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ABSTRACT 

 

 

PHILOSOPHICAL IMPLICATIONS OF CANTOR’S SET THEORY 

 

 

ŞAHİN, Şafak 

M.A., The Department of Philosophy 

Supervisor: Prof. Dr. David GRÜNBERG 

 

 

October 2020, 87  pages 

 

 

This thesis is devoted to examining Georg Cantor’s understanding of infinity 

and his philosophy of mathematics. Even though Aristotle differentiated the concept 

of infinity as potential infinite and actual infinite, he argued against the existence of 

actual infinity and accepted only the existence of potential infinity. With the effect of 

this distinction, the impossibility of actual infinity was regarded as the fundamental 

principle in the history of the concept of infinity. Cantor was the first thinker to 

attempt to refute Aristotle’s arguments by introducing a new understanding of 

infinity that has one of the greatest impacts on its development in mathematics. 

Cantor mathematically demonstrated that there would not be any one-to-one 

correspondence between the set of natural numbers and the set of real numbers. This 

result implies that there must be at least two different sizes of infinite sets, namely 

the set of real numbers and the set of natural numbers. Based on the concept of a 

well-ordered set, Cantor not only showed the way how to count infinite sets but also 

assigned numbers to differentiate the different sizes of infinite sets. Thus, transfinite 
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numbers and their arithmetic are introduced into mathematics. After examining the 

distinction between potential infinite and actual infinite in both Aristotle’s 

framework and Cantor’s framework, the existence of mathematical objects in the 

Cantorian framework will be shown. 

 

Keywords: Potential infinity, actual infinity, well-ordered sets, transfinite numbers, 

transfinite arithmetic.   
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ÖZ 

 

 

CANTOR’UN KÜMELER KURAMININ FELSEFİ SONUÇLARI 

 

 

ŞAHİN, Şafak 

Yüksek Lisans, Felsefe Bölümü 

Tez Yöneticisi: Prof. Dr. David GRÜNBERG 

 

 

Ekim 2020, 87 sayfa 

 

 

Bu tez, Georg Cantor’un sonsuzluk anlayışını ve matematik felsefesini 

incelemeye adanmıştır. Aristoteles sonsuzluk kavramını potansiyel sonsuz ve aktüel 

sonsuz olarak ayırt etmesine rağmen aktüel sonsuzluğun varlığını reddederek 

yalnızca potansiyel sonsuzluğun varlığını kabul etmiştir. Bu ayrımın etkisi ile, gerçek 

sonsuzluğun imkansızlığı, sonsuzluk kavramının tarihinde temel ilke olarak kabul 

edilmiştir. Cantor, matematikteki gelişimi üzerinde en büyük etkilerden birine sahip 

olan yeni bir sonsuzluk anlayışı ortaya atarak Aristoteles'in argümanlarını çürütmeye 

çalışan ilk düşünür olmuştur. Cantor matematiksel olarak doğal sayılar kümesi ile 

reel sayılar kümesi arasında bire bir eşleşmenin olmayacağını göstermiştir. Bu sonuç, 

en az iki farklı boyutta sonsuz kümenin, yani reel sayılar kümesi ve doğal sayılar 

kümesi, olması gerektiği anlamına gelir. İyi sıralı küme kavramına istinaden, Cantor 

sonsuz kümelerin nasıl sayılacağını göstermekle kalmadı, aynı zamanda sonsuz 

kümelerin farklı boyutlarını ayırt etmek için onlara sayılar atfetti. Böylece sonlu ötesi 

sayılar ve sonlu ötesi aritmetik matematiğe tanıtıldı. Potansiyel sonsuz ve aktüel 
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sonsuz ayrımını Aristoteles’in sisteminde ve Cantor’un sisteminde incelendikten 

sonra, Cantor’un sistemindeki matematiksel nesnelerin varlığı gösterilecektir.   

 

Anahtar Kelimeler: Potansiyel sonsuzluk, aktüel sonsuzluk, iyi sıralı kümeler, 

sonlu ötesi sayılar, sonlu ötesi aritmetik.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

The main purpose of this thesis is to investigate the Cantorian theory of 

transfinite numbers, which had an undeniably crucial impact on the development of 

set theory. In doing so, my study will answer three questions. First, what are the 

underlying reasons for Aristotle’s rejection of actual infinity? In the case of this 

question, I will examine Aristotle’s perspective of infinity with the distinction 

between potential infinite and actual infinite. Then, I will discuss his mathematical 

arguments that led people to assume the impossibility of infinite numbers. And the 

second question: did Georg Cantor's counter-arguments succeed to respond to 

Aristotle's arguments against the existence of actual infinity? To answer this 

question, I will first analyze Georg Cantor’s theory of infinity with the new numbers 

that he introduced and called transfinite numbers, and then, I will examine the 

counter-arguments that Cantor proposed against Aristotle’s mathematical rejection of 

infinite numbers. The final and the third question is how Cantor managed to prove 

the existence of actual infinity through both mathematical and philosophical 

arguments in his framework? While providing an extensive analysis of Cantor's 

theory, I will discuss his philosophical and mathematical framework behind the 

existence of transfinite numbers.    
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There is no doubt that the concept of infinity is one of the most controversial 

concepts of Western Philosophy. In the history of the concept of infinity, many 

philosophers and mathematicians have tried to understand both the nature of the 

concept and its mathematical implications. Some of these are Aristotle, Spinoza, 

Leibniz, and Georg Cantor among many others. They all provided differing 

presentations of the concept of infinity and, for this reason, I will briefly discuss the 

historical evolution of the concept in section 2.1. It is a fact that the distinction 

between potential infinite and actual infinite proposed by Aristotle dominated the 

intellectual landscape without even being questioned for a long time. We will reveal 

how the idea of potential infinite was considered as the only acceptable way of 

understanding infinity in the literature. Then, in chapter 2.2., I will examine 

Aristotle’s theory of infinity. He differentiated the concept as actual infinite and 

potential infinite. The idea of infinity has taken its place in his framework as an 

unending process that cannot be completed. For Aristotle, one of the obvious reasons 

for the rejection of actual infinity is its inconsistency; an entity being actual and 

being infinite is a contradiction in terms. Since the completion of the process of 

infinity is impossible, the infinite cannot reveal itself as an actually existing entity. 

Thus, by only allowing the existence of potential infinite, Aristotle completely 

rejected the idea of actual infinity for several reasons that will be discussed.   

In the history of the concept of infinity, the mathematical implication of 

potential infinite gives rise to many paradoxical results. Although both philosophers 

and mathematicians tried to explain those results, no one has been provided a 

successful explanation until Georg Cantor. Up to the late 19
th

 century, no one has 

considered the endless sequence of natural numbers as a completed set, but Cantor 
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ascribed this feature to the sequence. And this reasoning brought him the idea of 

transfinite numbers. Throughout his career, Cantor suggested that the idea of actual 

infinity might be a subject for mathematics and dedicated his work to clarify the 

concept of actual infinity. As we will analyze in chapter 2.3., he not only proved that 

counting infinite numbers is mathematically possible, but he also provided two 

counter-examples against Aristotle's rejection of actual infinity. 

Furthermore, Cantor asserted that mathematics is free to create its objects on 

the grounds of internal consistency because its objects have two sides of reality, 

namely the transient reality and the immanent reality. At the beginning of the third 

chapter, I will reflect on the result of these two sides in Cantor’s ontological 

framework for transfinite numbers. Then, in chapter 3.3, I would like to remark on 

the relation between sets and numbers in order to understand what Cantor presented 

with the distinction between multiplicities. Cantor not only showed the way how to 

count infinite sets by abstracting the properties of their elements but also assigned 

numbers to mathematically differentiate them and introduced transfinite arithmetic 

into mathematics. As a result, in chapter 3.4., transfinite arithmetic will be examined. 
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CHAPTER 2 

 

 

THE DISTINCTION BETWEEN POTENTIAL INFINITE AND ACTUAL 

INFINITE 

 

 

2.1. History of the concept of infinity 

 

 

In this section of my thesis, I examine the distinction between potential 

infinity and actual infinity in terms of the Aristotelian rejection of actual infinity, and 

I demonstrate the philosophical importance of this distinction in the Cantorian 

framework.  

To accomplish these, firstly, I examine the historical evolution of the concept 

of infinity. It is generally accepted that the discussion about the concept of infinity 

had begun with Anaximander. He, as an Ancient Greek philosopher, conceptualized 

infinity as the principle that governs nature. He identified this principle with the 

word “apeiron”, which literally means unlimited. The ultimate source of all things 

cannot be subjected to any kind of limitations both in space and in time because it 

must be boundless and indestructible by its nature. It generates the four primary 

elements in the way that they all need an underlying changeless primary substance as 

the source of all things. The opposites in nature (e.g. fire and water) are generated by 
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apeiron, then the transformations and interactions of four elements bring the 

existence of objects around us. Nevertheless, when the objects in nature are 

destroyed, they return back to their first cause, i.e. apeiron. Even though apeiron, as 

the eternal movement, generates the four elements, it exists independently from 

them. This makes apeiron indestructible and infinite substance for Anaximander. 

Hence, the idea of infinity, for Anaximander, was emerged from the idea of apeiron 

as the originating principle.  

Many other Ancient Greek philosophers followed Anaximander’s footsteps 

and conceptualized infinite as ipso facto a “principle” to explain other things as the 

fundamental principle. Accordingly, the idea of infinity has emerged with their desire 

to comprehend the most basic principle of nature. Since their first aim was to 

understand the nature, the idea of infinity was associated with nature itself. As a 

result, the concept was neither a mathematical notion nor a metaphysical notion, 

rather it was only considered for explaining the unlimitedness of nature. 

After the pre-Socratic philosophers, Aristotle’s distinction between potential 

infinity and actual infinity dominated the intellectual landscape. To put it briefly, 

Aristotle considered the notion of infinity as a continuously growing process that 

cannot have a limitation. This is the idea of potential infinite. On the other hand, he 

argued against the idea of a complete infinity or so-called actual infinity for several 

reasons. One of the reasons is that human understanding cannot comprehend the 

existence of actual infinite because such an entity transcends the human mind. Actual 

infinite, if exists, must be a complete entity, but a complete entity cannot have parts 

that are also infinite by themselves. This seems impossible because if the parts are 

infinite, then the whole becomes indeterminate. Thus, actual infinite either does not 
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exist or exists as an indeterminate entity. And since indeterminacy is not acceptable, 

actual infinite does not exist according to Aristotle.  

