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Statistics, METU

Assoc. Prof. Dr. Haydar Demirhan
Mathematical Sciences, RMIT University

Assoc. Prof. Dr. Ceylan Talu Yozgatlıgil
Statistics, METU

Assoc. Prof. Dr. Özge Sezgin Alp
Accounting and Finance Management, Baskent University

Date: 22.09.2020



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Sezgin Çiftçi

Signature :

iv



ABSTRACT

BAYESIAN MODEL POOLING FOR THE ANALYSIS OF GENERALIZED
LINEAR MODELS WITH MISSING-NOT-AT-RANDOM COVARIATES

Çiftçi, Sezgin

Ph.D., Department of Statistics

Supervisor: Assoc. Prof. Dr. Zeynep Işıl Kalaylıoğlu

September 2020, 173 pages

Missing data in modeling is one of the main problems of researchers. If the miss-

ingness mechanism is related to the value of the variable itself, then the missing is

defined as not-at-random (MNAR). Additionally, finding the best model in statistics

has always been the focus of researchers. However, it’s known from examples that

there may be any other model with the same best fit but has different estimated co-

efficients. Hence, an uncertainty about model selection that may be problematic in

estimation especially when there is also uncertainty about the accuracy of the estima-

tions caused by MNAR mechanism can cause misleading inferences. In this thesis, a

hybrid Bayesian method is developed for the analysis of a generalized linear model

(GLM) with MNAR covariates. In the analysis of GLM with MNAR covariates, main

response and missingness probabilities of the MNAR covariates are modeled jointly.

In our approach, we create a model space as a set of the best fits among all possi-

ble joint models. This is accomplished by the Reversible Jump Monte Carlo Markov

Chain (RJMCMC) approach that is adopted here. Coefficient estimates are obtained

by pooling the posterior estimations of each model with the posterior model proba-

bilities, which are also calculated within RJMCMC algorithm.
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Keywords: Missing-Not-At-Random, Bayesian Approach, Generalized Linear Mod-

els, Reversible Jump Monte Carlo Markov Chain, Bayesian Model Averaging
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ÖZ

RASTGELE OLMAYAN KAYIP VERİLİ DEĞİŞKENLER İÇEREN
GENELLEŞTİRİLMİŞ DOĞRUSAL MODELLERİN ANALİZİ İÇİN

BAYESİYEN MODEL HAVUZU

Çiftçi, Sezgin

Doktora, İstatistik Bölümü

Tez Yöneticisi: Doç. Dr. Zeynep Işıl Kalaylıoğlu

Eylül 2020 , 173 sayfa

Kayıp veri, modelleme ve istatistiksel analizlerde araştırmacıların en temel sorunla-

rından biridir. Kayıp veri mekanizması değişkenin kendisine bağlı ise, rastgele olma-

yan kayıptır (MNAR). Ayrıca, istatistikte en iyi modeli bulmak her zaman araştır-

macıların odak noktasıdır. Bununla birlikte, aynı en iyi uyuma sahip ancak katsayı

tahminlerinde farklılık gösteren modellerin olabileceği literatürdeki bazı örnekler-

den bilinmektedir. Dolayısıyla model seçimi konusunda bir belirsizlik vardır ve bu

belirsizlik özellikle MNAR mekanizmasının neden olduğu tahminlerin isabeti ko-

nusundaki belirsizlikle birlikte model katsayısı tahminlerinde sorun yaratabilir. Bu

tezde, MNAR’a sahip ortak değişkenleri bulunan genelleştirilmiş doğrusal bir mo-

delin (GLM) analizi için Bayes Yaklaşımlı Model Ortalaması (BMA) ve Geriye sıç-

ramalı Monte Carlo Markov Zinciri (RJMCMC) metotlarını kullanarak oluşturulan

hibrit bir Bayes yaklaşımlı model havuzlama sistemi (BMP) önerilmiştir. MNAR’a

sahip verilerde değişken hakkında göz ardı edilemeyecek ek bilgiler olduğundan, ana

model (GLM) ve kayıp veri mekanizması birlikte modellenmelidir. Tam koşullu mo-
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del ve Bayes yaklaşımının özellikleri kullanılarak birleşik model adayları arasından

en iyi uyumluları içeren uygun bir model uzayı tanımlanır. Ardından, model uzayın-

daki her bir model için model katsayılarının sonsal dağılımları RJMCMC yaklaşımı

kullanılarak elde edilir. Son olarak, nihayi katsayı tahminleri, her model için bulunan

sonsal dağılımlardan elde edilen tahminler, yine RJMCMC algoritmasında hesapla-

nan sonsal model olasılıklarıyla ağırlıklandırılarak elde edilir.

Anahtar Kelimeler: Rastgele Olmayan Kayıp Veri, Bayesiyen Yaklaşım, Genelleşti-

rilmiş Doğrusal Modeller, Geriye Sıçramalı Monte Carlo Markov Zinciri, Bayesiyen

Model Ortalama
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Missing data in statistical analyses and modeling is one of the main problems of

researchers. Although a variety of methods are used to overcome this issue, the

uncertainty about the missingness mechanisms and thus the uncertainty about the

accuracy of estimations made under uncertain assumptions still occur often. As Lit-

tle and Rubin [46] define, missingness mechanisms are explained in three different

types: Missing-Completely-At-Random (MCAR), Missing-At-Random (MAR) and

Missing-Not-At-Random (MNAR). If the missingness does not depend on data val-

ues itself, then it is called MCAR. If the missingness depends on only the observed

data, not the missing data itself, then it is called MAR [46]. When the missing-

ness is independent from the missing data part, then it is called ignorable. When

the missingness mechanism is MCAR or MAR, the missing parts can be ignored and

only observed values are used or the missing parts are fulfilled by using imputation

methods in order to overcome the uncertainty caused by missingness. On the other

hand if the data are of an MNAR mechanism, which is non-ignorable, missingness

depends on the missing values itself and it is not considered random anymore [46].

If the missingness mechanism is related to the value of the variable itself, then the

missing is said to be not at random. It means that there is additional non-ignorable

information in missingness aside from the observed part. Therefore the distribution

of response and missingness mechanism should be modeled jointly. Some methods

for factorization of this kind of joint distribution found in the literature are selec-

tion model [26], pattern-mixture model [46] and shared parameter model [46]. These

methods are chosen according to the researchers’ interest of the way of factoring the
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joint distribution. The details will be given in preliminaries section.

There are also imputation methods for handling MNAR such as Complete-case anal-

ysis, Mean imputation, likelihood based multiple imputation, Bayesian iterative sim-

ulation approaches such as Data Augmentation, Gibbs sampling, Expectation - Max-

imization (EM), etc. However, for missingness models for MNAR mechanism that

are weakly identified or for which there is a large fraction of missing information,

convergence to a maximum may be very slow. An advantage of the Bayesian ap-

proach is that it mimics Maximum Likelihood (ML) inference in large samples, but

also provides inference based directly on the posterior distribution without invoking

large-sample normal approximations, which is likely to be superior to ML in small

samples. However, each MNAR method consists of unstable assumptions since the

uncertainty about the data mechanism. For example, in the study of Galimard [18],

the multiple imputation method works only for MNAR in response variable, not in

covariates. Also ignorable likelihood causes biased estimations [80]. Moreover, it

is quite impossible to be sure about whether the missingness mechanism is MAR or

MNAR without any additional information [51]. So, in addition to untestable as-

sumptions there is also an uncertainty about ignorability. This problem may mislead

the inference about estimations and modeling.

Studies for modeling MNAR with some approaches in the literature are likelihood-

based with some other frequentest based approaches, based on sensitivity analy-

sis [79] [75] [34] [74] and Bayesian approaches. Bayesian approach estimations for

modeling MNAR can be seen in the literature in different types such as linear regres-

sion [54], generalized linear regression [31] [33], [44], [32], [70], [37], [81], [17],

logistic regression [45] [40], survival models [27], spatial models [63]. For exam-

ple, Mason et. al (2010) proposed a strategy that a base model is selected and then a

sub-model to impute the missing covariates is added to it. They also indicate that the

occurrence of missingness mechanism with regard to the response variable or covari-

ates specifies the appropriateness of the analysis. They study missingness mechanism

on response variables. Lastly, they argued that a strategy of modeling with MNAR

covariates should be developed [49]. Nandram and Woo (2015) has developed a

methodology in order to analyze the uncertainty of non-ignorable non-response with

a Bayesian perspective and they have proposed a model for it [53].
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In addition to all these, finding the best model in statistics is always the focus of

the researchers in any scientific area. Fitting a best model for MNAR mechanism are

studied by the researchers above and more. However, Hoeting et. al. ask the following

question: what if there is any other model with the same best fit but has different

estimated coefficients and standard errors [29]. Also note that literature is abundant

with examples of models with the same good fit but different coefficients and standard

errors [62] [48] [39] [59]. There is always a model uncertainty that should be in

consideration especially when there is missingness in the data. Because in addition to

the uncertainty, which is caused by missingness, there is another uncertainty occurs

about selecting the missingness model. For minimizing the uncertainty of model

selection,we believe it is better not to choose a final best model, but instead using

multiple model approaches seems more reliable. Thus, the estimation of parameters

can be done by using the tools of averaging or pooling for some specified models in

order to reduce the uncertainty.

There are both frequentest and Bayesian approaches for model selection, but using

only data and likelihood may mislead the selection in this study, since the data con-

tains non-random missingness and trusting the data in hand only does not help to

solve or minimize the uncertainty of missingness. On the other hand, as Ntzoufras

(1999) mentioned, Bayesian model selection may offer better solutions by using a

well known Bayesian approach called Markov chain Monte Carlo (MCMC) tech-

nique which can construct the model space, identify good models and estimate their

posterior probabilities based on both prior knowledge and observed data [55]. By

using careful diagnostic tools and sensitivity analysis which MCMC method offers, it

might be possible to reduce the uncertainty of MNAR. Posterior probabilities are also

very useful for model selection because it can be seen as the weights of the models in

that model space as well.

Therefore, using a Bayesian model pooling system in MNAR modeling may reduce

the uncertainty and increase the accuracy of the estimation of the parameters of inter-

est in the base model. First of all, there should be a “well-constructed" model space

in order to build a pooling system. “Well-constructed" can be taken as the ability

to select or filter the most efficient models among all the potential models. There are

several Bayesian methods used for model selection as well such as Gibbs, Metropolis-
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Hastings, Bayesian Model Averaging, Reversible Jump Markov Chain Monte Carlo,

etc. Naturally, in a finite countable set of candidate models, the dimensions of mod-

els may vary according to the parameters (coefficients) of the models. So, a standard

Gibbs or Metropolis-Hastings algorithm for model selection may not work well. In-

stead, an algorithm which has flexible trans-dimensional ability among the models

should be taken into account such as Reversible Jump Markov Chain Monte Carlo

(RJMCMC). Green (1995) introduced RJMCMC as a method that provides a general

outline for Markov Chain Monte Carlo (MCMC) simulation where the dimension of

the parameter space may vary among the Markov Chain iterates [24]. This flexibility

and the ability to move in different dimensions makes RJMCMC method a suitable

candidate for model selection, or better, for creating a “well-constructed" model space

for model pooling. For instance, Dey and Jhamb (2018) has used this algorithm for

model selection of varying dimensions for user-movie recommendation [11]. Boura-

nis et. al. (2018) also used RJMCMC algorithm for model comparison [7]. Moreover,

Kwak and Kim (2019) studied recently on finding the best model in multiple reggres-

sion by using RJMCMC [42]. For the first time, Hoegh et. al. (2017) has tried

RJMCMC method for model selection containing MNAR components while exam-

ining possible changes to foxhound training enclosure policy and fox survival [28].

However, they have just focused on finding the best fit.

In this study, for the sake of simplicity, only some of the covariates are assumed

to have MNAR mechanism while the others are fully observed in a base model, a

set of missingness models, which are the elements of the model pooling system are

taken and added jointly to the base model by using the properties of full conditional

model and Bayesian approach in order to build the methodology. If the number of

covariates contains missingness is just one, it might be easy to apply RJMCMC di-

rectly, since the model space will be in one dimensional space. It means that, letM
be the model space where M ∈ R. But when the number of covariates containing

missingness parts increases, the model space become enormous and the dimension

of the model space increases at the same time. For a better expression, letM be the

model space with 3 MNAR missingness mechanisms, then M ∈ R3. When there

are only a few potential covariates for the missingness mechanism, a 3 dimensional

model space may not be a problem. For example, if there are 4 potential covariates
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in which 3 of them have missingness mechanisms, then the model space will contain

24x24x24 = 16x16x16 = 4096 different missingness model trios. If there are 5 po-

tential covariates there would be 32768 different missingness model trios. Therefore,

before applying RJMCMC directly, some other model space reduction methods like

Occam’s razor and Occam’s window as Hoeting et. al. (1999) suggest for model

averaging [29], might be applied in order to reduce the model space. By applying

RJMCMC, model posteriors can be achieved, and they can be used as weights of the

parameter estimations for every model in the model space. Finally, by using a hybrid

Bayesian modeling system, instead of a single model estimation, the weighted mean

of all the parameter estimations can be assessed in order to reduce the uncertainty

about the accuracy of estimations.

1.2 Contributions and Novelties

Contributions made in modeling of GLMs with covariates containing MNAR through-

out the thesis are as follows:

• Reduction of uncertainty about missingness mechanism and the accuracy of

parameter estimations by using RJMCMC method (see Section 3.2): Putting

RJMCMC method in the center of the methodology provides a freedom to work

with varying dimensional models. Hence, this benefits the reduction of uncer-

tainty caused by both parameter estimates and MNAR mechanism.

• Definition of a “well-constructed" model space by using the T-step Occam’s

window method (see Section 3.3.1): Classical Occam’s window method can

not be used properly for filtering the best candidate models in the model space

when MNAR mechanism occurs in some of the covariates. Therefore, it is

possible to apply Occam’s window method to these kind of data by using the

T-step proposal given in methodology section.

• Usage of dimension difference impact on the construction of model transition

probabilities (see Section 3.4): Model transitions within the same dimension

are expected to be easier than the transitions among other dimensions. Also,

as the dimension difference increases between two models, the transition prob-
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ability is assumed to decrease evenly. So the impact of this effect should be

taken into consideration when calculating the transition probabilities.

• Hybrid Bayesian Modeling system definition called Bayesian Model Pooling

(BMP) (see Section 3): The combination of both RJMCMC and Bayesian

Model Averaging (BMA) is considered to be a helpful system for reducing

the uncertainty about model selection and MNAR mechanism at the same time.

This system is studied for GLMs containing covaraites with MNAR.

• R code: Since the methodology is based on computational algorithms, the nec-

essary genuine codes are written in R software consist of interpenetrated RJM-

CMC, Metropolis-Hastings sampling, Gibbs sampling, T-step Occam’s window

and BMA algorithms.

• Sensitivity analysis (see Section 4.1.7): The sensitivity of the methodology are

assessed for parameter estimation in terms of assumptions.

1.3 The Outline of the Thesis

Handling both uncertainty about the missingness mechanism, especially with non-

ignorable missing data in the covariates, and uncertainty about accuracy of param-

eter estimations are the main focuses of this study. The organization of this the-

sis is as follows: In Chapter 2, the concepts of missingness mechanisms (especially

MNAR), Generalized linear models, modeling MNAR, methods of model selection

and Bayesian inference methods are introduced briefly. In Chapter 3, the methodol-

ogy of the thesis is described in detail with model definition, RJMCMC algorithm,

model space construction, transition probability assessments for RJMCMC and the

process of BMP for parameter estimations. In Chapter 4, the methodology is applied

with a validation study on a simulated dataset with known true parameters by generat-

ing artificial data under the assumption of a GLM model contains covariates of which

only one has an MNAR mechanism. The validation study on a simulated dataset is

tested by using sensitivity analysis under different assumptions and scenarios such

as missingness percentages and parameter assumptions. After the validation study, a

real data application is conducted and the results of the analysis is compared with an-
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other method, of which has the same data, in order to see the efficiency and accuracy

of the proposed Bayesian pooling system. In Chapter 5, the study is concluded with

some discussion.
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CHAPTER 2

PRELIMINARIES

The thesis focus on estimation of coefficients in Generalized Linear Models of which

some of the covariates contain MNAR mechanism. The literature and methods on

missingness in GLM is vast and should be carefully reviewed first. In this section we

provide literature review and preliminaries for the following:

1. Generalized linear models (GLM)

2. Missing data in GLM

3. Bayesian missing data analysis in GLM

2.1 Generalized Linear Models

Generalized Linear Models (GLM) are generalizations of ordinary linear regression

models. While ordinary linear regression models are used under the assumption of

normally distributed response variables, in GLM the response variable may be non-

normal and therefore the model itself may be non-linear [1] [2]. GLM has three

components: response variable (random component), explanatory variables (predic-

tors or covariates) with parameter vector and a monotone link function [1] [2] [12]. It

is defined in equation 2.1.

g(E(Y )) = Xβ (2.1)

where Y is the response variable with a probability distribution belongs to the expo-

nential family, E(Y ) is the expected value of Y , X = [X1, X2, ..., Xp] is the vector

of predictor variables (covariates) with parameter vector β = [β1, β2, ..., βp]
T , g(·) is
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the monotone link function. The link function g(·) connects the predictors to the re-

sponse variable. If g(·) is an identity function, then GLM turns into an ordinary linear

regression model. GLM can be specialized according to specific response variables

and link functions. For instance, when the response variable is binary (occurrence=1,

non-occurrence=0) and the link function is the logarithm of odds, called logit link

function, GLM is called as logistic regression [1]. If the link function is chosen as

cumulative probability function for standard normal distribution, then it is termed as

probit regression. Since our interest in this thesis lies in binary response variables, we

will next review logistic and probit regressions.

2.1.1 Logistic Regression

If the response variable is binary then,

Y =

1 if occurrence

0 if no occurrence
(2.2)

with probabilities P (Y = 1) = π and P (Y = 0) = 1 − π. When π = exp(Xβ)
1+exp(Xβ)

then the link function is defined as g(π) = log
(

π
1−π

)
and the GLM is called logistic

regression or logit regression [1].

logit(π) = log

(
π

1− π

)
= Xβ (2.3)

Logistic regression is used when there is a non-linear relationship between the data

X and π(X) [1]. An example of logistic regression that shows this nonlinear relation

is given in Figure 2.1.

2.1.2 Probit Regression

If the response variable is binary, as in logistic regression, the probabilities are defined

as P (Y = 1) = π and P (Y = 0) = 1− π. As in Figure 2.1, the shape of regression

when β > 0 looks like a cumulative distribution function. So, this time let us denote

π = Φ(Xβ) where Φ(·) is the standard normal cumulative distribution function. If the

link function is defined as g(π) = Φ−1(π) the GLM is called probit regression [1] [2].
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Figure 2.1: Logistic Regression Plot Example, taken from the book "Categorical Data

Analysis" by Agresti (2003) [1]

Φ−1(π) = Xβ (2.4)

In this thesis, MNAR mechanism is assumed to occur in some of the covariates of

GLM with binary response. Both logistic and probit regression are used for model-

ing binary response data and both show very similar performance. However, in some

areas one can be more favorable than the other. When odds ratio is meaningful for in-

ference like in epidemiology, logistic regression is preferable, on the other hand, pro-

bit regression is more popular in econometric analysis. Concerning handling MNAR

mechanism, Enders (2010) indicates that the classic selection model uses probit re-

gression to predict missingness indicator R, although logistic regression is a common

approach for analyzing binary outcomes [14]. In this thesis, logistic regression is ap-

plied for response variable and probit regression is applied for predicting missingness

indicator as the selection model is chosen for the thesis’ purposes.
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2.2 Missing Data and Missingness Mechanisms

Incomplete or missing data occur if the data planned to be ascertained are not ob-

served. This is a very common problem in practice for statistical inference. If the data

to be analyzed are thought to be a rectangular block, missing data can be imagined

as holes or/and non-filled columns in this block. In statistical inference, missingness

may cause a bias on the inference of the parameters. Various methods are available

to resolve this problem. The decision of which method to use is determined by the

reason behind the missing data occurrence. The information of the mechanism of

missing data is substantial in choosing the suitable missing data handling method.

The related information can be gathered by asking the right questions, such as why

the data is missing, whether it is randomly missing or not, and if there is a specific rea-

son which depends on the data itself etc. As Rubin (1976) and later Little and Rubin

(2002) defined, missingness mechanisms are basically categorized into three different

types: Missing-Completely-At-Random (MCAR), Missing-At-Random (MAR) and

Missing-Not-At-Random (MNAR) [68] [46]. All three mechanisms are inspected

carefully in the following sections. The knowledge gathered about the mechanism

of the missing data leads to suitable selection of the methods for handling the miss-

ingness, methods being as substantial as the missing mechanisms. These methods

are applied accordingly and can be generally categorized into deletion methods, sin-

gle imputation methods, multiple imputation methods and likelihood based methods

including Bayesian methods in the literature. The following sections deal with the

details of these methods. When the missingness is independent from the missing vari-

able, then the impact of the missingness can be relatively small and it can be called

as ignorable. So if the missingness mechanism is identified as MCAR or MAR, the

missing parts in this case can be ignored. In order to overcome the uncertainty caused

by the missingness, only observed values can be used or imputation methods can be

carried out for the missing parts. On the other hand, if the data are of an MNAR

mechanism, which is non-ignorable, missingness depends on the missing values it-

self and it is not random anymore [46]. In this particular case, traditional deletion or

imputation methods don’t function standalone to handle the missingness mechanism.

The missing data and the mechanism should be taken into consideration jointly.
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2.2.1 Missing-Completely-At-Random (MCAR)

If the missingness depends on the observed variables but does not depend on data

values itself, then the related mechanism is called Missing-Completely-At-Random

(MCAR) [46]. An electronic device that measures and records the seismic movements

of the ground in an area would create a good example for MCAR. If that device is

broken at some point, the device can not measure and record the rest of the seismic

movements until it is fixed again. Therefore, the data will be MCAR. For a better

expression, let us denote D = (Dobs, Dmiss) is the data matrix where Dobs is the ob-

served part and Dmiss is the missing part. Also let us define the missingness indicator

as R = {ri, for i = 1, . . . , n} and

ri =

 0 if xi ∈ Dobs

1 if xi ∈ Dmiss
(2.5)

where xi is the ith observation of variable X containing missing values. The missing-

ness mechanism can be specified as the conditional distribution function f(R|D, θ)
where θ is the unknown parameter. So, if

P (R|D, θ) = P (R|θ) (2.6)

for all D and θ then the data are MCAR. If the mechanism is MCAR, it is assumed

that there is no relation between complete cases and missing cases, which means the

missingness is ignorable. So, handling the missingness can be done by omitting the

missing parts with deletion methods such as listwise deletion (complete case analysis)

or pairwise deletion. Let the columns of the data block are variables and rows of the

data block are individuals. In listwise deletion, all of the information (whole row)

of that individual in the data is deleted if any value is missing on that row. So only

complete data is left at hand. In piecewise deletion method, the deletion is done for

the particular analysis carried out. For example, some observed information in the

row, containing missing parts, may contribute to some analysis. So the size of the

data may differ in different analyses. Imputation methods can also solve the problem

of MCAR mechanism. The details about missing data handling methods is given in

the following sections.
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2.2.2 Missing-At-Random (MAR)

If the missingness depends on the observed data and variables, but not the missing

data itself, then it is called Missing-At-Random (MAR) [46]. In other words, the

mechanism can be explained by the variables with full information. Let us think

about the same example in MCAR case. The same electronic device can measure and

record the seismic movements if the temperature is between −10◦C and 30◦C. Thus,

the data would be missing when the temperature is less than −10◦C or more than

30◦C, meaning the missing data is MAR. The same notations in MCAR case can be

used in here as well. The missingness mechanism is MAR if

P (R|D, θ) = P (R|Dobs, θ) (2.7)

for all Dmiss and θ. MAR mechanism can also be ignorable and handling methods

as deletion, imputation and likelihood based can be used in order to make reliable

inferences about the parameters of interest.

2.2.3 Missing-Not-At-Random (MNAR)

If the missing mechanism (non-response) is related to the value of the response itself,

then the missing is said to be not at random [46]. In other words, if the reason of

missingness is related with the variable itself then the missing mechanism is Missing-

Not-At-Random (MNAR). Additionally, the mechanism can be explained or modeled

by the observed part of that variable and other variables as well. Let us give an

example about a survey on teenage addiction of illegal drugs. If questions regarding

drug usage are asked directly to teenagers, they will either not answer those questions

or lie. Thus, the missing data depends on the question itself and we can say that it is

MNAR. Let us use the same notations like in MCAR and MAR cases. The mechanism

is MNAR if,

P (R|D, θ) = P (R|Dobs, Dmiss, θ) (2.8)

for all Dmiss, Dobs, and θ. MNAR is non-ignorable, so using traditional methods

(deletion, single imputation, etc.) may not be a good idea since the characteristics

(mean, variance, etc.) of observed data and the missing data may not be the same. It
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can be explained as follows:

Under MAR : P (Dmiss, θ|Dobs, Ri = 0) = P (Dmiss, θ|Dobs, Ri = 1)

Under MNAR : P (Dmiss, θ|Dobs, Ri = 0) 6= P (Dmiss, θ|Dobs, Ri = 1)
(2.9)

Therefore, the traditional approaches may be invalid for handling MNAR. A joint

model of the data D and the missingness mechanism indicator R as in the equation

2.10 can be proven helpful.

P (R,D|θ) = P (R,Dmiss|Dobs, θ) (2.10)

Deciding on the factorization of the joint models may differ. Three different factoriza-

tion methods can be found in the literature: selection models, pattern-mixture models

and shared parameter models. The details are given in the following sections.

2.3 Handling MNAR Mechanism

The best method for handling the missingness is the ability to prevent the possibility

of missingness before the research. But in practice, fully preventing it would prove

nearly impossible. Therefore, the main purpose lies in reducing the uncertainty and

the bias for the inference of parameters of interest. Several different methods with

different classifications are given in the literature over years [46] [14] [52]. Most

studies can be categorized under three main methods; deletion methods, imputation

methods and likelihood-based methods. As an example, Skarga-Bandurova et al.

(2018) has classified methods as in Figure 2.2 [72]. According to the Figure 2.2,

the main deletion methods are listwise deletion and pairwise deletion. Imputation

methods vary by the research areas and the nature of the data. Mainly, it can be

categorized as single and multiple imputation methods. Model-based methods are

based on likelihood principle which also includes Bayesian methods. There are also

some machine learning methods for handling the missingness mechanism, but it is

out of the content of this thesis.
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Figure 2.2: Classified Missing Data Methods of Skarga-Bandurova et al.(2018)

2.3.1 Deletion Methods

Deletion methods are based on the principle of omitting missingness. If the missing

percentage is small and assumed to be ignorable, deletion of missing cases can help

to handle the problem. Though in practice, this method should be chosen carefully

since it may lead to biased inference for parameters of interest [14] [67]. Deletion

can be performed in two different ways; listwise or pairwise.

Listwise Deletion (Complete-Case Analysis): It can be defined as basically the

deletion of all cases that include missingness. [14]. That is to say, if the data is

represented as a rectangular shaped block with multiple covariates (columns) and

sample size of n (rows), any row that includes any missing cells will be deleted. Since

only the complete cases (rows) are left in the data set, it is also called complete-case

analysis. Therefore, loss of information can cause biased inferences about the data.

