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in Neu-
ral Information Processing Systems, volume 2017-Decem, pages 5999–6009.
Neural information processing systems foundation, 2017.

[66] H. Wang, A. Kläser, C. Schmid, and C. L. Liu. Dense trajectories and motion
boundary descriptors for action recognition. International Journal of Computer
Vision, 2013.

[67] H. Wang and C. Schmid. Action recognition with improved trajectories. In
Proceedings of the IEEE International Conference on Computer Vision, 2013.

[68] L. Wang, P. Koniusz, and D. Q. Huynh. Hallucinating IDT Descriptors and I3D
Optical Flow Features for Action Recognition with CNNs. Proceedings of the
IEEE International Conference on Computer Vision, 2019-October:8697–8707,
6 2019.

[69] L. Wang, Y. Xiong, Z. Wang, and Y. Qiao. Towards Good Practices for Very
Deep Two-Stream ConvNets. 7 2015.

[70] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. van Gool. Tem-
poral segment networks: Towards good practices for deep action recognition.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), 2016.

[71] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool. Tem-
poral Segment Networks for Action Recognition in Videos, 2018.

[72] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local Neural Networks. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 7794–7803. IEEE Computer Society, 12 2018.

[73] G. Willems, T. Tuytelaars, and L. Van Gool. An efficient dense and scale-
invariant spatio-temporal interest point detector. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2008.

[74] C. Y. Wu, M. Zaheer, H. Hu, R. Manmatha, A. J. Smola, and P. Krahenbuhl.
Compressed Video Action Recognition. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 6026–
6035. IEEE Computer Society, 12 2018.

[75] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual trans-
formations for deep neural networks. In Proceedings - 30th IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2017, volume 2017-
Janua, pages 5987–5995. Institute of Electrical and Electronics Engineers Inc.,
11 2017.

109

[76] S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy. Rethinking spatiotemporal
feature learning: Speed-accuracy trade-offs in video classification. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), volume 11219 LNCS, pages
318–335. Springer Verlag, 2018.

[77] D. Xu, J. Xiao, Z. Zhao, J. Shao, D. Xie, and Y. Zhuang. Self-supervised spa-
tiotemporal learning via video clip order prediction. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, vol-
ume 2019-June, pages 10326–10335. IEEE Computer Society, 6 2019.

[78] A. Yan, Y. Wang, and Z. Li. PA3D : Pose-Action 3D Machine for Video Recog-
nition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 7922–7931, 2019.

[79] C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime TV-
L1 optical flow. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 4713 LNCS, pages 214–223, 2007.

[80] B. Zhang, L. Wang, Z. Wang, Y. Qiao, and H. Wang. Real-Time Action Recog-
nition with Enhanced Motion Vector CNNs. In Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, volume
2016-Decem, pages 2718–2726. IEEE Computer Society, 12 2016.

[81] Y. Zhu, Z. Lan, S. Newsam, and A. G. Hauptmann. Hidden Two-Stream Convo-
lutional Networks for Action Recognition. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 11363 LNCS:363–378, 4 2017.

110

APPENDIX A

OPTICAL FLOW

In this section, the brightness consistency equation in optical flow will be explained.

Then the details about the TV-L1 algorithm will be given. TV-L1 is the most popu-

lar algorithm in the action classification literature. It depends on the total variation

concept.

A.1 Brightness Consistency Equation

Brightness Consistency Equation depends on the two assumptions. The first one is the

brightness consistency assumption which mainly depends on the idea that the mov-

ing pixel (projection of a point of the object to the camera plane) always has the same

brightness. In a mathematical terminology, this can be given as I (x (t) , y (t) , t) = C.

The second assumption is the small motion assumption so that the function can be ap-

proximated by first-order Taylor series expansion. For the small motion assumption,

assume that the time interval between the frames is δt. Assume that the speed of

the moving pixel is u and v for the x and y coordinates, respectively. Therefore, the

pixel which is in the position of (x, y) in the previous frame, is in the position of

(x + uδt, y + vδt) in the next frame. The visualization of this small motion model

can be seen in Figure A.1.