Another reason why the idea of actual infinite seems to be unacceptable for 

Aristotle is that what is actual must be complete whole that its parts must be present 

“all at once”. Nevertheless, the parts of infinite present themselves successively, not 

independent presence. The reason is that, in the case of infinitude, both infinite and 

its parts are not infinite yet; rather a process that is never-ending. Either by addition 

or by division the process proceeds indefinitely, and it cannot be completed at any 

point in time. Hence, the idea of actual infinite seems to be incoherent for Aristotle. 

For several other reasons that will be examined in the following chapter, he argued 

against the idea of a complete infinity, which is considered as actual infinity. 

Similar to Aristotle, many philosophers have argued against the existence of 

actual infinity. Each of those philosophers presented differing reasons for this claim. 

So, the history of the concept of infinity gives us many different arguments for 

rejecting the existence of actual infinity. The finitude of human understanding is 

perhaps the most common one. The argument basically claims that the human mind 

is finite, and its capacity to comprehend the actual infinite seems to be impossible for 

the fact that something finite could not understand the nature of infinite with its own 

restricted understanding capacity. This idea is one of the most fundamental problems 

of the notion of infinity because many philosophers and mathematicians analyze the 

concept of infinity from this standpoint. Galileo Galilei (1564-1642), as an important 

scholar for the impossibility of infinite numbers, defends a very similar view. In 

Dialogues Concerning Two New Sciences, Galileo presented a paradoxical example 

to show how mathematically problematic the idea of infinity is. The example is as 
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follows: it is always possible to demonstrate the one-to-one correspondence between 

the set of natural numbers and the set of their squares because, for every natural 

number n, there is always a corresponding squared number n
2
: 

1, 2,  3, 4, 5, ... n, ... 

     

... 
 

... 

1, 4,  9,  16,  25, ... n
2 

... 

 

The one-to-one corresponding demonstrates that the set of natural numbers and the 

set of even numbers are the same sizes because it is possible to pair off their 

elements. The problem, however, is the fact that the set of natural numbers contains 

both squares and non-squares, which should have made the set of all natural numbers 

mathematically greater than the set of squares. Therefore, these two sets are in a 

sense equal; the set of natural numbers has as many elements as the set of squares, 

and in a sense unequal; there are more numbers in the set of natural numbers. This is 

clearly paradoxical. Accordingly, he defends that it is impossible to understand the 

properties of infinity with a finite mind because the concept of infinity transcends 

human understanding
1
. As his own words, “But let us remember that we are dealing 

with infinites and indivisibles, both of which transcend our finite understanding…” 

(1638, p. 26). The paradoxical results of infinity arise because of human 

understanding. It uses finite understanding to conceptualize the concept of infinity 

because it can only understand finite quantities, not infinite quantities. Hence, 

Galileo concludes that infinite quantities, that has different characteristics from finite 

quantities, cannot be comprehensible in human understanding. He wrote: 

                                                      
1
 For more detail, see Knobloch (1999). 
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This is one of the difficulties which arises when we attempt, with our finite 

minds, to discuss the infinite, assigning to it those properties which we give 

to the finite and limited; but this I think is wrong, for we cannot speak of 

infinite quantities as being the one greater or less than or equal to another. 

(1638, p.31)  

 

Another general assumption about infinity is its indeterminacy. As clearly 

stated by both Baruch Spinoza (1632-1677) and Gottfried Wilhelm Leibniz (1646-

1716), the concept of infinite cannot be the subject of any determination. They would 

be the first people to come across after Aristotle's effect on the concept, accepting the 

actual infinity to a certain level. For Spinoza, as one of the great rationalists of the 

17
th

 century, the concept of infinity has two sides. On the one side, similar to the idea 

of potential infinity, he assigned the property of unlimitedness to the concept of 

infinity. Since it does not have any kind of limitation either by addition or by 

division, it must be mathematically indefinite and indeterminate.  

On the other side, there is the concept of infinite that has infinitely many parts 

that are also infinite themselves. Spinoza indicates that human understanding cannot 

have the capacity to comprehend this kind of entity. In a letter to Louis Meyer
2
, 

Spinoza wrote, “Finally, there are things that can be called infinite, or if you prefer, 

indefinite, because they cannot be accurately expressed by any number, while yet 

being conceivable as greater or less” (2002, p.790). Since infinite cannot have a 

maximum or minimum in terms of magnitude, it thus follows that assigning a 

                                                      
2
 The letter is also known as “Letter on the Infinite”(Letter XII). The purpose of the letter is to explain 

the questions of infinity regarding its controversy and problems. For Spinoza, the uncertainty on 

different types of infinity is the main reason why the concept of infinity is controversial. He 

represented his account of the concept of infinity by differentiating the types of infinities in this letter. 

For more detail, Morgan (2002), pp. 787-792.  
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number to infinite quantities becomes impossible. Nevertheless, he accepts the 

possibility of different sizes of infinities by refuting their mathematical applications
3
. 

On the other hand, Leibniz's conception of infinity is more related to nature. 

For him, there is infinite in nature in the way that there are infinitely many 

individuals in nature. In a letter to Foucher in 1693, Leibniz wrote:  

I am so much in favor of an actual infinite that instead of admitting that 

nature abhors it, as is commonly said, I hold that it affects nature everywhere 

in order to indicate the perfections of its Author. So, I believe that every part 

of matter is, I do not say divisible, but actually divided, and consequently, the 

smallest particle should be considered as a world full of an infinity of 

creatures. (1951, p.99)  

 

As it seems, he accepted the idea of actual infinity in nature, but he argued against 

the existence of actual infinity in mathematics. According to Leibniz, it is impossible 

to think of an infinite number without contradictory results. Any number should be 

definite and determined so that it has a definite place in arithmetic. However, in the 

case of infinite numbers, this is impossible because the notion of infinite numbers 

transcends the idea of numbers. After all, it is impossible to determine the 

mathematical value of an infinite number. Consequently, infinite numbers, for 

Leibniz, becomes indeterminate numbers, that cannot take place in mathematics. To 

this respect, he derived two conclusions. The first one is that all numbers must be 

inherently finite, and the second one is that the human mind cannot have the capacity 

to understand the concept of infinite numbers. Even though he accepts the existence 

of actual infinite in nature, he argues against the existence of actual infinities in 

mathematics
4
.  

                                                      
3
 For more detail, see Bussotti and Tapp (2009) and Newstead (1975).  

 

4
 For more detail, see Knobloch (1999). 
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After a long time, Georg Cantor (1845-1918) was the first man ever tried to 

justify the existence of different kinds of infinities in mathematics. Before Cantor’s 

revolutionary ideas, the concept of infinity had always been mathematically unclear 

and counter-intuitive. Many philosophers and mathematicians interested in 

researching the concept of infinity, but, before Georg Cantor, no one had ever 

claimed that numbers can be assigned to infinite quantities and their arithmetic can 

be well defined like finite arithmetic
5
. One of the most remarkable contributions of 

Cantor’s theory, which I will analyze with all the details, is to suggest that an infinite 

sequence can be mathematically determinate as much as finite numbers despite his 

colleagues who were against this view. For this reason, I examine the distinction 

between potential infinite and actual infinite in terms of Aristotelian understanding 

and Cantorian understanding, then show the philosophical importance of this 

distinction in the light of transfinite numbers.  

 

2.2. Aristotle’s theory of infinity 

 

In Physics, Aristotle properly formulated the idea of infinite in two categories 

as potential infinite and actual infinite to clarify the paradoxical problems of the 

concept of infinity. What he meant by potential infinity is a continuous process that 

has the potency to proceed indefinitely. It is something limitless and boundless. In 

addition, since it cannot have any limit or bound, its existence, for Aristotle, must 

                                                      
5
 It should be mentioned that even though Emmanuel Maignan (1601 – 1676), as a French physicist, 

argued that one can compare different sizes of infinities as being the one greater or less than or equal, 

he never asserted that numbers can be assigned to infinite quantities. For more detail, see Mancosu 

(2009).  
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always be incomplete and indeterminate. If the proceeding process had somehow 

been terminated, then it would have an actuality. But this is impossible because there 

will always be a possible division or addition, so infinite cannot present itself as a 

completed entity. Therefore, potentially infinite sequences can only present 

themselves as a continuous process that never reaches completion. 

He also differentiated the idea of potential infinite into two categories to 

better understand the notion, namely infinite by addition and infinite by division. The 

idea of infinite by addition can be comprehended as the unending sequence of natural 

numbers. The sequence consists of numbers that are constructed by the successive 

addition of units. For a given number, it is always possible to construct a larger 

number by the addition of units; consequently, there would be no greatest number 

among them. Each number in the sequence has a definite magnitude and distinct 

features, but the sequence can proceed towards infinity potentially. Since the process 

never ends, the sequence is always incomplete; there would always be a greater 

number that is not contained in the list. Consequently, the sequence itself cannot 

correspond to an actually existing entity. As Aristotle puts it:  

Hence this infinite is potential, never actual: the number of parts that can be 

taken always surpasses any assigned number. But this number is not 

separable from the process of bisection, and its infinity is not a permanent 

actuality but consists in a process of coming to be, like time and the number 

of time. (Physics, III.7 207b10-15) 

 

If the process of adding one more unit has an ending, then it would have an actuality, 

but this seems impossible. For the fact that it is impossible to simplify all the 

elements, this guarantees the potential infinity of the sequence of natural numbers for 

Aristotle.   
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On the other hand, infinite by division can be seen as the infinitude of a 

straight line
6
. It is always possible to reveal different parts by dividing a finite 

straight line; it can be divided into two parts, then each part after the division can 

also be divided into two again and so on. Even though parts in the line get smaller 

and smaller, there will always be another part that can be divided. Since there would 

always be possible division left out, the divisibility of a straight line can be held 

indefinitely. According to Aristotle, for the fact that the division of parts never ends, 

a finite mind cannot actually comprehend the indefinite divisibility of a straight line. 

It is only comprehensible as possible divisions that can be performed. So, dividing a 

finite straight line can be a potentially infinite process for Aristotle. In the same way, 

this reasoning also guarantees the infinite divisibility of a physical body for Aristotle. 

Even though any physical body appears to be materially finite because it necessarily 

has a finite surface, dividing any physical body into infinitely many parts seems to be 

potentially possible. But this does not mean that body has actually infinite parts, 

instead, dividing it into infinitely many parts is only potentially possible in thinking. 

As Aristotle puts it, “For the fact that the process of dividing never comes to an end 

ensures that this activity exists potentially, but not that the infinite exists separately” 

(Metaphysics, IX.6, 1048b14-17). Since the process of division is never-ending, it 

follows that infinite by division is only possible in a potential sense. Therefore, for 

Aristotle, potential infinite can manifest itself either infinite by addition or infinite by 

division.  