That is why this method should not be preferred if the missingness mechanism is

ignorable and the missing percentage is too high [67].

Pairwise Deletion (Available-Case Analysis): It is simply omitting the cases in-

cluding missing data depending on the particular analysis carried out [14]. For ex-
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ample, an individual answers all the questions in a survey except one. So omitting

just that missing case and using the rest of the data provided by the individual can be

useful for some analysis. By doing this, the sample size will differ for each analysis.

Both listwise and pairwise deletion methods always cause a loss of information and

hence misleading inference about the parameters of interest [67].

2.3.2 Imputation Methods

Imputation refers as placing new values instead of missing values [46] [14] [52]. In

here, it is assumed that the imputed values should have been the real values if the

missing data weren’t missing. Of course, it is not possible to know the real value of a

missing value in practice. Therefore, imputation methods still contain an uncertainty

about missingness even though it may help with reducing it [13]. There are a lot

of imputation methods according to the missingness mechanism and the nature of

the data, however it can basically be categorized as single and multiple imputation

methods.

Single Imputation Methods: They are done simply by imputation for once. The

most well-known ones are mean imputation, regression imputation and hot-deck im-

putation. In longitudinal studies, another method called last observations carried for-

ward can be found.

Mean Imputation can be defined as a method that all the missing values are re-

placed by the mean of the observed values of that variable [14] [46]. This method

ensures to maintain the sample size but, the variability of the data reduces. Hence,

the variance and standard error will be underestimated. Further, the inferences for

parameters of interest may be biased, especially if the missingness mechanism is

identified as MAR or MNAR [14] [13].

Regression Imputation is a method through which the missing values are replaced

by the predicted values which are obtained from a regression model or a predictive

distribution, that is obtained from the available data [14] [46]. In here, the predictions

17



are based on the regression model, which makes the imputations highly correlated

with the regression model. As Enders (2010) indicated, this method may also cause

underestimated variance and standard error although it reduces the bias of the esti-

mates [14]. Stochastic regression models are suggested in order to reduce the corre-

lations of imputations by adding normally distributed residual terms with mean zero

and variance equal to the residual variance of the predicted value in regression model.

This addition adds randomness to the imputations and reduces the correlations, how-

ever the standard error is underestimated [14].

Hot-Deck Imputation is the method applied when the missing value is replaced

by the value of the other observed values in other variables of which are very similar

or matching. Therefore, it is also called matching imputation [14] [46]. For a better

explanation, if the columns of the data are variables and the rows are individuals, the

missing value of an individual is replaced by the same value of another individual

of which their other available values are matching or very close to each other. This

imputation may also cause an underestimated standard error and variance [67].

Last Observation Carried Forward method is used in longitudinal studies. If the

individual drops out from the research after a specific time, the last value observed

from that individual is used as it is not changed until the end of the study [14].

Multiple Imputation Methods: They are the methods that missing values are re-

placed by new values for multiple times. This means that multiple data sets are ob-

tained and used in order to reduce the uncertainty about the imputed values [68] [46].

These data sets are generated from predictive distributions or constructed regression

models with available data. Rubin (1987) indicates the process of multiple imputation

as imputation, analysis and pooling [68]. After the imputation, the necessary analysis

can be performed with imputed data sets and inference for parameters of interest are

obtained for each imputed data sets. Then, all of the inferences or estimations are

combined to a single result with a pooling technique [68]. Therefore, the uncertainty

about the missingness is naturally reduced. In single imputation methods, the im-

puted values are applied only once, so the missing value is treated as a known single
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value which doesn’t reflect the variability of the missing value and causes inaccurate

estimates. Multiple imputation, on the other hand, handles this problem, although

with a burden of more work such as multiple data sets, multiple analysis, etc. [46].

2.3.3 Likelihood-Based Methods

Handling missing data can also be performed by using likelihood principles. Likeli-

hood functions for observed or complete data with some specific model assumptions

are used in order to handle missingness [68] [46] [52]. These methods can be based

on both Maximum Likelihood (ML) and Bayesian Approach.

Maximum Likelihood Methods: Generally, maximum likelihood methods are used

when the missingness mechanism is ignorable. The most well-known method is an

iterative approach called the Expectation Maximization (EM) Algorithm. It is a two-

step algorithm of which the first step is Expectation (E-step) and the second step is

Maximization (M-step). In E-step, the complete-data are obtained as the the missing

values are replaced by the conditional means given the observed data and parame-

ter estimates. In other words, E-step can be given in Equation 2.11 with the same

notations in section 2.2.1.

Dimputed
i = E(Dmiss

i |Dobs
i , θ), i = 1, ..., nmiss (2.11)

where Dimputed
i is the imputed value of ith missing value and nmiss is the size of the

missing data. So the complete-data is Dcomplete = (Dimputed
i , Dobs

i ). Then in M-step,

the complete-data is maximized with ML principle [52]. The likelihood to be maxi-

mized is L(θ|Dcomplete).

This method is said to be suitable in MCAR and MAR mechanisms, since the pa-

rameters estimation are unbiased, but it is not recommended for MNAR mechanisms,

since the estimations tend to be biased [46] [14]. Little and Rubin (2002) also men-

tions that when the missing data proportion is large, the convergence may be very

slow and additionally at times, a closed form of the likelihood can not be obtained in

M step [46].
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Bayesian Methods: Posterior distributions for parameters of interest can be ob-

tained by combining priors for unknown parameters with the likelihood [46]. Bayesian

methods use multiple imputation methods. Data Augmentation is one of the most

popular Bayesian method for handling missing data.

Data Augmentation is an iterative method with 2 steps. The first step is called the

Imputation step (I-step), in which the data imputation is done by using a predictive

stochastic regression model by using the observed data and estimated parameters for

the missing data [14]. This predictive stochastic regression model can be expressed

as conditional distribution given the observed values and estimated parameters or

posterior predictive distribution. The detailed information about posterior predictive

distribution and other Bayesian Approach terms is given in Section 2.4.1. Imputed

data sets are obtained from I-step and after that every data set is used to get likelihood

functions in the second step called Posterior step (P-step), where the Bayesian analy-

sis is applied. Also, prior distributions for the parameters are specified and posterior

distributions are defined in order to get alternative parameter estimations. These two

steps are applied for number of times by using another Bayesian approach method

called Monte Carlo Simulation. Let us explain this part by using notation used in

section 2.2.1;

I − Step : Dimputed
1 ∼ P (Dmiss|Dobs,θ∗0)

P − Step : θ∗1 ∼ P (θ|Dobs,Dimputed
1 )

(2.12)

where Dimputed
1 is the imputed data set of the trial 1, P (Dmiss|Dobs,θ∗0) is the poste-

rior predictive model for missing data and θ∗0 is the initial parameters. This iteration

is applied for t times as Monte Carlo Simulation. So the steps becomes as in Equation

2.13.
I − Step : Dimputed

t ∼ P (Dmiss|Dobs,θ∗t−1)

P − Step : θ∗t ∼ P (θ|Dobs,Dimputed
t )

(2.13)

whereDimputed
t is the imputed data set of the trial t, P (Dmiss

i |Dobs
i ,θt−1) is the poste-

rior predictive model for missing data and θt−1 is the simulated values of parameters

from trial t − 1. So, every iteration uses the information of the previous iteration,

which means every iteration depends on the previous one. That creates a chain, which

is called Monte Carlo Markov Chain (MCMC). The detailed information is given in
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Section 2.4.1. If the chain is long enough (t is large enough), the draws for the tth

imputation can be obtained from a posterior distribution that averages of the entire

range of all possible values for the missing data [14]. This means the imputations

may converge to proper values that represents the missing values at best. Conver-

gence diagnostics for MCMC can also be used in order to see if the imputations are

accurate. The meaning of convergence and convergence diagnostics are discussed on

Section 2.4.1 as well. Data Augmentation method can further be taken as the first

step of multiple imputation method. The imputed data sets in the chain can be taken

and the multiple imputation steps (imputation, analysis and pooling) can be applied

in order to handle missing data.

2.3.4 Joint Models for Dealing MNAR

When the data has MNAR mechanism, it is not possible to think and analyze the data

and the missing mechanism separately. The joint model of the data and the missing

mechanism should be considered together in order to handle the missingness. As it

is stated in the Equation 2.10 in Section 2.2.3, the joint model should be factorized

for analysis. There are three main factorizations for MNAR joint models; selec-

tion model, pattern-mixture model and shared parameter model. These factorization

methods imply the same joint model with different assumptions, and that is why they

can produce different estimates [14]. Therefore, sensitivity analysis with different

assumptions to the same data is very crucial in handling MNAR mechanism.

Selection Model: It is a factorization method for joint models in MNAR mecha-

nism [14] [52] [46]. It can be denoted as follows;

P (R,D|β, φ) = P (R|D,φ)P (D|β) (2.14)

where R is the missingness indicator, D is the data, φ is the parameter vector for the

missingness model and β is the parameter vector related with the data, P (R|D,φ)

is the conditional distribution for missingness model indicator given the data and

P (D|β) is the marginal distribution of the data. When the data is separated as D =
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(Dmiss, Dobs) the factorization becomes as in the Equation 2.15.

P (R,D|β, φ) = P (R,Dmiss|Dobs, β, φ)

= P (R|Dmiss, Dobs, φ)P (Dmiss|Dobs, β)
(2.15)

where P (R,Dmiss|Dobs, β, φ) joint distribution of the missingness indicator and the

missing data given the observed data, P (R|Dmiss, Dobs, φ) is the conditional distri-

bution for missingness model indicator given the data and P (Dmiss|Dobs, β) is the

conditional distribution of the missing data given the observed data.

Pattern Mixture Model: It is another factorization method for joint models used in

MNAR mechanism when the missingness mechanism has been divided into different

stratifications or patterns [14] [52] [46]. It can be denoted as follows;

P (R,D|β, φ) = P (D|R, β)P (R|φ) (2.16)

where R is the missingness indicator, D is the data, φ is the missingness indicator

parameters and β is the parameters related with the data, P (D|R, β) is the condi-

tional distribution for the data under different patterns of missingness mechanism and

P (R|φ) is the marginal distribution of the missingness mechanism. When the data is

separated as D = (Dmiss, Dobs) the factorization becomes as in the Equation 2.17.

P (R,D|β, φ) = P (R,Dmiss|Dobs, β, φ)

= P (Dmiss|R,Dobs, β)P (R|Dobs, φ)
(2.17)

where P (R,Dmiss|Dobs, β, φ) joint distribution of the missingness indicator and the

missing data given the observed data, P (Dmiss|R,Dobs, β) is the conditional dis-

tribution for the missing data under different missingness mechanism patterns and

P (R|Dobs, φ) is the conditional distribution of the missingness mechanism given the

observed data.

Shared Parameter Model: Sometimes MNAR mechanism may depend on an un-

known latent variable. Therefore, latent variables or random effects are needed to

be added the joint model as a new unknown parameter which is shared by both the

missing data and missing mechanism. Shared Parameter Models are used in these

cases when the factorization is not convenient by only selection or pattern-mixture
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models [52]. It can be denoted with both selection model factorization and pattern-

mixture model factorization as follows;

Selection :P (R,D,Z|β, φ, ξ) = P (R|D,Z, φ)P (D|Z, β)P (Z|ξ)

Pattern−Mixture :P (R,D,Z|β, φ, ξ) = P (D|R,Z, β)P (R|Z, φ)P (Z|ξ)
(2.18)

where R is the missingness indicator, D is the data, Z is the latent variable or random

effect variable, φ is the missingness indicator parameters and β is the parameters

related with the data, ξ is the parameters related with the random effect, P (R|D,Zφ)

is the conditional distribution for missingness model indicator given the data and the

random effect, P (D|Z, β) is the conditional distribution of the data given the random

effect and P (Z|ξ) is the marginal distribution of the random effect. When the data is

separated as X = (Dmiss, Dobs) the factorization becomes as in the Equation 2.19.

P (R,D,Z|β, φ, ξ) = P (R,Dmiss, Z|Dobs, β, φ, ξ)

Selection : = P (R|Dmiss, Dobs, Z, φ)P (Dmiss|Dobs, Z, β)P (Z|Dobs, ξ)

Pattern−Mixture : = P (Dmiss|R,Dobs, Z, β)P (R|Dobs, Z, φ)P (Z|Dobs, ξ)

(2.19)

where P (R,Dmiss, Z|Dobs, β, φ, ξ) joint distribution of the missingness indicator, the

missing data and the random effect given the observed data, P (R|Dmiss, Dobs, Z, φ)

is the conditional distribution for missingness model indicator given the missing data,

observed data and the random effect, P (Dmiss|Dobs, Z, β) is the conditional distribu-

tion of the data given the observed data and the random effect, P (Dmiss|R,Dobs, Z, β)

is the conditional distribution of the data given the missingness indicator, observed

data and the random effect, P (R|Dobs, Z, φ) is the conditional distribution for miss-

ingness model indicator given the observed data and the random effect, P (Z|ξ) is

the conditional distribution of the random effect given the observed data. In this the-

sis, selection model is chosen for factorizing the joint distribution of the main GLM

model and missingness models (also GLMs).

2.3.5 Selection Model For MNAR in GLM

Both main and the proposed missingness models are considered as GLM models and

the joint distribution of them should be taken into account. The main model is as-

sumed to be a logistic model with binary response variable Y, covariates X = (X1,

X2, ..., Xp). If the missingness mechanism belongs to the response variable, then the
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selection model will be as in Equation 2.20.

P (R, Y |X,β,φ) = P (R, Y miss|Y obs,X,β,φ)

= P (R|Y miss, Y obs,X,φ)P (Y miss|Y obs,X,β)
(2.20)

where Y miss is the missing part, Y obs is the observed part of the response, β is

the main model parameter vector and φ is the missingness model parameter vec-

tor, P (R, Y miss|Y obs,X,β,φ) joint distribution of the missingness indicator and the

missing data given the observed data, P (R|Y miss, Y obs,X,φ) is the conditional dis-

tribution for missingness indicator model given the data and P (Y miss|Y obs,X,β) is

the conditional distribution of the missing data given the observed data.

If the missingness mechanism belongs not to the response variable but to the co-

variates then the covariates are separated as X = (Xmiss,Xobs) the factorization

becomes as in the Equation 2.21.

P (R, Y,Xmiss|Xobs,β,φ) =P (R|Y,Xmiss,Xobs,φ)

P (Y |Xmiss,Xobs,β)

P (Xmiss|Xobs)

(2.21)

where P (R, Y,Xmiss|Xobs,β,φ) joint distribution of the missingness indicator,

main model and the missing data given the observed data, P (R|Y,Xmiss,Xobs,φ)

is the conditional distribution for missingness indicator model given the data and

P (Y |Xmiss,Xobs,β) is the conditional distribution of the main model given the

data and P (Xmiss|Xobs) is the conditional distribution of the missing covariates

given the observed data. The study proceeds with brief explanation of fitting methods

of the main and missingness models.

2.4 Model Selection for Missingness Mechanism

As George E. P. Box once said "Essentially, all models are wrong but some are use-

ful", model selection in statistical modeling is always challenging. Since modeling is

a way of approximation of how the data behave, the true and correct model does not

exist. The aim should be towards choosing the best model or models that fit the data.

However, Hoeting et. al. ask a question like what if there is any other model with the
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same best fit but has different estimated coefficients and standard errors [29]. And

also, there are some examples of models with the same good fit but different coeffi-

cients and standard errors [62] [48] [39] [59]. All this implies to model selection’s

uncertainty and it may be problematic in estimation. We cannot know that in predic-

tive modeling, the chosen model is definitely the best model. There is always a model

uncertainty that should be considered. In addition to the uncertainty of choosing the

best fit for the main model, there is also uncertainty about the MNAR mechanism and

for choosing the best missingness indicator model. In this thesis, Bayesian inference

and Bayesian model selection methods are used in order to take these uncertainties in

to consideration together.

2.4.1 Bayesian Inference

Bayesian inference can be made with conditional probability for parameters of inter-

est or for unobserved data given the observed data. This conditional probability is

based on Bayes’ Rule.

P (D|θ) =
P (D, θ)

P (θ)
(2.22)

Equation 2.22 is the simplest form of Bayes Rule where P (D|θ) is the probability

distribution of the data D given the parameter of interest θ, P (θ,D) is the joint prob-

ability distribution and P (θ) is the marginal distribution for θ. So this equation can

be rewritten as P (D, θ) = P (D|θ)P (θ). This expression can be used in the following

equation:

P (θ|D) =
P (D, θ)

P (D)
⇒ P (θ|D) =

P (D|θ)P (θ)

P (D)
(2.23)

The Bayes’ rule is applied as in the Equation 2.23 and the joint probability P (D, θ)

is rewritten as P (D|θ)P (θ). In here, P (D) =
∫
θ
P (D|θ)P (θ)dθ is the integration.

Since, P (D) does not depend on θ and the data are observed, it can be considered as

a normalizing constant. Therefore, Equation 2.23 can be written as follows:

P (θ|D) ∝ P (D|θ)P (θ) (2.24)

Equation 2.24 is the basis of Bayesian inference and Bayesian data analysis. When

dealing with modeling, the conditional probability of parameter of interest θ given

the observed data D, P (θ|D), is called the posterior distribution (or density), the
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conditional probability of observed data D given the parameter θ, P (D|θ), is called

the likelihood function, and the marginal probability of θ, P (θ), is called as prior

distribution (or density). Posterior distribution can be considered as updating the

prior information about the parameter of interest, by using the likelihood function,

which is the information from the data at hand. Regarding this, if this process is

repeatedly performed as iterations, the posterior density of the previous iteration is

actually the new prior of the next one.

In a single parameter model, likelihood function is basically the likelihood of the cho-

sen model and the prior is the density function or density probability for that single

parameter. Choice of prior is an important matter for Bayesian Analysis. Especially,

when there is no information about the prior, the discussions continue about the sub-

jectivity of the analyses.

Choosing Prior Distribution: Prior distribution can be chosen as informative or

non-informative. If there is apriori information about the parameter, it should be

written in a suitable probability function [41]. Conjugate prior is a suitable solution

for this problem. If the prior has the same distributional form with the model, then

it is called conjugate prior [41]. Non-informative priors, also called as weak, vague,

nonsubjective, etc., can be chosen when there is no apriori knowledge about the pa-

rameter of interest. In order to put this lack of knowledge to the model properly, the

prior should be chosen carefully. Uniform priors or flat priors are used generally as

non-informative priors, although there are some problems of these priors like invari-

ant reparameterization and improper posterior [19] [41]. Jeffreys (1946) solve the

invariance problem by proposing a new prior, called Jeffreys prior, that is the square

root of the Fisher Information [35]. Mathematically, it is given as follows:

P (θ) =

(
−E

(
d2logP (D|θ)

dθ2

))1/2

(2.25)

where E
(
d2logP (D|θ)

dθ2

)
is the expected value of the second derivative of the log-

likelihood function. Although, it solves the invariant reparameterization problem, it

may also cause improper posteriors if it is not used properly [43]. Informative priors

are also called as subjective priors. These priors are chosen when there is historical

data at hand other than the present data, also when there is expert knowledge about
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the prior.

After calculating the posterior distribution by using the prior and the likelihood (of the

data), the inference for the parameter of interest can be made, however the estimation

may not be easy to determine. The computation of the integration in the normalizing

constant is usually hard to handle when the number of parameter of interest is large.

Therefore, there are some numerical integration methods for Bayesian data analy-

sis. The most well-known class of methods is called as Markov Chain Monte Carlo

(MCMC) simulation. The details are given in the following section.

Markov Chain Monte Carlo (MCMC) Methods: Sampling from well-known

densities are computationally available in statistical softwares. Markov Chain Monte

Carlo (MCMC) methods can be defined as Bayesian sampling methods used when

the form of the posterior density is not familiar [10] [43]. The chain starts with sam-

pling from posterior density with pregiven initial values at time 0. Then, at time 1,

new samples are drawn depending on the sample obtained from the posterior density

at time 0. If the chain is long enough, the sample obtained from the posterior density

at time t is taken as the estimates of real values. This sample can be the estimates of

the parameter of interest or unobserved data. In Equation 2.26, the MCMC sampling

process is given in a very simple form.

θ1 ∼ P (θ0|D)

θ2 ∼ P (θ1|D)

...

θt ∼ P (θt−1|D)

(2.26)

where θ0 is the initial value, θ1 is the first sample from posterior density P (θ0|D) and

θt is the sample at time t. Obviously, all the sampling steps depends on the previous

one, which may cause autocorrelation problems and it requires attention. At this

point, it is good to mention about "burn-in" term. It is basically discarding the early

iterations of the MCMC process [20]. Because of the dependency, and the effect of

starting values, the early iterations may cause unstationarity in the chain. Discarding

the part of the chain up to the first indications of convergence of the posterior is

needed [10]. There are some MCMC diagnostics that show whether the posterior
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distribution converges or not and also show the autocorrelation among the iterations.

The details about the diagnostics are given at Section 2.4.3.

The most popular MCMC methods are Metropolis-Hastings Sampling and Gibbs

Sampling. Details about these methods are given in the following sections.

Metropolis-Hastings Sampling is the extension of Metropolis Algorithm, proposed

by Metropolis (1953) [50]. Hastings (1970) had extended this algorithm and after-

wards the algorithm has been called Metropolis-Hastings Algorithm [25]. In this

algorithm, candidate samples are obtained from a proposal density, and then the can-

didate samples are tested with an acceptance-rejection rule. Let us denote θt as the

sample of parameter (or parameter vector) at time (iteration) t and θc as the can-

didate sample of parameter (or parameter vector) obtained from the proposal den-

sity q(θc|θt). The proposal density is also called as jumping probability or transi-

tion kernel. The sample of the next iteration θt+1 is obtained with a ratio tested by

an acceptance-rejection rule. If the ratio is acceptable then θt+1 = θc, otherwise

θt+1 = θt. The steps of Metropolis-Hastings algorithm can be illustrated as follows;

Step 1: θc ∼ q(θc|θt)

Step 2: θt+1 = θc with probability α(θt, θc)

Step 3: Otherwise θt+1 = θt.

In here, the acceptance probability α(θt, θc) is,

α(θt, θc) = min

{
P (θc|D)q(θt|θc)
P (θt|D)q(θc|θt)

, 1

}
(2.27)

where P (θc|D) is the posterior probability of θc, q(θt|θc) is the proposal density (tran-

sition kernel) for θt, P (θt|D) is the posterior probability of θt and q(θc|θt) is the

proposal density (transition kernel) for θc. The results of the Metropolis-Hastings

algorithm can differ according to the use of proposal density [43].

Gibbs Sampling was first introduced by Geman and Geman (1984) [22]. It is an

iterative algorithm used when the parameter of interest vector has more than one
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dimension. The joint posterior density of the parameter vector θ = (θ0, ..., θn) is

P (θ0, ..., θn|D) and it can be factorized by using Bayesian context as in Equation

2.28.
P (θ0, ..., θk, ..., θn|X) =P (θ0|θ1..., θn, D)

...

P (θk|θ0..., θk−1, θk+1, ..., θn, D)

...

P (θn|θ0..., θn−1, D)

(2.28)

In Gibbs sampling, this factorization property is used. Every element in the right hand

side of this equation is a marginal posterior density. Marginal posterior densities of

parameters are also called as full conditional distributions or just full conditionals

[43].

Gibbs sampling algorithm starts off with an initial value vector of θ(0) = (θ
(0)
0 , ..., θ

(0)
n )

at time (iteration) 0. In iteration 1, the algorithm generate samples for each parameter

in the vector, by using the initial values. Equation 2.29 shows the sampling algorithm

at time 1.
θ
(1)
0 ∼ P (θ0|θ(0)1 , ..., θ(0)n , D)

θ
(1)
1 ∼ P (θ1|θ(1)0 , θ

(0)
2 , ..., θ(0)n , D)

...

θ
(1)
k ∼ P (θk|θ(1)0 , ..., θ

(1)
k−1, θ

(0)
k+1, ..., θ

(0)
n , D)

...

θ(1)n ∼ P (θn|θ(1)0 , ..., θ
(1)
n−1, D)

(2.29)

where θ(1)k is the kth parameter generated from full conditional density of θk at itera-

tion 1. Equation 2.30 shows the general process of Gibbs sampling.

θ
(t)
0 ∼ P (θ0|θ(t−1)1 , ..., θ(t−1)n , D)

θ
(t)
1 ∼ P (θ1|θ(t)0 , θ

(t−1)
2 , ..., θ(t−1)n , D)

...

θ
(t)
k ∼ P (θk|θ(t)0 , ..., θ

(t)
k−1, θ

(t−1)
k+1 , ..., θ

(t−1)
n , D)

...

θ(t)n ∼ P (θn|θ(t)0 , ..., θ
(t)
n−1, D)

(2.30)
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where θ(t)k is the kth parameter generated from marginal posterior density of θk at

iteration t.

Both Gibbs and Metropolis-Hastings sampling algorithms are iterative approaches

and they can both run repeatedly. These repetitions are called chains of MCMC.

The chains can run one after the other or run at the same time according to the soft-

ware and the written codes. Deciding on which sampling algorithm to use, Gibbs

or Metropolis-Hastings, depends on the structure and the aim of the analysis. If full

conditionals for parameters are in forms, from which sampling is slightly easy, Gibbs

sampling may be more preferable. When the proposal density for the parameter of

interest in Metropolis-Hastings algorithm enables better and fast convergence, then

this algorithm is more favorable.

These sampling methods are very practical, on the other hand, they are challenging

in performance of convergence of the parameter of interest. Further, the accuracy of

posterior results should be diagnosed with some visual and computational techniques.

There are a lot of methods called MCMC Diagnostics for monitoring and improving

the convergence and the performance of the sampling method. They are very crucial

for a proper Bayesian analysis.

2.4.2 Bayesian Model Selection Methods

Model averaging approaches are useful to solve the uncertainty about model selec-

tion. There are both frequentest and Bayesian approaches for model selection and

model averaging. Ntzoufras (1999) indicates that Bayesian model selection may of-

fer better solutions by using a well-known Bayesian approach called Markov Chain

Monte Carlo (MCMC) technique which can construct the model space, identify good

models and estimate their posterior probabilities based on both prior knowledge and

observed data [55]. The focus of this thesis is estimating the parameters of interest

by using models in a model space constructed with Bayesian model selection meth-

ods. The model selection in Bayesian point of view is based on choosing the models

of which the posterior distributions are most likely. In model averaging or model

pooling, estimations are calculated from the models with high posterior probabilities

by averaging or pooling with different methods. Giving more details about Bayesian
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model selection methods helps for better comprehension.

Bayes Factor: Raftery and Kass (1995) proposed an odds ratio by using the Bayes’

Formula properties as comparison of two hypotheses for a given data [39]. It is basi-

cally a quantity for comparing the models pair-wisely. Let D is the data, model Mi

and model Mj are two models. The posterior probabilities for models are given in

Equation 2.31.

P (Mi|D) =
P (D|Mi)P (Mi)

P (D)

P (Mj|D) =
P (D|Mj)P (Mj)

P (D)

(2.31)

In here, P (D|Mi) =
∫
P (D|Mi, θi)P (θi|Mi)dθi is the marginal likelihood of the

model Mi where θi is the parameter (or the vector of parameters) under model Mi

and P (θi|Mi) is the prior density for the parameter (or the vector of parameters) [39].