Then, from the brightness consistency approach, the pixel intensity will be the same

for these frames such that

I(x, y, t) = I(x+ uδt, y + vδt, t+ δt). (A.1)

Then, the function I can be linearized because the time interval δt is very small. The

111

Figure A.1: Small motion model in a very small time interval Brightness Constancy,

16-385 Computer Vision (Kris Kitani), Carnegie Mellon University

multi-variate Taylor expansion for the function f is

f(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(x− b). (A.2)

Then, the Taylor series expansion of (A.1) is

I(x, y, t) = I(x+uδt, y+vδt, t+δt) = I(x, y, t)+
∂I(x, y, t)

∂x
δx+

∂I(x, y, t)

∂y
δy+

∂I(x, y, t)

∂t
δt.

(A.3)

The result of (A.3) is

∂I(x, y, t)

∂x
δx+

∂I(x, y, t)

∂y
δy +

∂I(x, y, t)

∂t
δt = 0. (A.4)

The division of (A.4) with δt yields

∂I(x, y, t)

∂x

δx

δt
+
∂I(x, y, t)

∂y

δy

δt
+
∂I(x, y, t)

∂t
= 0. (A.5)

The final form of these steps is

Ixu+ Iyv = It, (A.6)

which is called as brightness consistency equation and Ix, Iy and It are the image

derivatives which can be calculated by any derivative filter like Sobel filter. u and v

are the desired motion flow vectors.

A.2 TV-L1 Optical Flow Algorithm

In the previous section, the final form of brightness consistency equation is high-

lighted in (A.6). There are two unknowns in this equation, however there is only one

112

http://www.cs.cmu.edu/~16385/s17/Slides/14.1_Brightness_Constancy.pdf
http://www.cs.cmu.edu/~16385/s17/Slides/14.1_Brightness_Constancy.pdf

formula. Therefore, there is a need for extra constraint to solve this problem. This is

known as aperture problem. Horn and Schunck solved this problem to some extent

by adding L2 regularization term such that

min
u,v

(∫
Ω

(
|∇u|2 + |∇v|2

)
dΩ + λ

∫
Ω

(I (x+ uδt, y + vδt, t+ δt)− I (x, y, t))2 dΩ

)
,

(A.7)

where Ω denotes the number of pixels used for the optical flow estimation, u and v are

horizontal and vertical parts of the motion vectors. In (A.7) the first term is regular-

ization term and these second term optical flow term. The regularization term is also

known as variational formulation. However, it is mentioned in [79] that penalizing

deviations in a quadratic way does not allow discontinuities in motion. In this thesis,

it is claimed that L1 norm is much better than L2 norm to handle such discontinuity

problem. Denoting the intensities at time t+δt as I1 and at time t as I0, the L1 version

of (A.7) is

min
u,v

(∫
Ω

(|∇u|+ |∇v|) dΩ + λ

∫
Ω

|I1 (x+ u, y + v)− I0 (x, y)| dΩ

)
. (A.8)

This optimization problem is tackled by adding a auxiliary variable (k, l), the new

form of the function becomes∫
Ω

(|∇u|+ |∇v|) +
1

2θ

(
(u− k)2 + (v − l)2

)
+ λ |ρ(k, l)| dΩ. (A.9)

Then, this is solved by two step iterative approach. One of the iteration to update u is

min
u

∫
Ω

(|∇u|) +
1

2θ
(u− k)2. (A.10)

The other step is to update auxiliary variable k, which is

min
k

∫
Ω

1

2θ
(u− k)2 + λ |ρ(k, l)| . (A.11)

This is to update u and k couple, but the procedure is the same with v and l couple.

The further details about the solution this problem can be found in [79].

113

114

APPENDIX B

OPENPOSE

OpenPose [2] is a multi-person 2D pose estimator that utilizes deep architectures to

estimate the positions of 25 predetermined joints. This technique is shown to perform

quite promising during independent detection of the poses for every frame. Open-

Pose owes its popularity to the speed advantage compared to the other human pose

extractor and is known as the first real-time multi-person 2D pose estimator.

OpenPose algorithm consists of three main stages. These stages can be seen on the

left side of Figure B.1. These stages are extraction of Part Affinity Fields (PAF), Part

Confidence Maps (PCM), and Bipartite Matching. PAFs are to encode the part re-

lations between the pre-defined joint relations (Limb). PAFs features preserve both

the orientation and the positions. To make it clear, assume j1 and j2 are two joints.