                                                      
6
 Thales was the first man to suggest the process of dividing a straight line into infinitely many parts is 

possible, which eventually led Zeno to come up with many paradoxes about the infinity.  
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As I briefly mentioned before, Aristotle argues against the existence of actual 

infinity because the idea has some problematic features. According to Aristotle, 

actual infinite is the infinite type that should present itself complete and definite. 

However, it is obvious that this is impossible in the case of infinitude. Being 

complete necessarily requires limitation, but infinite, by definition, cannot have 

limitations. Therefore, completeness cannot be a characteristic of any infinitude. 

Hence, the concept of actual infinite, for Aristotle, becomes contradiction in terms: to 

be complete and to be infinite cannot be the properties of the same thing at the same 

time. Aristotle wrote, “Whole and complete are either altogether the same or of a 

similar nature. Nothing is complete which has no end, and the end is a limit” 

(Physics, III.6, 206b33-207a15). Even though a completed infinite must be 

determined by definition, in the case of infinity, determinateness cannot be a feature. 

The complete infinite, then, becomes incoherent and unknowable. As Aristotle 

stated:  

It is in fact the matter of the completeness which belongs to size, and what is 

potentially a whole, though not in the full sense. It is divisible both in the 

direction of reduction and of the inverse addition. It is a whole and limited; 

not, however, in virtue of its own nature, but in virtue of what is other than it. 

It does not contain, but, in so far as it is infinite, is contained. Consequently, 

also, it is unknowable, qua infinite; for the matter has no form. (Physics, III.6, 

207a22-27) 

 

Another reason for the impossibility of actual infinity lies in nature. Like 

many other Ancient Greek philosophers, Aristotle conceptualized infinity as the 

fundamental substance that governs everything in nature. For him, the important 

question concerning infinity was whether there is infinite in nature or not. Aristotle 

himself wrote, “The study of nature is concerned with extension, motion and time; 

and since each one of these must be either limited or unlimited..., it follows that the 
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student of Nature must consider the question of the unlimited, with a view to 

determining whether it exists at all, and, if so, what is its nature” (Physics, III.4, 202b 

30-35). Therefore, he first considered the concept of quantity. According to Aristotle, 

quantity must be defined as that of which is divisible into parts, and each part would 

necessarily be countable or measurable (Metaphysics, 1020a7-10). This definition 

alone, for Aristotle, highlights the fact that there could not be an infinite quantity in 

nature. The idea of infinite quantity is a contradiction in terms for Aristotle. The 

reason is that if there is an actually infinite quantity in nature, then this would mean 

that it must be divisible into parts in which those parts must also be infinite 

themselves, which is unacceptable for Aristotle. Infinite quantities cannot have parts 

that are also infinite by themselves and this necessitates the idea that infinite 

quantities must be indivisible. Nevertheless, this is also self-contradictory because 

any quantity whether finite or infinite must be divisible. Aristotle wrote:  

It is impossible that the infinite should be a thing which is in itself infinite, 

separable from sensible objects. If the infinite is neither a magnitude nor an 

aggregate, but is itself a substance and not an accident, it will be indivisible; 

for the divisible must be either a magnitude or an aggregate. But if 

indivisible, then not infinite, except in the way in which the voice is invisible. 

(Physics, III.5 204a8-14) 

 

It thus follows that there would not be an infinite quantity in nature. By only 

allowing the existence of potential infinity, Aristotle concludes that actual infinity 

does not exist.  

In summary, what is most evident, for Aristotle, is that actual infinity or 

completed infinite cannot exist as an actual entity. For the fact that it is impossible to 

comprehend its actuality all at once, the idea of actual infinity only exists as a matter 

of speaking. Therefore, he argues against the existence of actual infinity and states 

that the concept of infinite is only comprehensible as either infinite by addition or 
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infinite by division, both of which are only potentially existing. In the following 

section, I examine Aristotle’s mathematical arguments against the possibility of 

infinite numbers.  

 

2.2.1. Mathematical arguments against the existence of actual infinity  

 

In addition to the philosophical arguments against the idea of actual infinity, 

Aristotle also argued against the existence of actual infinity for mathematical 

purposes. Aristotle offered two reasons why the idea of actual infinity seems to be 

mathematically impossible. It should be noted that he did not provide these reasons 

in formal argument forms, especially in the second argument. Aristotle, firstly, held 

that counting cannot generate infinite numbers for the fact that the successive 

addition of units ensures that all numbers are finite in number formation. For 

Aristotle, this reasoning guarantees that the counting procedure is only applicable to 

finite numbers. Secondly, he argued that there would be an infinite substance in 

nature. If there was such an element, it would cause the destruction of other 

elements. Georg Cantor interpreted these two arguments directly on numbers as the 

mathematical arguments against the existence of actual infinity and indicated that 

these arguments formed the traditional understanding of the concept of infinity. 

The first argument clarifies that the main function of numbers is counting, 

and only finite numbers are countable. For Aristotle, a number can only be 

constituted by counting and what is uncountable cannot be a number. He wrote, “Nor 

can number taken in abstraction be infinite, for number or that which has number is 

numerable. If then the numerable can be numbered, it would also be possible to go 



 

16 
 

through the infinite” (Physics, III.5 204b8-10). All numbers in the unending 

sequence of natural numbers are constructed in relation to the previous number, 

which is already finite, each number exceeding the previous one would inherently be 

finite by the process of counting. Although the sequence of natural numbers would 

have infinitely many elements, all of its elements should be a finite number. In his 

words, “For generally the infinite has this mode of existence: one thing is always 

being taken after another, and each thing that is taken is always finite, but always 

different” (Physics, III.6, 206a26-29). In other words, all the elements in the 

sequence are different from one another, but they are all finite numbers. Furthermore, 

for Aristotle, mathematical objects are the entities that we abstracted their reality 

from things in the physical world. Numbers are the results of this abstraction and rely 

on quantities found in nature. Nevertheless, as we analyzed, infinite quantities are 

necessarily indeterminate quantities in Aristotle’s philosophy. Since indeterminacy is 

not acceptable in mathematics, there would not be any specific number for the 

enumeration of infinite quantities. Thus, Aristotle concludes that the process of 

counting is only applicable to finite numbers and it cannot generate an infinite 

number
7
.  

The second mathematical objection against the existence of actual infinity is 

the annihilation of finite numbers. He did not present this argument directly on 

numbers, but he indicated that if there was an infinite element in nature, it would 

destroy finite elements in nature. The four primary elements (water, air, fire, and 

                                                      
7
 By considering Aristotle’s arguments in Metaphysics Book XI , Cantor represents “…only counting 

procedures with respect to finite aggregates (sets) were known to him” (1976, p.75).  
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earth) must be finite to coexist. If any of them were infinite, then it necessarily 

destroys opposites elements. As Aristotle puts it:  

The infinite can neither be composite nor simple. For it cannot be a composite 

body if the elements are limited in number; for the contraries must be equal, 

and no one of them must be infinite; for if the potency of one of the two 

corporeal elements is in any way inferior, the finite element will be destroyed 

by the infinite. (Metaphysics, II., 1066b27-30) 

 

For instance, a finite amount of fire cannot maintain its presence with an infinite 

amount of water in nature, instead, it would be annihilated by water. As Aristotle 

own words, “Nor can fire or any other of the elements be infinite. For generally, and 

apart from the question of how any of them could be infinite, the All, even if it were 

limited, cannot either be or become one of them…” (Physics, III.5, 205a1-4). 

Another reason why any of those elements cannot be infinite is the fact that the 

physical body is generated from those elements. Since all bodies must be extended 

finite space, they cannot contain any infinite element. He wrote: 

It is impossible, however, that there should be such a body; not because it is 

infinite on that point a general proof can be given which applies equally to 

all, air, water, or anything else-but simply because there is, as a matter of fact, 

no such sensible body, alongside the so-called elements. Everything can be 

resolved into the elements of which it is composed. Hence the body in 

question would have been present in our world here, alongside air and fire 

and earth and water: but nothing of the kind is observed. (Physics, III.5, 

204b29-35) 

 

The non-existence of an infinite element in nature can be interpreted 

mathematically as following; finite numbers would necessarily be annihilated by 

infinite numbers when the calculation is applied to infinite numbers
8
. The unending 

sequence of infinite numbers, assuming that they exist, must always be incomplete 

                                                      
8
 Cantor represented his interpretation of Aristotle’s argument, “…the finite would be dissolved into 

the infinite and destroyed, if the latter existed, since the finite number allegedly is annulled by an 

infinite number” (1976, p.75).  
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by definition, and destroy whatever it is added. Since infinite numbers contain every 

number, they absorb what is contained in themselves. In this sense, when finite 

numbers and infinite numbers are considered together in a mathematical operation, 

the permanence of finite numbers would become impossible. As Aristotle stated, “It 

is absurd and impossible to suppose that the unknowable and indeterminate should 

contain and determine” (Physics, III.6, 207a31-32). When finite numbers and infinite 

numbers are considered together in a mathematical operation, what we have from 

this operation would not be different from the unending sequence of infinite number. 

The infinitude of the sequence must destroy the finite number in its sequence. As it 

appears, even if we assume that it is possible to count infinite numbers, Aristotle had 

a good reason to believe that the arithmetic of infinite numbers is not possible 

because applying any mathematical operation to infinite numbers is impossible
9
.  

Indeed, for Aristotle, these two mathematical arguments guarantee that there 

would not be an infinite number, neither in nature nor in mathematics. Thus, by only 

accepting the existence of potential infinite, he concludes that there are only finite 

numbers for the reason that the counting cannot be considered in infinite numbers.  

 

2.3. Georg Cantor’s theory of infinity 

 

The traditional understanding of infinity relies on the idea that “Infinitum 

actu non datur” which literally means that actual infinite does not exist. 

                                                      
9
 He states, “The unlimited, then, is the open possibility of taking more, however much you have 

already taken; that of which there is nothing more to take is not unlimited, but whole or completed” 

(Physics, III.6, 207a 7-9). 
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Accordingly, the impossibility of actual infinity was regarded as the fundamental 

principle in the history of the concept of infinity. Any attempt to demonstrate the 

reality of actual infinity had failed. Even if some scholars accept the idea of actual 

infinity, such as Nicholas of Cusa (1401-1464) and Giordano Bruno (1548-1600), 

Aristotle’s arguments have not been refuted successfully in the history of the concept 

of infinity. Nevertheless, Georg Cantor was the first thinker who attempted to refute 

Aristotle’s arguments against the existence of actual infinity. 