Integrating P (D|Mi) needs some numerical methods most of the time [4]. The odds

for these two posterior probabilities is as follows in Equation 2.32.

P (Mi|D)

P (Mj|D)
=
P (D|Mi)

P (D|Mj)
× P (Mi)

P (Mj)

Posterior Odds = Bayes Factor× Prior Odds
(2.32)

According to Equation 2.32, Bayes Factor Bij can be calculated as in Equation 2.33.

Bij =
Posterior Odds(Mi,Mj)

Prior Odds(Mi,Mj)
=
P (Mi|D)/P (Mj|D)

P (Mi)/P (Mj)
(2.33)

The main purpose is comparing two models and the ratio should be interpreted ac-

cording to some criterion. Jeffreys (1961) suggested how Bayes Factor should be

interpreted as a scale of evidence [36]. The interpretation is given in Table 2.1.

When one of the priors or both models are improper, a problem occurs in calculating

Bayes factors. There are alternative solutions for this problem such as Psuedo Bayes

Factor.

Bayesian Information Criterion (BIC): Information criteria are used for model

selection. Bayesian Information Criterion (BIC) was firstly introduced by Schwarz

(1978) for model selection by using a penalty term for the parameters in the models

[69]. Let L(D|Mi) be the likelihood of the data D under the model Mi and θi is the
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Table 2.1: Jeffreys Interpretation for Bayes Factor

Bayes Factor (Bij) Interpretation

Less than 1 Mi is not favorable

Between 1 and 3 Barely worth to mention Mi is favorable

Between 3 and 10 Substantial evidence for favoring Mi

Between 10 and 100 Strong evidence for favoring Mi

More than 100 Decisive evidence for favoring Mi

parameter vector of Mi to be estimated, then the BIC of the Mi is given in Equation

2.34.

BICMi
= −2 lnL(D|Mi) + length(θi) log(n) (2.34)

where length(θi) is the dimension of the model, n is the sample size for data D. For

this equation, the smaller the BIC, the better the model is. In Bayesian approach, BIC

can be used in calculating posterior probability of a model. The details is given in

following sections.

Bayesian Model Averaging (BMA): It is a method of model averaging with Bayesian

perspective. Hoeting et al. (1999) proposed this method with a simple weighted av-

eraging formula. The model is given in Equation 2.35 [29].

P (θ|D) =
k∑
i=1

P (θ|Mi, D)P (Mi|D) (2.35)

where k is the length of the model space, P (θ|Mi, D) is the posterior distribution

of the parameter of interest given the data D and the model Mi and P (Mi|D) is the

posterior probability of model Mi given the data. In here, P (Mi|D) can be regarded

as the weights for parameter estimations. However, calculating these weights can be

challenging. P (Mi|D) is expressed in Equation 2.36.

P (Mi|D) =
P (D|Mi)P (Mi)∑k
j=1 P (D|Mj)P (Mj)

(2.36)

where

P (D|Mi) =

∫
P (D|θi,Mi)P (θi|Mi)dθi (2.37)
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is the integrated likelihood for model Mi and θi is the parameter vector for the model

Mi. Calculating P (D|Mi) is not always easy. As it is mentioned in Section 2.4.2,

numerical methods are needed. The main problems of BMA can be stated as below;

1. If number of models are very large, the estimation process for the parameter of

interest for every model, i.e. calculation of each P (θ|Mi, D), takes too long.

2. The integral for posterior distribution of model Mi, P (Mi|D), is hard to com-

pute.

3. Specification of the prior probability of the model Mi, P (Mi), needs attention

for the analysis.

There are some methods for reducing the number of models, stated as the first prob-

lem of BMA, such as Occam’s Window, Occam’s Razor, Leaps and Bounds and

Monte Carlo Model Composition, etc. Occam’s Window method is one of the most

popular methods used for solving this problem. Madigan and Raftery (1994) pro-

posed this method by defining a set for models, which are chosen according to a

criteria. This set is given in Equation 2.38 [48].

A′ =
{
Mk :

maxl{P (Ml|D)}
P (Mk|D)

≤ C

}
(2.38)

where maxl{P (Ml|D)} is the posterior probability of the most likely model Ml

among the other models in the model space, C is the threshold value, chosen arbi-

trarily. Generally C is chosen 10, 20 or 100 but it may change up to the aims of the

research.

About the second potential problem, as it is stated earlier, the computation of the

posterior probabilities is challenging. As Raftery et al. (2003) indicates, the posterior

probabilities can be computed with an easier way by using BIC or AIC [61]. In

this thesis, BIC adaptation is used. So posterior probabilities of the models can be

computed by using the formula in Equation 2.39.

P (Mi|D) =
P (D|Mi)P (Mi)∑k
j=1 P (D|Mj)P (Mj)

≈
P (Mi) exp(−1

2
BICMi

)∑k
j=1 P (Mj)exp(−1

2
BICMj

)
(2.39)

where

BICMi
= −2 lnL(D|Mi) + length(ϑi) log(n) (2.40)
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Lastly, the choice of the prior probabilities, P (Mi), depends on the specifications of

the study. If all the models in the model space are equally likely, then it can be omitted

from the Equation 2.39.

After Occam’s window, the model space is reduced to a decent size and then the

parameter of interest can be estimated by using the BMA Equation 2.35, where the

posterior distribution of that parameter given each model is P (θ|Mi, D) and the pos-

terior probability of each model is P (Mi|D).

Reversible Jump Monte Carlo Markov Chain (RJMCMC): Green (1995) intro-

duced a new method called Reversible Jump Markov Chain Monte Carlo which pro-

vides a general outline for Markov Chain Monte Carlo (MCMC) simulation where

the dimension of the parameter space may vary among the Markov Chain iterates.

The methodology is suitable for very different areas including factorial experiments,

variable selection in regression, non-nested regression models, mixture deconvolu-

tion with an unknown number of components, Bayesian choice between models with

different numbers of parameters, multiple change-point problems, image segmenta-

tion, object recognition, layout design etc. [24]. The studies of Green [24], [64],

Waagepetersen [76], Sisson [71], [16], Ai [3], Özmen & Demirhan [56], Lunn [47],

Yeh et. al. [78], Baghfalaki and Jalali [5], Karakuş [38], Theorell and Nöh [73]

about reversible jump method are examined carefully. There is also a table, in which

the software programs, the researchers used, are stated in Sission’s (2004) article

on RJMCMC [71]. The reversible jump algorithm can be defined as an extension

of the Metropolis-Hastings algorithm onto more general state spaces with different

dimensions. Model selection is one of the functions of RJMCMC. In this thesis, the

focus for RJMCMC will be the estimation of joint posteriors for parameters as well as

model posteriors by using model selection techniques because of some practical ad-

vantages. The first advantage is using an MCMC method, in which model space can

be simulated easily. Details about the model space is given in the following sections.

The second advantage is that when dealing with the computations for joint models

with varying dimensions, an MCMC approach provide convinience in computations

and model selection. Suppose that a model spaceM = {M1,M2, ...,Mk} in which

the models have different dimension of parameter spaces with vector of θk. Dimen-
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sions of the spaces where θk’s lie are Rnk . So the joint distribution of (Mk,θk, D),

where D is the data, is given as;

P (Mk,θk, D) = P (D|θk,Mk)P (θk|Mk)P (Mk) (2.41)

where P (D|θk,Mk) is the likelihood under model Mk, P (θk|Mk) is the conditional

probability of the parameter vector of interest under modelMk and P (Mk) is the prior

for modelMk. Markov Chain Monte Carlo (MCMC) approach allows to reach a target

density by using transition kernels of a current state to the next state of the simulation.

In reversible jump case, the transition can be among any state with different parameter

spaces. Let q(x, dx′) is the transition kernel where, x is the current state while x′ is

the next state. The reversibility basically means that the transition can be done from

both states, which means q(x′, dx) 6= 0, where x′ is the new current state and x is the

new next state. According to this information with the MCMC Approach, Reversible

Jump algorithm is said to be the extension of Metropolis-Hastings Algorithm. An

acceptance probability, which is used for every proposed value, is given as,

α(x, x′) = min

{
1,
p(dx′)q(x′, dx)

p(dx)q(x, dx′)

}
(2.42)

where p(dx′) is the target density while p(dx) is the density of the current state.

In RJMCMC, there are 3 types of moves: moving to a state with higher dimension,

moving to a state with lower dimension and moving to a state with the same dimension

(Metropolis-Hastings). So, let (Mk,θk) be the current state and (Mk′ ,θk) be the next

state.

Higher Move: If the dimension of Mk′ , is higher than the one with Mk (|Mk′| >
|Mk|), a new vector u with dimension |Mk′ | − |Mk| should be generated from a pro-
posed prior h(u) and therefore the new parameter space, θk′ , will be equal to the
bijection of θk and u, which can be defined as θk′ = g(θk,u). The acceptance prob-
ability for the new state is given as,

α(Mk,θk,Mk′ ,θk′) = min

{
1,
P (D|Mk′ ,θk′)P (θk′ |Mk′)P (Mk′)q(h,Mk′ ,θk′)

P (D|Mk,θk)P (θk|Mk)P (Mk)q(h,Mk,θk)h(u)
| Ju |

}
(2.43)

Here, P (D|Mk′ ,θk′)P (θk′ |Mk′)P (Mk′) is given as in Equation 2.41 and | Ju | is the

Jacobian for u. Dimension of θk′ is dim(θk′) = dim(θk) + dim(u), so for dimension

matching, determinant of the Jacobian, | Ju |, is needed where | Ju |=
∣∣∣∣∂g(θk,u)

∂(θk,u)

∣∣∣∣.
Lower Move: If the dimension of Mk′ , is lower than the one with Mk (|Mk′ | <
|Mk|), the vector u’ with dimension |Mk| − |Mk′| should be discarded from the new
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parameter vector, θk. It is the inverse transformation of the bijection g−1(θk) =

(θk′ ,u’).

α(Mk,θk,Mk′ ,θk′) = min

{
1,
P (D|Mk′ ,θk′)P (θk′ |Mk′)P (Mk′)q(d,Mk′ ,θk′)h(u’)

P (D|Mk,θk)P (θk|Mk)P (Mk)q(d,Mk,θk)
| Ju′ |

}
(2.44)

Here, dimension of θk is dim(θk) = dim(θk′) + dim(u′), so for dimension matching,

determinant of the Jacobian, | Ju′ |, is needed where | Ju′ |=
∣∣∣∣ ∂g−1(θk)

∂(θk′ ,u’)

∣∣∣∣.
Current Move: If the dimension of Mk′ , is equal to the one with Mk (|Mk′| = |Mk|),
the classical Metropolis-Hastings algorithm is applied.

α(Mk,θk,Mk′ ,θk′) = min

{
1,
P (D|Mk′ ,θk′)P (θk′ |Mk′)P (Mk′)q(s,Mk′ ,θk′)

P (D|Mk,θk)P (θk|Mk)P (Mk)q(s,Mk,θk)

}
(2.45)

The algorithm follows with obtaining the visiting probabilities, which are calculated

by counting the total visits to that model during the process. Visiting probabilities

is a useful tool to pick the best models since, they can be used as model posterior

probabilities P (Mk|D). These posterior probabilities can be used in Equation 2.35

for averaging the parameter of interests, P (θ|D).

RJMCMC algorithm should continue until the joint posterior converges. There are

specific indicators, measures and charts in order to detect the convergence, station-

arity and autocorrelation of the Markov Chain called MCMC Diagnostics. Burn-in

and iteration sizes can be decided and the convergence can be seen according to these

Diagnostics.

2.4.3 MCMC Diagnostics

Improving the convergence and the performance of MCMC methods means that when

the sampling is slow or having problems regarding converging, MCMC diagnostics

can detect these and moreover, they can help to speed up the convergence. Clarifi-

cation of the term convergence in MCMC context would be helpful at this point. It

should not be understood as the convergence of the parameter of interest to its MLE

or any unbiased estimator. Convergence describes how the sampling algorithm gets

close to the true posterior distribution [43]. MCMC diagnostics can be examined in

two parts: convergence diagnostics and accuracy diagnostics.
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Convergence Diagnostics

Trace Plots: They are basically scattered line plots showing the value of the pa-

rameter in each iteration. Iterations are shown on the x-axis, while the values of the

parameter of interest are on the y-axis [10]. In Figure 2.3, a simple example of a

trace plot for one parameter and one chain is provided. The example is plotted with R

software for 20000 iterations. Trace plots are very basic forms for understanding the

Figure 2.3: Trace plot example

stationary and convergence. If the moves of the parameter are not distinguishable, the

trace plot looks like a thick line, which indicates stationarity [43]. Any change that

breaks the stationarity can be monitored with this graph. If the samples of the param-

eter of interest do not change by iteration, some horizontal lines appear, which shows

slow convergence and unstationarity. In addition, trace plots are useful to identify the

mixing behavior of the chains. When there is more than one chain in the sampling

algorithm, the same stationarity should be monitored at all chains. Trace plots can be

plotted with chains all together, in order to see the chains are intermixing after some

point.

Autocorrelation Plots: This graph is for measuring and identifying how the sam-

ples are correlated with each other by iteration. At it is stated in Section 2.4.1, every
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sample depends on the previous one. This dependence causes slow convergence of

the posterior. The distance among iterations is called lag. The autocorrelation is the

measure of the correlation between parameter θt and θt+k for lag k [43] [10]. The

formula for autocorrelation is given in Equation 2.46.

ρt =

∑N−t
i=1 (θi − θ̄)(θi+t − θ̄)∑N

i=1(θi − θ̄)2
(2.46)

where ρt is the autocorrelation for parameter of interest θ at lag-t [8]. So, autocorrela-

tion plots show which lag or distance the autocorrelation of the iteration continues up

to. Autocorrelation level is expected to drop around zero immediately when the lags

start to increase. If it does not drop immediately and decrease gradually, it is a sign

of slow convergence. Though paying attention is recommended at this point, since it

does not mean that the posterior does not converge.

Figure 2.4: Autocorrelation plot example

In Figure 2.4, there is a simple autocorrelation plot, constructed by R software. After

lag 5, the autocorrelation drops to zero.

Acceptance Rate in Metropolis-Hastings: The percentage of the accepted sam-

ples in Metropolis-Hastings algorithm is called Acceptance Rate. It measures the

speed of convergence. According to Gelman and Rubin (2013) good acceptance rate

is between 20% and 45% [20]. Low acceptance rate indicates most of the sampling

is rejected and convergence is slow. High acceptance rate indicates, most of the sam-

pling are accepted and thus Markov chain explores the posterior slowly, which is also

an indication of slow convergence [43].

38



Monte Carlo Standard Error (MCSE): It is a measure of performance of the

MCMC process. MCSE measures the error of sample values of the parameter of

interest (mean, median, etc.) estimated in the posterior of the MCMC process and

shows the convergence performance of the posterior. There are some methods to

calculate MCSE such as batch means, spectral variance etc. [43]. The most popu-

lar calculation technique is the batch means method which divides the chain into b

batches, then calculate the means for every batch θ̄b and also the overall mean of the

chain θ̄. Then MCSE can be calculated by using the Equation 2.47 [43].

MCSE = Sbθ =

√∑b
b=1(θ̄b − θ̄)2

(b− 1)b
(2.47)

If MCSE is small enough, this would mean that the posterior converges. On the other

hand, higher MCSE indicates the need of longer chain size. As a rule of thumb,

the MCMC process should continue up until MCSE is less than
1

20
of the estimated

posterior standard deviation for the parameter of interest [10].

Effective Sample Size (ESS): It is a measure to see the number of independent

samples in an MCMC process according to the autocorrelation. ESS can be calculated

by the formula given in Equation 2.48 [8] [66].

ESS = Neff =
N

1 + 2
∑∞

i=1 ρi(θ)
(2.48)

where N is the total iteration (sample) size, ρi(θ) is the autocorrelation for the pa-

rameter of interest at lag i. Lower ESS indicates more dependent samples and high

autocorrelation, thus a slow convergence and mixing. In order to increase ESS, the

methods for reducing autocorrelation can be applied and the size of the chain should

be increased.

Accuracy Diagnostics Examining the accuracy of desired posterior parameters are

as important as monitoring the stationarity and convergence of the MCMC process.

There are a variety of diagnostics for this purpose, although these diagnostics not only

examine the accuracy, but also they can monitor the convergence and stationarity as

well.
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Geweke Diagnostics: It is an MCMC diagnostic that helps to detect the stationar-

ity and provides valuable insight to detect the size of the burn-in part of the chain.

Geweke (1991) proposed this diagnostic as identifying the stationary of the Markov

chain [23]. After discarding the burn-in part, the iterations are divided in to two parts,

early half A and late half B. After taking the means of the parameter values (θ̄A, θ̄B)

in these parts, Geweke diagnostic actually uses a well-known unpaired Z-test for two

pairs [43]. However, Casella and Robert (2004) states that the Geweke diagnostic

in R software uses a t-test rather than a Z-test [66]. The equations and test statistics

are stated in both Lesaffre et. al (2012) and Casella and Robert (2004). Having said

this, eventually the process is the same. The significance of Geweke statistic indicates

stationarity, otherwise it implies that the burn-in part or the whole size of the chain is

short [43]. The same diagnostic can be applied by slicing the iterations into k parts

and testing it with pairs. This method is called "dynamic Geweke" diagnostic [43].

Raftery-Lewis Diagnostic: When the posterior distribution is skewed, posterior

median is preferable than the posterior mean. This diagnostic is for ensuring the

accuracy of the quantiles with a probability [43]. Raftery and Lewis (1992) proposed

this diagnostic in two steps that in the first step it calculates the burn-in size and

necessary size of the iterations in order to get the accurate convergence of the quantile

with a probability, in the second step it calculates the minimum number of iterations

to calculate the accurate quantile [60]. If the quantile is denoted by U and at the first

step the diagnostic calculates the minimum burn-in size M , the necessary chain size

N for P (U < u|data) = q where q is the desired probability for accurate quantile.

At the second step the diagnostic calculates the minimum chain size Nmin and a ratio

I =
M +N

Nmin

called "dependence factor". I is expected to be close to 1. According to

Raftery and Lewis, if I is more than 5, than the chain implementation is problematic

because of high autocorrelation or bad starting values [60].

The Brooks, Gelman,and Rubin (BGR) Diagnostic: This diagnostic was pro-

posed for detecting a problem of being stuck around a local mode in a chain, a con-

vergence problem, occurring especially when the chain is single and the posterior is

multi-modal [43]. In order to avoid this convergence problem, at least two chains are
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applied with different starting values. This diagnostic compares the chains with dif-

ferent starting values within themselves. Gelman and Rubin (1992) proposed a con-

vergence diagnostic at first and then Brooks and Gelman (1998) have extended this

diagnostic in multivariate cases [21] [9]. When different starting values are assigned

to at least two chains, the posterior means by chains and an overall mean are calcu-

lated in order to calculate the with-in and between chain variability like in ANOVA

analysis. Let θ̄c =
1

N

∑N
i=1 θci is the posterior mean of the cth chain, θ̄ =

1

C

∑C
c=1 θ̄c

is the overall posterior mean and S2
c =

1

N − 1

∑N
i=1(θci − θ̄c)2 is the posterior vari-

ance of the cth chain. In Equation 2.49 calculations of within and between-chain

variances are given [20] [43].

Between− chain V ariability B =
N

C − 1

C∑
c=1

(θ̄c − θ̄)2

Within− chain V ariability W =
1

C

C∑
c=1

S2
c

(2.49)

Based on these equations, Gelman and Rubin (1995) and later Lesaffre and Lawson

(2012) gave the unbiased estimator (under stationarity condition) of posterior variance

as a weighted average of W and B in Equation 2.50.

V̂ = v̂ar(θ|X) =
N − 1

N
W +

1

N
B (2.50)

V̂ is said to be overestimated when the bad starting values occur and mixing of the

chains are slow [20] [43]. Also as it can be seen in Equation 2.50, when n → ∞,

var(θ|X) approaches to W . It means that if the chain length is long enough, the

posterior converges, and all the chains are mixed and their posterior parameters will

be the same. Therefore, Gelman and Rubin (1992) proposed a ratio called R̂, and it

is given in Equation 2.51 [20].

R̂ =
V̂

W
(2.51)

R̂ is called as the estimated potential scale reduction factor (PSRF) [43]. It should

approach to 1 when N → ∞, which means the chain size is long enough, the poste-

rior converges and all the chains are mixed well. The MCMC process is acceptable

when R̂ is less than 1.1 [20]. Lesaffre and Lawson (2012) also indicates a corrected

version of R̂ for taking into the sampling variability of the variance estimates as

R̂c =

(
d̂+ 3

d̂+ 3

)
R where d̂ =

2V̂

v̂ar(V̂ )
. This time the process is acceptable when
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R̂c is less than 1.1 or 1.2 [43]. The dynamic and graphical version of BGR Diagnos-

tic is proposed by Brooks and Gelman (1998). It is basically dividing the chains in

batches indexed by b for all chains and calculating R̂b values for every batch. This

provides graphing the R̂b values and it is possible to monitor how and when R̂ values

converges around 1 [9]. In Figure 2.5 an example of BGR dignostic graph is given.

Figure 2.5: BGR Diagnostic plot example

It can be seen that the shrink factor R̂ declines around 1 immediately after the iteration

starts and it declines to 1 totally before 50000th iteration. This indicates well mixed

chains and convergence after the 50000th iteration.

MCMC diagnostics are the tools for monitoring how good is the process about the

convergence of the posterior, accuracy of the posterior parameter estimates, etc. There

are also some methods for accelerating the convergence of the posterior.

42



Acceleration of The Convergence Lesaffre and Lawson (2012) indicate that al-

though there are a lot of methods to accelerate, but none of them guarantees the

acceleration in all circumstances [43].

The first method is choosing better starting values. If the starting values can be chosen

close to area where the posterior probability is higher, the convergence will be faster.

Another method is the transforming the data. When there is high multicollinearity

among the variables in regression, the convergence is slow [43]. In order to solve

the multicollinearity problem, transformation methods can be used to accelerate the

convergence.

The other method for acceleration is called thinning. Autocorrelation causes slow

convergence as it is stated in section 2.4.3, thus lowering the autocorrelation provides

more independent sampling and accelerated convergence. Thinning is the solution

for this problem. It is basically picking every mth iteration in the chain. For example,

with 1000 iterations in a chain, picking every 5th iteration and getting a sample size of

200, is a thinning process with size 5. It lowers the autocorrelation but also reduces

MCSE since the size of the chain decreases. If the chain size is long enough to

get acceptable MCSE even by thinning, it is a useful acceleration method [43]. It

may cause to monitor high acceptance rate in Metropolis-Hastings Algorithm since

thinned samples include more accepted samples than its original chain.

Blocking is yet another method for accelerating the convergence. This method is

applied by taking the parameters of interest in blocks and block by block sampling,

through which convergence can be accelerated. When sampling of parameters is done

from similar densities, they can be gathered as a block. For example, in normal linear

regression the conditional posterior of the coefficients is a multivariate normal. So,

instead of sampling from normal distribution one by one, all the coefficients can be

sampled from a multivariate normal distribution. This may accelerate the convergence

[43].

Reparameterization of the parameters can also accelerate the convergence. For ex-

ample a logarithmic transformation of the parameters can simplify the sampling and

it may provide an avoidance on generating unrealistic sample values and thus it can
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accelerate the convergence [43].

In this chapter, literature review and preliminaries for Generalized linear models

(GLM), Missing data in GLM and Bayesian missing data analysis in GLM are pro-

vided. In the next chapter, the methodology of the thesis based on this knowledge is

given in detail.
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CHAPTER 3

METHODOLOGY

In this chapter, the methodology of hybrid Bayesian modeling system called Bayesian

Model Pooling (BMP) for GLM with MNAR covariates is explained in detail. The

reason of calling this method as "hybrid" can be basically explained as this method-

ology is interpreted as a combination of RJMCMC and BMA methods. A brief sum-

mary of this hybrid Bayesian modeling system can be helpful for better comprehen-

sion. Firstly, a model space containing joint models of the main model, missing

covariates and the candidate missingness models is constructed in order to build an

environment for RJMCMC process. Then, model transition properties are defined

confirming to the dimensions of the models (i.e. number of parameters), and tran-

sition probabilities among models are assessed accordingly. These transition proba-

bilities are used in RJMCMC algorithm. During the RJMCMC process, parameters

are estimated in each iteration for a different candidate model. RJMCMC algorithm

should continue until the joint posterior converges which can be confirmed accord-

ing to MCMC Diagnostics. After RJMCMC process is finished, model posteriors are

taken as model weights, and posterior estimates of the parameters for every model in

the model space are pooled by using the model weights with BMA methods. Details

are given in the following sections.

3.1 The Structure of The Joint Model in a Model Space

Before construction of the model space, the joint models in the model space should

be defined properly. Let Yi for i = 1, . . . , n be the binary response variable, let

X i = (X1,i, X2,i,. . . , Xp,i) for i = 1, . . . , n be the covariate matrix of the main

45



model. The covariate matrix can be divided into two parts; the ones being fully

observed and the ones containing MNAR mechanism. Let X i = (Xmiss
i,X

obs
i)

whereXmiss
i = (X1,i, X2,i,. . . , Xr,i). Accordingly, letRi = (R1,i, R1,i, . . . , Rr,i) for

i = 1, . . . , n be the binary missingness indicator matrix generated according to the

covariates containing MNAR mechanism. Generation of Ri is defined in Equation

2.5. The main model is assumed to be a logistic model, while the missingness models

are assumed as probit models. Regarding this, β = {β1, . . . , βp} is the parameter

vector for the main model, φ = {φ1, . . . , φv} is the parameter vector for the missing-

ness model. Lastly, let M = {M1, . . . ,Mnm} be the vector of model indices for the

model space.

The joint posterior distribution of (Mk,φk,βk,X
miss) is then given as following;

P (Mk,φk,βk,X
miss|Xobs, Y,R) =

P (Mk,φk,βk,X
miss,Xobs, Y,R)

P (Xobs, Y,R)

∝ P (Mk,φk,βk,X
miss,Xobs, Y,R)

= P (Xmiss,Xobs, Y,R|Mk,φk,βk)P (Mk,φk,βk)

(3.1)

where Mk is the kth model index, φk is the parameter vector of kth missingness

model, βk is the the parameter vector of the main model under kth model index,

P (Xmiss,Xobs, Y,R|Mk,φk,βk) is the full data likelihood, and P (Mk,φk,βk) is

the joint prior distribution.

Further, the full data likelihood, P (Xmiss,Xobs, Y,R|Mk,φk,βk), can be factor-

ized by using selection model and it is given by,

P (Xmiss,Xobs, Y,R|Mk,φk,βk) =P (R|Xmiss,Xobs, Y,Mk,φk)

∗P (Y |Xmiss,Xobs,Mk,βk)

∗P (Xmiss|Xobs,Mk)

(3.2)

where P (R|Xmiss,Xobs, Y,Mk,φk) is the likelihood function of the missingness

indicator vectorR that belongs to kth model, P (Y |Xmiss,Xobs,Mk,βk) is the like-

lihood function of main model given the model Mk, and P (Xmiss|Xobs,Mk) is the

conditional distribution for missing covariatesXmiss.

Further, the joint prior in Equation 3.1 can now be factorized as in Equation 3.3.