Then, define a unit vector that is oriented from j1 to j2. PAFs consists of the pixels

which are located within the width of the limb. To encode the orientation informa-

tion, two-channel is utilized. These channels encode the x and y components of limb

orientation separately for the selected pixels. PCM is to denote the joints. The esti-

mation of the joint locations is done by PCM. The ground truth joint locations are put

as Gaussian locations to these maps. The pre-defined joints are shown in Figure B.1d.

The number of PCM is equal to the number of pre-defined joints. Bipartite matching

is related to the matching of the two joints according to a score calculated from the

PAF.

To put it in a more clear way, assume that L = (L1,L2, ...LC) are the PAF, where

C is the number of pre-defined limbs, and S = (S1,S2, ...SJ) are PCM, where J is

the number of joints. OpenPose has 25 joints and 26 limbs. Sj is a confidence map

for a joint j and is a sample from Rwxh. Lj is a part affinity field for a limb c and

115

(a) Part Affinity Fields(PAF)

(b) Part Confidence Maps (PCM)

(c) Bipartite Matching (d) Extracted Joints by OpenPose

Figure B.1: The Stages of the OpenPose algorithm (Left) and Extracted joints with

OpenPose [2]

116

is a sample from. Rwxhx2. Note that, PAFs are two dimensional vector for every

pixel, while PCMs are scalar for every pixel. Assuming that xj,k are the ground truth

location for the j-th joint of the k-th person, S∗j,k can be defined as

S∗j,k(p) = exp
||p− xj,k||22

σ2
(B.1)

where p is the two dimensional location coordinate on PCM or PAF, and

L∗j,k(p) = v if p is on limb, 0 otherwise. (B.2)

where v = (xj1,k − xj2,k)/||xj1,k − xj2,k||2. Being on the limb condition is defined as

0 ≤ v · (p− xj1,k) ≤ lc,k and v⊥ · (p− xj1,k) ≤ σl (B.3)

where v⊥ is the perpendicular vector vector of v. lc,k denotes the length of the c-th

limb of k-th person. σl is to denote the width of the limb.

For the details of the algorithm, the features of an image I is extracted by a function

f(). This function is estimated by VGG-19 architecture in the paper. Then, PAFs of

the I are tried to be estimated in an iterative manner by using the extracted features

and previously estimated PAFs. Then, PCMs are tried to be estimated in an iterative

manner by using the features, PAFs, and previously estimated PCMs. To explain it

more clearly,
F = f(I)

L1 = φ1(F)

Lt = φt(F,Lt−1) ∀ 2 ≤ t ≤ Tp

STp = ρt(F,LTp)

St = ρt(F,LTp ,St−1) ∀ Tp ≤ t ≤ Tp + Tc

(B.4)

is the general form of the deep learning architecture, where φ is a PAF estimator and

ρ is PCM estimator and Tp and Tc shows the number of iterations for PAF and PCM

estimation, respectively.

The loss function for this iterative deep learning architecture is determined as

LosstiL =
C∑
c=1

∑
p

||Lti
c (p)− L∗c(p)||

LosstkS =
J∑

j=1

∑
p

||Stk
j (p)− S∗j(p)||

(B.5)

117

where S∗j(p) = max
k

S∗j,k(p) and L∗c(p) = 1
nc(p)

∑
k Lc,k(p) and nc(p) denotes the

number of people for the pixel coordinate p.

In bipartite matching stage of OpenPose, the joints which belongs to the same person

are aimed to be connected together. This is called multi-person parsing. For bipartite

matching, firstly, there is a need to calculate the score (confidence) of association. For

this score calculation, both PAF and PCM outputs are utilizes. The main idea behind

this score metric is that the vector between the two joints in PCM has possibly the

same direction encoding in PAF. The score function can be denoted as

Score =
∑

Φ

Lc(Φ)
x̂j1 − x̂j2

||x̂j1 − x̂j2||
(B.6)

where x̂j1 and x̂j2 are the estimate of the locations of the joints j1 andj2, respectively

and Φ is the set of pixels between the corresponding pixel locations of j1 andj2.

After calculating the confidence of the associations for every possible tuple (limb),

the global solution can be obtained by maximizing the graph total score. However,

in OpenPose the whole pose graph structure is subdivided into the multiple bipartite

graphs. Therefore, every association is created independently from the other con-

nected joints. This reduces the computation time during the inference of a pose. It

is claimed that unconnected nodes are modeled by CNN architecture implicitly. To

implement the multi-person parsing, firstly all connected parts are sorted following

the score calculated in (B.6). Then every part is independently connected. When con-

necting the parts, if a person contradiction appears, such that the connected graph is

already assigned to a different person, that part is ignored and not connected.