He introduced his theory mainly in two articles; “Grundlagen einer 

Allgemeinen Mannigfaltigkeitslehre”
10

 and “Beiträge zur Begründung der 

transfiniten Mengenlehre”
11

. The first article, Grundlagen, is dedicated to 

constructing transfinite ordinal numbers while analyzing the arguments against the 

existence of actual infinity. It should be noted that I will refer to the article as 

Grundlagen in the rest of this thesis. The second article, on the other hand, is devoted 

to the theory of transfinite numbers (including both ordinals and cardinals); the rules 

of transfinite arithmetic are comprehensively provided. For this thesis, the first 

article, Grundlagen, has an essential role in representing Cantor’s mathematical and 

philosophical arguments about the existence of actual infinity.  

In 1883, when Cantor published Grundlagen, the main purpose of the article 

was to justify the existence of actual infinity in the light of transfinite numbers. He 

used both philosophical arguments and mathematical arguments in defending his 

theory and subtitled the article as “A Mathematical - Philosophical Study in the 

                                                      
10

 Translated as “Foundations of a General Theory of Manifolds”. 

 

11
 Translated as “Contributions to the Founding of the Theory of Transfinite Numbers”. 
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Theory of the Infinite”. One of the most crucial points of the article is to defend that 

it is not possible to understand the nature of infinity with finitist reasoning; in fact, 

finitist reasoning necessarily leads to contradictory results in infinite quantities.  

To give an illustration of finitist reasoning let me use John Locke’s (1632-

1704) reasoning in his An Essay Concerning Human Understanding. He 

conceptualized infinity by assuming there is only one infinity and evaluated the 

mathematical applications of infinity as absurd. Locke wrote: “If a man had a 

positive idea of infinite, either duration or space, he could add two infinities together: 

nay, make one infinite infinitely bigger than another, absurdities too gross to be 

confuted” (as cited in Suber, 1998, p.29). In this sense, it is indeed impossible to 

speak of infinite quantities with finitist understanding because of the paradoxical 

results. However, in another sense, most scholars (including John Locke) only 

assumed the existence of the properties of finite quantities. In other words, infinite 

sets were regarded as if they have the same properties as finite sets. For Cantor, using 

finitist reasoning to understand the concept of infinity was an undeniable mistake, 

and this is the reason why the concept had been so problematic in the history of 

mathematics. The possibility that infinite quantities might have different 

characteristics was ignored by those great scholars
12

. It was this reasoning that led 

most people to presuppose the impossibility of infinite numbers in the first place.  

At the beginning of his career, Cantor, as many other scholars, accepted the 

idea that actual infinite has nothing to do with rigorous mathematics because he 

believed that the concept of actual infinite was hard to consistently formulate in 

                                                      
12

 It should be noted that some scholars, such as Galileo and Blaise Pascal (1623-1662), suggested that 

infinite quantities have different properties than finite quantities, but they also held that human 

reasoning cannot understand those properties with its own restricted capacity.   
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mathematical notions (Dauben, 1983, p.122). However, in 1874, Cantor came across 

the existence of different infinite sets for the first time in the article called “On a 

Property of the Collection of All Real Algebraic Numbers”. He mathematically 

demonstrated the fact that the list of all real numbers is incomplete in this article. 

Given the list of all real numbers in a closed interval (such as all the real numbers 

which are ≥ 0 and ≤ 1), it is always possible to construct a new number that would 

not be in the list of real numbers (1874, p.258). Since this number would not be on 

the list, it is impossible to list all the real numbers. Consequently, Cantor states that 

there would not be any one-to-one correspondence between the set of natural 

numbers and the set of real numbers. Then, he derived two conclusions from what he 

discovered. The first conclusion is the fact that the set of real numbers is non-

denumerable or uncountable
13

. The second one is the fact that that there must be at 

least two different sizes of infinite sets, namely the set of real numbers and the set of 

natural numbers. The reason for both conclusions is that the set of real numbers must 

have more elements than the set of natural numbers. Thus, Cantor suggested the idea 

that some infinite sets must have a higher degree of infinity than other infinite sets.  

He was surprised by the result, and, in a letter to Richard Dedekind (1831-

1916) in 1877, Cantor wrote “I see it, but I don't believe it!” (1991, p.44). By 

mathematically proving that there are different sizes of infinities, he introduced the 

concept of infinite sets into mathematical studies; in fact, there are infinitely many 

                                                      
13

 Cantor differentiates denumerable sets and non-denumerable sets on the basis of the one-to-one 

correspondence principle. Any set that can be paired with the set of natural numbers is identified as 

denumerable and non-denumerable sets become the sets that cannot be paired off with the set of 

natural numbers. 
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different sizes of infinite sets. But he was already aware that he had been dealing 

with something that no one had achieved:  

The preceding exposition of my research in the theory of manifolds
14

 has 

come to a point when its further development depends on an extension of the 

notion of true integer number beyond previous boundaries, an extension 

which goes in a direction that, to my knowledge, nobody has tried yet. My 

dependence on this extension of the notion of number is so great that without 

it, it would be almost impossible for me to make freely the least step further 

in set theory. (Cantor, 1976, p.70)  

 

Cantor's views about the concept of infinity were radically different from the 

great majority of his colleagues. The reason the Cantorian theory of infinity was 

criticized so much at the time it appeared was that the general understanding about 

the concept of infinity contradicts with what Cantor proposed. For this reason, 

Cantor preferred to use the words “proper (or genuine)” and “improper (or non-

genuine)” instead of actual and potential while mentioning infinity
15

. What he 

intended to explain by the word “improper infinite” is the concept of potential 

infinite in exactly the same way Aristotle proposed. It is a variable that can be 

increased indefinitely. Cantor defined as follows, “…the mathematical infinite has 

principally occurred in the meaning of a variable magnitude, either growing beyond 

all limits or diminishing to an arbitrary smallness, always, however remaining finite. 

I call this infinite the non-genuine infinite” (1976, p.70).  

The successive addition of units reveals that the process of constructing 

numbers in the unending sequence of natural numbers is obviously never-ending. 

Even though the sequence can proceed towards infinity, for Cantor, this does not 

                                                      
14

 Used for “sets” in his writings.  

 

15
 Even he sometimes misleads his articles to avoid prejudices, such as “On a Property of the 

Collection of All Real Algebraic Numbers”. For more detail see Dauben (1989).   
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entail the argument that it is infinite. For the fact that each number in the sequence is 

necessarily constructed with relation to the previous number, the sequence would 

only consist of finite numbers. Cantor wrote, “Whereas the potential infinite means 

nothing more than an indeterminate, always finite, variable magnitude taking values 

which become either as small as we please or larger than any arbitrary finite 

bound…” (1887, p. 409). To put it differently, all numbers must be finite because 

each number is constructed from another finite number. For this reason, the concept 

of potential infinite (or improper infinite) is not regarded as truly infinite in the 

Cantorian framework.   

On the other hand, proper infinite, as distinct from improper infinite, is the 

infinite type that is completed and definite. While improper infinite remains finite in 

terms of magnitude, proper infinite exceeds all the finite magnitudes and it is indeed 

infinite. In the Cantorian framework, the idea of proper infinite bases upon the idea 

of the complete collection of natural numbers as an actually existing entity
16

. As 

Cantor described: 

…the actual infinite refers to a fixed in itself, constant quantum which is 

larger than any finite magnitude of the same kind. Thus, for example, a 

variable magnitude x successively taking the different finite whole number 

values 1, 2, 3, …, v, …  represents a potential infinite, while the set (v) of all 

whole finite numbers, conceptually determined in full by a conceptual law, 

offers the simplest example of an actual infinite quantum. (1887, p. 409) 

 

For Cantor, “the set (v) of all whole finite numbers” represents an entity that is an 

actually infinite quantity. He assigned a number to the entity and called it the first 

transfinite ordinal number. Then, he applied the usual process of counting and 

                                                      
16

 As his own words, “The infinity of this sequence [1, 2, 3, . . . v] affords the proof that the totality of 

all finite numbers, considered as a thing in itself, is an actually infinite set, a transfinite” (Cantor 1887, 

p. 419). 

 



 

24 
 

constructed the rest of the transfinite numbers
17

. As it appears, the idea of actual 

infinity is reflected with the idea of transfinite numbers in the Cantorian framework. 

According to Cantor, transfinite numbers are not becoming infinite because any kind 

of limitation cannot be applied to them. Hence, these new numbers are actually 

infinite themselves. In the following section, Cantor’s two counter-arguments against 

Aristotle's mathematical rejection of the actual infinite are examined.  

 

2.3.1. Rejection of Aristotelian arguments against the existence of actual infinity  

 

The first argument which is defended by Aristotle relies on the assumption 

that only finite numbers exist because the counting procedure can only be applied to 

finite numbers. For Aristotle, since the main purpose of numbers is counting, all 

numbers must only be countable by finite numbers. Then, he asserted that infinite 

numbers do not exist since they cannot be counted. However, as Cantor stated, this 

argumentation involves a petitio principii: 

If one considers the arguments which Aristotle presented against the real 

existence of the infinite (vid. his Metaphysics, Book XI, Chap. 10), it will be 

found that they refer back to an assumption, which involves a petitio 

principii, the assumption, namely, that there are only finite numbers, from 

which he concluded that to him only enumerations of finite sets were 

recognizable. (1976, p.75) 

 

According to Aristotle, countability is only accessible on finite numbers. The reason 

is that every number can only be numbered as finite numbers. By doing so, he 

eliminated the possibility of infinite numbers in the first place and concluded that 

infinite numbers do not exist. Nonetheless, for Cantor, showing the logical fallacy in 

                                                      
17

 The construction method for transfinite ordinal numbers will be examined in chapter 2.3.1.  
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Aristotle’s arguments would not be sufficient to refute the arguments against the 

existence of actual infinite. For this reason, he proposed two counter-arguments. 

Before going into the details of Cantor’s arguments, it is noteworthy that the 

new approach to the number concept is produced by the concept of a well-ordered 

set, which has an essential role in the construction of transfinite numbers. A well-

ordered set is defined as follows; firstly, there must be a first element in the set in 

terms of the order, not of the multitude. Secondly, every element must be followed 

by another element as a successor unless it is the last element of the succession. 

Lastly, for any finite or infinite set of elements, there must exist a determinate 

immediate successor which is known as the limit ordinal. For instance, the natural 

ordering of natural numbers is a well-ordered set; every number in the sequence is 

defined as the next number then the previous one by the successor operation, i.e. a 

well-ordering of natural numbers is {1, 2, 3, …}. Then consider the ordering of the 

sequence as {1, 3, 5, …, 2, 4, 6, …}. This is an unusual ordering, but it is also a well-

ordering of the set of natural numbers.  

Cantor believed that infinite sequences can also be numbered by using the 

concepts of a well-ordered set. The reason is that the order of the last member of any 

sequence signifies the order type of sequence. For finite sets, different orderings of 

elements cannot change the order of the last member. In order to illustrate, consider 

two different ordered sets {1, 3, 5, 7} and {7, 5, 3, 1}. Both have their last element as 

the fourth element and they paired off with the sequence {1, 2, 3, 4} to be numbered. 