P (Mk,φk,βk) = P (βk|Mk)P (φk|Mk)P (Mk) (3.3)
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where P (βk|Mk) is the prior for the parameter vector of main model under kth model,

P (φk|Mk) is the prior for the parameter vector of kth missingness model and P (Mk)

is the priors for the kth model.

The likelihood of the main model is P (Y |Xmiss,Xobs,Mk,βk) and the one for

missingness mechanism models is P (R|Xmiss,Xobs, Y,Mk,φk). Both models are

considered as GLM models with binary responses. Thus, their likelihoods can be

written explicitly as in Equations 3.4 and 3.6.

P (Y = yi|Xobs,Xmiss,Mk,βk) =
n∏
i=1

pyi
yi(1− pyi)1−yi (3.4)

where yi = 0, 1 and pyi = g(XT
i βk) is the logistic link function with X i being the

covariate vector for ith observation. Also,

P (Rr = rri |Xobs,Xmiss, Y,Mk,φk) =
n∏
i=1

prri,k
rri(1− prri,k)

1−rri (3.5)

where rri = 0, 1 and prri,k = g(W T
i,kφk) is the probit link function where W i,k is

the covariate vector for kth missingness model. At this point, it should be empha-

sized that W k must contain the covariate vector possessing the MNAR mechanism,

because MNAR mechanism depends on the covariate itself. It may also contain other

covariates as well. If there are r covariate with MNAR, then the full conditional like-

lihood for the missingness indicator vectorR can be factorized as in Equation 3.6.

P (R|Xobs,Xmiss, Y,Mk,φk) =P (R1|Xobs,Xmiss, Y,Mk,φk)

∗P (R2|Xobs,Xmiss, Y,Mk,φk)

...

∗P (Rr|Xobs,Xmiss, Y,Mk,φk)

=
r∏
j=1

n∏
i=1

prji,k
rji(1− prji,k)

1−rji

(3.6)

Moreover, the last part of the full data likelihood in the Equation 3.2 is the condi-

tional distribution of the missing covariates Xmiss = (Xmiss
1 , . . . , Xmiss

r ) given the
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observed covariates Xobs = (Xobs
1 , . . . , Xobs

r ) under the kth missingness model Mk.

The explicit form of P (Xmiss|Xobs,Mk) is given in Equation 3.7.

P (Xmiss|Xobs,Mk) =P (Xmiss
1 |Xobs

1 ,Mk)

∗P (Xmiss
2 |Xobs

2 ,Mk)

...

∗P (Xmiss
r |Xobs

r ,Mk)

(3.7)

Every missing value belonging to any missing covariate can be considered as an un-

known parameter, thus, every one of them also has a prior distribution. Flat distri-

butions, conjugate distributions, or distributions which fit to the observed part of the

covariate with MNAR can be chosen as priors. If the prior distribution of jth missing

covariate is P (Xmiss
j |Xobs

j ,Mk) then,

P (Xmiss
j |Xobs

j ,Mk) =

nmissj∏
i=1

f(xji,θxj
) (3.8)

where f(xji,θxj
) is the prior distribution for the missing value xji, nmissj is the num-

ber of the missing values in the covariate Xj , and θxj
is the parameter vector for

missing covariate Xj . If the Equation 3.7 is rewritten byh using the expression in the

Equation 3.8, then the prior distribution for all the missing cases can be obtained as,

P (Xmiss|Xobs,Mk) =

nmiss1∏
i=1

· · ·
nmissr∏
i=1

f(x1i,θx1) · · · f(xri,θxr) (3.9)

where the total number of the missing values is nmiss = nmiss1 + · · ·+ nmissr .

After explaining the full data likelihood, every element of the joint prior in the Equa-

tion 3.3 should be interpreted in detail. First of all, prior distributions for the parame-

ter vector of the main model β given the missingness model Mk is stated in Equation

3.10.
P (βk|Mk) =P (βk0|Mk)P (βk,2|Mk) · · ·P (βk,p|Mk)

=

p∏
i=1

f(βk,i,θβk,i
)

(3.10)

where f(βk,i,θβk,i
) is the prior for the ith β coefficient under kth missingness model.

Secondly, prior distributions for the parameter vector of the missingness models φk
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given the missingness model Mk is stated in Equation 3.11.

P (φk|Mk) =P (φk,0|Mk)P (φk,2|Mk) · · ·P (φk,v|Mk)

=
v∏
i=1

f(φk,i,θφk,i
)

(3.11)

where f(φk,i,θφk,i
) is the prior for the ith φ coefficient of kth missingness model.

As the last part of the joint prior in Equation 3.3, prior distribution for Mk, which

is the probability of choosing the kth model, can be non-informative equally likely,

or some models can be highly likely than the others if there is an expert or pre-

knowledge present about these models. If the model probabilities are assumed to be

equally likely, then the probability of the kth model is given as,

P (Mk) =
1

nm
(3.12)

where nm is the size of the model space.

After the structure of the joint model is explained in detail, the essentials of RJMCMC

approach for estimation of posteriors for parameters of interest and how the joint

posterior is used in RJMCMC are provided in the following section.

3.2 RJMCMC For Modeling

The details of RJMCMC method are already given in Section 2.4.2. In this study, it is

proposed that the inclusion of RJMCMC method and it’s model selection features can

be useful for obtaining the parameter posteriors for each model in a model space. As

a reminder, RJMCMC is the generalized version of the Metropolis-Hastings method

used when the dimension of the models is varied. Since the computation of the joint

posterior, P (Mk,φk,βk,X
miss|Xobs, Y,R), is challenging, and thus some numeri-

cal methods like MCMC are needed, RJMCMC is very suitable even when the model

dimensions are varied.

With the intent of using the model selection features of RJMCMC, the algorithm runs

as follows: While the process is at an initial modelMk for iteration t, a randomly cho-

sen candidate model Mk′ in the model space is whether accepted with an acceptance
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probability, given in Equation 3.13, or not, thus making the process stay at the initial

model for the next iteration.

α(Mk,Mk′) = min

{
1,
P (Mk′ ,φk′ ,βk′ ,X

miss|Xobs, Y,R)q(Mk′ ,Mk)

P (Mk,φk,βk,X
miss|Xobs, Y,R)q(Mk,Mk′)

}
(3.13)

where P (Mk′ ,φk′ ,βk′ ,X
miss|Xobs, Y,R) is the joint posterior of the candidate

model, P (Mk,φk,βk,X
miss|Xobs, Y,R) is the joint posterior of the initial model,

q(Mk′ ,Mk) is the transition probability from the candidate model Mk′ to the initial

model Mk and q(Mk,Mk′) is the transition probability from the initial model Mk to

the candidate model Mk′ .

The acceptance probability is determined according to the move types, specified in

Section 2.4.2, since the dimension difference of the models in comparison should be

taken into account and some additional terms should be used in order to equalize the

dimensions.

Moving to a higher dimension: If the dimension of the candidate model Mk′ is

higher than the initial model Mk (|k′| > |k|), the acceptance probability for the new

state is given as follows;

α(Mk,Mk′) = min

{
1,

P (Mk′ ,φk′ ,βk′ ,Xmiss|Xobs, Y,R)q(Mk′ ,Mk)

P (Mk,φk,βk,X
miss|Xobs, Y,R)q(Mk,Mk′)h(u)

× | Ju |
}

(3.14)

Moving to a lower dimension: If the dimension of the candidate model Mk′ is

lower than the initial model Mk (|k′| < |k|), the acceptance probability for the new

state is given as follows;

α(Mk,Mk′) = min

{
1,
P (Mk′ ,φk′ ,βk′ ,Xmiss|Xobs, Y,R)q(Mk′ ,Mk)h(u

′)

P (Mk,φk,βk,X
miss|Xobs, Y,R)q(Mk,Mk′)

× | Ju′ |
}
(3.15)

Moving to an equal dimension: If the dimension of the candidate model Mk′ is

equal to the initial model Mk (|k′| = |k|), the acceptance probability for the new state

is given as follows;

α(Mk,Mk′) = min

{
1,
P (Mk′ ,φk′ ,βk′ ,Xmiss|Xobs, Y,R)q(Mk′ ,Mk)

P (Mk,φk,βk,X
miss|Xobs, Y,R)q(Mk,Mk′)

}
(3.16)

The determinants of Jacobians in Equations 3.14 and 3.15 are all equal to 1, since

the RJMCMC process is applied on a model space and the dimensions of models
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are defined as the number of the covariates that are independent. For example, when

the move type is a higher move, βk′ = g(βk,u), then dim(βk′) = dim(βk) +

dim(u). Since dimension of models indicates the number of coefficients in this case,

it can be considered as adding extra coefficients of the independent covariates as

many as |dim(βk′) − dim(βk)|. The determinant of the Jacobian | Ju | is presented

by
∣∣∣∣∂g(βk,u)

(βk,u)

∣∣∣∣ and written as in Equation 3.17.

∣∣∣∣∂g(βk,u)
(βk,u)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂β0
∂β0

. . .
∂βnβ
∂β0

∂u1
∂β0

. . .
∂un
∂β0

...
...

...
...

...
...

∂β0
∂βnβ

. . .
∂βnβ
∂βnβ

∂u1
∂βnβ

. . .
∂un
∂βnβ

∂β0
∂u1

. . .
∂βnβ
∂u1

∂u1
∂u1

. . .
∂un
∂u1

...
...

...
...

...
...

∂β0
∂un

. . .
∂βnβ
∂un

∂u1
∂un

. . .
∂un
∂un

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 0 0 . . . 0
...

...
...

...
...

...

0 . . . 1 0 . . . 0

0 . . . 0 1 . . . 0
...

...
...

...
...

...

0 . . . 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1 (3.17)

Lastly, u and u′, stated in Equations 3.14 and 3.15, stand for balancing the dimension

of the models. Since the variation in dimension is only in missingness models in

this case, h(u) and h(u′) are chosen exactly the same as the prior chosen for φ. Let

u = (u1, . . . , ud) and u′ = (u′1, . . . , u
′
d) be the vectors for additional terms, h(u) and

h(u′) are given in Equation 3.18.

h(u) = h(u1, . . . , ud) = h(u1) . . . h(ud) = [P (φk|Mk)]
d

h(u′) = h(u′1, . . . , u
′
d) = h(u′1) . . . h(u′d) = [P (φk|Mk)]

d
(3.18)

After defining the acceptance probabilities of RJMCMC for different move types, the

construction of a model space and assessing method for transition probabilities of

models in the model space should be explained in detail.

3.3 Construction of A Model Space

The first step for applying RJMCMC is to identify the model space along with model

transitions with different dimensions. Here, the model space refers to the missingness

model space. Models in the model space differ according to variations of missingness

models. Therefore, let us denote the model space of the rth missingness indicator for
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the rth covariate with MNAR as Mr = (Mr1 ,Mr2 , ...,Mrnmr
) with a size of nmr .

Mr can be constructed manually with expert knowledge on the variable with MNAR.

However, most of the time it may not be possible to find the most suitable candidate

models manually through expert knowledge. If there is a lack of expert knowledge,

one should always search for an alternative method for choosing. In this case, the

model space is constructed by considering particularly the most suitable candidates

for “missingness models”. One of the most logical ways to construct a model space is

by using the subsets of the variable set of the main model including covariates (X),

response (Y ) and/or interactions (T ). Let V = {Xmiss,Xobs, Y,Tmiss,T obs} be

the variable set in whichXmiss is the covariate vector of variables with MNAR,Xobs

is the variable vector of fully observed variables, Tmiss is the vector of variable inter-

actions, including variables with MNAR, T obs is the vector of variable interactions,

not including variables with MNAR. Let the size of V be nv, 2nv − 1 subsets are to

be found excluding the null set. There are other subsets that should also be excluded

from the model space. Since MNAR mechanism depends on the missing variable

itself, all the subsets must include the missing variable of interest or it’s interaction.

That is to say, if a model space is constructed for the rth missingness indicator, Rr is

the missingness indicator and, let Sr be the set of subsets of V where Sr =
nm⋃
k=1

Sr,k
and Sr,k ⊆ V for all k.

Sr,k ={(Sr1,k,Sr2,k) ∈ Sr,k | Sr1,k ⊆ (Xr ∪ TXr)

;Sr2,k = ∅ ∨ Sr2,k ⊆ (X−r ∪ Y ∪ T−Xr)

;Sr1,k ∪ Sr2,k = Sr,k}

(3.19)

Here, Sr1,k is the part of the kth subset that includes the rth covariate with MNAR

(Xr) or the interaction of it such as XrXi, XrY or X2
r . Sr2,k is the remaining part of

the subset, TXr is the vector of interactions of Xr, X−r is the vector of covariates

excluding Xr, T−Xr is the vector of interaction terms excluding the ones containing

Xr. Therefore, Sr,k is actually the covariate vector of the kth model for the missing-

ness mechanism Rr. Hence, the missingness model, given in Equation 3.6 would be

equal to the expression given in Equation 3.20.

P (Rr = rri|Xobs,Xmiss, Y,Mrk ,φk) =
n∏
i=1

g(STr,kφk)
rri (1− g(STr,kφk))1−rri

(3.20)
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where Sr,k is the vector form of subset Sr,k.

All in all, there should be nr model spaces with different sizes for modeling nr miss-

ingness indicators. All of these sets are given in Equation 3.21.

S1 = {S1,1 ∪ S1,2 ∪ ... ∪ S1,nm1
} =

nm1⋃
k=1

S1,k

S2 = {S2,1 ∪ S2,2 ∪ ... ∪ S2,nm2
} =

nm2⋃
k=1

S2,k

...

Sr = {Sr,1 ∪ Sr,2 ∪ ... ∪ Sr,nmr} =

nmr⋃
k=1

Sr,k

...

Snr = {Snr,1 ∪ Snr,2 ∪ ... ∪ Snr,nmnr } =

nmnr⋃
k=1

Snr,k

(3.21)

After constructing the subsets S, the model spaces M, can now be constructed by

using these subsets. Model space for the rth missingness indicator is denoted as Mr

and it can be constructed by choosing the best candidate models, of which the variable

sets belong to the subsets of Sr in Equation 3.21.

Some methods for filtering the model space (i.e. choosing the best candidate models

for the model space) are already mentioned in the previous sections such as Occam’s

window, Occam’s razor, etc. The adaptation of the Occam’s window for the model

space of rth missingness indicator is given in Equation 3.22 by using the Equation

2.38.

Mr =

{
Mrk :

maxl{P (Mrl , |Dr,φrl ,βrl)}
P (Mrk |Dr,φrk ,βrk ,X

miss)
≤ C

}
(3.22)

where maxl{P (Mrl , |Dr,φrl ,βrl)} is the model posterior with highest probability,

P (Mrk |Dr,φrk ,βrk ,X
miss) is the model posterior of the kth model in the model

space and C is the arbitrarily chosen threshold value for the ratio.

Estimation of model posteriors are obtained by using the Equation 2.39 in Section

2.4.2. It is to be seen that, the model posterior contains unknown model parameters

φrl , βrl and missing values Xmiss (can also be considered as unknown parameters)

which should be imputed by using full conditional distributions of these unknown

parameters with proper sampling methods. When the size of unknown parameters
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are large, the posterior becomes very sensitive to these imputations. Therefore, the

model posterior with the highest probability can easily be affected by imputation. In

order to reduce this sensitivity, the classic Occam’s Window procedure is adjusted

and this alternative method called “T-step Occam’s Window” procedure is proposed

in the following section.

3.3.1 T-Step Occam’s Window Method

The alternative method proposed in this thesis for reducing the size of the model space

by filtering is based on the Occam’s Window method. Since high sensitivity of un-

known parameters in imputation, and the model posterior with the highest probability

can differ easily, first step to take in this alternative method is to keep the threshold

value C small, so that the model space would be large. Afterwards, the model space

of the rth missingness indicator can be created with the following steps:

Step 1: Impute unknown parameters with a suitable imputation method in order to

compute the model posterior in the next step.

Step 2: Calculate all the model posteriors in the model space.

Step 3: Apply the Occam’s window process.

Step 4: Repeat the Occam’s Window process (from Step 1 to Step 3) by t times and

obtain t model spaces with different sizes.

Step 5: Construct a frequency table for model spaces altogether in order to identify

the common models occurring in model spaces.

Step 6: Choose the smost frequent models as candidate models among these tmodel

spaces.

Accordingly, these t model spaces with different sizes for the rth missingness indica-

54



tor are given by,

M(1)
r =

{
M (1)
rk :

maxl{P (Mrl , |Dr,φrl ,βrl)}
P (Mrk |Dr,φrk ,βrk ,X

miss)
≤ C

}
= {M (1)

r1 ,M
(1)
r2 , ...,M

(1)
rn1
}

M(2)
r =

{
M (2)
rk :

maxl{P (Mrl , |Dr,φrl ,βrl)}
P (Mrk |Dr,φrk ,βrk ,X

miss)
≤ C

}
= {M (2)

r1 ,M
(2)
r2 , ...,M

(2)
rn2
}

...

M(t)
r =

{
M (t)
rk :

maxl{P (Mrl , |Dr,φrl ,βrl)}
P (Mrk |Dr,φrk ,βrk ,X

miss)
≤ C

}
= {M (t)

r1 ,M
(t)
r2 , ...,M

(t)
rnt
}

(3.23)

Naturally, a candidate model may be chosen in more than one model space, therefore,

common models may occur among model spaces. The most frequent s common

models among model spaces are chosen as the best candidate models in order to

reduce the sensitivity of imputation for unknown parameters. The size of t can be

decided arbitrarily, to the size of the unknown parameters and of course in relation to

the strength of computational resources. For example, when t = 100, the common

models with a frequency s greater than 10 can be chosen as the best candidate models.

However, the size of this chosen model space should be optimal for RJMCMC and

model pooling. If it is too small, the uncertainty about missingness models cannot be

reduced or if the size of the model space is very large, RJMCMC process takes too

much time computationally.

3.4 Model Transitions and Transition Probability Matrix

Model transition can be defined as jumping from a model to another one with a prob-

ability. In Metropolis-Hastings algorithm, transition is done in the same dimension,

and in this case the dimension corresponds to the model dimension. Number of

parameters of the model determines it’s dimension. Since, model dimensions in a

model space are mostly different, RJMCMC method is widely considered appropri-

ate use as a model selection method among varying dimensions. In addition, as it

is stated in Section 2.4.2, transitions from a model to another one should also be re-

versible. Furthermore, assumptions about transitions can highly affect the process of

obtaining posterior distributions for each model. For example, if all the model tran-

sitions in a model space are assumed to be equally likely, then the effect of model

dimensions is eliminated significantly. For a better comprehension, let the transi-

tion probability from model Mk to Mk′ be q(Mk,Mk′), given in Equation 3.13, and
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the transition probability from model Mk′ to Mk be q(Mk′ ,Mk). Then, if the transi-

tions are assumed equally likely, the probabilities would be equal to each other (i.e.

q(Mk′ ,Mk) = q(Mk,Mk′)). So, the acceptance probability in Equation 3.13 is sim-

plified as in Equation 3.24.

α(Mk,Mk′) = min

{
1,
P (Mk′ ,φk′ ,βk′ ,X

miss|Xobs, Y,R)

P (Mk,φk,βk,X
miss|Xobs, Y,R)

}
(3.24)

As it can be seen in Equation 3.24, RJMCMC acceptance probability depends only

on the joint posterior values under initial and candidate models. This applies for the

move types as well. The acceptance probabilities in Equations 3.14 and 3.15 depend

on the joint posteriors, on the function which equalizes the dimensions, and on the Ja-

cobian. Since assumption of equal transition reduces the effect of model dimensions,

further assumptions taking the dimension difference into consideration are evaluated

for this thesis. Transition for only one dimension up or down among models can be

considered as well, however this restricts the mobility, and the transitions cannot be

done from some models to other ones of which the dimension difference is greater

than one. So taking into account all of these, transition assumptions, that takes both

full mobility on the model space and also the effect of dimension difference into con-

sideration, are shared below.

1. Every model is to be considered as the center of the model space and the prob-

abilities are calculated for every model. Meaning that, nmr (size of the model

space of rth covariate with MNAR) transition probabilities are assigned to every

single model, of which the total probability equals to 1. This allows assigning

different probabilities to model transitions and their reversible transitions.

2. Transition ability of two models with the same dimension in a model space is

assumed to be the highest. So, transition probabilities decrease as the absolute

dimension difference increases between models.

Transition probabilities of a model space are shown in a matrix form with a dimen-

sions nmr × nmr at Table 3.1.

Every row of the table is a vector of transition probabilities from an initial model

to other models and the total probability of every row equals to 1. With this matrix
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Table 3.1: Transition Probabilities of a Current State to Next State for Covariate Xr

with MNAR

For Covariate Xr M1 M2 ... Mnm Row Total

M1 q(M1,M1) q(M1,M2) ... q(M1,Mnm) 1

M2 q(M2,M1) q(M2,M2) ... q(M2,Mnm) 1
...

...
...

...
...

...

Mnm q(Mnm ,M1) q(Mnm ,M2) ... q(Mnm ,Mnm) 1

setup, it is crucial to state that, the transition probability is not guaranteed to be equal

to its reversible transition probability (i.e. q(Mk,Mk′) 6= q(Mk′ ,Mk)).

The second assumption is defining the impact of a dimension difference. Let d(Mk)

be the dimension of model Mk, d(Mk′) be the dimension of model Mk′ , the abso-

lute difference of two dimensions be defined as | d(Mk) − d(Mk′) |= dkk′ , and the

largest absolute difference between dimensions be max{dkk′} = nd. The impacts of

dimensions are given in Table 3.2.

Table 3.2: Impacts of Dimension Difference

dkk′ Impact Value (ikk′)

0 nd + 1

1 nd
...

...

nd 1

These impact values can be utilized in order to calculate transition probabilities. In

Table 3.3, the related dimension impacts are shown in a matrix form.

The transition probabilities are merely the weighted average of the row vector of that

model. The formula is given in Equation 3.25.

q(Mk,Mk′) =
ikk′

Ik
(3.25)
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Table 3.3: Dimension Differences of The Models for Covariate Xr with MNAR

For Covariate Xr M1 M2 ... Mnm Row Total

M1 i11 i12 ... i1nm I1

M2 i21 i22 ... i2nm I2
...

...
...

...
...

...

Mmn inm1 inm2 ... inmnm Inm

where ikk′ is the impact value of model k to k′, and Ik is the total impact of model k

to other models.

3.5 Estimation of Parameters

The last part of the methodology is pooling the estimations of parameters by using

the properties of BMA. When RJMCMC process is finished, parameter estimations

are obtained under each model in the model space. Also counts of visits to every

model are recorded each time the process visits a model during the iterations. Thus,

the frequencies of visits for models at the end of the process can be considered as

posterior model probabilities P (Mk|D). Parameters of interest, β = (β0, . . . , βp),

belong to the main model. For recalling, the joint posterior used in RJMCMC is

P (M ,φ,β,Xmiss|Xobs, Y,R). Here, it should be noted that parameters of in-

terest β and parameters for the missingness indicators φ are independent. There-

fore, using only the joint posterior of the parameters of interest and models M,

given as P (β,M |D), is enough for estimation of β posteriors. As a remainder,

D = (Xmiss,Xobs, Y,R) is the data andM = (M1, . . . ,Mnm) is the model space.

Since all the β coefficients are independent, marginal posterior distributions of pa-

rameters of interest can be stated as in Equation 3.26.

P (β0, . . . , βp|M ,D) = P (β0|M ,D) . . . P (βp|M ,D) (3.26)

Let β̂ik be the estimator of ith β coefficient under kth model, Mk. In this case, β̂ik
is calculated from the posterior distribution P (βi|Mk,D) which is obtained through
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RJMCMC process. Maximum Likelihood Estimators (MLE) can be taken as estima-

tors of β coefficients under every model. Besides, medians are more suitable choices

as estimators if the posterior distribution is skewed. The BMA formula stated in 2.35

is adapted to this problem, and it is provided in Equation 3.27.

β̂0 =
nm∑
k=1

β̂0kP (Mk|D)

β̂1 =
nm∑
k=1

β̂1kP (Mk|D)

...

β̂p =
nm∑
k=1

β̂pkP (Mk|D)

(3.27)

where P (Mk|D) is the posterior probability of the kth model, calculated by using

the visiting frequency of RJMCMC. At this point, let N be the iteration size and Nv

be the size of the jump counts (total counts of visits). It is assumed that in N, there

are iterations staying in a model for some amount of time, but in Nv only visits are

counted. Additionally, fMk
is the frequency of the visits of Mk in Nv. A detail should

be mentioned here: sometimes the jump process can be immovable on a model for

some time, while iterations continue to be counted. In such a case, iterations, counted

“during” this immovable period, are not counted as visits, only each new visit to that

model are to be counted as visits. With this information provided here, the posterior

model probability of Mk is calculated as in Equation 3.28.

P (Mk|D) =
fMk

Nv

(3.28)

Hereby, Bayesian Model Pooling system is finished with this last step and parameter

of interest estimations are obtained.

3.6 Algorithm of The Hybrid Bayesian Modeling System

Before moving forward with the validation study on a simulated dataset, the entire

algorithm of the methodology is summarized step by step for clarity. It consists of

the following steps:
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Step 1: Definition of covariates and response of the main model.

Step 2: Generation of missingness indicators, R, according to the covariates with

MNAR.

Step 3: Setting all possible candidate variables for modeling missingness indicators

of the covariates with MNAR.

Step 4: Construction of all possible missingness indicator models for all missing in-

dicators of the covariates with MNAR.

Step 5: Application of T-Step Occam’s Window process for construction of the model

space by using the joint posteriors, P (Mk,φk,βk,X
miss|Xobs, Y,R) for

every model Mk.

Step 6: Construction of transition probability matrices for model transitions q(Mk,Mk′)

for different missingness indicators of covariates with MNAR.

Step 7: Application of RJMCMC process.

Step 8: Application of MCMC diagnostics and acceleration of convergence through

thinning and discarding burn-in part.

Step 9: Calculation the estimators of parameters of interest, β̂ik , for every modelMk.

Step 10: Calculation of posterior model probabilities P (Mk|D).

Step 11: Application of Bayesian Model Pooling (BMP) by using β̂i =
nm∑
k=1

β̂ikP (Mk|D)

for i = 1, . . . , nβ .

The following chapter deals with this proposed algorithm through a validation study

on a simulated dataset with known true parameters, and a real data application.
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CHAPTER 4

APPLICATION OF THE METHODOLOGY

In this section, the proposed methodology of hybrid Bayesian Modeling system called

Bayesian Model Pooling (BMP) is applied in two steps; a validation on a simulated

dataset with known true parameters and a real data analysis. Firstly, a validation study

on a simulated data set is designed and carried out in order to investigate the perfor-

mance of the methodology under different scenarios. Then, the efficiency and the

accuracy of the system are tested with several MCMC diagnostic tools. Afterwards,

a sensitivity analysis is conducted in consideration of the results of the MCMC di-

agnostics. The algorithm is enhanced and calibrated by the results of the sensitivity

analysis. After the calibration of the algorithm, a real data example with MNAR

mechanism is taken and the same algorithm used in the validation study is adapted.

The results from real data analysis are compared with other results of the studies,

the purpose of which is the same for the same data set in the literature. Finally, a

sensitivity analysis is also applied to the real data analysis.