118

APPENDIX C

FURTHER DETAILS ABOUT EXPERIMENTS

C.1 Frame Selection Procedure for Late Temporal Modeling in 2D CNN Ar-

chitectures

For temporal modeling, two main implementation types are applied in the literature.

The first one is called the clip-based approach, for which clips consist of N number of

frames without skipping any frames, such as [11]. During training, the clip is selected

from a random position in a video sequence. During inference, multiple N-number

of framed clips are extracted (with or without overlapping) from a video and the final

decision is obtained as the mean average of the video clips. The main disadvantage

of this scheme is that it has a high time complexity for the inference.

The other possible implementation is a video-based approach in which N number of

frames are selected from the whole video [71, 13]. This selection can be with or

without an equal interval between the frames. For the comparison of clip-based and

video-based approaches, both of them are implemented by using LSTM. The clip-

based approach yields 42.68% performance, while the video-based approach yields

47.12% performance on the split 1 of HMDB51. These results show that the uti-

lization of the video-based approach is advantageous for both time complexity and

performance.

During the training of the video-based approach, the video is divided into N number

of segments, and a frame is selected randomly from each segment, resulting in frames

without equal interval. During the inference, the same procedure is applied with a

minor difference. Instead of selecting randomly, these frames are picked from the

119

middle of the segments. For both training and inference, multi-scale cropping is

followed which is explained in Section 3.2.

C.2 Testing Procedures of 3D CNN Architectures

There are two important points during the test of any 3D CNN architecture. One of

them is single-clip vs. multiple-clip settings. For the training of 3D CNN architec-

tures, a clip is selected in a video at a random position. However, during the inference,

it is possible to use multiple clips by averaging the results from every clip in a video.

In multiple-clip settings, the clips are selected from a video in a non-overlapping

manner. The number of clips in a video is equal to the floor of the division of the

number of frames of a video to the number of frames of the clips. The other impor-

tant setting is related to single-crop vs. ten-crops extraction from every clip. The

information about ten crop test is presented in Section 3.2. Therefore, four possible

test combinations are single clip - single crop, single clip - ten crops, multiple clips -

single crop, and multiple clips - ten crops.

It should be emphasized that ten-crops might bring some performance improvements

on the architectures but this technique comes with a ten-times computational increase.

C.3 Detailed Experimental Results for Different Clip and Crop Selections

The detailed view of the ResNeXt and I3D architectures on RGB, flow, and two-

stream modalities is presented in Table C.1. In this table, the input size of the archi-

tectures, the number of frames in the clips, the input types of the architecture, and the

architecture itself is shown in the column of the method. The other columns show the

test types of architectures. The red color and blue color indicate the best Top-3 and

Top-1 results of a specific method, respectively, among the four test types.

1 Top1 result is denoted as 73.5 % in [8]. Three splits top1 average is denoted as 70.2 % in [24]
2 Top1 result is denoted as 75.9 % in [8]
3 Top1 result is denoted as 79.8 % in [8]
4 Top1 result is denoted as 74.8 % in [49]. Three splits top1 average is denoted as 74.8 % and 74.3 % for

Imagenet+Kinetics and Kinetics pre-trainings, respectively in [5]
5 Top1 result is denoted as 77.1 % in [49]. Three splits top1 average is denoted as 77.1 % and 77.3 % for

Imagenet+Kinetics and Kinetics pre-trainings, respectively in [5]

120

Table C.1: RESULTS OF TWO-STREAM ARCHITECTURES ON HMDB51 SPLIT-1
WITH FOUR TYPES OF TEST RESULTS

Multiple Clips Multiple Clips Single Clip Single Clip
Method Ten Crops Single Crop Ten Crops Single Crop

ResNeXt101 RGB Top3: 90.20 Top3: 89.41 Top3: 89.87 Top3: 88.89
112x112 64f 1 Top1: 73.07 Top1: 73.73 Top1: 72.88 Top1: 73.20

ResNeXt101 Flow Top3: 91.63 Top3: 90.72 Top3: 91.18 Top3: 90.20
112x112 64f 2 Top1: 79.80 Top1: 79.74 Top1: 78.50 Top1: 78.50