Even though they have different orderings, they have the same order type because of 

the order of their own last element. Nevertheless, as we will examine in the second-

counter argument, it is possible to differentiate infinite sets from each other in the 
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way that, for infinite sets, different orderings can change their order types. Through 

different orderings of elements, Cantor assigned numbers to infinite sets. This is the 

reason why he called these new numbers transfinite ordinal numbers.  

The first counter-argument, defended by Cantor, implies that infinite sets can 

also be counted like finite sets. While finite numbers are dependent on finite sets, 

which are enumerated by their own units, the enumeration of infinite sets can only be 

held by their limiting elements. In this manner, Cantor demonstrated the new method 

to count infinite sets in contrast to what Aristotle represented. To count an infinite 

set, the size of the set is abstracted from its members because what we need is the 

size of the set, not the members of the set. Then, Cantor showed the way the first 

transfinite ordinal defined. “ω” (omega) is constructed as the limit to the sequence of 

natural numbers by the second number generating principle. As Cantor’s words, 

If any definite succession of defined integers is put forward of which no 

greatest exists, a new number is created by means of this second principle of 

generation, which is thought of as the limit of those numbers; that is, it is 

defined as the next number greater than all of them. (1976, p.87) 

 

The principle basically allows us to conceive the sequence of natural numbers as a 

completed entity, then a new number, that is the limiting number of the sequence as 

the next number greater than all finite numbers, is assigned to the complete sequence 

of natural numbers. The new number exceeds all finite numbers as the limiting 

element; consequently, this makes it greater than any finite number. And since the 

number cannot take its place in the sequence, it cannot be a finite number, but a 

transfinite number.  

Furthermore, Cantor showed the mathematical conditions to construct the rest 

of the transfinite numbers. The new infinite numbers, after the first transfinite, are 

constructed by the first number generating principle, i.e. the successive addition of 
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units. By adding 1 to the first transfinite number, the second transfinite (ω+1) is 

constructed as a distinguishable number. Again, by adding 1 to the second number, 

the third one is appeared and so on. Thus, the new number sequence, namely the 

sequence of transfinite ordinal numbers, turns out to be ω, ω+1, ω+2… Thus, 

contrary to Aristotle represented in his arguments, counting infinite quantities is 

indeed mathematically possible
18

 and this implication alone, for Cantor, shows that 

infinite numbers cannot be considered from a finitist point of view. As he stated: 

There we only made use of the first principle of generation (the principle of 

counting) and consequently stepping out of the series (the sequence of natural 

numbers) was impossible. The second generation principle, however, not only 

had to lead beyond the number field given up to now, but indeed proves itself 

to be a means which, in conjunction with the first principle of generation, 

provides the capacity to break through every boundary in the concept 

formation of the real whole numbers. (1976, p.88)  

      

The second counter-argument, on the other hand, is against the annihilation of 

finite numbers. The argument proposed by Aristotle to refute the existence of actual 

infinity implies that even if infinite numbers exist, finite numbers would be 

annihilated by the sequence of infinite numbers when the calculation is applied
19

. 

However, for Cantor, it is possible to apply mathematical operations to transfinite 

numbers contrary to what Aristotle presented. It should be noted that transfinite 

ordinal numbers are constructed as well-ordered sets and mathematical operations 

have applied them by concatenating their order types. In the operation of addition, 

                                                      
18

 According to Cantor, “Rather the number of elements of an infinite aggregate is an infinite whole 

number co-determined by the law of counting; in this and in this alone lies the essential distinction 

between the finite and the infinite, which has its basis in nature itself, and thus can never be removed” 

(1976, p.75). 

 

19
 On finite arithmetic, for any finite numbers m and n, m + n > m and m + n > n. But it was accepted 

that if we considered an infinite number, then the equations would turn out to be m + ∞ = ∞ or n + ∞ 

= ∞. For the fact that any infinite quantity must be greater than all finite quantities, finite numbers 

must necessarily be destroyed. 
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for instance, two ordinals α and β are positioned one after another by keeping the 

ordering they already have, and the sum α + β (containing indexed order types of 

these ordinals) is obtained as the sequence of α followed by the sequence of β. For 

the separation of distinct order types of ordinals, a semicolon is used in all 

mathematical operations.  

In Grundlagen, Cantor asserted that if any transfinite number is adjoined to a 

finite number, the finite number would be dissolved in the sequence of transfinite 

number as Aristotle did in his argument. But this does not mean that the annihilation 

argument is always applicable in transfinite numbers. On the contrary, if any finite 

number is added to a transfinite number, what the result of the operation would be a 

new transfinite number according to Cantor. The main reason is that the finite 

number would take its place with no immediate predecessor after the whole 

sequence. Consequently, the new sequence would be different from the former one. 

Cantor wrote:  

To an infinite number (if it is thought of as determinate and complete) a finite 

number can indeed be adjoined and united without effecting the dissolution of 

the latter (the finite number)-the infinite number is itself modified by such an 

adjunction of a finite number. (1976, p.75) 

 

As can be seen from the quote that adjoining a finite number to a transfinite number 

would give us a different sequence, which corresponds to a different number with its 

new order type. This is the main reason why Cantor emphasized the order of finite 

numbers to avoid the annihilation of finite numbers in mathematical operations.  

Let me give an example, 1 + ω is equal to ω because of the following reasons;  

1 + ω has the order type of {1; 1, 2, 3….} while ω has the order type of {1, 2, 3….}. 

Both do not have the last element and have the same order type. Therefore, 1 + ω = 

ω. However, on the other hand, ω + 1, which is the immediate successor of ω, has a 
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different order type. It has the order type of {1, 2, 3….; 1} and it is not ordered 

isomorphic to ω; the last element has no immediate predecessor and it is positioned 

as the ω
th

 element in the sequence. Therefore, ω + 1 is a different number from both 

ω and 1 + ω. The order of the finite number in mathematical operations, as can be 

seen above examples, is significant to avoid annihilation. This is because different 

orderings can correspond to different numbers in the enumeration of infinite sets. 

The analysis has sufficiently shown that the commutative law for addition does not 

hold for transfinite numbers. 

In conclusion, it is noteworthy that the number generating principles, 

especially the second number generating principle, provide the mathematical 

conditions that lead to the construction of transfinite numbers. The first counter-

argument provides the method to count infinite sequences by assigning a new 

number to the unending sequence of natural numbers. As Cantor stated: 

However, I believe I have proved above, and it will be shown even more 

clearly in the rest of this work, that definite counting can be effected both on 

finite and on infinite sets, assuming that one gives a definite law according to 

which they become well-ordered sets. That without such a lawlike succession 

of the elements of a set no counting with it can be affected lies in the nature 

of the concept counting. (1976, p.75) 

 

The second counter-argument demonstrates that the order of finite numbers is 

significant in arithmetic operations to avoid the annihilation of finite numbers. When 

the finite number takes its place after the sequence of transfinite number, the 

annulment of finite numbers has not appeared. Hence, arithmetical operations can 

also be applied to infinite sets with the proper ordering of elements of the operation. 

For the fact that the results of those enumerations differ from one another, we cannot 

disregard the characteristics of transfinite numbers; they behave differently in their 

arithmetic operations. Thus, the annihilation argument, defended by Aristotle, is not 
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always applicable to transfinite numbers. We may, therefore, assert that the 

mathematical arguments against the existence of actual infinity were answered and 

ruled out by these two counter-arguments.  

 

2.4. Conclusion 

 

For Cantor, to put it briefly, all anti-infinitistic arguments rely on two 

assumptions. The first assumption is that all numbers are necessarily finite by the 

counting method, and the second assumption is that an infinite number cannot be 

subjected to any kind of determination. Nevertheless, for Cantor, the first assumption 

is disputable because there are transfinite numbers, which have allowed us to exceed 

the domain of finite magnitudes. The argument that infinite numbers do not exist 

relies on the impossibility of enumeration of infinite sets, but Cantor proposed the 

new way of enumerating infinite sets by their limiting numbers and constructed new 

arithmetic for transfinite numbers. The second assumption, on the other hand, is also 

disputable because transfinite numbers are constructed by their well-ordered sets that 

make them mathematically as determinate as finite numbers. The rules of transfinite 

arithmetic show us that transfinite numbers are grounded upon the objective reality 

of finite numbers. Hence, we cannot disregard the determinateness of these new 

numbers. About these two assumptions, Cantor wrote: 

All so-called proofs against the possibility of actually infinite numbers are 

faulty, as can be demonstrated in every particular case, and as can be 

concluded on general grounds as well… From the outset they expect or even 

impose all the properties of finite numbers upon the numbers in question, 

while on the other hand the infinite numbers, if they are to be considered in 

any form at all, must (in their contrast to the finite numbers) constitute an 

entirely new kind of number, whose nature is entirely dependent upon the 
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nature of things and is an object of research, but not of our arbitrariness or 

prejudices. (as cited in Dauben, 1991, p.125) 

 

Based on the enumeration of the unending sequence of natural numbers, Cantor not 

only constructed the new kind of mathematical system but also showed that 

paradoxical results in potentially infinite sequences have arisen from the finitist 

reasoning; which is actually originated from the assumption that infinite sets have the 

same characteristics as finite sets. 

Apparently, if transfinite numbers are as legitimate as finite numbers, then the 

Aristotelian rejection of actual infinity would confront a logical error, i.e. petitio 

principii. Let me remind you that Aristotle asserted that the idea of actual infinite is 

impossible by rejecting the existence of infinite numbers in the first place. However, 

the assumption that only finite numbers can be counted does not entail the idea that 

infinite numbers cannot be counted. Instead, it only implies that infinite numbers 

cannot be counted as exactly the same way finite numbers are counted. The problem 

of Aristotle's arguments is that he defends the idea that infinite numbers cannot exist 

based on the assumption that all numbers are inherently finite. Accordingly, he 

answered the question of whether infinite numbers exist or not by begging the 

question and eliminated the possible existence of infinite numbers. Hence, they are 

subjected to a logical fallacy, i.e. a petitio principii.   