4.1 Validation Study On A Simulated Data With Known True Parameters

In the validation study of this thesis, we consider fully observed binary response vari-

able Y and two covariates X1 and X2. The covariate X1 contains MNAR mechanism

while X2 is fully observed. The relevant data are generated by using the distributions
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given in the Equation 4.1.

x1i ∼ Normal(µx1 , σ
2
x1

)

x2i ∼ Normal(µx2 , σ
2
x2

)

yi|pyi ∼ Bernoulli(pyi)

logit(pyi) = β0 + β1x1i + β2x2i

(4.1)

where logit(pyi) is the logit link function.

Two covariates, X1 with MNAR, fully observed X2, and a binary response variable

Y are generated with a sample size of n = 250. The fully observed X2 variable is

generated from X2 ∼ N (α21;α
2
22) with the vector (α21;α22) = (1; 1) and the fully

observed X1 variable is generated from X1 ∼ N (α11 + α12X2;α
2
13) with the vector

(α11;α12;α13) = (−1, 5; 0, 5; 0, 75). In addition, the binary response variable Y is

generated from Y ∼ Binomial(n = 250; py) of which py =
eβ0+β1X1+β2X2

1 + eβ0+β1X1+β2X2

is the logit link function according to the chosen true values for β coefficients with

(β0; β1; β2) = (2; 1;−1).

Further, a binary missingness indicator is also needed and defined here as R, generated

from R ∼ Binomial(n = 250; 1 − pr) where pr =
eφ0+φ1Y+φ2X2+φ3X1

1 + eφ0+φ1Y+φ2X2+φ3X1
and the

true parameter settings are given in Equation 4.2 for various different missingness

percentages. As seen below, four different missingness percentages are considered

for the validation study.

(φ0;φ1;φ2;φ3) =



(−5, 85; 1; 1; 1) if Missing Rate = 1%

(−4, 40; 1; 1; 1) if Missing Rate = 3%

(−4, 20; 1; 1; 1) if Missing Rate = 5%

(−3, 40; 1; 1; 1) if Missing Rate = 10%

(4.2)

It is to be noted that φ0 values are determined with a function given in Appendix A.

Now that the data set is generated, as the next step, the analysis of this simulated

data is conducted by using the joint posterior distribution given in Equation 3.1. The

contribution is rewritten according to the needs of the analysis and for the kth model

as (Mk,φk,βk, X1
miss|X1

obs, X2, Y, R). So if Dobs = (X1
obs, X2, Y, R), the joint
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posterior distribution is given in Equation 4.3.

P (Mk, φk, βk, X1
miss|Dobs) =

P (Mk,φk,βk, X1
miss, Dobs)

P (Dobs)

∝ P (Mk,φk,βk, X1
miss, Dobs)

= P (Dobs, X1
miss|Mk,φk,βk)P (Mk,φk,βk)

(4.3)

where P (Dobs, X1
miss|Mk,φk,βk) stands for the full data likelihood, P (Mk,φk,βk)

is the joint prior distribution, Dobs is the observed part of the data, X1
miss is the

missing part of the data, Mk is the kth model index, φk is the parameter vector of kth

missingness model, βk is the the parameter vector of the main model in kth model

index. In the following subsections 4.1.1 and 4.1.2 the prior and the likelihood are

investigated and described thoroughly.

4.1.1 Prior

The joint prior P (Mk,φk,βk) is shown in Equation 4.4.

P (Mk,φk,βk) = P (βk|Mk)P (φk|Mk)P (Mk) (4.4)

where P (βk|Mk) = P (βk0 , βk1 , βk2|Mk). In this equation, βk0 is the intercept,

βk1 is the coefficient of X1, and βk2 is the coefficient of X2 under Mk. Similarly,

the joint prior for coefficients of the missingness model under Mk is P (φk|Mk) =

P (φk0 , . . . , φknk |Mk) in which the size of φk varies by model, and P (Mk) is the prior

probability of model Mk. All of these models and prior distributions are described

below.

The prior for missing observations of the variable X1: It is assumed to be i.i.d.

normally distributed. Consequently, the explicit form of the prior distribution for
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Xmiss
1 is given in Equation 4.5 where xmiss1,i ∼ N(µx1 , σ

2
x1

).

P (X1
miss|X1

obs) = P (xmiss1,1 , . . . , xmiss1,nmiss
|X1

obs,Mk)

= P (xmiss1,1 |X1
obs,Mk) . . . P (xmiss1,nmiss

|X1
obs,Mk)

=

nmiss∏
i=1

1√
2πσ2

x1

e
−

(x∗1i − µx1)2

2σ2
x1

(4.5)

where µx1 is the assumed expected value of Xmiss
1 and σx1 represents the assumed

standard deviation of Xmiss
1 . x∗1i is the ith imputed X1

miss value, which is generated

through Gibbs sampling by using the full conditional distribution of X1
miss.

Prior distribution for main model coefficients βk: It is also considered to be nor-

mally distributed, hence, βkj ∼ N(µβkj , σ
2
βkj

) with j = 0, 1, 2. The explicit form of

the prior distribution is given as follows;

P (βk|Mk) = P (βk0 |Mk)P (βk1|Mk)P (βk2|Mk) =
2∏
j=0

1√
2πσ2

βkj

e

−
(βk
∗
j − µβkj)

2

2σ2
βkj

(4.6)

Here, µβkj stands for the proposed expected value of jth βk coefficient while σβkj
being the proposed standard deviation of jth βk coefficient. β∗kj values are generated

with Gibbs sampling by using the full conditional distribution of βk.

Prior distribution for missingness model coefficients φk: Considered to be nor-

mally distributed, φkj ∼ N(µφkj , σ
2
φkj

) with j = 1, . . . , nφk , its explicit form is given

as follows;

P (φk|Mk) = P (φk0|Mk) . . . P (φknφk
|Mk) =

nφk∏
j=1

1√
2πσ2

φkj

e

−
(φk
∗
j − µφkj)

2

2σ2
φkj (4.7)

Seen in Equation 4.7, µφkj represents the proposed expected value of jth φk coeffi-

cient, and σφkj stands for the proposed standard deviation of jth φk coefficient. φk∗

values are also generated with Gibbs sampling by using the full conditional distribu-

tion of φk.
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Prior distribution forMk: All the models in the model space are considered apri-

ori equally likely, hence the discrete uniform prior, shared in in Equation 4.8, is used.

P (Mk) =
1

nm
(4.8)

where nm is the size of the constructed model space.

Prior assumptions for coefficients β, φ and missing variable X1 are provided below.

β ∼ N (µβ = 0, σ2
β = 42) or β ∼ N (µβ = 0, σ2

β = 62)

φ ∼ N (µφ = 0, σ2
φ = 42) or φ ∼ N (µφ = 0, σ2

φ = 62)

X1 ∼ N (µx1 = −1, σ2
x1

= 1.52) or X1 ∼ N (µx1 = −1, σ2
x1

= 12)

(4.9)

These alternative assumptions are utilized for getting more accurate estimations. At

this point, it would be useful to mention the reason behind choosing these alterna-

tive assumptions for the missing covariate X1. The generated data for the validation

study lead to the summary statistics, given in Table 4.1, for the observed part of the

covariate with MNAR. Looking at the Table 4.1, it can be seen that the mean of the

observed cases falls around -1 with standard deviations falling between 0,80 - 0,85.

As previously stated in Section 2.2.3, the observed parts and the missing parts may

show different characteristics. Therefore, the assumption for the mean is fixed at -1

while the variance assumptions are taken larger.

Table 4.1: Summary Statistics For Covariate X1

Missing Rate

Summary 1% 3% 5% 10%

Meanobs -0.89 -0.98 -1.06 -1.15

Std.Devobs 0.83 0.86 0.85 0.79

nobs 247 242 237 225

nmiss 3 8 13 25

ntotal 250 250 250 250
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4.1.2 Likelihood

After giving details about priors used in the validation study, the likelihood is ex-

plained in detail in this sub-section. Full data likelihood, given in Equation 4.3, can

be factorized by using selection model given in Equation 4.10.

P (Dobs, X1
miss|Mk,φk,βk) =P (R|X1

miss, Dobs,Mk,φk)

∗ P (Y |X1
miss, Dobs,Mk,βk)

∗ P (X1
miss|X1

obs,Mk)

(4.10)

where P (R|X1
miss, Dobs,Mk,φk) is the missingness model for the kth model index,

P (Y |X1
miss, Dobs,Mk,βk) is the main model for the kth model index, and prior for

missing observations is P (X1
miss|X1

obs,Mk) = P (xmiss1,1 , . . . , xmiss1,nmiss
|X1

obs,Mk).

The main model: It is considered to be a logistic model thus the reformulation

of the likelihood function of the main model in Equation 4.10. The reformulated

function is shared in Equation 4.11.

P (Y = yi|X1
obs, X1

miss, X2,Mk,βk) =
n∏
i=1

pyi
yi(1− pyi)1−yi (4.11)

where logit(pyi) = Xtβk and pyi =
eXtβk

1 + eXtβk
is the logit link function with X =

(x1i, x2i) being the covariate vector for the main model.

Missingness models: Since R is dichotomous, the missingness models are chosen

to be probit models. The likelihood for missingness indicator R in Equation 4.10 is

formulated in Equation 4.12.

P (R = ri|X1
obs, X1

miss, X2, Y,Mk,φk) =
n∏
i=1

prirki(1− prki)
1−ri (4.12)

where prki = Φ(Wt
kiφk) is the probit function in which Wki is the covariate vector

for the kth missingness model. Every missingness model in the model space should

contain X1 or some sort of it’s interaction, since MNAR mechanism depends on the

variable itself. Based on this knowledge, the variables X1, X2, Y , X2
1 , X1X2, X2

2 ,
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X1Y and X2Y are taken as candidate covariates for modeling missingness indicator

R. Accordingly, Wki must contain at least one of the covariates X1, X
2
1 , X1X2 or

X1Y , as a result of the missingness mechanism depending on X1 itself.

4.1.3 Gibbs Sampling

Regression coefficients β, φ and missing observations xmiss1i
should be imputed for

a proper Bayesian framework. Therefore, an iterative Gibbs sampling algorithm is
applied for imputation. After the imputation, the imputed values for parameters are
used in priors. The algorithm of Gibbs sampling updates is given step by step in the
following:

Step 1: Draw initials

β
(0)
kj
∼ N(µβkj , σ

2
βkj

) j = 0, 1, 2

φ
(0)
kj
∼ N(µφkj , σ

2
φkj

) j = 0, 1, . . . , nφk

Step 2: Continue the process with a for loop from t = 1 to nt

X
miss,(t)
1 ∼ Metropolis-Hastings step

β
(t)
kj
∼ f(βkj |X

miss,(t)
1 , Dobs,Mk, µβkj , σ

2
βkj

) j = 0, 1, 2

φ
(t)
kj
∼ f(φkj |X

miss,(t)
1 , Dobs,Mk, µφkj , σ

2
φkj

) j = 0, 1, . . . , nφk

Step 3: Set (X∗1
miss, β∗kj , φ

∗
kj ) = (X

miss,(nt)
1 , β

(nt)
kj

, φ
(nt)
kj

)

(4.13)

At this point, since the full conditional distribution of Xmiss
1 does not have a familiar

form, a Metropolis-Hastings Step is added to the Gibbs sampling algorithm for gen-
erating xmiss1i

values with i = 1, . . . , nmiss. The M-H algorithm is given as follows:

Step 1: Draw initial xmiss10 ∼ N(µx1
, σ2
x1
)

Step 2: Continue the process with a for loop from i = 1 to nmiss

Draw xmiss1proposed
∼ N(µx1

, σ2
x1
) and U ∼ Unif(0, 1)

Compute α(xmiss1proposed
, xmiss1i−1

) = min

{
1,
f(xmiss1proposed

|Dobsi ,βk
(t−1),φk

(t−1), µx1
, σ2
x1
)

f(xmiss1i−1
|Dobsi ,βk

(t−1),φk
(t−1), µx1 , σ

2
x1
)

}

Set xmiss,(t)1i
=

x
miss
1proposed

if U < α(xmiss1proposed
, xmiss1i−1

)

xmiss1i−1
otherwise

Step 3: Set Xmiss,(t)
1 = (x

miss,(t)
11

, . . . , x
miss,(t)
1nmiss

)

(4.14)

where f(xmiss1i
|Dobsi ,βk,φk, µx1 , σ

2
x1

) is the full conditional distribution for the ith
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missing observation. The explicit form of it is given in Equation 4.15.

f(xmiss1i
|Dobsi ,βk,φk, µx1 , σ

2
x1

) =(pyi)
yi(1− pyi)1−yi

∗(prki )
ri(1− prki )

1−ri

∗ 1√
2πσ2

x1

e
−

(x1i − µx1)2

2σ2
x1

(4.15)

where pyi and prki are the same as in Equation 4.12 and 4.11.

Moreover, in the Gibbs sampling, f(βkj |X
miss,(t)
1 , Dobs,Mk, µβkj , σ

2
βkj

) stands for the

full conditional distribution of jth β coefficient under kth model for iteration (t). This

full conditional distribution can be factorized as in Equation 4.16.

f(βk|Xmiss
1 , Dobs,Mk) = L(βk|X1

miss, Dobs,Mk)P (βk|Mk) (4.16)

where L(βk|X1
miss, Dobs,Mk) is the marginal likelihood, P (βk|Mk) being the prior.

βk ∼ N(µβ,Σ
2
β) of which µβ is the mean vector, and Σ2

β is the variance covariance

matrix for coefficients βk = (βk0 , βk1 , βk2). Since the main model for the response is

logistic and the prior is normal as given above, conditional conjugacy is lost. Holmes

and Held (2006) indicate a useful full conditional distribution for coefficients of a

logistic regression model. According to their article, when an additional variable

λ is added as the scale of error terms of auxiliary variable Z (the details are given

below), only then it is easier to sample by using the full conditional distribution of

β coefficients of logistic regression [30]. This helpful knowledge is adapted for this

study as follows:

An auxiliary variable Zβk
= (zβk,1 , . . . , zβk,n) is defined as

yi =

1 if zβk,i > 0

0 if zβk,i < 0
(4.17)

In Equation 4.17, zβk,i = xiβk + εi with εi ∼ N(0, λi) and i = 1, . . . , n. After

this definition, sampling can be done by using the full conditional distribution of βk
provided in Equation 4.18.

βk|Xmiss
1 ,Mk,Zβk

,λ ∼ N(µ̃β, Σ̃β)

µ̃βk = Σ̃βk(Σ
−1
β µβ +XtBZβk

)

Σ̃βk = (Σ−1β +XtBX)−1

(4.18)
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withX = (X∗1
miss, Xobs

1 , X2) andB = diag(λ−11 , . . . , λ−1n ).

Additionally, sampling of each auxiliary value zβk,i from full conditional distribution

can be done using a truncated normal distribution as described in Equation 4.19 [65].

zβk,i|βk,xi, yi, λi ∝

N(xiβk, λi)I(zi > 0) if yi = 1

N(xiβk, λi)I(zi ≤ 0) if yi = 0
(4.19)

Lastly, the full conditional distribution of the jth φ coefficient under kth model for

iteration (t) is defined as f(φkj |X
miss,(t)
1 , Dobs,Mk, µφkj , σ

2
φkj

). A more general form

of this distribution can be factorized as given in Equation 4.20.

f(φk|Xmiss
1 , Dobs,Mk) = L(φk|X1

miss, Dobs,Mk)P (φk|Mk) (4.20)

where L(φk|X1
miss, Dobs,Mk) is the marginal likelihood, P (φk|Mk) is the prior.

φk ∼ N(µφ,Σ
2
φ) where µφ is the mean vector and Σ2

φ is the variance covariance

matrix for coefficients φk = (φk0 , . . . , φknφ ). Since missingness models are probit

models, P (φk|Mk) can be considered as the conjugate prior with a normal distribu-

tion. Therefore, the full conditional distribution given in the article of Holmes and

Held (2006) is adapted using the following formula [30]:

An auxiliary variable Zφk
= (zφk,1 , . . . , zφk,n) is defined as

ri =

1 if zφk,i > 0

0 if zφk,i < 0
(4.21)

In here, ri is the ith missingness indicator, zφk,i = wkiφk + εi where wki is the

covariate vector of kth missingness model, εi ∼ N(0, 1), and i = 1, . . . , n. After this

definition, sampling can be done by using the full conditional distribution of φk given

in Equation 4.22.

φk|Xmiss
1 ,Mk,Zφk

∼ N(µ̃φk , Σ̃φk)

µ̃φk = Σ̃φk(Σ
−1
φk
µφk +W t

kZφk
)

Σ̃φk = (Σ−1φk +W t
kWk)−1

(4.22)

whereWk is the covariate matrix of the kth missingness model.
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Again, sampling of each auxiliary value zφk,i from full conditional distribution can be

done using a truncated normal distribution as described in Equation 4.23 [65].

zφk,i|φk,wk,i, ri ∝

N(wk,iφk, 1)I(zi > 0) if ri = 1

N(wk,iφk, 1)I(zi ≤ 0) if ri = 0
(4.23)

4.1.4 RJMCMC Adaptation

The next step of the validation study, after the data generation and joint posterior def-

inition, is the adaptation of RJMCMC process. All the acceptance ratios in Section

3.2 are adapted according to the validation assumptions. If the dimension of the can-

didate model Mk′ is higher than the initial model Mk (|k′| > |k|), then the acceptance

probability for the new state is given as follows;

α(Mk,Mk′) = min

{
1,

P (Mk′ ,φk′ ,βk′ , Xmiss
1 |Xobs

1 , X2, Y, R)q(Mk′ ,Mk)

P (Mk,φk,βk, Xmiss
1 |Xobs

1 , X2, Y, R)q(Mk,Mk′)h(u)
× | Ju |

}
(4.24)

If the dimension of the candidate modelMk′ is lower than the initial modelMk (|k′| <
|k|), the acceptance probability for the new state is given as follows;

α(Mk,Mk′) = min

{
1,
P (Mk′ ,φk′ ,βk′ , Xmiss

1 |Xobs
1 , X2, Y, R)q(Mk′ ,Mk)h(u

′)

P (Mk,φk,βk, Xmiss
1 |Xobs

1 , X2, Y, R)q(Mk,Mk′)
× | Ju′ |

}
(4.25)

If the dimension of the candidate model Mk′ is equal to the initial model Mk (|k′| =

|k|), the acceptance probability for the new state is given as follows;

α(Mk,Mk′) = min

{
1,
P (Mk′ ,φk′ ,βk′ , Xmiss

1 |Xobs
1 , X2, Y, R)q(Mk′ ,Mk)

P (Mk,φk,βk, Xmiss
1 |Xobs

1 , X2, Y, R)q(Mk,Mk′)

}
(4.26)

At this point, determinants of the Jacobian terms | Ju | and | Ju′ |, already provided

in Equation 3.17 in the previous chapter, are calculated as 1. As indicated in Sec-

tion 3.2, with the dimension change happening only in missingness models, u and

u′ stand for coefficients of missingness models φ, since the dimension change hap-

pens only in missingness models. Therefore, h(u) and h(u′) are chosen exactly the

same as the prior of φ coefficients in Equation 3.11. With u = (u1, . . . , unu) and
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u′ = (u′1, . . . , u
′
nu′

), h(u) and h(u′) are given in Equation 4.27.

u∗j ∼ N(µu, σ
2
u) and u′j

∗ ∼ N(µu′ , σ
2
u′)

h(u) = h(u1, . . . , unu) = h(u1) . . . h(un) =
nu∏
j=1

1√
2πσ2

u

e
−

(u∗j − µu)2

2σ2
u

h(u′) = h(u′1, . . . , u
′
nu′

) = h(u′1) . . . h(u′nu′ ) =

nu′∏
j=1

1√
2πσ2

u′

e
−

(u′j
∗ − µu′)2

2σ2
u′

(4.27)

where µu and µu′ are the proposed expected value of u and u′, while σu and σu′ being

the proposed standard deviation of u and u′.

4.1.5 Construction of The Model Space

The methodology for constructing model spaces is explained in Section 3.3. For

the validation study, it is assumed that there is only one missing variable and thus

one missingness indicator R. The model space is defined as M = {M1, . . . ,Mnm}.
Models in this particular model space differ only through different variations of miss-

ingness models. The variable set for missingness models is described as

V = (X1, X2, Y,X
2
1 , X1X2, X

2
2 , X1Y,X2Y )

with 8 variables and 28 − 1 = 255 subsets (candidate models) excluding the null set.

The ones not containing X1, X2
1 , X1X2 or X1Y should be excluded from the subsets

due to the MNAR mechanism. Let S be a set consisting of subsets of the variable sets

defined in V and its every subset can be described as S =
nm⋃
k=1

Sk with Sk ⊆ V. Sk is

given in Equation 4.28.

Sk ={(Sk1, Sk2) ∈ Sk | Sk1 ⊆ (X1 ∪X2
1 ∪X1X2 ∪X2

2 ∪X1Y )

;Sk2 = ∅ ∨ Sk2 ⊆ (X2 ∪ Y ∪X2
2 ∪X2Y )

;Sk2 ∪ Sk2 = Sk}

(4.28)

where, Sk1 is the part of the kth subset that includes X1, the covariate with MNAR,

or the interaction of it. Sk2 is the remaining part of the subset. After the process

of excluding, there are 240 subsets left in S and its volume is still large for a model
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space. Therefore, it should be filtered and reduced by using the adapted Occam’s

Window method provided in detail in Section 3.3.1.

The size of t is chosen as 200, which means the Occam’s Window process is to be

repeated 200 times. Now, 200 model spaces with different sizes are present. Among

these 200 model spaces the first 15 common models with the highest frequency are

taken as candidate models for model space. Occam’s Window repetitions and model

spaces are given in Equation 4.29.

M(1) =

{
M

(1)
k :

maxl{P (Ml|D)}
P (Mk|D)

≤ C
}

= {M (1)
1 , . . . ,M (1)

n1
}

...

M(100) =

{
M

(100)
k :

maxl{P (Ml|D)}
P (Mk|D)

≤ C
}

= {M (100)
1 , . . . ,M (100)

n100
}

(4.29)

This process is applied under different missingness rates and parameter assumptions.

The relevant numerical computations are given in the following sections. After con-

struction of the model space for every covariate with MNAR, model transitions are

defined and transition probabilities among models are calculated. Calculations of

transition probabilities and parameter estimations by missing rates and by different

underlying assumptions are given in the following sections as well. The same al-

gorithm, given in Chapter 3, is adapted for the validation study by including data

generation and by making some adjustments, which are already mentioned above.

RJMCMC process and estimation of the parameters of interest are realized via R

software. Before coding, it would be useful to make it clear the steps of the algorithm.

The algorithm is divided into its respective steps below:

Step 1: Data generation:

x2i ∼ N (α21;α
2
22)

x1i ∼ N (α11 + α12x2i ;α
2
13)

yi ∼ Binomial(n = 250; pyi) where logit(pyi) = β0 + β1x1i + β2x2i

Step 2: Set missingness rate 1%, 3%, 5% or 10%.

Step 3: Generate missingness mechanism R according to missing rate set.

Step 4: Reset X1 according to the missing rate.
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Step 5: Set other covariates X2
1 , X

2
2 , X1X2, X1Y,X2Y .

Step 6: Construct the matrices of all potential covariates for all possible missingness

models (i.e. model space). 240 candidate models are present.

Step 7: Apply adapted Occam’s Window process by using BIC values joint posteri-

ors. Set t = 200 and c = 20. Take the first 15 or 16 common models having

the highest frequency for every missing rate.

Step 8: Construct transition probability matrix for model transitions q(Mk,Mk′).

Transitions can be done according to the information provided in Section

3.4.

Step 9: Set initial model index Minitial arbitrarily.

Initial parameter generation:

Apply Gibbs algorithm in 4.13.

Set (βk,φk,Mk) = (βk
(nt),φk

(nt),Minitial)

Step 10: With i = 1;

Set (β(i),φ(i),M (i)) = (βk,φk,Mk)

Apply a for loop from i = 2 to i = N +B

where B = nburn−in and N = niterations

Set proposed model Mproposed arbitrarily.

Proposed parameter generation:

Apply Gibbs algorithm in 4.13.

Set (βk′ ,φk′ ,Mk′) = (βk′
(nt),φk′

(nt),Mproposed)

Draw U ∼ Unif(0, 1)

If U < α(Mk,Mk′) (acceptance probability in RJMCMC)

Set (β(i),φ(i),M (i)) = (βk′ ,φk′ ,Mk′)

Else

Set (β(i),φ(i),M (i)) = (β(i−1),φ(i−1),M (i−1))

Step 11: Apply MCMC diagnostics and acceleration tools, such as thinning.

Step 12: Calculate posterior model probabilities P (Mk|D).

Step 13: Calculate medians of parameters of interest, β̂ik , for every model Mk.

73



Step 14: Apply Pooling for estimations by using posteriors as β̂i =
nm∑
k=1

β̂ikP (Mk|D)

for i = 0, 1, 2.

The validation study on a simulated dataset is conducted with RStudio Version

1.2.5001, based on R programming software. More than 60 trials were run with

fluctuating durations from 15 hours to 144 hours (1 - 6 days). These fluctuations are a

result of using 5 separate computers with different technical specs along with different

simulation sizes to get convergence. Eventually, for all simulations, the replication

size N is taken either as 1.500.000 or as 1.800.000 with 2 chains. Burn-in size B is

taken 200.000 or 400.000 according to the results of MCMC diagnostics.

The results of estimations under different assumptions are given in Section 4.1.6

named Results. Models in the model space (as dots represent the covariates in each

model) with their respective posterior model probabilities are tabulated. The ones

with 1% missing rate under assumptions β, φ ∼ N (0, 42) and X1 ∼ N (−1, 1.52) are

listed in Table 4.2, while the ones for other missing rates and under different prior

assumptions are provided in Appendix B.1. For Table 4.2, the most saturated model

is the 15th model with a dimension of 5 (including intercept). Additionally, the model

posteriors of the 1st model containing only X1 equals to 0 for all missing rates, mean-

ing that only observed X1 values would not be enough to explain the missingness

indicator of MNAR. It is also important to note that model posterior probabilities in-

crease as the models become more complex. Models with IDs between 10 and 15 can

be considered as more preferable.

After the construction of the model spaces for different missing rates, transition prob-

abilities as matrix forms are computed. All the transition probability matrices by

different missing rates are constructed according to the model spaces given in Table

4.2 and also the ones given in Appendix B.1.

In Table 4.3, transition probabilities are given for a 1% missing rate under prior as-

sumptions β and φ ∼ N (0; 42) and X1 ∼ N (−1; 1.52). The rest of the transition

probability matrices for other missing rates are available in Appendix B.2. Each

cell in Table 4.3 shows the transition probability from a model to another model.

For instance, the transition probability from model 3 to model 4 is found to be
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Table 4.2: Model Space with Model Posterior Probabilities For 1% Missing Rate

Under Prior Assumptions β and φ ∼ N (0, 42) and X1 ∼ N (−1, 1.52)

Covariate

Model ID X1 X2 Y X2
1 X2

2 X1X2 X1Y X2Y P(Mk|D)

1 • 0.0000

2 • 0.0007

3 • 0.0014

4 • • 0.0216

5 • • 0.0228

6 • • 0.0215

7 • • 0.0213

8 • • 0.0219

9 • • 0.0212

10 • • • 0.1478

11 • • • 0.1471

12 • • • 0.1467

13 • • • 0.1472

14 • • • 0.1488

15 • • • • 0.1299

q(M3,M4) = 0.073, but transition probability from model 4 to model 3 equals to

q(M4,M3) = 0.060. The reason behind this is the changing transition ability of mod-

els due to their dimensions, explained in Section 3.4. After calculating the transition

probabilities by missing rate, RJMCMC algorithm can now be applied.