ResNeXt101 Two-stream Top3: 94.38 Top3: 94.12 Top3: 94.05 Top3: 93.86
112x112 64f 3 Top1: 82.35 Top1: 81.83 Top1: 81.96 Top1: 81.24

I3D Top3: 91.63 Top3: 90.59 Top3: 91.50 Top3: 90.26
224x224 64f 4 Top1: 74.90 Top1: 74.64 Top1: 74.51 Top1: 74.51

I3D Flow Top3: 91.18 Top3: 91.50 Top3: 90.98 Top3: 91.24
224x224 64f 5 Top1: 76.21 Top1: 77.06 Top1: 75.36 Top1: 75.88

I3D Two-stream Top3: 93.59 Top3: 93.53 Top3: 93.46 Top3: 93.40
224x224 64f 6 Top1: 80.59 Top1: 80.46 Top1: 80.59 Top1: 80.20

C.4 FRMB implementation on 2D CNN Architectures with BERT-based late

temporal modeling

An important detail about the usage of the BERT layer is the number of parameters

of the BERT layer. This number is only 3M for ResNet18, while it reaches up to 50M

for ResNet101, because of the difference in the dimension of the output sizes. 50M is

a significantly larger and inefficient parameter size for any late pooling strategy since

the ResNet101 backbone has a 45.20 M parameter which is less than the BERT layer.

Therefore, one possible remedy is to reduce the output size of the ResNet101 back-

6 Top1 result is denoted as 80.1 % in [49]. Three splits top1 average is denoted as 80.7 % and 80.9 % for
Imagenet+Kinetics and Kinetics pre-trainings, respectively in [5]

7 Top1 result is denoted as 66.7 % in [8]. Three splits top1 average is denoted as 63.8 % in [24]
8 Top1 result is denoted as 73.5 % in [8]. Three splits top1 average is denoted as 70.2 % in [24]
9 Three splits top1 average is denoted as 75.4 % in [6]. The released weights of the authors also yields similar

results with our reported results in our test scheme.
10 Three splits top1 average is denoted as 77.4 % in [50]
11 The selection procedure of frames in pre-training is as in [70]. Three splits top1 average is denoted as 73.5

% in [41]. The frame selection in fine-tuning and test seems ambiguous for me.
12 Top1 result is denoted as 74.8 % in [49]. Three splits top1 average is denoted as 74.8 % and 74.3 % for

Imagenet+Kinetics and Kinetics pre-trainings, respectively in [5]
13 Top1 result is denoted as 80.1 % in [8]
14 The pre-training is implemented with IG-65M, while the pre-training of other methods are implemented

with Kinetics-400. Therefore, the dataset has also effect on obtaining the best performance in the table. Top1
result of R(2+1)D with Kinetics pre-training is denoted as 74.4 % in [49]. Therefore, about 7.7 % increase seems
to be the result of the change in pre-training dataset.

121

bone. Such a decrease is possible by modifying the last block of ResNet101 or the

addition of another block to the backbone just before the BERT layer. For this aim,

Feature Reduction with Modified Block (FRMB) and Feature Reduction with Addi-

tional Block (FRAB) are proposed which are both explained in Section 4.1.2 for 3D

architectures. The visual diagram for FRMB and FRAB is presented in Figure 4.2.

This implementation reduces the number of parameters of the BERT layer from 50M

to 3M again for the ResNet101 backbone. Moreover, FRMB reduces the number of

parameters of the backbone as well.

Top-1 performances of flow BERT, pose BERT, two-stream and three-streams are

59.13%, 48.56%, 65.73%, and 68.62%, respectively, for ResNet101 with FRMB

implementation. FRMB implementation increases the flow BERT and two-stream

implementation about 1.5% and 0.5% amount, respectively; but decreases the pose

BERT and three-stream implementation about 1% and 0.5%, respectively (See Table

3.7).