Setting that aside, in addition to petitio principii, there is another problem in 

Aristotle’s arguments. In Aristotle’s philosophy, being is a process that is formed by 

the actualization of potentials, and existence is regarded as the process of becoming 

in which potentials are actualized and completeness acquired
20

. For Aristotle, change 
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 For more detail, see Physics Book III.  
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in nature has emerged with the actualization of potentials, all things by their nature 

are in a constant process of becoming; they change their potentials to reach their 

ultimate actuality. Those potentials which are actualized made things actual and 

complete. For instance, bricks have the potential to construct a house and when the 

house is built, the potentiality of bricks has become actualized. They are no longer 

some bricks, instead, they collectively constitute a house. Since their potentiality 

became their complete actuality by constructing the house, they no longer have their 

potentials. As long as there are potentials that remain unactualized, the entity must be 

incomplete. But, firstly, to have potentials, there must be an entity whose potentials 

are waiting to be actualized. Aristotle mentioned this in Physics. He wrote:  

Then again, there must be something to initiate the process of the change or 

its cessation when the process is completed, such as the act of a voluntary 

agent (of the smith, for instance), or the father who begets a child; or more 

generally the prime, conscious or unconscious, agent that produces the effect 

and starts the material on its way to the product, changing it from what it was 

to what it is to be. (Physics, II.3, 194b 29-33) 

 

Apparently, the Aristotelian ontology seems to presume the existence of an entity 

that has the potentiality to become something other than itself. Accordingly, there 

would not be any potentiality without an actual entity in the first place. However, this 

assumption is not required in the course of infinitude. As Aristotle’s own words: 

The infinite, then, exists in no other way, but in this way it does exist, 

potentially and by reduction. It exists fully in the sense in which we say 'it is 

day' or 'it is the games'; and potentially as matter exists, not independently as 

what is finite does. (Physics, III.6, 206b13-16) 

 

By rejecting the relation between potential infinite and actual infinite, he concludes 

that the distinction between potential infinite and actual infinite is “sui generis” 

which means something unique by its own characteristics. This seems to be a quite 
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ad-hock attempt in his theory regarding the characterizations of potential infinity and 

actual infinity.  

In the Cantorian framework, this is a problem; the concepts of potential 

infinite and actual infinite are not as separate as Aristotle presented. For Cantor, 

potential infinite is meaningless without actual infinite because potentials have only 

occurred if there is an underlying reality. As his words, “In truth the potentially 

infinite has only a borrowed reality, insofar as a potentially infinite concept always 

points towards a logically prior actually infinite concept whose existence it depends 

on” (as cited in Rucker, p.3). This would mean that, at least for Cantor, actual infinite 

has ontologically superiority to potential infinity because potential infinite 

presupposes an actual infinite to exist in the first place. Therefore, this reasoning 

alone necessitates the existence of actual infinity for Cantor in order to speak of the 

existence of potential infinity. 

On the one hand, Cantor’s strong commitment to the existence of transfinites 

provided him a way to refute the traditional understanding of infinity. Nevertheless, 

on the other hand, he has also fallen into the same position with Aristotle; Cantor 

also begged the question and answered the question of whether infinite numbers exist 

or not by showing transfinite numbers. He used these numbers to show the fact that 

infinite numbers can also be enumerated as finite numbers after mathematically 

constructing them. In this regard, claiming that these numbers correspond to the 

existence of actual infinities seems to be an overstatement. One can, for instance, 

argue against the existence of these numbers and defends that they are not essentially 

different from potentially infinite sequences. As an example, Anne Newstead wrote,   

However, finitists would argue that Cantor’s transfinite numbers are too 

determinate, too similar to finite numbers, to be truly infinite. Finitists agree 
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with Aristotle that the proper conception of infinity is that of something that 

is endless and essentially incomplete and indeterminate. (1975, p.10)  

 

Probably, the answer that Cantor would offer is the differences between transfinite 

numbers and finite numbers. Then, the question that would be examined turns out to 

be what makes transfinite numbers different from finite numbers.  

First of all, according to Cantor, a new criterion is required for the 

arithmetization of different sizes of infinite sets. The criterion is the one-to-one 

correspondence between infinite sets and their proper subsets
21

. When this criterion 

is applied to finite sets, the pairing would be impossible for the fact that the members 

of any finite set must have more in quantity than its proper subsets in all conditions. 

Consequently, it is impossible to construct such a pairing between a finite set and its 

proper subsets. Nonetheless, this kind of correspondence can be constructed in 

infinite sets. Accordingly, the first distinction between finite sets and infinite sets has 

emerged in this way: infinite sets become the sets that can be paired off with their 

own proper subsets. Even though this implication seems counterintuitive, it was 

exactly the point Cantor emphasized the different characteristics between infinite sets 

and finite sets.  

Secondly, although it is also possible to construct an unlimited amount of 

transfinite number by using the same principles, having unlimited elements does not 

make these numbers incomplete for Cantor. On the contrary, they are the instances of 

complete infinite. The set of natural numbers itself contains all of its numbers all at 

once. Numbers in this set do not manifest themselves as variables that proceed 

indefinitely, instead, they collectively constitute a whole that Cantor identified as a 
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 As it is known, Richard Dedekind (1831-1916) firstly mentioned this criterion as the definition of 

infinite sets: infinite sets are the sets that have the same cardinality with their proper subsets.  

 



 

35 
 

genuine constant. This constant as the limiting number really belongs to actual 

infinite because the limiting number corresponds to all the numbers in the sequence 

simultaneously. In this manner, the sequence whose process is not yet completed is 

regarded as completed. On this subject manner, David Hilbert (1862- 1943) states:   

We meet the true infinite when we regard the totality of numbers 1, 2, 3, 4, ... 

itself as a completed unity, or when we regard the points of an interval as a 

totality of things which exists all at once. This kind of infinity is known as 

actual infinity. (1926, p.188) 

 

Thirdly, the laws that are applied to the arithmetical operations of transfinite 

numbers are different from the arithmetical operations of finite numbers. For finite 

numbers, the commutative law for addition always holds. Nevertheless, in the course 

of transfinite numbers, the order of numbers is significant to clarify the result of the 

operation because infinite sets would have different enumerations with different 

orderings
22

. For the same reason, the commutative law for multiplication does not 

hold in transfinite arithmetic. Furthermore, since transfinite ordinals do not have a 

predecessor unlike finite numbers, it is impossible to clarify the previous number 

before transfinite ordinals. It thus follows that the subtraction operation and the 

division operation cannot be applied for all transfinite ordinals
23

. As it seems, even 

though transfinite numbers are subjected to have different rules, their arithmetic is 

well-defined as finite arithmetic. We may, therefore, claim that these new numbers 

are mathematically different from finite numbers.    

                                                      
22

 See the examples I have given in 2.3.1.   

 

23
 Given any transfinite numbers α and β, subtraction operation is possible as following: assuming that 

we have an equation as α + γ = β, where γ can be either finite or transfinite, it is possible to derive β – 

α, that is equal to γ. But if we rewrite the equation as γ + α = β, then we cannot always derive β – α for 

the non-commutativity of transfinite operations.  
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I would like to conclude that, for Cantor, Aristotle’s arguments against the 

existence of actual infinity were the source of the scholastic position towards the 

concept
24

. But the proper way of understanding the concept of infinity cannot be 

potential infinity as Aristotle did in his opposition. Cantor introduced a new 

understanding of the concept of infinity that has one of the greatest impacts on its 

development in mathematics: 

Once the actual infinite in the form of actually infinite sets had in this way 

asserted its citizenship in mathematics, then the development of the actually 

infinite number concept became inevitable, through appropriate, natural 

abstractions, just as the finite number concept, the material of arithmetic 

hitherto, had been achieved through abstraction from finite sets. (Cantor, 

1887, p. 411) 

 

Cantor not only provided an account of how to count infinite sets but also, introduced 

transfinite numbers and their arithmetic to stand against the traditional understanding 

of infinity. In this respect, I intend to claim that the Cantorian Set Theory which is 

against the dogmas of finitist mathematics is an outstanding response what most 

people thought after Aristotle’s ideas. The arithmetization of infinite sets, which 

Cantor successfully demonstrated, leads us to conclude that the Cantorian Set Theory 

is a revolution in the history of the concept of infinity. So far, I have dealt with the 

Aristotelian rejection of actual infinity within the framework of Cantorian transfinite 

numbers. Now, I proceed to the next chapter where the existence of mathematical 

objects in the Cantorian framework is examined.   

  

                                                      
24

 In the article called “Cantor’s Transfinite Numbers and Traditional Objections to Actual Infinity”, 

Jean Rioux states “Cantor saw Aristotle as the source of the Scholastic position on infinity, and in the 

Grundlagen, he addressed the basic error involved in all 'finitist' reasoning” (2000, p.101). 
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CHAPTER 3 

 

 

THE EXISTENCE OF MATHEMATICAL OBJECTS IN CANTORIAN 

FRAMEWORK 

 

 

3.1. Introduction 

 

 

Cantor formulated his theory that has intertwined with different distinctions 

(including the distinction between the two sides of reality and the distinction between 

multiplicities), and it turns out that all the distinctions he made are proposed to prove 

the existence of actual infinity. My intention in this chapter is to examine these 

distinctions in Cantor’s theory and to show their importance as the ontological 

framework of actual infinity in the light of transfinite numbers. 

In Grundlagen, when Cantor dealt with the foundation of transfinite numbers, 

he was building the theory of transfinite numbers based on the order type of different 

infinite sets. Cantor's strategy was to defend transfinite numbers as the legitimate 

extensions of finite numbers in which the relations between transfinite numbers and 

finite numbers provide the objective reality of transfinite numbers in mathematics. 

The reason for this strategy is the freedom of mathematics. Cantor believed that new 

concepts for mathematics can be introduced through already existing definitions and 
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relations. As we will see in section 3.2., when the construction of transfinite numbers 

considered, the number generating principles have a significant role regarding the 

correlation between natural numbers and transfinite numbers.      

Another significant aspect of Cantor’s theory is that the objective reality of 

transfinite numbers actually depends on the two aspects of reality, namely the 

immanent reality and transient reality. I will describe these two sides in more detail 

in chapter 3.2.1., for now, let me summarize the distinction briefly. While the 

immanent reality of concepts corresponds to a possible idea in the human mind, the 

transient reality of concepts is an object that is corresponding to images of physical 

phenomena independent from the human mind. The importance of this distinction 

particularly lies in mathematics. Mathematical objects are abstract entities; they do 

not have an existence as physical objects around us. For the fact that transfinite 

numbers are required justification for their usage in mathematics, Cantor considered 

these two sides. For him, the duality between immanent reality and transient reality 

makes transfinite numbers actually infinite numbers, rather than just symbols of 

infinity.  