Another issue worth mentioning here is a problem occuring while calculating the joint

posterior P (Mk′ , φk′ , βk′ , X1
miss|Dobs) in simulation runs. Since the joint posterior

contains a lot of unknown parameters, the likelihood values become too small (for ex-

ample e−250). This indicates a numerical overflow problem in likelihood. Therefore,

the acceptance probabilities are re-constructed into log-scale and very small epsilon
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Table 4.3: Transition Probability Matrix for 1% Missing Rate Under Prior Assump-

tions β and φ ∼ N (0; 42) and X1 ∼ N (−1; 1.52)

From

To
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.098 0.098 0.098 0.073 0.073 0.073 0.073 0.073 0.073 0.049 0.049 0.049 0.049 0.049 0.024

2 0.098 0.098 0.098 0.073 0.073 0.073 0.073 0.073 0.073 0.049 0.049 0.049 0.049 0.049 0.024

3 0.098 0.098 0.098 0.073 0.073 0.073 0.073 0.073 0.073 0.049 0.049 0.049 0.049 0.049 0.024

4 0.060 0.060 0.060 0.080 0.080 0.080 0.080 0.080 0.080 0.060 0.060 0.060 0.060 0.060 0.040

5 0.060 0.060 0.060 0.080 0.080 0.080 0.080 0.080 0.080 0.060 0.060 0.060 0.060 0.060 0.040

6 0.060 0.060 0.060 0.080 0.080 0.080 0.080 0.080 0.080 0.060 0.060 0.060 0.060 0.060 0.040

7 0.060 0.060 0.060 0.080 0.080 0.080 0.080 0.080 0.080 0.060 0.060 0.060 0.060 0.060 0.040

8 0.060 0.060 0.060 0.080 0.080 0.080 0.080 0.080 0.080 0.060 0.060 0.060 0.060 0.060 0.040

9 0.060 0.060 0.060 0.080 0.080 0.080 0.080 0.080 0.080 0.060 0.060 0.060 0.060 0.060 0.040

10 0.043 0.043 0.043 0.064 0.064 0.064 0.064 0.064 0.064 0.085 0.085 0.085 0.085 0.085 0.064

11 0.043 0.043 0.043 0.064 0.064 0.064 0.064 0.064 0.064 0.085 0.085 0.085 0.085 0.085 0.064

12 0.043 0.043 0.043 0.064 0.064 0.064 0.064 0.064 0.064 0.085 0.085 0.085 0.085 0.085 0.064

13 0.043 0.043 0.043 0.064 0.064 0.064 0.064 0.064 0.064 0.085 0.085 0.085 0.085 0.085 0.064

14 0.043 0.043 0.043 0.064 0.064 0.064 0.064 0.064 0.064 0.085 0.085 0.085 0.085 0.085 0.064

15 0.029 0.029 0.029 0.059 0.059 0.059 0.059 0.059 0.059 0.088 0.088 0.088 0.088 0.088 0.118

values (0.00001) are added in order to eliminate infinite results in log-scale. The new

acceptance probabilities for RJMCMC are given below.

• If the dimension of Mk′ , is higher than the one with Mk (|k′| > |k|), the accep-

tance probability for the new state is given as follows;

α(Mk,Mk′ ) = min

{
1,

logP ((Mk′ , φk′ , βk′ , X1
miss|Dobs) + ε) + log(q(Mk′ ,Mk))

log(P (Mk, φk, βk, X1
miss|Dobs) + ε) + log(q(Mk,Mk′ )) + log(h(u))

}
(4.30)

• If the dimension of Mk′ , is lower than the one with Mk (|k′| < |k|), the accep-

tance probability for the new state is given as follows;

α(Mk,Mk′ ) = min

{
1,
logP ((Mk′ , φk′ , βk′ , X1

miss|Dobs) + ε) + log(q(Mk′ ,Mk)) + log(h(u′))

log(P (Mk, φk, βk, X1
miss|Dobs) + ε) + log(q(Mk,Mk′ ))

}
(4.31)

• If the dimension ofMk′ , is equal to the one withMk (|k′| = |k|), the acceptance

probability for the new state is given as follows;

α(Mk,Mk′ ) = min

{
1,
logP ((Mk′ , φk′ , βk′ , X1

miss|Dobs) + ε) + log(q(Mk′ ,Mk))

log(P (Mk, φk, βk, X1
miss|Dobs) + ε) + log(q(Mk,Mk′ ))

}
(4.32)

where P (Mk′ , φk′ , βk′ , X1
miss|Dobs) is the joint posterior distribution of proposed

model M ′
k while P (Mk, φk, βk, X1

miss|Dobs) is the joint posterior of the initial model
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Mk, q(Mk′ ,Mk) is the transition probability from the proposed model Mk′ to the ini-

tial model Mk while q(Mk,Mk′) is the transition probability from the initial model

Mk to the proposed model Mk′ , and finally h(u) and h(u′) are the densities in order

to balance the dimensions of parameter spaces of missingness models.

4.1.6 Results

The last part of the validation study is completed with the results of the BMP process.

Median is chosen as estimators of coefficients since the distribution of the coefficients

are skewed (see Appendix B.3.1).

The results of the BMP are evaluated in reference to the best case scenario in which

fitted models are the same as the underlying data generating models given in Section

4.1, except probit link is used for the main response model. These are given in Table

4.4 under the column "reference model". Below in Table 4.4, the relative bias values

with standard errors (SE) and Monte Carlo Standard Errors (MCSE) of the estima-

tions from RJMCMC process of the proposed hybrid method and also of a single

reference model are given. The same iteration sizes, thinning sizes under different

prior assumptions are applied for the reference model and the estimates are obtained

by using OpenBUGS 3.2.3.

Relative bias, SE and MCSE of estimates are calculated with the formulas given in

Equation 4.33.

Relative Biasβ̂j =
β̂j − βj
βj

SEβ̂j =

√√√√∑N
i=1 β̂

(i)
j

2

N
−

(∑N
i=1 β̂

(i)
j

N

)2

MCSEβ̂j =

√∑b
l=1(β̂jl − β̂j)2

(b− 1)b

(4.33)

where β̂j is the estimate and βj is the true value of jth coefficient, β̂(i)
j is the jth

coefficient estimate at the ith iteration, N is the iteration size after thinning, β̂jl is the

jth coefficient estimate of the lth batch, and b is the size of the batch. As a remainder,

the true values of the parameters are (β0, β1, β2) = (2, 1,−1).
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According to Table 4.4, all of the estimates of the reference model are underestimated.

Estimation performance and accuracy of β1 is the most important indicator for this

study since the MNAR mechanism belongs to the variable X1, there is a positive rel-

ative bias to be found but remains comparably very small for missing rates of 1% and

3% under prior assumptions A and B. For 5% missing rate, there is negative relative

bias with a high percentage (−17.45%) under parameter assumption B. The relative

bias is only very small (4.01%) for prior assumption A. Under prior assumptions C

and D, relative bias values of the proposed method for 1%, 3% and 5% missing rates

are quite higher, which is an indication of overestimation. However, the trend is dif-

ferent than this for 10% missing rate. For this missing rate, highly negative relative

bias ratios (−25.37% and −39.69%) are observed under the assumptions A and B,

which are still lower than ones of the reference model. This time, under the assump-

tions C and D, the relative bias values decrease to 2.45% and −8.86% respectively.

The accuracy of the intercept coefficient β0 and the accuracy of β2 are similar with

β1 in the most of the scenarios and also the behaviour of them is very similar to the

behavioural pattern of β1 coefficient. Only when the missing rate is at 10% and under

the assumption C, the relative bias is very low in β1 but higher at the other coeffi-

cients, e.g. 24.21% for β0 and 22.03% for β2. Moreover, the Standard Errors (SE)

of estimations in process are quite small, indicating the convergence of the posterior

since most of the MCSE values are very small and less than
1

20
of standard errors of

the estimations. The MCSE values for the reference models are much more smaller

than the proposed method since there is only a single model is simulated for the esti-

mations, however most of the relative bias ratios of the proposed method are smaller

than the reference model. All in all, the higher the missing rate is, the more sensitive

the estimations become to the prior assumptions.

4.1.6.1 Convergence Diagnostics Results

The accuracy and the convergence of the RJMCMC process can be argued upon by

checking the convergence diagnostics given in Section 2.4.3. Firstly, density plots

given in Appendix B.3.1 provide information about the distributions of coefficients.

All the plots indicate that the densities of β0 and β1 coefficients are right skewed

while β2’s density is left skewed. These results strengthen the assumption of choosing
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medians as estimators since the mean values are highly affected from skewness.

The stationarity of the MCMC process by missing rate can be seen in the traceplots

given in Appendix B.3.3. In Table 4.5, the summary of some MCMC diagnostics

results are given. Acceptance rates, R̂ values of BGR diagnostic, thinning values and

dependence factors (I) of Raftery-Lewis diagnostic are given under different parame-

ter assumptions by missing rate.

Table 4.5: MCMC Diagnostics For Validation Study Under Different Assumptions

by Missing Rate

Missing

Rate
Prior Assumptions

Acceptance

Rate

R̂

Value
Thinning

Raftery Dependence Factor

(chain 1 - chain2)

β0 β1 β2

1%

A: β, φ ∼ N(0, 42) & X1 ∼ N(−1, 12) 0.169 1 50 1.10 - 1.11 1.17 - 1.15 1.12 - 1.14

B: β, φ ∼ N(0, 42) & X1 ∼ N(−1, 1.52) 0.480 1 20 1.22 - 2.08 1.18 - 2.17 1.23 - 2.04

C: β, φ ∼ N(0, 62) & X1 ∼ N(−1, 12) 0.380 1 30 1.19 - 1.17 1.20 - 1.23 1.19 - 1.15

D: β, φ ∼ N(0, 62) & X1 ∼ N(−1, 1.52) 0.685 1 20 1.01 - 0.99 0.99 - 1.01 1.00 - 1.02

3%

A: β, φ ∼ N(0, 42) & X1 ∼ N(−1, 12) 0.543 1 20 1.14 - 1.17 1.15 - 1.16 1.15 - 1.16

B: β, φ ∼ N(0, 42) & X1 ∼ N(−1, 1.52) 0.710 1 10 1.01 - 1.00 1.01 - 1.00 1.00 - 1.00

C: β, φ ∼ N(0, 62) & X1 ∼ N(−1, 12) 0.279 1 40 1.18 - 1.16 1.14 - 1.20 1.10 - 1.17

D: β, φ ∼ N(0, 62) & X1 ∼ N(−1, 1.52) 0.319 1 40 1.15 - 1.18 1.17 - 1.12 1.13 - 1.12

5%

A: β, φ ∼ N(0, 42) & X1 ∼ N(−1, 12) 0.419 1 20 1.23 - 1.24 1.25 - 1.24 1.26 - 1.28

B: β, φ ∼ N(0, 42) & X1 ∼ N(−1, 1.52) 0.712 1 10 1.01 - 1.00 1.00 - 1.01 1.01 - 1.00

C: β, φ ∼ N(0, 62) & X1 ∼ N(−1, 12) 0.558 1 10 1.05 - 1.04 1.04 - 1.05 1.04 - 1.04

D: β, φ ∼ N(0, 62) & X1 ∼ N(−1, 1.52) 0.413 1 20 1.01 - 1.01 1.03 - 1.01 1.03 - 1.02

10%

A: β, φ ∼ N(0, 42) & X1 ∼ N(−1, 12) 0.649 1 20 0.99 - 1.00 1.01 - 1.01 1.00 - 1.01

B: β, φ ∼ N(0, 42) & X1 ∼ N(−1, 1.52) 0.430 1 40 1.07 - 1.05 1.04 - 1.03 1.05 - 1.04

C: β, φ ∼ N(0, 62) & X1 ∼ N(−1, 12) 0.610 1 100 0.99 - 1.01 1.02 - 0.99 1.01 - 0.99

D: β, φ ∼ N(0, 62) & X1 ∼ N(−1, 1.52) 0.595 1 10 1.02 - 1.02 1.04 - 1.05 1.05 - 1.04

Examining the Table 4.5, acceptance rates are varying between 16.9% and 71, 2%, but

most of the acceptance rates are within the range of the suggestions of Gelman and

Rubin [20]. Higher or lower acceptance rates indicates slow convergence. Thus, it

can be said that the RJMCMC algorithm slowly converges for missing rate 1% under

assumptions A and D, for 3% under assumptions A and B, for 5% under assumptions

B and C, and for 10% A, B and D. Most of these scenarios are also the ones indicating

smaller relative bias ratios. Although the convergence is slow, it is established. All

the R̂ values are 1 and this is considered to be a sign of convergence and proper mix

of chains. In addition to these diagnostics, BGR plots and Geweke plots in accor-

dance with different missing rates are given in Appendix B.3.4 and B.3.5, and they
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verify the results shared here. For convergence and autocorrelation, Raftery-Lewis

diagnostic is used. Thinning values are determined in order to reduce the autocor-

relation and dependence factor values. The dependence factors (I) of Raftery-Lewis

diagnostics in Table 4.5 are given for two chains and by different missing rates. Ac-

cording to the table, the dependence factors are around 1, which is a sign of almost

no autocorrelation and posterior convergence except the values for 1% missing rate

under assumptions B. Those dependence factors are also lower than 5, therefore it can

still be considered as an indication of low autocorrelation and posterior convergence.

Furthermore, autocorrelation plots given in Appendix B.3.2 verify these indications.

4.1.7 Sensitivity Analysis

Since the RJMCMC algorithm in the validation study is based on a large amount of

assumptions and since there are a lot of unknown parameters to be estimated, a sensi-

tivity analysis needs to be performed in order to see the sensitive assumptions of the

algorithm. During the validation study, more than 60 runs of algorithm are conducted

with different scenarios and assumptions. The first substantial observation about sen-

sitivity is to be the assumption of missing covariate characteristics. A small change in

assumption affects the results remarkably. As it can be seen in Table 4.4, the relative

bias of β1 estimation for 5% missing rate decreases effectively when the variance is

taken as 12 instead of 1.52. In addition to that, when the mean was assumed to be 0

forX1 during the simulation trials, the estimations were significantly underestimated,

therefore, these results of them were not considered or put in this study. Moreover, it

is discovered that the assumptions about coefficients are critical as a means of getting

accurate estimations. As the missing rate increases, the larger variances of β and φ

coefficients are needed for lower relative bias. For instance, in Table 4.4, the rela-

tive bias of β1 coefficient for 10% missing rate decreases as the variance assumption

of β and φ gradually increase from 42 to 62. At this point, additional attention is

needed regarding the convergence and stationarity of the RJMCMC algorithm since

the ability of algorithm’s movement among models can be affected by this variation.

During the simulation trials, large variances are observed to cause slow convergence

because of the large variety of proposed coefficient values, as small variances can

also induce slow convergence since it causes a stuck around a set of similar proposed
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values. Another observation regarding sensitivity is about the choice of models. The

main model is taken as both logit and probit. Logit models are observed to perform

better than the probit ones. Moreover, the construction of the model space is also

very effective on the estimations. The higher the repetitions in the T-Step Occam’s

Window method used for filtering the model space, the more convenient models are

filtered. The results of the validation study indicates that the algorithm becomes more

sensitive to prior assumptions as the missing rate increases. Table 4.4 points out the

need of calibration in the variance of coefficients, and the variance of covariate X1 is

order to get more accurate estimations as the missing rate increase.

4.2 Real Data Application

In this section, the methodology is adapted and applied utilizing a real data containing

MNAR mechanism. The results are then compared with the results of other studies

for the same data in order to see the differences and similarities of the estimations.

4.2.1 Data Description

The data set is taken from Pan-London Assertive Outreach Study, and consists of 3

parts, all of which are conducted in 2003 [77] [6] [57] with two additional studies

in 2004 [58] and 2007 [15]. The first study in 2003 (part 1) deals with the charac-

terisation of assertive outreach teams on mental health field in the United Kingdom

(UK) and determination of possible distinction within groups [77]. The second study

in 2004 (part 2) is conducted in order to observe the staff experience of assertive out-

reach teams on this field and compare it with the community mental health teams and

other different types of assertive outreach teams [6]. The third study in 2007 (part 3)

dwells on the characteristics of mental health patients and the effects of the assertive

outreach team application in the UK on patients [57]. The additional study conducted

in 2004 focuses on the characteristics of staff and patients in order to determine the

predictors of voluntary and compulsory admissions of these services in the UK [58].

The last study concentrates on the role of the therapeutic relationship to the outcomes

of assertive outreach service in order to provide and keep a sustainable service [15].
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The details of the study and the data set are specified in those articles.

The data set is not used entirely in this thesis. The main focus is on modeling the

hospitalization of patients with mental illness at the end of a 9-month follow-up. The

model and the candidate variables are taken as the same with the study of Kalayli-

oglu and Ozturk (2013) [37], so a comparison can be made among the estimations

in order to evaluate the methodology in this thesis. Therefore, the response variable

is binary where yi = 1 stands for the ith patient who is hospitalized at the end of 9-

month follow-up period with yi = 0 denoting the ith patient who is not hospitalized.

Six candidate variables (x1, . . . , x6) are chosen for modeling hospitalization. x1 is a

discrete variable denoting the number of in-patient days of hospitalization in the last

two years prior to baseline assessment, x2 is the dichotomous variable that standing

for the patient status (1 = new or 2 = established), x3 is continuous and repre-

sents the age, x4 is another dichotomous variable denoting the gender (0 = male or

1 = female), x5 is 4 level categorical variable standing for the ethnicity (1 = white,

2 = black Caribbean, 3 = black African and 4 = other) of patients, while x6

being 3 level categorical variable implying the cluster of the assertive outreach team

serving patients (1 = Team A, 2 = Team B and 3 = Team C). The variable with

MNAR mechanism is considered as x1, since the hospitalized patients with longer

in-patient days for two years are expected to hide such information. For the purpose

of leaving only one variable with missing values, some simple refinements are ap-

plied to other variables. There are 10 missing information pieces in the real data set

about ethnicity of the patients, so they are categorized under other status to that end.

Also there are 5 missing values concerning the age of patients, which are excluded.

There are 50 missing observations for x1 variable with the other variables being fully

observed. The missing rate is 8.7% ≈ 9%. It is determined in the 3rd part of the study

(2003) that, there is a statistically significant difference between patient status (new

or established) and also the established patients in the team of cluster C have not been

hospitalized as the established patients in the team of cluster A and B. Therefore, the

interaction between patient status and cluster of the assertive outreach team is also

taken as a candidate variable.
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4.2.2 Construction of The Model

Since there is only one variable with MNAR mechanism, the model consists of two

parts, the main model and the missingness model. While the missingness models

differ, the main model remains the same for every model in model space.The main

model is taken as a logistic model where response variable is Y and covariates X =

(X1, X2, X3, X4, X51, X52, X53, X61, X62, X2X61, X2X62) given in Equation 4.34.

yi|pyi ∼Bernoulli(pyi)

logit(pyi) =β0 + β1x1i + β2x2i + β3x3i + β4x4i

+β5x51i + β6x52i + β7x53i

+β8x61i + β9x62i

+β10x2ix61i + β11x2ix62i

(4.34)

whereX51,X52 andX53 are the dummy variables for ethnicity white, black Caribbean

and black African respectively, X61 and X62 are the dummy variables for cluster of

teams A and B respectively andX2X61 andX2X61 are the interaction terms of patient

status and cluster of teams.

Missingness models are also taken as logistic models. Covariates of missingness

models differ by models in the model space. The general form of the missingness

model is shared in Equation 4.35.

ri|prki ∼Bernoulli(prki )

logit(prki ) =wt
ki
φk

(4.35)

where R = ri is the missingness indicator (ri = 0 if missing and ri = 1 if observed),

Wk is the covariate vector, and φk is the coefficient vector of kth missingness model.

The joint posterior given in Equation 4.3 can be applied with the same factorization

and setup for the real data study. Only Dobs vector is formed additionally for the real

data and it consists of all the covariates below:

Dobs = (X1
obs, X2, X3, X4, X51, X52, X53, X61, X62, X2X61, X2X62, Y, R).

The likelihoods for missingness indicator R and for the response Y in Equation 4.3
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can be composed as in Equation 4.36 for two logistic regression models.

P (R = ri|X1
miss, Dobs,Mk,φk) =

573∏
i=1

prirki
(1− prki )

1−ri

P (Y = yi|X1
miss, Dobs,Mk,βk) =

573∏
i=1

pyiyki
(1− pyki )

1−yi

(4.36)

Prior distribution of X1 is described as

P (X1
miss|Dobs,Mk) = P (x1,1

miss, . . . , xmiss1,nmiss
|Dobs,Mk). With X1 being discrete,

number of in-patient days is considered to fit a Poisson distribution. Since there are

too many zero values available in the data, prior distribution for X1 is considered to

be a Zero Inflated Poisson (ZIP) model, of which distribution is given in Equation

4.37.

x1i ∼ ZIP (π̂, λ̂)

P (X1 = x1i) =


π̂ + (1− π̂)e−λ̂ x1i = 0

(1− π̂)
λ̂x1ie−λ̂

x1i !
x1i > 0

(4.37)

where π̂ is the estimated mean of zero inflation probability, and λ̂ is the estimated

mean of average number of in-patient days for missing part of X1. π̂ and λ̂ are

calculated for nmiss = 50 with the following formulas:

π̂ =

∑nmiss
i=1 logit(πi)

nmiss
and logit(πi) = xtiγ (4.38)

λ̂ =

∑nmiss
i=1 log(λi)

nmiss
and log(λi) = xtiα (4.39)

Age (X3) and gender (X4) of patients are taken as covariates for the ZIP model (i.e

xi = (x3,i, x4,i)) in order to estimate the coefficients α and γ. They are estimated

by using the complete part of the data set and by using the same ZIP model given in

Equation 4.37. The model summary is provided in Table 4.6.
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Table 4.6: ZIP Model Coefficients by Using Observed Data

Coefficient

γ α

(Intercept) -2.0086 4.8050

x3 0.0335 0.0066

x4 -0.1878 0.0348

According to Table 4.6, logit(πi) and log(λi) model coefficients are structured below:

log(λi) = γ0 + γ1x3i + γ2x4i

= −2, 0086 + 0, 0335x3i − 0, 1878x4i

logit(πi) = α0 + α1x3i + α2x4i

= 4, 8050 + 0, 0066x3i + 0, 0348x4i

Prior distributions for βk, φk and Mk are taken exactly the same as in the validation

study on a simulated dataset. See the Equations 3.10, 3.11 and 4.8. Only the sizes of

the coefficients are adapted accordingly for this analysis.

Full conditional distributions of parameters X1, βk and φk used for Gibbs sampling

algorithm in validation study (Equation 4.13) are updated according to the real data

analysis. Updated full conditional distribution of X1 is given as follows:

f(xmiss1i
|Dobsi ,βk,φk, µx1 , σ

2
x1

) =(pyi)
yi(1− pyi)1−yi

∗(prki )
ri(1− prki )

1−ri

∗


π̂ + (1− π̂)e−λ̂ if x∗1i = 0

(1− π̂)
λ̂x
∗
1ie−λ̂

x∗1i !
if x∗1i > 0

(4.40)

Since the main model for the response is logistic, full conditional distribution for

β coefficients remains the same as in the validation study, however the missingness

models are taken as logistic in the real data analysis, even though they were consid-

ered probit in the validation study. Therefore, full conditional distribution for φk is

updated in the way of the full conditional distribution of β.
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The same auxiliary variable, used in the validation study, Zφk
= (zφk,1 , . . . , zφk,n) is

defined in Equation 4.41 in which zφk,i = wkiφk + εi with wki being the covariate

vector of kth missingness model along with εi ∼ N(0, λi) and i = 1, . . . , n.

φk|Xmiss
1 ,Mk,Zφk

∼ N(µ̃φk , Σ̃φk)

µ̃φk = Σ̃φk(Σ
−1
φ µφ +W t

kBZφk
)

Σ̃φk = (Σ−1φ +W t
kBWk)−1

(4.41)

whereB = diag(λ−11 , . . . , λ−1n ).

Acceptence probabilities for RJMCMC are constructed to be the same as the vali-

dation part in Section 4.1.4. The model space construction is also the same as its

counterpart in the validation study in Section 4.1.5. Model space table, containing 13

models, is shared in Table 4.7.

Table 4.7: Model Space with Model Posterior Probabilities of the Real Data Analysis

Covariate

Model No X1 X2 X3 X4 X51 X52 X53 X61 X62 X2X61 X2X62 Y P(Mk|D)

1 • 0.0000

2 • • 0.0241

3 • • 0.0470

4 • • 0.0471

5 • • 0.0472

6 • • 0.0478

7 • • • 0.1199

8 • • • 0.1198

9 • • • 0.1201

10 • • • 0.1198

11 • • • 0.1201

12 • • • 0.1206

13 • • • • 0.0666

Covariates of the models are represented through dots along with the computations of
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model posterior probabilities (P(Mk|D)) for each model. In Table 4.7, it can be seen

that, the model posterior probability of the 1st model containing only the covariate

X1 is zero, meaning that only observed X1 values would not be enough to explain

the missingness indicator of MNAR. Although the most saturated model is the 13th

model with 4 covariates (5 coefficients including the intercept), posterior probability

of the models through 7 to 12 are higher. After the construction of the model space,

transition probabilities are computed according to that model space and it is provided

in a matrix form in Table 4.8.

Table 4.8: Transition Probability Matrix for The Model Space of the Real Data Anal-

ysis

From

To
1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.1250 0.0938 0.0938 0.0938 0.0938 0.0938 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0313

2 0.0698 0.0930 0.0930 0.0930 0.0930 0.0930 0.0698 0.0698 0.0698 0.0698 0.0698 0.0698 0.0465

3 0.0698 0.0930 0.0930 0.0930 0.0930 0.0930 0.0698 0.0698 0.0698 0.0698 0.0698 0.0698 0.0465

4 0.0698 0.0930 0.0930 0.0930 0.0930 0.0930 0.0698 0.0698 0.0698 0.0698 0.0698 0.0698 0.0465

5 0.0698 0.0930 0.0930 0.0930 0.0930 0.0930 0.0698 0.0698 0.0698 0.0698 0.0698 0.0698 0.0465

6 0.0698 0.0930 0.0930 0.0930 0.0930 0.0930 0.0698 0.0698 0.0698 0.0698 0.0698 0.0698 0.0465

7 0.0455 0.0682 0.0682 0.0682 0.0682 0.0682 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0682

8 0.0455 0.0682 0.0682 0.0682 0.0682 0.0682 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0682

9 0.0455 0.0682 0.0682 0.0682 0.0682 0.0682 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0682

10 0.0455 0.0682 0.0682 0.0682 0.0682 0.0682 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0682

11 0.0455 0.0682 0.0682 0.0682 0.0682 0.0682 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0682

12 0.0455 0.0682 0.0682 0.0682 0.0682 0.0682 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0682

13 0.0303 0.0606 0.0606 0.0606 0.0606 0.0606 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.1212

After calculating the transition probabilities, RJMCMC algorithm can now be ap-

plied. The algorithm used in the validation study is adapted to the real data application

with minor changes but the structure of the algorithm remains the same.