122

Table C.2: COMPARISON OF RECENT STATE OF THE ART ARCHITECTURES ON

HMDB51 SPLIT-1 WITH FOUR TYPES OF TEST RESULTS

Multiple Clips Multiple Clips Single Clip Single Clip
Method Ten Crops Single Crop Ten Crops Single Crop

ResNeXt101 Top3: 82.61 Top3: 82.35 Top3: 81.05 Top3: 80.33
112x112 16f 7 Top1: 63.33 Top1: 62.09 Top1: 62.35 Top1: 60.65
ResNeXt101 Top3: 90.20 Top3: 89.41 Top3: 89.87 Top3: 88.89

112x112 64f 8 Top1: 73.07 Top1: 73.73 Top1: 72.88 Top1: 73.20

MFNET Top3: 87.58 Top3: 87.52 Top3: 86.34 Top3: 88.82
224x224 16f 9 Top1: 70.20 Top1: 70.52 Top1: 68.24 Top1: 68.37

Rep-Flow-50 Top3: 89.54 Top3: 89.02 Top3: 88.04 Top3:87.39
224x224 64f 10 Top1: 72.42 Top1: 71.57 Top1: 70.00 Top1:69.35

TSM Top3: 87.25 Top3: 87.45 Top3: 84.84 Top3: 85.10
224x224 8f Top1: 66.80 Top1: 67.97 Top1: 64.12 Top1: 64.71

TSM Top3: 89.54 Top3: 89.15 Top3: 89.35 Top3: 89.02
224x224 8x8f Top1: 72.03 Top1: 72.81 Top1: 72.03 Top1: 72.88

TSM 11 Top3: 90.13 Top3: 89.28 Top3: 89.87 Top3: 89.15
224x224 8x8f Top1: 73.79 Top1: 73.14 Top1: 73.73 Top1: 72.94

Modified ResNet50 Top3: 88.69 Top3: 88.76 Top3: 88.69 Top3: 88.56
224x224 32x2f Top1: 71.44 Top1: 71.57 Top1: 71.44 Top1: 71.31

Modified ResNet50 Top3: 91.44 Top3: 90.33 Top3: 91.31 Top3: 90.26
Non-Local 224x224 32x2f Top1: 72.88 Top1: 72.61 Top1: 72.55 Top1: 73.07

Modified ResNet50 Top3: 91.70 Top3: 90.92 Top3: 91.44 Top3: 90.78
224x224 64f Top1: 73.79 Top1: 74.12 Top1: 73.92 Top1: 73.92

Modified ResNet50 Top3: 90.26 Top3: 89.54 Top3: 89.87 Top3: 89.22
Non-Local 224x224 64f Top1: 73.27 Top1: 73.14 Top1: 73.01 Top1: 72.81

I3D Top3: 91.63 Top3: 90.59 Top3: 91.50 Top3: 90.26
224x224 64f 12 Top1: 74.90 Top1: 74.64 Top1: 74.51 Top1: 74.51

SlowFast-50 Top3: 92.68 Top3: 92.22 Top3: 92.61 Top3: 92.16
224x224 64f Top1: 78.37 Top1: 78.69 Top1: 77.65 Top1: 78.43

MARS ResNext101 Top3: 92.75 Top3: 92.03 Top3: 92.35 Top3: 91.44
112x112 64f 13 Top1: 80.72 Top1: 80.07 Top1: 80.26 Top1: 79.80

R(2+1)D ResNet34 14 Top3: 93.86 Top3: 93.46 Top3: 93.07 Top3: 92.81
112x112 32f Top1: 81.76 Top1: 82.16 Top1: 81.83 Top1: 82.22

123

Table C.3: THE RESULTS ON ALL SPLITS OF HMDB51 DATASET

BERT split-1 split-2 split-3 Average
R(2+1)D ResNet34 Top3: 93.86 Top3: 93.99 Top3: 93.07 Top3: 93.64

112x112 32f Top1: 81.76 Top1: 82.03 Top1: 79.87 Top1: 81.22
R(2+1)D ResNet34

X
Top3: 95.16 Top3: 95.23 Top3: 94.71 Top3: 95.03

112x112 32f Top1: 84.77 Top1: 84.18 Top1: 83.01 Top1: 83.99

ResNeXt101 RGB Top3: 90.20 Top3: 87.97 Top3: 90.39 Top3: 89.52
112x112 64f Top1: 73.07 Top1: 73.46 Top1: 76.14 Top1: 74.22

ResNeXt101 RGB
X

Top3: 92.75 Top3: 91.24 Top3: 91.31 Top3: 91.77
112x112 64f Top1: 77.25 Top1: 77.52 Top1: 77.71 Top1: 77.49

ResNeXt101 Flow Top3: 91.63 Top3: 90.65 Top3: 91.70 Top3: 91.32
112x112 64f Top1: 79.80 Top1: 77.97 Top1: 80.07 Top1: 79.28