 

3.2. Free mathematics 

 

Mathematical objects, for Cantor, are the concepts that we abstract, and their 

reality as mathematical objects rely on definitions and relations. If these definitions 

and relations are established without any contradictory result, then one can easily 

accept the existence of new objects based on earlier concepts within the consistent 

arithmetic system. The idea behind this reasoning is the freedom of mathematics. For 
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Cantor, mathematic is entirely free to create new concepts on the grounds of 

intellectual consistency because the freedom is the essence of mathematics. As 

Cantor puts it:    

Mathematics is in its development entirely free and is only bound in the self-

evident respect that its concepts must both be consistent with each other and 

also stand in exact relationships, established by definitions, to those concepts 

which have previously been introduced and are already at hand and 

established. (1976, p.79) 

 

According to this criterion, as long as new mathematical objects stand in a certain 

relationship among others, they must be regarded as real as other objects because 

mathematics itself guarantees their reality via definitions and relations. Cantor states 

the argument as follows:  

In particular, in the introduction of new numbers, it is only obligated to give 

definitions of them which will bestow such a determinacy and, in certain 

circumstances, such a relationship to the older numbers that they can in any 

given instance be precisely distinguished. As soon as a number satisfies all 

these conditions it can and must be regarded in mathematics as existent and 

real. (1976, p.79) 

 

Since mathematics is free to generate its own objects, Cantor used this freedom to 

establish transfinite numbers on the basis of the number generating principles, 

namely the first generation principle and the second generation principle. The first 

principle of generation, which I examined above in section 2.3.1, provides a way to 

define the immediate successor of any number by the repeated addition of units. This 

is the usual process of counting
25

. We have the unending sequence of finite numbers 

with no greatest among them. But Cantor’s main interest, of course, was not to 

validate the unending sequence of the finite numbers, instead, his intention here was 

                                                      
25

 This is also known as the principle of induction or mathematical induction in contemporary 

mathematics. Given an infinite sequence, if a proposition P(1) is true, and by assuming that P(x) is 

also true, then it can be shown that the proposition is also true for x + 1, then the proposition is true for 

all natural numbers. 
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to comprehend the sequence as a complete entity to construct infinite numbers. When 

the second principle of generation is considered, the properties and orders of 

elements are abstracted from the sequence and a completed entity, i.e. {1, 2, 3…}, is 

acquired. Then, a new number
26

 is assigned to the entity as the limit of previous 

numbers:  

If any definite succession of defined integers is put forward of which no 

greatest exists, a new number is created by means of this second principle of 

generation, which is thought of as the limit of those numbers; that is, it is 

defined as the next number greater than all of them. (Cantor, 1976, p.87) 

 

The new number is called the first transfinite ordinal number “ω” and it is the 

limiting element of the previous number sequence, i.e. natural numbers. Being the 

limit makes the number greater than all elements of the sequence and, at the same 

time, the smallest one after the whole sequence. Since it exceeds all finite numbers in 

terms of size, it cannot take its place in the sequence and, more importantly, it cannot 

be a finite number for the same reason.  

Since the freedom of mathematics ensures the existence of new concepts with 

regard to definitions and relations, Cantor constructed the new numbers based on the 

sequence of natural numbers by way of the number generating principles to justify 

their mathematical existence. As long as the mathematical system, which includes 

both transfinite numbers and finite numbers, maintains its consistency and 

coherency, then transfinite numbers must be acknowledged as a legitimate extension 

of finite numbers. As William Walker Tait stated in his article “Cantor’s Grundlagen 
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 After defining the first limit ordinal by the second principle of generation, Cantor introduced the 

principle of transfinite induction. While the principle of mathematical induction only works for finite 

ordinals, transfinite induction is used for limit ordinals. Given a well-ordered set A, if a proposition 

P(0) is true, then it is possible to assume that P(β) is true for all β < α. Then, by assuming P(β), it is 

possible to prove P(α) for all α ∈ A. After verifying these, then it is possible to prove that for any limit 

ordinal γ, P(γ) is also true for all β < γ.  The principle of transfinite induction implies that the 

proposition P is true for all ordinals.  
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and the Paradoxes of Set Theory”, “We are justified in regarding the numbers as real 

in so far as the system of transfinite numbers has been consistently defined and 

integrated with the finite numbers” (2000, p.258).  

All things considered; it is not unreasonable to claim that transfinite numbers 

have a conceptual base in our understanding with the number generating principles. 

Cantor wrote: 

What I declare and believe to have demonstrated in this work as well as in 

earlier papers is that following the finite there is a transfinite (transfinitum) 

that is, there is an unlimited ascending ladder of modes, which in its nature is 

not finite but infinite, but which can be determined as can the finite by 

determinate, well-defined and distinguishable numbers. (1976, p.76) 

 

Each number generating principles evidently has a significant role in the relations 

between transfinite numbers and other mathematical objects. Therefore, the freedom 

of mathematics and the number generating principles lead us to conclude that these 

new numbers are mathematically as justifiable as finite numbers. The following 

section is devoted to examining the two sides of reality which underlies the argument 

for the freedom of mathematics.  

 

3.2.1. Two sides of reality from Cantor’s perspective 

 

Under the influence of Plato’s two-world doctrine
27

, many philosophers 

believed that there are two sides of reality in which we live in as the physical 

                                                      
27

Plato indicates that the world composed of two distinct realms; the material world and the world of 

ideas. The world of ideas is the realm that is perfect itself and contains every perfect form as ideas. On 

the other hand, the material world is just a reflection of the world of ideas in the sense that entities in 

the material world are imperfect copies of those perfect forms. The importance of this distinction 

grounds the argument that it is impossible to think of the reflection of any form without the underlying 

perfect form in the world of ideas. For more detail see Ross (1951), pp. 22-37.  
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manifestation of concepts and the ideal side as the source of knowledge. Of course, 

this duality was reflected in different ways by the people who believed this duality, 

but the underlying reason is generally the same. Georg Cantor also was one of them. 

He stated: 

For this (any secure knowledge) can be obtained only from concepts and 

ideas that are stimulated by external experience, and are essentially formed by 

inner induction and deduction as something that, as it were, was already in us 

and is merely awakened and brought to consciousness. (1976, p.95) 

 

In this regard, the distinction between the two sides of reality, namely the immanent 

reality and the transient reality, has a significant role in his philosophical framework 

for the justification of transfinite numbers.  

He describes immanent or intrasubjective reality as “in a connectional sense 

to modify the object of thought” (1976, p.79). The immanent side of concepts is 

concerned with the relations with the already well-defined objects. This means the 

internal consistency between old concepts and new concepts will guarantee the 

legitimacy of new concepts in mathematics. For Cantor, as long as the consistency of 

the system is held, then any new concept will have an existence in the immanent side 

as possibly exist ideas. In a sense, every consistent and coherent idea in the 

Cantorian framework can eventually correspond to an actuality as a possible being, 

but this does not always mean that they will exist as an actual entity in the physical 

world. Instead, he wrote:   

I call the being concerned a ‘possible’ being. By this is not meant that the 

being somewhere, somehow and sometime exists, since that depends on 

further factors, but only that it can exist. Thus, for me, the two concepts 

‘suited for existence, i.e., for being created’ and ‘possibility’ coincide. (as 

cited in Hallett, 1986, p.20) 

 

On the other side, he describes transient or transsubjective reality as 

“expressions or images in the physical world” (1976, p.79). The transient reality is 
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the reality side that concepts have their physical reality independent from the human 

mind. To put it differently, transient reality of an object is concerned with the 

physical manifestation in the natural world. According to Cantor, when mathematical 

objects are considered, these two sides cannot be differentiated from each other; 

instead, they always coexist together. As he puts it: 

Given the thoroughly realist foundations of my investigations, there is no 

doubt in my mind that these two types of reality will also be found together, 

in the sense that a concept to be regarded as existent in the first respect 

(immanently real) will always in certain, even in infinitely many ways, 

possess a transient reality as well. (1976, p.79) 

 

Accordingly, any well-defined mathematical idea, which is immanently real 

in mathematics, it would have a corresponding reality in the transient side as well 

because the idea always exists as a possible idea. However, for the fact that 

mathematical objects are abstract entities, their manifestation can only occur in 

definitions and relations with former objects. This is the reason why Cantor 

suggested the argument that mathematics must only concern with the immanent 

reality of concepts because its objects have relational existence. In Cantor’s words, 

“… mathematics in the shaping of its conceptual material need take into account 

solely and uniquely the immanent reality of its concepts and thus is under no 

obligation whatsoever to also test these concepts with respect to their transient 

reality
28

” (1976, p.79). 

Furthermore, for Cantor, so long as any new mathematical concept is 

constructed based on former concepts without any contradiction, the immanent 

reality of this concept guarantees its place as a distinct object of thought by the free 
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 On the determination of transient reality of mathematical objects, Cantor infers the following, 

“Admittedly, the determination of this reality generally is among the most troublesome and difficult 

tasks of metaphysics…”(1976, p.79).   
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act of our construction ability. In this regard, the construction of transfinite numbers 

on the grounds of the number generating principles justifies that these new numbers 

have their existence as distinguishable numbers because the integration and 

consistency with finite numbers assure their place in our understanding: 

First, we may regard the whole numbers as real in so far as, on the basis of 

definitions, they occupy an entirely determinate place in our understanding, 

are well distinguished from all other parts of our thought and stand to them in 

determinate relationships, and thus modify the substance of our minds in a 

determinate way. (Cantor, 1976, p.79) 

 

This argument is also provided the reason why Cantor has suggested the freedom of 

mathematics on the grounds of internal consistency. Accordingly, on the authenticity 

of mathematics, he infers the following, “Because of this distinguished position, 

which differentiates mathematics from all other sciences…, it quite specifically 

deserves the name of free mathematics, a designation to which, if I had the choice, I 

would give preference over the now customary ‘pure’ mathematics” (1976, p.79).  

In conclusion, Cantor’s arguments for the freedom of mathematics and the 

objective reality of transfinite numbers are based on the distinction between the two 

aspects of reality, namely the immanent reality and transient reality and what he 

proposed with this distinction is an interesting framework to demonstrate the 

existence of these new numbers. Cantor believed the consistency of the mathematical 

system, in which all transfinite ordinal numbers are obtained through abstraction 

from the set of natural numbers by the second number generating principles, would 

demonstrate the mathematical reality of transfinite numbers based on the well-

ordered sets. Cantor infers the following:  

Then again we can ascribe reality to numbers insofar as they must be 

regarded as an expression or image of occurrences and relationships in the 

external world confronting the intellect, further insofar as the different 
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number classes (I), (II), (III)
 29

, and so on represent powers, which in fact 

occur in corporeal and mental nature. (1976, p.79) 

 

Each number generating principles has a significant role regarding the correlation 

between natural numbers and transfinite numbers, and this is the way the 

mathematical consistency of these new numbers is maintained, and their immanent 

reality is shown in the Cantorian framework. Therefore, it can be concluded that the 

immanent side of transfinite numbers assures that the new numbers, which are 

constructed in a similar way to finite numbers, are as legitimate as finite numbers 

based on the two aspects of reality. 