4.2.3 Results

BMP algorithm of real data analysis is conducted with RStudio software, based on

R programming software as used in the validation study. Two chains are obtained in

order to assure convergence under different prior assumptions (A: β, φ ∼ N (0, 12)

or B: β, φ ∼ N (0, 1.52) or C: β, φ ∼ N (0, 22)). Iteration size is taken between
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300,000 and 500,000 with additional 30,000 or 50,000 burn-in size. Only the results

of the estimations under prior assumptions A are consistent with the results of the

reference study, the results of B and C are tabulated in the sensitivity analysis part.

For assumption A, every 5th draws are taken for posterior inference, therefore 60,000

posterior draws are used in total. Initial values of βj coefficients are taken as the

point estimates given in Kalaylioglu and Ozturk (2013) [37]. MCMC diagnostics are

carried out to ensure the convergence and accurate estimates. For assumption A, the

acceptance ratio of RJMCMC is observed 84.3% and R̂ values for all coefficients

equal to 1. All the Raftery Dependency Factor (I) values for coefficients are found

within the range of 1.04 and 1.07, indicating that there is hardly any autocorrelation

among posterior draws. Additional to these diagnostics, trace plots, autocorrelation

plots, BGR plots and MCSE values of coefficients are provided in Appendix C.

Table 4.9: Real Data Analysis Estimates (95% Posterior Interval Estimates)

Estimate (95% Posterior Interval Estimates)

Proposed Method (BMP) Only Observed Data Kalaylioglu & Ozturk (2013)1

β0 -0.6979 (-1.462, 0.067) -0.9738 (-1.784, -0.164) -1.360 (-2.317, -0.428)

β1
? 0.0019 (-0.004, 0.008) 0.0023 (0.001, 0.004) 0.003 (0.002, 0.005)

β2 1.1623 (-0.680, 3.005) 1.3918 (0.495, 2.289) 0.777 (-0.439, 1.941)

β3 -0.0005 (-0.021, 0.020) -0.0037 (-0.020, 0.013) -0.012 (-0.029, 0.006)

β4 0.2987 (-0.387, 0.985) 0.1229 (-0.259, 0.505) 0.213 (-0.197, 0.634)

β5 -0.0550 (-0.864, 0.754) 0.1847 (-0.292, 0.662) 0.200 (-0.390, 0.799)

β6 0.2794 (-0.182, 0.741) 0.2067 (-0.293, 0.707) 0.013 (-0.675, 0.723)

β7 -0.1089 (-0.883, 0.665) 0.1439 (-0.482, 0.770) 0.069 (-0.715, 0.854)

β8 -0.1196 (-0.629, 0.390) 0.1518 (-0.378, 0.682) 0.713 (0.076, 1.373)

β9 0.5693 (-0.450, 1.589) 0.4446 (-0.246, 1.136) 0.941 (0.151, 1.747)

β10 -0.5500 (-2.294, 1.194) -0.738 (-1.758, 0.282) -0.195 (-1.471, 1.105)

β11 -1.3055 (-3.383, 0.772) -1.3451 (-2.690, 0.001) -0.918 (-2.486, 0.678)

? Coefficient belonging covariate with MNAR
1 Results are taken from Table 4 for Model I [37].

Results of the real data analysis are given in Table 4.9 together with the estimations of

only observed data and the estimations given in the article of Kalaylioglu and Ozturk

(2013). The same data set is used for these estimations [37].
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Only β1 coefficient belongs to the covariate with MNAR, the rest belongs to the fully

observed covariates. MNAR mechanism of in-patient days of hospitalization is based

on the opinion that the hospitalized patients with longer in-patient days for two years

are prone to hide such information. Therefore, the impact of this covariate to the re-

sponse is likely to be less, which means the β1 coefficient is expected to be lower than

the estimates from the observed part. This opinion is supported with the results too:

β1 estimate of BMP (0.0019) is less than its counterpart one with an observed part

(0.0023). In the study of Kalaylioglu and Ozturk (2013), the same coefficient is esti-

mated higher (0.003) than BMP. The reason of this may be the difference between the

sample sizes (nKalaylioglu = 476 < nBMP = 573). Nevertheless, the point estimates

of BMP are in the ranges of 95% posterior interval estimates given in Kalaylioglu and

Ozturk. Moreover, the results can be compared in terms of ranges of posterior interval

estimates. The ranges in BMP are broader than the ones of Kalaylioglu and Ozturk in

most of the posterior interval estimates, especially the one belonging MNAR covari-

ate is three times wider.

4.2.4 Sensitivity Analysis for Real Data Application

As shown in the validation study, the higher the missing rate, the more sensitive is

the method to the prior assumptions. Therefore in real data applications of BMP, we

recommend a sensitivity analysis and illustrate it here on the dataset at hand. In the

real data application, the main model contains 12 coefficients, while the missingness

models contain at most 5 coefficients. This results in a maximum of 67 unknown

parameters to be estimated including 50 missing values. When the total number of

parameters to be estimated and missing values is high with respect to the size of the

sample, it is observed that the computation duration increases significantly. 3 different

prior assumptions on model coefficients β and φ are considered: A: β, φ ∼ N (0, 12),

B: β, φ ∼ N (0, 1.52) and C: β, φ ∼ N (0, 22). The convergence diagnostics of the

chains under the three different priors show similar behaviours and they converge.

However, the acceptance ratios for B and C are lower than that for A. The results are

provided in Table 4.10.

Accordingly, the posterior results, particularly for β1 (the MNAR coefficient), are
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Table 4.10: Estimates with MCSE of The Real Data Analysis under 3 Different Prior

Assumptions

Estimates (MCSE)

Prior Assumption

A: β, φ ∼ N (0, 12) B: β, φ ∼ N (0, 1.52) C: β, φ ∼ N (0, 22)

β̂0 -0.6979 (0.0011) -1.2555 (0.0114) -1.3264 (0.0111)

β̂1 0.0019 (0.0000) 0.9622 (0.0076) 1.3337 (0.0082)

β̂2 1.1623 (0.0027) 0.8629 (0.0119) 0.7847 (0.0123)

β̂3 -0.0005 (0.0000) -0.0489 (0.0081) 0.0579 (0.0091)

β̂4 0.2987 (0.0010) 0.1500 (0.0110) 0.2442 (0.0117)

β̂5 -0.0550 (0.0012) 0.1757 (0.0126) 0.1832 (0.0113)

β̂6 0.2794 (0.0007) 0.0641 (0.0111) 0.0132 (0.0118)

β̂7 -0.1089 (0.0011) 0.1123 (0.0110) 0.1084 (0.0118)

β̂8 -0.1196 (0.0008) 0.6942 (0.0105) 0.7272 (0.0108)

β̂9 0.5693 (0.0016) 0.9656 (0.0111) 0.9319 (0.0114)

β̂10 -0.5500 (0.0025) -0.1288 (0.0107) -0.1921 (0.0112)

β̂11 -1.3055 (0.0031) -0.9768 (0.0114) -0.9413 (0.0121)

sensitive to the prior distributions on β and φ. Furthermore, the MCSEs being con-

siderably lower for A than B and C indicates that prior variance should be kept at a

minimum level in such datasets.

Lastly, the repetitions of the T-Step Occam’s window method should be much higher

when the unknown parameters are as many as in this case. However, this time, the

computation duration increases highly, in addition to the increase with respect to the

unknown parameters.
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CHAPTER 5

CONCLUSION AND DISCUSSION

In this thesis, a methodology of a hybrid Bayesian modeling system, called Bayesian

Model Pooling (BMP), is introduced for handling the uncertainty caused by Missing-

Not-At-Random (MNAR) mechanism in covariates of a GLM model in addition to

the uncertainty in model selection within the frame of Bayesian inference. When the

missingness mechanism of a variable is MNAR, an attention should be paid to the

inference about that variable in order to obtain accurate estimations, since MNAR is

known to cause bias on estimations. Moreover, determining the best fit for a model

containing covariates with MNAR also increases the uncertainty about the model se-

lection which causes another problem to be carefully examined. In this study, the vari-

ables with MNAR are considered to be the covariates of a generalized linear model

(GLM) with a dichotomous response, and the missingness mechanism is handled with

a model space consisting GLM candidates too. Structure of the joint model contain-

ing the main model and the missingness model, construction of the model space and

all the inference for variables in the joint model are completed in Bayesian frame-

work. Firstly, a proper model space containing the best candidate models is filtered

according to an adaptive Occam’s window method called T-Step Occam’s Window.

Then, posterior distributions of model coefficients for every model in the model space

are achieved by using Reversible Jump Markov Chain Monte Carlo (RJMCMC) ap-

proach, which is an extension of classical Metropolis-Hastings (M-H) sampling algo-

rithm for varying model dimensions. After that, coefficient estimates are obtained by

pooling the posterior estimations for each model, of which their posterior probabili-

ties are also calculated within RJMCMC algorithm.

In Chapter 2, preliminaries for constructing the methodology of the BMP are elu-
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cidated. First of all, the definitions of generalized linear models, logistic and probit

regression are given. Later, the definition of missing data, types of missingness mech-

anisms and handling methods for those types are provided in detail. Next, Bayesian

inference is elaborated including the basic Bayesian approach, Markov Chain Monte

Carlo (MCMC) approach with its diagnostics and Bayesian model selection methods

such as Bayes factor, Bayesian Information Criteria (BIC), Bayesian model averaging

(BMA) and RJMCMC.

In Chapter 3, the structure of the proposed hybrid Bayesian modeling system (BMP)

methodology is provided in detail. Firstly, the joint posterior model, containing the

main model (GLM), the missingness models (GLM) for the missingness indicators,

conditional priors of covariates with MNAR, priors for the unknown model parame-

ters and model priors in the model space, is constructed in accordance with underlying

concepts given in Chapter 2. Selection model method is chosen for factorization of

the joint posterior. After that, the constructions of model spaces are described for

all missingness indicators. Only a certain amount of best fits are filtered for model

spaces according to the T-Step Occam’s Window algorithm in which the BIC values

are used in order to attain model probabilities. Later, the method of constructing tran-

sition probability matrices, used in RJCMCM algorithm, are shared in detail. Then,

RJMCMC algorithm are adapted as a model selection method, and it is followed by a

clear explanation of the usage of joint posteriors along with the transition probabili-

ties in this algorithm in order to achieve posterior distributions of coefficients. Lastly,

the methodology is completed by providing how the coefficient estimates are pooled

by using the posterior model probabilities as model weights.

In Chapter 4, a validation study on a simulated dataset with known true parameters

and a real data analysis are performed. The validation study on a simulated dataset

is conducted under different scenarios in order to examine the performance of the

proposed methodology. It is noticed that the performance highly depends on miss-

ing rate and assumptions for parameters of missing values and model coefficients.

The results of the sensitivity analysis indicate that the higher the missing rate is,

the more sensitive the algorithm becomes. The reason of this is the increase in the

number of unknown parameters, since every missing value is treated as an unknown

parameter. Thus, the algorithm tries to estimate additional unknown parameters as
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the missing rate increases. This result leads us to pay attention to other assumptions

in the validation study. As the missing rate increases, the variance assumptions of the

missing values and model coefficients should decrease and they should be adjusted

carefully to get accurate estimations. The results are considered satisfying when the

assumptions are set carefully, however computation duration may be a disadvantage,

since a simulation run took around 20 - 24 hours with a mid-range built PC (AMD

Ryzen 3600 Processor running 3.6GHz, using 16GB RAM, running Windows 10)

in order to assure posterior convergence. A further study can be designed focusing

on the enhancement of the algorithm performance and acceleration of convergence.

Furthermore, the data analysis of a real life problem is conducted to ensure that the

methodology could contribute solving of a real life experiment. All the setup of the

analysis are based on the study of Kalaylioglu and Ozturk (2013) for comparison. The

results are also found satisfying and relatively close to the reference study, although

the sample sizes of analyses were not the same.

For further study, the methodology can be extended to more complex model spaces

including different kinds of models such as generalized mixed models, longitudinal

models, etc. A model space constructed with expert knowledge can be more useful

in real life problems in order to get more accurate and realistic results. Also, this

study can be extended for handling more than one covariate with MNAR or it can be

adapted for handling response variable with MNAR.
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Appendix A

APPENDIX: R CODES

A.1 φ0 Determination

# necessery functions

# mode function

getmode <- function(v) {

uniqv <- unique(v)

uniqv[which.max(tabulate(match(v, uniqv)))]

}

# find function

rfind <- function(x)seq(along=x)[as.logical(x)]

seeds <- 689659;

seedsn <- 898734;

runif(seeds);

rnorm(seedsn);

n=250; # sample size

mcsize=1; # monte carlo simulation size

# initial parameters for data generation

beta = c(2, 1, -1);

alpha1 = c(-1.5, 0.5,0.75);

alpha2 = c(1, 1);
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# initial parameters for 15% missingness

phi1 = c(1, 1, 1);

phi2 = c(1, 1, 1.0, 1, 1);

x2<-rnorm(n, alpha2[1],alpha2[2]);

mux1=alpha1[1]+alpha1[2]*x2;

x1 <- rnorm(n, mux1, alpha1[3]);

# generate y from binomial

numpy=exp( beta[1]+ beta[2]*x1 + beta[3]*x2 );

py=numpy/(1+numpy);

y=rbinom(n,1,py);

# missingness percentage

misperc=0.01 #or 0.03 or 0.05 or 0.10

phi0i = seq(-50, 50, by=0.05)

bestphi0=matrix(0, nrow = 1000, ncol = 1);

for(j in 1:1000){

missprob = matrix(0, nrow = length(phi0i), ncol = 1);

r = matrix(0, nrow = n, ncol = 1);

w = matrix(0, nrow = n, ncol = 1);

for(k in 1:length(phi0i)){

numpr = phi0i[k]+phi1[1]*y+phi1[2]*x2+phi1[3]*x1

w = rnorm(n,numpr,1);

r[rfind(w>=0)] = 1;

r[rfind(w<0)] = 0;

missprob[k] = mean(r);

}
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misprobdif<-abs(missprob-misperc);

A=cbind(phi0i,misprobdif);

minA<-A[order(misprobdif)];

bestphi0[j]<-minA[1];

}

getmode(bestphi0)
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Appendix B

APPENDIX: VALIDATION STUDY

B.1 Model Spaces with Model Posterior Probabilities By Missing Rate

Table B.1: Model Space with Model Posterior Probabilities For 1% Missing Rate

Under Prior Assumptions β and φ ∼ N (0; 42) and X1 ∼ N (−1; 12)

Covariate

Model No X1 X2 Y X2
1 X2

2 X1X2 X1Y X2Y P (M |D)

1 • 0.0000

2 • 0.0004

3 • • 0.0110

4 • • 0.0094

5 • • 0.0096

6 • • 0.0137

7 • • 0.0074

8 • • 0.0094

9 • • 0.0092

10 • • • 0.0675

11 • • • 0.0697

12 • • • 0.0640

13 • • • 0.0637

14 • • • • 0.2412

15 • • • • • 0.4238
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Table B.2: Model Space with Model Posterior Probabilities For 1% Missing Rate

Under Prior Assumptions β and φ ∼ N (0; 62) and X1 ∼ N (−1; 12)

Covariate

Model No X1 X2 Y X2
1 X2

2 X1X2 X1Y X2Y P (M |D)

1 • 0.0000

2 • 0.0005

3 • 0.0010

4 • • 0.0162

5 • • 0.0163

6 • • 0.0180

7 • • 0.0156

8 • • 0.0156

9 • • 0.0167

10 • • 0.0167

11 • • • 0.1440

12 • • • 0.1449

13 • • • 0.1453

14 • • • 0.1462

15 • • • 0.1432

16 • • • • 0.1600
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Table B.3: Model Space with Model Posterior Probabilities For 1% Missing Rate

Under Prior Assumptions β and φ ∼ N (0; 62) and X1 ∼ N (−1; 1.52)

Covariate

Model No X1 X2 Y X2
1 X2

2 X1X2 X1Y X2Y P (M |D)

1 • 0.0000

2 • 0.0003

3 • • 0.0186

4 • • 0.0194

5 • • 0.0184

6 • • 0.0184

7 • • 0.0191

8 • • 0.0182

9 • • 0.0187

10 • • 0.0182

11 • • • 0.1560

12 • • • 0.1563

13 • • • 0.1532

14 • • • 0.1550

15 • • • 0.1528

16 • • • 0.0774
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Table B.4: Model Space with Model Posterior Probabilities For 3% Missing Rate

Under Prior Assumptions β and φ ∼ N (0; 42) and X1 ∼ N (−1; 12)

Covariate

Model No X1 X2 Y X2
1 X2

2 X1X2 X1Y X2Y P (M |D)

1 • 0.0000

2 • 0.0005

3 • 0.0013

4 • • 0.0163

5 • • 0.0162

6 • • 0.0172

7 • • 0.0166

8 • • 0.0171

9 • • • 0.1350

10 • • • 0.1328

11 • • • 0.1324

12 • • • 0.1352

13 • • • 0.1357

14 • • • 0.1307

15 • • • • 0.1129
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Table B.5: Model Space with Model Posterior Probabilities For 3% Missing Rate

Under Prior Assumptions β and φ ∼ N (0; 42) and X1 ∼ N (−1; 1.52)

Covariate

Model No X1 X2 Y X2
1 X2

2 X1X2 X1Y X2Y P(Mk|D)

1 • 0.0000

2 • 0.0007

3 • 0.0016

4 • • 0.0228

5 • • 0.0230

6 • • 0.0230

7 • • 0.0229

8 • • 0.0228

9 • • 0.0230

10 • • • 0.1555

11 • • • 0.1548

12 • • • 0.1571

13 • • • 0.1585

14 • • • 0.1559

15 • • • 0.0787
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Table B.6: Model Space with Model Posterior Probabilities For 3% Missing Rate

Under Prior Assumptions β and φ ∼ N (0; 62) and X1 ∼ N (−1; 12)

Covariate

Model No X1 X2 Y X2
1 X2

2 X1X2 X1Y X2Y P (M |D)

1 • 0.0000

2 • 0.0007

3 • 0.0009

4 • • 0.0269

5 • • 0.0289

6 • • 0.0267

7 • • 0.0270

8 • • 0.0295

9 • • 0.0275

10 • • 0.0315

11 • • 0.0258

12 • • • 0.1699

13 • • • 0.1799

14 • • • 0.1782

15 • • • • 0.2467
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Table B.7: Model Space with Model Posterior Probabilities For 3% Missing Rate

Under Prior Assumptions β and φ ∼ N (0; 62) and X1 ∼ N (−1; 1.52)

Covariate

Model No X1 X2 Y X2
1 X2

2 X1X2 X1Y X2Y P (M |D)

1 • 0.0000

2 • 0.0006

3 • 0.0005

4 • • 0.0231

5 • • 0.0224

6 • • 0.0211

7 • • 0.0239

8 • • 0.0206

9 • • 0.0226

10 • • 0.0231

11 • • 0.0233

12 • • 0.0227

13 • • • 0.1515

14 • • • 0.1492

15 • • • 0.1575

16 • • • 0.1557

17 • • • • 0.1822
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Table B.8: Model Space with Model Posterior Probabilities For 5% Missing Rate

Under Prior Assumptions β and φ ∼ N (0; 42) and X1 ∼ N (−1; 12)

Covariate

Model No X1 X2 Y X2
1 X2

2 X1X2 X1Y X2Y P(Mk|D)

1 • 0.0000

2 • 0.0011

3 • 0.0015

4 • • 0.0285

5 • • 0.0289

6 • • 0.0299

7 • • 0.0289

8 • • 0.0283

9 • • 0.0307

10 • • 0.0287

11 • • • 0.1599

12 • • • 0.1590

13 • • • 0.1624

14 • • • 0.1614

15 • • • • 0.1507
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Table B.9: Model Space with Model Posterior Probabilities For 5% Missing Rate

Under Prior Assumptions β and φ ∼ N (0; 42) and X1 ∼ N (−1; 1.52)

Covariate

Model No X1 X2 Y X2
1 X2

2 X1X2 X1Y X2Y P(Mk|D)

1 • 0.0000

2 • 0.0008

3 • • 0.0245

4 • • 0.0250

5 • • 0.0242

6 • • 0.0247

7 • • 0.0248

8 • • 0.0251

9 • • 0.0248

10 • • 0.0240

11 • • • 0.1457

12 • • • 0.1475

13 • • • 0.1464

14 • • • 0.1447

15 • • • 0.1462

16 • • • 0.0716
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Table B.10: Model Space with Model Posterior Probabilities For 5% Missing Rate

Under Prior Assumptions β and φ ∼ N (0; 62) and X1 ∼ N (−1; 12)

Covariate

Model No X1 X2 Y X2
1 X2

2 X1X2 X1Y X2Y P (M |D)

1 • 0.0000

2 • 0.0007

3 • 0.0015

4 • • 0.0352

5 • • 0.0351

6 • • 0.0345

7 • • 0.0344

8 • • 0.0344

9 • • 0.0339

10 • • 0.0360

11 • • 0.0345

12 • • • 0.2065

13 • • • 0.2036

14 • • • 0.2060

15 • • • 0.1037
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Table B.11: Model Space with Model Posterior Probabilities For 5% Missing Rate

Under Prior Assumptions β and φ ∼ N (0; 62) and X1 ∼ N (−1; 1.52)

Covariate

Model No X1 X2 Y X2
1 X2

2 X1X2 X1Y X2Y P (M |D)

1 • 0.0000

2 • 0.0001

3 • 0.0003

4 • • 0.0036

5 • • 0.0039

6 • • 0.0044

7 • • 0.0038

8 • • 0.0035

9 • • • 0.0433

10 • • • 0.0461

11 • • • 0.0463

12 • • • 0.0449

13 • • • • 0.3158

14 • • • • 0.3222

15 • • • • 0.1619
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Table B.12: Model Space with Model Posterior Probabilities For 10% Missing Rate

Under Prior Assumptions β and φ ∼ N (0; 42) and X1 ∼ N (−1; 12)

Covariate

Model No X1 X2 Y X2
1 X2

2 X1X2 X1Y X2Y P(Mk|D)

1 • 0.0000

2 • 0.0010

3 • 0.0022

4 • 0.0024

5 • • 0.0320

6 • • 0.0316

7 • • 0.0303

8 • • 0.0318

9 • • 0.0313

10 • • 0.0308

11 • • • 0.1813

12 • • • 0.1761

13 • • • 0.1776

14 • • • 0.1788

15 • • • 0.0930
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Table B.13: Model Space with Model Posterior Probabilities For 10% Missing Rate

Under Prior Assumptions β and φ ∼ N (0; 42) and X1 ∼ N (−1; 1.52)

Covariate

Model No X1 X2 Y X2
1 X2

2 X1X2 X1Y X2Y P (M |D)

1 • 0.0000

2 • 0.0010

3 • 0.0023

4 • • 0.0285

5 • • 0.0275

6 • • 0.0267

7 • • 0.0298

8 • • 0.0275

9 • • 0.0277

10 • • 0.0272

11 • • • 0.1629

12 • • • 0.1663

13 • • • 0.1609

14 • • • 0.1629

15 • • • • 0.1488
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Table B.14: Model Space with Model Posterior Probabilities For 10% Missing Rate

Under Prior Assumptions β and φ ∼ N (0; 62) and X1 ∼ N (−1; 12)

Covariate

Model No X1 X2 Y X2
1 X2

2 X1X2 X1Y X2Y P(Mk|D)

1 • 0.0000

2 • 0.0004

3 • • 0.0383

4 • • 0.0378

5 • • 0.0380

6 • • 0.0349

7 • • 0.0351

8 • • 0.0360

9 • • 0.0345

10 • • 0.0349

11 • • 0.0355

12 • • 0.0341

13 • • • 0.1868

14 • • • 0.1823

15 • • • 0.1805

16 • • • 0.0909
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Table B.15: Model Space with Model Posterior Probabilities For 10% Missing Rate

Under Prior Assumptions β and φ ∼ N (0; 62) and X1 ∼ N (−1; 1.52)

Covariate

Model No X1 X2 Y X2
1 X2

2 X1X2 X1Y X2Y P (M |D)

1 • 0.0000

2 • 0.0006

3 • 0.0015

4 • • 0.0340

5 • • 0.0340

6 • • 0.0332

7 • • 0.0332

8 • • 0.0335

9 • • 0.0333

10 • • 0.0338

11 • • • 0.2181

12 • • • 0.2177

13 • • • 0.2174

14 • • • 0.1095

15 • • • • 0.1488
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B.2 Validation Study: Transition Probabily Matrices By Missing Rate

Table B.16: Transition Probability Matrix For 1% Missing Rate Under Prior Assump-

tions β and φ ∼ N (0; 42) and X1 ∼ N (−1; 12)

From

To
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.094 0.094 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.057 0.057 0.057 0.057 0.038 0.019

2 0.094 0.094 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.057 0.057 0.057 0.057 0.038 0.019

3 0.063 0.063 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.063 0.063 0.063 0.063 0.047 0.031

4 0.063 0.063 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.063 0.063 0.063 0.063 0.047 0.031

5 0.063 0.063 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.063 0.063 0.063 0.063 0.047 0.031

6 0.063 0.063 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.063 0.063 0.063 0.063 0.047 0.031

7 0.063 0.063 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.063 0.063 0.063 0.063 0.047 0.031

8 0.063 0.063 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.063 0.063 0.063 0.063 0.047 0.031

9 0.063 0.063 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.063 0.063 0.063 0.063 0.047 0.031

10 0.049 0.049 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.082 0.082 0.082 0.082 0.066 0.049

11 0.049 0.049 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.082 0.082 0.082 0.082 0.066 0.049

12 0.049 0.049 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.082 0.082 0.082 0.082 0.066 0.049

13 0.049 0.049 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.082 0.082 0.082 0.082 0.066 0.049

14 0.040 0.040 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.080 0.080 0.080 0.080 0.100 0.080

15 0.027 0.027 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.081 0.081 0.081 0.081 0.108 0.135

Table B.17: Transition Probability Matrix For 1% Missing Rate Under Prior Assump-

tions β and φ ∼ N (0; 62) and X1 ∼ N (−1; 12)

From

To
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.091 0.091 0.091 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.045 0.045 0.045 0.045 0.045 0.023

2 0.091 0.091 0.091 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.045 0.045 0.045 0.045 0.045 0.023

3 0.091 0.091 0.091 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.045 0.045 0.045 0.045 0.045 0.023

4 0.056 0.056 0.056 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.056 0.056 0.056 0.056 0.056 0.037

5 0.056 0.056 0.056 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.056 0.056 0.056 0.056 0.056 0.037

6 0.056 0.056 0.056 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.056 0.056 0.056 0.056 0.056 0.037

7 0.056 0.056 0.056 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.056 0.056 0.056 0.056 0.056 0.037

8 0.056 0.056 0.056 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.056 0.056 0.056 0.056 0.056 0.037

9 0.056 0.056 0.056 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.056 0.056 0.056 0.056 0.056 0.037

10 0.056 0.056 0.056 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.056 0.056 0.056 0.056 0.056 0.037

11 0.040 0.040 0.040 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.080 0.080 0.080 0.080 0.080 0.060

12 0.040 0.040 0.040 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.080 0.080 0.080 0.080 0.080 0.060

13 0.040 0.040 0.040 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.080 0.080 0.080 0.080 0.080 0.060

14 0.040 0.040 0.040 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.080 0.080 0.080 0.080 0.080 0.060