ResNeXt101 Flow
X

Top3: 92.88 Top3: 92.29 Top3: 92.42 Top3: 92.53
112x112 64f Top1: 81.76 Top1: 81.18 Top1: 80.92 Top1: 81.29

ResNeXt101 Two-Stream Top3: 94.38 Top3: 92.16 Top3: 93.27 Top3: 93.27
112x112 64f Top1: 82.35 Top1: 79.93 Top1: 83.07 Top1: 81.78

ResNeXt101 Two-Stream
X

Top3: 94.90 Top3: 94.18 Top3: 93.92 Top3: 94.33
112x112 64f Top1: 83.99 Top1: 83.46 Top1: 83.20 Top1: 83.55

Table C.4: THE RESULTS ON ALL SPLITS OF UCF101 DATASET

BERT split-1 split-2 split-3 Average
R(2+1)D ResNet34 Top3: 99.26 Top3: 99.68 Top3: 99.84 Top3: 99.59

112x112 32f Top1: 97.46 Top1: 98.55 Top1: 98.51 Top1: 98.17
R(2+1)D ResNet34

X
Top3: 99.87 Top3: 99.73 Top3: 99.76 Top3: 99.79

112x112 32f Top1: 98.63 Top1: 98.90 Top1: 98.43 Top1: 98.65

ResNeXt101 RGB Top3: 98.55 Top3: 98.77 Top3: 99.03 Top3: 98.78
112x112 64f Top1: 94.61 Top1: 94.62 Top1: 95.48 Top1: 94.90

ResNeXt101 RGB
X

Top3: 98.89 Top3: 99.09 Top3: 99.32 Top3: 99.1
112x112 64f Top1: 95.80 Top1: 96.63 Top1: 96.29 Top1: 96.24

ResNeXt101 Flow Top3: 98.68 Top3: 99.12 Top3: 99.08 Top3: 98.96
112x112 64f Top1: 95.56 Top1: 95.96 Top1: 96.35 Top1: 95.95

ResNeXt101 Flow
X

Top3: 99.07 Top3: 99.25 Top3: 99.27 Top3: 99.20
112x112 64f Top1: 95.74 Top1: 96.92 Top1: 96.83 Top1: 96.49

ResNeXt101 Two-Stream Top3: 99.10 Top3: 99.54 Top3: 99.89 Top3: 99.51
112x112 64f Top1: 97.20 Top1: 97.38 Top1: 97.81 Top1: 97.46

ResNeXt101 Two-Stream
X

Top3: 99.60 Top3: 99.29 Top3: 99.89 Top3: 99.59
112x112 64f Top1: 98.21 Top1: 97.49 Top1: 97.92 Top1: 97.87

124

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Kalfaoglu, Muhammet Esat

Nationality: Turkish (TC)

Date and Place of Birth: 24.05.1994, Meram

Marital Status: Single

Phone: 0 555 6644177

EDUCATION

Degree Institution Year of Graduation

B.S. Bogazici University 2017

Exchange The University of Texas at Austin 2015

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2018 - 2020 OGAM Project Personnel

2016 Aselsan Intern

PUBLICATIONS

[1] M. E. Kalfaoglu, O. Can, B. Yildirim, and A. A. Alatan, "Antenna scan pe-

riod estimation of radars with cepstrum and scoring," in 2019 27th Signal Process-

ing and Communications Applications Conference (SIU), Apr. 2019, pp. 1-4. doi:

125

10.1109/SIU.2019.8806564.

[2] I. G. Dino, E. Kalfaoglu, A. E. Sari, S. Akin, O. K. Iseri, A. A. Alatan, S. Kalkan,

and B. Erdogan, "Video content analysis-based detection of occupant presence for

building energy modelling," in CIB W78: Advances in ICT in Design, Construc-

tion and Management in Architecture, Engineering, Construction and Operations

(AECO), 2019.

[3] I. G. Dino, A. E. Sari, E. Kalfaoglu, S. Akin, O. K. Iseri, A. A. Alatan, S. Kalkan,

and B. Erdogan, "Automated building energy modeling for existing buildings using

computer vision," in CIB W78: Advances in ICT in Design, Construction and Man-

agement in Architecture, Engineering, Construction and Operations (AECO), 2019.