15 0.040 0.040 0.040 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.080 0.080 0.080 0.080 0.080 0.060

16 0.028 0.028 0.028 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.083 0.083 0.083 0.083 0.083 0.111
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Table B.18: Transition Probability Matrix For 1% Missing Rate Under Prior Assump-

tions β and φ ∼ N (0; 62) and X1 ∼ N (−1; 1.52)

From

To
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.107 0.107 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.036 0.036 0.036 0.036 0.036 0.036

2 0.107 0.107 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.036 0.036 0.036 0.036 0.036 0.036

3 0.050 0.050 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.050 0.050 0.050 0.050 0.050 0.050

4 0.050 0.050 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.050 0.050 0.050 0.050 0.050 0.050

5 0.050 0.050 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.050 0.050 0.050 0.050 0.050 0.050

6 0.050 0.050 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.050 0.050 0.050 0.050 0.050 0.050

7 0.050 0.050 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.050 0.050 0.050 0.050 0.050 0.050

8 0.050 0.050 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.050 0.050 0.050 0.050 0.050 0.050

9 0.050 0.050 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.050 0.050 0.050 0.050 0.050 0.050

10 0.050 0.050 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.050 0.050 0.050 0.050 0.050 0.050

11 0.028 0.028 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.083 0.083 0.083 0.083 0.083 0.083

12 0.028 0.028 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.083 0.083 0.083 0.083 0.083 0.083

13 0.028 0.028 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.083 0.083 0.083 0.083 0.083 0.083

14 0.028 0.028 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.083 0.083 0.083 0.083 0.083 0.083

15 0.028 0.028 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.083 0.083 0.083 0.083 0.083 0.083

16 0.028 0.028 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.083 0.083 0.083 0.083 0.083 0.083

Table B.19: Transition Probability Matrix For 3% Missing Rate Under Prior Assump-

tions β and φ ∼ N (0; 42) and X1 ∼ N (−1; 12)

From

To
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.100 0.100 0.100 0.075 0.075 0.075 0.075 0.075 0.050 0.050 0.050 0.050 0.050 0.050 0.025

2 0.100 0.100 0.100 0.075 0.075 0.075 0.075 0.075 0.050 0.050 0.050 0.050 0.050 0.050 0.025

3 0.100 0.100 0.100 0.075 0.075 0.075 0.075 0.075 0.050 0.050 0.050 0.050 0.050 0.050 0.025

4 0.061 0.061 0.061 0.082 0.082 0.082 0.082 0.082 0.061 0.061 0.061 0.061 0.061 0.061 0.041

5 0.061 0.061 0.061 0.082 0.082 0.082 0.082 0.082 0.061 0.061 0.061 0.061 0.061 0.061 0.041

6 0.061 0.061 0.061 0.082 0.082 0.082 0.082 0.082 0.061 0.061 0.061 0.061 0.061 0.061 0.041

7 0.061 0.061 0.061 0.082 0.082 0.082 0.082 0.082 0.061 0.061 0.061 0.061 0.061 0.061 0.041

8 0.061 0.061 0.061 0.082 0.082 0.082 0.082 0.082 0.061 0.061 0.061 0.061 0.061 0.061 0.041

9 0.042 0.042 0.042 0.063 0.063 0.063 0.063 0.063 0.083 0.083 0.083 0.083 0.083 0.083 0.063

10 0.042 0.042 0.042 0.063 0.063 0.063 0.063 0.063 0.083 0.083 0.083 0.083 0.083 0.083 0.063

11 0.042 0.042 0.042 0.063 0.063 0.063 0.063 0.063 0.083 0.083 0.083 0.083 0.083 0.083 0.063

12 0.042 0.042 0.042 0.063 0.063 0.063 0.063 0.063 0.083 0.083 0.083 0.083 0.083 0.083 0.063

13 0.042 0.042 0.042 0.063 0.063 0.063 0.063 0.063 0.083 0.083 0.083 0.083 0.083 0.083 0.063

14 0.042 0.042 0.042 0.063 0.063 0.063 0.063 0.063 0.083 0.083 0.083 0.083 0.083 0.083 0.063

15 0.029 0.029 0.029 0.057 0.057 0.057 0.057 0.057 0.086 0.086 0.086 0.086 0.086 0.086 0.114
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Table B.20: Transition Probability Matrix For 3% Missing Rate Under Prior Assump-

tions β and φ ∼ N (0; 42) and X1 ∼ N (−1; 1.52)

From

To
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.095 0.095 0.095 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048 0.048 0.048

2 0.095 0.095 0.095 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048 0.048 0.048

3 0.095 0.095 0.095 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048 0.048 0.048

4 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.059 0.059

5 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.059 0.059

6 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.059 0.059

7 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.059 0.059

8 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.059 0.059

9 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.059 0.059

10 0.042 0.042 0.042 0.063 0.063 0.063 0.063 0.063 0.063 0.083 0.083 0.083 0.083 0.083 0.083

11 0.042 0.042 0.042 0.063 0.063 0.063 0.063 0.063 0.063 0.083 0.083 0.083 0.083 0.083 0.083

12 0.042 0.042 0.042 0.063 0.063 0.063 0.063 0.063 0.063 0.083 0.083 0.083 0.083 0.083 0.083

13 0.042 0.042 0.042 0.063 0.063 0.063 0.063 0.063 0.063 0.083 0.083 0.083 0.083 0.083 0.083

14 0.042 0.042 0.042 0.063 0.063 0.063 0.063 0.063 0.063 0.083 0.083 0.083 0.083 0.083 0.083

15 0.042 0.042 0.042 0.063 0.063 0.063 0.063 0.063 0.063 0.083 0.083 0.083 0.083 0.083 0.083

Table B.21: Transition Probability Matrix For 3% Missing Rate Under Prior Assump-

tions β and φ ∼ N (0; 62) and X1 ∼ N (−1; 12)

From

To
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.093 0.093 0.093 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.047 0.047 0.047 0.023

2 0.093 0.093 0.093 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.047 0.047 0.047 0.023

3 0.093 0.093 0.093 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.047 0.047 0.047 0.023

4 0.058 0.058 0.058 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.058 0.058 0.058 0.038

5 0.058 0.058 0.058 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.058 0.058 0.058 0.038

6 0.058 0.058 0.058 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.058 0.058 0.058 0.038

7 0.058 0.058 0.058 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.058 0.058 0.058 0.038

8 0.058 0.058 0.058 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.058 0.058 0.058 0.038

9 0.058 0.058 0.058 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.058 0.058 0.058 0.038

10 0.058 0.058 0.058 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.058 0.058 0.058 0.038

11 0.058 0.058 0.058 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.058 0.058 0.058 0.038

12 0.044 0.044 0.044 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.089 0.089 0.089 0.067

13 0.044 0.044 0.044 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.089 0.089 0.089 0.067

14 0.044 0.044 0.044 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.089 0.089 0.089 0.067

15 0.031 0.031 0.031 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.094 0.094 0.094 0.125
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Table B.22: Transition Probability Matrix For 3% Missing Rate Under Prior Assump-

tions β and φ ∼ N (0; 62) and X1 ∼ N (−1; 1.52)

From

To
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0.083 0.083 0.083 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.042 0.042 0.042 0.042 0.021

2 0.083 0.083 0.083 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.042 0.042 0.042 0.042 0.021

3 0.083 0.083 0.083 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.042 0.042 0.042 0.042 0.021

4 0.051 0.051 0.051 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.051 0.051 0.051 0.051 0.034

5 0.051 0.051 0.051 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.051 0.051 0.051 0.051 0.034

6 0.051 0.051 0.051 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.051 0.051 0.051 0.051 0.034

7 0.051 0.051 0.051 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.051 0.051 0.051 0.051 0.034

8 0.051 0.051 0.051 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.051 0.051 0.051 0.051 0.034

9 0.051 0.051 0.051 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.051 0.051 0.051 0.051 0.034

10 0.051 0.051 0.051 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.051 0.051 0.051 0.051 0.034

11 0.051 0.051 0.051 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.051 0.051 0.051 0.051 0.034

12 0.051 0.051 0.051 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.051 0.051 0.051 0.051 0.034

13 0.038 0.038 0.038 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.077 0.077 0.077 0.077 0.058

14 0.038 0.038 0.038 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.077 0.077 0.077 0.077 0.058

15 0.038 0.038 0.038 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.077 0.077 0.077 0.077 0.058

16 0.038 0.038 0.038 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.077 0.077 0.077 0.077 0.058

17 0.027 0.027 0.027 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.081 0.081 0.081 0.081 0.108

Table B.23: Transition Probability Matrix For 5% Missing Rate Under Prior Assump-

tions β and φ ∼ N (0; 42) and X1 ∼ N (−1; 12)

From

To
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.095 0.095 0.095 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048 0.024

2 0.095 0.095 0.095 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048 0.024

3 0.095 0.095 0.095 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048 0.024

4 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.039

5 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.039

6 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.039

7 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.039

8 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.039

9 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.039

10 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.039

11 0.043 0.043 0.043 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.087 0.087 0.087 0.087 0.065

12 0.043 0.043 0.043 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.087 0.087 0.087 0.087 0.065

13 0.043 0.043 0.043 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.087 0.087 0.087 0.087 0.065

14 0.043 0.043 0.043 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.087 0.087 0.087 0.087 0.065

15 0.030 0.030 0.030 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.091 0.091 0.091 0.091 0.121
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Table B.24: Transition Probability Matrix For 5% Missing Rate Under Prior Assump-

tions β and φ ∼ N (0; 42) and X1 ∼ N (−1; 1.52)

From

To
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.091 0.091 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.045 0.045 0.045 0.045 0.045 0.045

2 0.091 0.091 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.045 0.045 0.045 0.045 0.045 0.045

3 0.054 0.054 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.054 0.054 0.054 0.054 0.054 0.054

4 0.054 0.054 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.054 0.054 0.054 0.054 0.054 0.054

5 0.054 0.054 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.054 0.054 0.054 0.054 0.054 0.054

6 0.054 0.054 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.054 0.054 0.054 0.054 0.054 0.054

7 0.054 0.054 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.054 0.054 0.054 0.054 0.054 0.054

8 0.054 0.054 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.054 0.054 0.054 0.054 0.054 0.054

9 0.054 0.054 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.054 0.054 0.054 0.054 0.054 0.054

10 0.054 0.054 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.054 0.054 0.054 0.054 0.054 0.054

11 0.038 0.038 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.077 0.077 0.077 0.077 0.077 0.077

12 0.038 0.038 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.077 0.077 0.077 0.077 0.077 0.077

13 0.038 0.038 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.077 0.077 0.077 0.077 0.077 0.077

14 0.038 0.038 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.077 0.077 0.077 0.077 0.077 0.077

15 0.038 0.038 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.077 0.077 0.077 0.077 0.077 0.077

16 0.038 0.038 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.077 0.077 0.077 0.077 0.077 0.077

Table B.25: Transition Probability Matrix For 5% Missing Rate Under Prior Assump-

tions β and φ ∼ N (0; 62) and X1 ∼ N (−1; 12)

From

To
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.103 0.103 0.103 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.034 0.034 0.034 0.034

2 0.103 0.103 0.103 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.034 0.034 0.034 0.034

3 0.103 0.103 0.103 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.034 0.034 0.034 0.034

4 0.053 0.053 0.053 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.053 0.053 0.053 0.053

5 0.053 0.053 0.053 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.053 0.053 0.053 0.053

6 0.053 0.053 0.053 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.053 0.053 0.053 0.053

7 0.053 0.053 0.053 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.053 0.053 0.053 0.053

8 0.053 0.053 0.053 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.053 0.053 0.053 0.053

9 0.053 0.053 0.053 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.053 0.053 0.053 0.053

10 0.053 0.053 0.053 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.053 0.053 0.053 0.053

11 0.053 0.053 0.053 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.053 0.053 0.053 0.053

12 0.032 0.032 0.032 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.097 0.097 0.097 0.097

13 0.032 0.032 0.032 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.097 0.097 0.097 0.097

14 0.032 0.032 0.032 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.097 0.097 0.097 0.097

15 0.032 0.032 0.032 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.097 0.097 0.097 0.097
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Table B.26: Transition Probability Matrix For 5% Missing Rate Under Prior Assump-

tions β and φ ∼ N (0; 62) and X1 ∼ N (−1; 1.52)

From

To
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.105 0.105 0.105 0.079 0.079 0.079 0.079 0.079 0.053 0.053 0.053 0.053 0.026 0.026 0.026

2 0.105 0.105 0.105 0.079 0.079 0.079 0.079 0.079 0.053 0.053 0.053 0.053 0.026 0.026 0.026

3 0.105 0.105 0.105 0.079 0.079 0.079 0.079 0.079 0.053 0.053 0.053 0.053 0.026 0.026 0.026

4 0.064 0.064 0.064 0.085 0.085 0.085 0.085 0.085 0.064 0.064 0.064 0.064 0.043 0.043 0.043

5 0.064 0.064 0.064 0.085 0.085 0.085 0.085 0.085 0.064 0.064 0.064 0.064 0.043 0.043 0.043

6 0.064 0.064 0.064 0.085 0.085 0.085 0.085 0.085 0.064 0.064 0.064 0.064 0.043 0.043 0.043

7 0.064 0.064 0.064 0.085 0.085 0.085 0.085 0.085 0.064 0.064 0.064 0.064 0.043 0.043 0.043

8 0.064 0.064 0.064 0.085 0.085 0.085 0.085 0.085 0.064 0.064 0.064 0.064 0.043 0.043 0.043

9 0.043 0.043 0.043 0.065 0.065 0.065 0.065 0.065 0.087 0.087 0.087 0.087 0.065 0.065 0.065

10 0.043 0.043 0.043 0.065 0.065 0.065 0.065 0.065 0.087 0.087 0.087 0.087 0.065 0.065 0.065

11 0.043 0.043 0.043 0.065 0.065 0.065 0.065 0.065 0.087 0.087 0.087 0.087 0.065 0.065 0.065

12 0.043 0.043 0.043 0.065 0.065 0.065 0.065 0.065 0.087 0.087 0.087 0.087 0.065 0.065 0.065

13 0.027 0.027 0.027 0.054 0.054 0.054 0.054 0.054 0.081 0.081 0.081 0.081 0.108 0.108 0.108

14 0.027 0.027 0.027 0.054 0.054 0.054 0.054 0.054 0.081 0.081 0.081 0.081 0.108 0.108 0.108

15 0.027 0.027 0.027 0.054 0.054 0.054 0.054 0.054 0.081 0.081 0.081 0.081 0.108 0.108 0.108

Table B.27: Transition Probability Matrix For 10% Missing Rate Under Prior As-

sumptions β and φ ∼ N (0; 42) and X1 ∼ N (−1; 12)

From

To
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.103 0.103 0.103 0.103 0.069 0.069 0.069 0.069 0.069 0.069 0.034 0.034 0.034 0.034 0.034

2 0.103 0.103 0.103 0.103 0.069 0.069 0.069 0.069 0.069 0.069 0.034 0.034 0.034 0.034 0.034

3 0.103 0.103 0.103 0.103 0.069 0.069 0.069 0.069 0.069 0.069 0.034 0.034 0.034 0.034 0.034

4 0.103 0.103 0.103 0.103 0.069 0.069 0.069 0.069 0.069 0.069 0.034 0.034 0.034 0.034 0.034

5 0.056 0.056 0.056 0.056 0.083 0.083 0.083 0.083 0.083 0.083 0.056 0.056 0.056 0.056 0.056

6 0.056 0.056 0.056 0.056 0.083 0.083 0.083 0.083 0.083 0.083 0.056 0.056 0.056 0.056 0.056

7 0.056 0.056 0.056 0.056 0.083 0.083 0.083 0.083 0.083 0.083 0.056 0.056 0.056 0.056 0.056

8 0.056 0.056 0.056 0.056 0.083 0.083 0.083 0.083 0.083 0.083 0.056 0.056 0.056 0.056 0.056

9 0.056 0.056 0.056 0.056 0.083 0.083 0.083 0.083 0.083 0.083 0.056 0.056 0.056 0.056 0.056

10 0.056 0.056 0.056 0.056 0.083 0.083 0.083 0.083 0.083 0.083 0.056 0.056 0.056 0.056 0.056

11 0.032 0.032 0.032 0.032 0.065 0.065 0.065 0.065 0.065 0.065 0.097 0.097 0.097 0.097 0.097

12 0.032 0.032 0.032 0.032 0.065 0.065 0.065 0.065 0.065 0.065 0.097 0.097 0.097 0.097 0.097

13 0.032 0.032 0.032 0.032 0.065 0.065 0.065 0.065 0.065 0.065 0.097 0.097 0.097 0.097 0.097

14 0.032 0.032 0.032 0.032 0.065 0.065 0.065 0.065 0.065 0.065 0.097 0.097 0.097 0.097 0.097

15 0.032 0.032 0.032 0.032 0.065 0.065 0.065 0.065 0.065 0.065 0.097 0.097 0.097 0.097 0.097
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Table B.28: Transition Probability Matrix For 5% Missing Rate Under Prior Assump-

tions β and φ ∼ N (0; 42) and X1 ∼ N (−1; 1.52)

From

To
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.095 0.095 0.095 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048 0.024

2 0.095 0.095 0.095 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048 0.024

3 0.095 0.095 0.095 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048 0.024

4 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.039

5 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.039

6 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.039

7 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.039

8 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.039

9 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.039

10 0.059 0.059 0.059 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.059 0.059 0.059 0.059 0.039

11 0.043 0.043 0.043 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.087 0.087 0.087 0.087 0.065

12 0.043 0.043 0.043 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.087 0.087 0.087 0.087 0.065

13 0.043 0.043 0.043 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.087 0.087 0.087 0.087 0.065

14 0.043 0.043 0.043 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.087 0.087 0.087 0.087 0.065

15 0.030 0.030 0.030 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.091 0.091 0.091 0.091 0.121

Table B.29: Transition Probability Matrix For 10% Missing Rate Under Prior As-

sumptions β and φ ∼ N (0; 62) and X1 ∼ N (−1; 12)

From

To
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.100 0.100 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.033 0.033 0.033 0.033

2 0.100 0.100 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.033 0.033 0.033 0.033

3 0.048 0.048 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048

4 0.048 0.048 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048

5 0.048 0.048 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048

6 0.048 0.048 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048

7 0.048 0.048 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048

8 0.048 0.048 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048

9 0.048 0.048 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048

10 0.048 0.048 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048

11 0.048 0.048 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048

12 0.048 0.048 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.048 0.048 0.048 0.048

13 0.029 0.029 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.088 0.088 0.088 0.088

14 0.029 0.029 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.088 0.088 0.088 0.088

15 0.029 0.029 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.088 0.088 0.088 0.088

16 0.029 0.029 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.088 0.088 0.088 0.088
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Table B.30: Transition Probability Matrix For 5% Missing Rate Under Prior Assump-

tions β and φ ∼ N (0; 62) and X1 ∼ N (−1; 1.52)

From

To
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0.111 0.111 0.111 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.037 0.037 0.037 0.037

2 0.111 0.111 0.111 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.037 0.037 0.037 0.037

3 0.111 0.111 0.111 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.037 0.037 0.037 0.037

4 0.057 0.057 0.057 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.057 0.057 0.057 0.057

5 0.057 0.057 0.057 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.057 0.057 0.057 0.057

6 0.057 0.057 0.057 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.057 0.057 0.057 0.057

7 0.057 0.057 0.057 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.057 0.057 0.057 0.057

8 0.057 0.057 0.057 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.057 0.057 0.057 0.057

9 0.057 0.057 0.057 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.057 0.057 0.057 0.057

10 0.057 0.057 0.057 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.057 0.057 0.057 0.057

11 0.034 0.034 0.034 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.103 0.103 0.103 0.103

12 0.034 0.034 0.034 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.103 0.103 0.103 0.103

13 0.034 0.034 0.034 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.103 0.103 0.103 0.103

14 0.034 0.034 0.034 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.103 0.103 0.103 0.103
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B.3 MCMC Diagnostics For Validation Study

B.3.1 Density Plots of Validation Study

Figure B.1: Density Plots For 1% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 12)

Figure B.2: Density Plots For 1% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 1.52)

Figure B.3: Density Plots For 1% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 12)

Figure B.4: Density Plots For 1% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 1.52)
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Figure B.5: Density Plots For 3% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 12)

Figure B.6: Density Plots For 3% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 1.52)

Figure B.7: Density Plots For 3% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 12)

Figure B.8: Density Plots For 3% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 1.52)
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Figure B.9: Density Plots For 5% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 12)

Figure B.10: Density Plots For 5% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 1.52)

Figure B.11: Density Plots For 5% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 12)

Figure B.12: Density Plots For 5% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 1.52)

134



Figure B.13: Density Plots For 10% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 42) and X1 ∼ N (−1; 12)

Figure B.14: Density Plots For 10% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 42) and X1 ∼ N (−1; 1.52)

Figure B.15: Density Plots For 10% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 62) and X1 ∼ N (−1; 12)

Figure B.16: Density Plots For 10% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 62) and X1 ∼ N (−1; 1.52)
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B.3.2 Autocorrelation Plots of The Simulation Study

Figure B.17: Autocorrelation Plots For 1% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 42) and X1 ∼ N (−1; 12)

Figure B.18: Autocorrelation Plots For 1% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 42) and X1 ∼ N (−1; 1.52)
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Figure B.19: Autocorrelation Plots For 1% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 62) and X1 ∼ N (−1; 12)

Figure B.20: Autocorrelation Plots For 1% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 62) and X1 ∼ N (−1; 1.52)
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Figure B.21: Autocorrelation Plots For 3% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 42) and X1 ∼ N (−1; 12)

Figure B.22: Autocorrelation Plots For 3% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 42) and X1 ∼ N (−1; 1.52)
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Figure B.23: Autocorrelation Plots For 3% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 62) and X1 ∼ N (−1; 12)

Figure B.24: Autocorrelation Plots For 3% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 62) and X1 ∼ N (−1; 1.52)
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Figure B.25: Autocorrelation Plots For 5% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 42) and X1 ∼ N (−1; 12)

Figure B.26: Autocorrelation Plots For 5% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 42) and X1 ∼ N (−1; 1.52)
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Figure B.27: Autocorrelation Plots For 5% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 62) and X1 ∼ N (−1; 12)

Figure B.28: Autocorrelation Plots For 5% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 62) and X1 ∼ N (−1; 1.52)
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Figure B.29: Autocorrelation Plots For 10% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 42) and X1 ∼ N (−1; 12)

Figure B.30: Autocorrelation Plots For 10% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 42) and X1 ∼ N (−1; 1.52)

142



Figure B.31: Autocorrelation Plots For 10% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 62) and X1 ∼ N (−1; 12)

Figure B.32: Autocorrelation Plots For 1% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 62) and X1 ∼ N (−1; 1.52)
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B.3.3 Trace Plots of The Validation Study

Figure B.33: Trace Plots For 1% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 12)

Figure B.34: Trace Plots For 1% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 1.52)

Figure B.35: Trace Plots For 1% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 12)
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Figure B.36: Trace Plots For 1% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 1.52)

Figure B.37: Trace Plots For 3% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 12)

Figure B.38: Trace Plots For 3% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 1.52)
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Figure B.39: Trace Plots For 3% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 12)

Figure B.40: Trace Plots For 1% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 1.52)

Figure B.41: Trace Plots For 5% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 12)
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Figure B.42: Trace Plots For 5% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 1.52)

Figure B.43: Trace Plots For 5% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 12)

Figure B.44: Trace Plots For 5% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 1.52)
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Figure B.45: Trace Plots For 10% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 12)

Figure B.46: Trace Plots For 10% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 1.52)

Figure B.47: Trace Plots For 10% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 12)
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Figure B.48: Trace Plots For 10% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 1.52)
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B.3.4 Brooks-Gelman-Rubin Plots For Validation Study

Figure B.49: BGR Plots For 1% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 12)

Figure B.50: BGR Plots For 1% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 1.52)

Figure B.51: BGR Plots For 1% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 12)
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Figure B.52: BGR Plots For 1% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 1.52)

Figure B.53: BGR Plots For 3% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 12)

Figure B.54: BGR Plots For 3% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 1.52)
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Figure B.55: BGR Plots For 3% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 12)

Figure B.56: BGR Plots For 3% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 1.52)

Figure B.57: BGR Plots For 5% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 12)
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Figure B.58: BGR Plots For 5% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 1.52)

Figure B.59: BGR Plots For 5% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 12)

Figure B.60: BGR Plots For 5% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 1.52)
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Figure B.61: BGR Plots For 10% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 12)

Figure B.62: BGR Plots For 10% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 1.52)

Figure B.63: BGR Plots For 10% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 12)
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Figure B.64: BGR Plots For 10% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 1.52)
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B.3.5 Geweke Plots For Validation Study

Figure B.65: Geweke Plots For 1% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 12)

Figure B.66: Geweke Plots For 1% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 1.52)
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Figure B.67: Geweke Plots For 1% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 12)

Figure B.68: Geweke Plots For 1% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 1.52)
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Figure B.69: Geweke Plots For 3% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 12)

Figure B.70: Geweke Plots For 3% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 1.52)
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Figure B.71: Geweke Plots For 3% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 12)

Figure B.72: Geweke Plots For 3% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 1.52)
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Figure B.73: Geweke Plots For 5% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 12)

Figure B.74: Geweke Plots For 5% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 42) and X1 ∼ N (−1; 1.52)
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Figure B.75: Geweke Plots For 5% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 12)

Figure B.76: Geweke Plots For 5% Missing Rate Under Prior Assumptions β and φ ∼
N (0; 62) and X1 ∼ N (−1; 1.52)
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Figure B.77: Geweke Plots For 10% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 42) and X1 ∼ N (−1; 12)

Figure B.78: Geweke Plots For 10% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 42) and X1 ∼ N (−1; 1.52)
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Figure B.79: Geweke Plots For 10% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 62) and X1 ∼ N (−1; 12)

Figure B.80: Geweke Plots For 10% Missing Rate Under Prior Assumptions

β and φ ∼ N (0; 62) and X1 ∼ N (−1; 1.52)
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Appendix C

APPENDIX: REAL DATA APPLICATION

C.1 MCMC Diagnostics For Real Data Application Under Prior Assumption

A

C.1.1 Monte Carlo Standard Errors (MCSE) of Coefficients

Table C.1: Monte Carlo Standard Errors (MCSE) of Coefficients

Coefficient MCSE Coefficient MCSE

β̂0 0.001130 β̂6 0.000725

β̂1 0.000009 β̂7 0.001144

β̂2 0.002685 β̂8 0.000781

β̂3 0.000031 β̂9 0.001552

β̂4 0.001043 β̂10 0.002546

β̂5 0.001208 β̂11 0.003082
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C.1.2 BGR Plots of Coefficients

Figure C.1: Real Data Analysis: BGR Plots of Coefficients
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C.1.3 Density Plots of Coefficients

Figure C.2: Real Data Analysis: Density Plots of Coefficients
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C.1.4 Trace Plots of Coefficients

Figure C.3: Real Data Analysis: Trace Plots of Coefficients
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C.1.5 Autocorrelation Plots of Coefficients

Figure C.4: Real Data Analysis: Autocorrelation Plots of Coefficients
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C.1.6 Geweke Plots of Coefficients

Figure C.5: Real Data Analysis: Geweke Plots of Coefficients
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