[4] F. C. Akyon and E. Kalfaoglu, "Instagram Fake and Automated Account Detec-

tion," Proceedings - 2019 Innovations in Intelligent Systems and Applications Confer-

ence, ASYU 2019, Sep. 2019. [Online]. Available: http://arxiv.org/abs/1910.03090.

[5] E. Kalfaoglu, I. G. Dino, O. K. Iseri, S. Akin, A. E. Sari, B. Erdogan, S. Kalkan, A.

A. Alatan, Vision-Based Lighting State Detection and Curtain Openness Ratio Pre-

diction in Symposium on Simulation for Architecture and Urban Design (SimAUD),

2020

[6] E. Kalfaoglu, S. Kalkan, A. A. Alatan, Late Temporal Modeling in 3D CNN Ar-

chitectures with BERT for Action Recognition, 16th European Conference on Com-

puter Vision (ECCV), The 2nd Workshop on Video Turing Test: Toward Human-Level

Video Story Understanding, 2020

126

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	introduction
	Applications of Action Recognition
	Scope and Contributions of the Thesis
	Outline of the Thesis

	Related Work
	An Overview of Action Recognition (AR) Literature
	Pre-deep-learning AR literature
	3D Spatio-temporal Extension of 2D Spatial Detectors and Descriptors
	Trajectory-based Detectors and Descriptors

	Deep Learning AR Literature
	2D CNN Architectures
	3D CNN Architectures
	Recurrent Architectures, Pooling and Fusion Techniques
	Attention
	Optical Flow Networks
	Pose Networks
	Unsupervised and Weakly Supervised Techniques

	Prominent Deep Leaning Based Methods in AR Literature
	BERT Devlin2018
	Group Convolution and Depth-wise Convolution
	3D Convolution
	Inception Type Architectures
	ResNet Type Architectures

	Separable 3D Convolution
	Non-local Neural Networks Wang2018a
	SlowFast Networks Feichtenhofer2019SlowfastRecognition
	Motion-Augmented RGB Stream Networks (MARS) Crasto2019MARS:Recognition
	Multi-Fiber Networks for Video RecognitionChen2018Multi-fiberRecognition
	TSM: Temporal Shift Module for Efficient Video Understanding Lin2018TSM:Understanding

	Experimental Evaluation of Literature
	Datasets for AR Research
	HMDB-51 Kuehne2011
	UCF-101 Soomro2012
	Kinetics Kay2017
	Something - Something Goyal2017
	IG-Kinetics-65M Ghadiyaram2019Large-scaleRecognition

	Implementation Details
	Data Augmentation
	Pre-trained Weights
	Optimization
	Batch Size Selection
	Validation Procedure
	Input Modalities

	Experiments on 2D CNN Architectures
	Late Temporal Modeling of 2D CNN Architectures
	Feature Fusion from the Different Parts of 2D CNN Architectures
	Effect of Network Depth and Input Modality on 2D CNN Architectures

	Experiments on 3D CNN Architectures
	Effects of Clip Length and Input Resolution on the performance of 3D CNN Architectures
	Two-stream 3D Architectures
	Comparison of 3D CNN Architectures
	Computational Complexity and Memory Utilization Analysis of the Architectures:

	Proposed Method: BERT on 3D CNN Architectures
	Proposed Methods
	BERT-based Temporal Modeling with 3D CNNs for Action Recognition
	Proposed Feature Reduction Blocks: FRAB & FRMB
	Proposed BERT Implementations on SlowFast Architecture

	Experimental Results
	Dataset
	Implementation Details
	Ablation Study
	Results on Different 3D CNN Architectures
	ResNeXt Architecture
	I3D Architecture
	SlowFast Architecture
	R(2+1)D Architecture

	Comparison with State-of-the-Art

	Discussion

	Proposed Method : BERT Distillation
	Methodology
	Experimental Results

	Summary & Conclusion
	Summary
	Conclusion
	Future Work

	REFERENCES
	APPENDICES
	Optical Flow
	Brightness Consistency Equation
	TV-L1 Optical Flow Algorithm

	OpenPose
	Further Details About Experiments
	Frame Selection Procedure for Late Temporal Modeling in 2D CNN Architectures
	Testing Procedures of 3D CNN Architectures
	Detailed Experimental Results for Different Clip and Crop Selections
	FRMB implementation on 2D CNN Architectures with BERT-based late temporal modeling

	APPENDICES
	CURRICULUM VITAE