 

3.3. The notion of set in Cantorian framework 

 

Before going into the arithmetization of transfinite numbers, the concept of a 

set must be analyzed to understand Cantor's transfinite theory; it should not be 

forgotten that the idea of transfinite numbers is emerged from the set of natural 

numbers by considering it as a completed set. And this is the reason why he puts the 

concept of a set at the center of his theory. For this reason, the following section of 

my thesis is dedicated to analyzing the concept of set in the Cantorian framework. 

First of all, it is noteworthy that Bernard Bolzano (1781-1848), as an Austrian 

mathematician, had an undeniable impact in Cantor’s work both in the concept of set 
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 Cantor not only mathematically constructed infinitely many number sequences which enumerate 

infinite sets, but also distinguished them into number classes. At this point, he introduced the third 

number generating principle (also called as limiting principle), which reveals the different number 

classes. The first number class is the set of natural numbers whose cardinality is equal to ℵ 0. The 

unending series of transfinite ordinals (ω, ω + 1, …, ω · 2, ω · 2 + 1, …, ω · 3, …, ω
2
, …, ω

3
, …, ω

ω
, 

…, ω
ω

ω

, …) is named as the second number class which is the next higher cardinality (ℵ 1) after than 

the first number class.  
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and in the concept of actual infinity. Bolzano studied the concepts of set in his works 

and the way he defined it contributed to the formation of this concept in modern 

mathematics. In fact, he added four different attributes to the concept (Felgner, 

2010). To put it briefly, the first attribute is that the totality of elements determines 

sets. In other words, the collection of objects constitutes a new object which we 

defined as a set. The second one is that, for Bolzano, sets can consist of different 

kinds of entities; any collection of objects can form a set. The third is that the 

existence of sets does not need to be definable. And the last attribute is that sets have 

mind-independent existence for Bolzano. These four attributes not only improved the 

formation of the modern concept of a set but also affected Cantor’s way of the 

conception of sets. 

Furthermore, in Paradoxes of the Infinite, Bolzano questioned the nature of 

infinity to solve paradoxical results, especially Galileo’s paradoxical examples. He 

was the first person to claim that the idea of actual infinite can be introduced in 

mathematics as a legitimate object after properly clarifying its mathematical nature. 

Contrary to the traditional understanding, the idea of actual infinity was 

indispensable for Bolzano. Since mathematic deals with abstract sets, infinite 

sequences can also be constructed as mathematical sets with the true criteria. The 

subset criteria, for Bolzano, were the true criteria for comparing infinite sets in sizes. 

Any subset whether finite or infinite must always be smaller than the set itself in 

terms of numerosity. If this criterion is applied properly, then it is possible to show 

that one infinite set can be greater than another infinite set. Even though Bolzano 

failed in arithmeticity of infinite quantities, the subset criteria influenced Cantor 
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about infinite sets; different infinite sets can be obtained according to their order 

type.  

For a long time, it is assumed that enumerating an infinite sequence is 

impossible, but Cantor realized that if the infinite sequences are demonstrated as 

well-ordered sets, then the enumeration of them can be mathematically obtained. In 

fact, Cantor believes that every set can be turned into a well-ordered set. This is also 

known as the well-ordering theorem
30

. He wrote:  

The concept of a well-ordered set is fundamental for the whole theory of 

manifolds. It is a basic law of thought, rich in consequences and particularly 

remarkable for its general validity, that it is always possible to bring any well-

defined set into the form of a well-ordered set. (1976, p.72) 

 

With the concept of a well-ordered set, Cantor not only indicated that infinite sets are 

countable as finite sets but also, he argued that infinite sets would certainly generate 

different implications in mathematics with their different order types. Consequently, 

it is not unreasonable to argue that transfinite numbers secure their place in 

mathematics with regard to well-ordered sets they depend on.  

In Grundlagen, Cantor defined a set as following, “By an aggregate, I 

generally understand every multiplicity which can be thought of as one, i.e. any 

totality of definite elements which by means of a law can be bound up into a whole” 

(1976, p.93). The problematic aspect of this definition is that, as many people has 

                                                      
30

 It should be emphasized here that the well-ordering theorem and the well-ordering principle are 

different from each other. The well-ordering principle implies that, in every non-empty set of positive 

integers, there is always a least element, that makes them well-ordered sets. The well-ordering 

theorem is reflected as the Axiom of Choice in ZFC (Zermelo-Fraenkel Set Theory with the Axiom of 

Choice). The Axiom of Choice is in fact formally equivalent to Cantor’s well-ordering theorem. The 

axiom implies that it is possible to demonstrate one set which its elements are chosen from infinite 

collection of sets one by one. Since it does not indicate the choice function obviously, i.e. a function f 

such that every non-empty subset Y ∈ X, f(Y) ∈ Y, it leads to many controversial debates in set theory. 

Even some mathematicians reject the axiom and prefer to use ZF over ZFC (note that ‘C’ indicates the 

Axiom of Choice). For more detail see Gillman (2002).  
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argued, the unrestricted comprehension principle
31

 can be applied to his conception 

of a set. The principle, which gives rise to paradoxical sets in the set-theoretical 

universe, has no rule to determine a set; every collection of objects can determine a 

set e.g. the collection of all natural numbers between 10 and 35 or the collection of 

all sets in the set-theoretical universe. Nonetheless, it is possible to think of a set that 

leads to a contradiction in the system, so-called Russell's paradoxical set is such an 

example. The set is defined as “the set of all sets which are not members of 

themselves”. But since it is a self-referential set
32

, it contradicts its definition and 

leads to problematic results in the system.  

However, Cantor realized the problematic situation of some collections 

beforehand. The idea that a set is a member of itself is substantially problematic 

when the concept of well-ordered set is considered. For this reason, Cantor believed 

that any consistent set cannot consist of itself as a member. Accordingly, Cantor did 

not accept the unrestricted comprehension principle in his framework and, even 

before Russell’s paradox, already recognized that there must be a distinction between 

multiplicities for the fact that some multiplicities cannot constitute mathematically 

consistent sets.  

So, in what sense Cantor differentiate multiplicities and considered some of 

them as sets and some not? To find out which multiplicities can determine a 

mathematical set, he made a distinction between multiplicities, namely consistent 

multiplicities, that are regarded as mathematical sets, and inconsistent multiplicities. 

                                                      
31

 The unrestricted comprehension is the statement that, given any condition expressible by a formula 

ϕ(x), it is possible to form the set of all sets x meeting that condition, denoted {x | ϕ(x)}.  
32

 Let me call this set R. If R is a member of R, then R is not a member of R by the definition of the 

set. And if R is not a member of R, then R is a member of R. Thus, the contradiction occurs by the 

definition of the set. Accordingly, it is concluded that no set can be a member of itself.   
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On the one hand, consistent sets
33

 are the multiplicities that have no contradiction 

while mathematically constructing them. In a letter to David Hilbert dated 2 October 

1897, Cantor wrote:  

One must only understand the expression ‘finished’ correctly. I say of a set 

that it can be thought as finished (and call such a set, if it contains infinitely 

many elements, 'transfinite' or ‘super-finite’) if it is possible without 

contradiction (as can be done with finite sets) to think of all its elements as 

existing together, and so to think of the set itself as a compounded thing for 

itself; or ( in other words) if it is possible to imagine the set as actually 

existing with the totality of its elements. (1991, p.390)  

 

In other words, the elements of such multiplicities can be thought as distinct from 

each other and, at the same time, it is possible to comprehend the totality as a 

mathematical collection. The elements and the totality as a separate entity must be 

coexisted to determine a mathematical set in the Cantorian framework. For instance, 

the set of natural numbers is a consistent multiplicity; each number has distinct 

properties and we can conceptualize the whole set as a totality “ω”. Hence, 

multiplicity itself and its elements must be particularly distinct to have a definite 

place in our understanding while constituting a mathematical set.  

On the other hand, inconsistent multiplicities cannot be mathematically 

conceivable. Either they are too large
34

 to mathematically construct, or the totality of 

their elements as distinct units is mathematically impossible. Cantor wrote:  

For a multiplicity can be such that the assumption that all of its elements "are 

together" leads to a contradiction, so that it is impossible to conceive of the 

                                                      
33

 In his writings, Cantor also used the term “finished set” to identify consistent multiplicities. A 

finished set is not the set that has a finite number of elements, instead if it is possible to think of ‘all of 

its elements as existing together’ and the set as ‘a compounded thing for itself” without any 

contradiction, only then it becomes a set in the Cantorian framework.  
34

 Von Neumann also considered some sets as “too big” and identified them as classes to resolve the 

paradoxical results they lead. For example, there is no such a thing as the set of all sets, instead, it 

appears as the class of all sets. In his hierarchical universe, classes are ranked above sets. For more 

detail, see Hallett (1986).  
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multiplicity as a unity, as "one finished thing". Such multiplicities I call 

absolutely infinite or inconsistent multiplicities. (1991, p.407) 

 

To be more precise, such a multiplicity can correspond to an idea in thinking, but not 

a mathematically well-defined multiplicity; its totality as a whole cannot be 

mathematically formed
35

. Such multiplicities would never be considered as 

mathematically definite sets in the Cantorian framework
36

. To give an illustration of 

what he meant, consider Russell’s paradoxical set. The property that collects its 

members turns out to be contradictory to its definition. Thus, some multiplicities 

(including Russell’s set, the set of all sets, and the set of all ordinals) became 

mathematically indeterminate since they cannot contain themselves as a member. 

Let us examine the problem of one of these. We can think of a set S 

represents the set of all sets, when we apply the Cantor’s theorem
37

, what we would 

have is that the cardinality of the power set of S is greater than the cardinality of the 

set S. Since the power set of any set must be greater than the set itself, the set S 

should have smaller cardinality than its power set. However, this is impossible 

because the set S is defined as the set of all sets (including all possible sets). At the 

same time, we would also have that the cardinality of the set S must be greater than 

                                                      
35

 In the Fundamental Ideas and Axioms of Mathematics, Bernard Russell (1872-1970), with similar 

reasoning, wrote, “This arises most simply from applying the idea of a totality to numbers. There is, 

and is not, a number of numbers. This and causality are the only antinomies known to me. This one is 

more all-pervading…. No existing metaphysics avoids this antinomy” (1899a, p.267). 

 

36
 As Cantor puts it, “Only complete things can be taken as elements of a multiplicity, only sets, but 

not inconsistent multiplicities, in whose nature it lies, that they can never be conceived as complete 

and actually existing” (as cited in Lavine, 1994, p.99). 

 

37
 The theorem implies that given any set, the cardinality of a set must always smaller than the 

cardinality of its power set, which consist of all of its subsets. In other words, the cardinality of power 

set of a set has always bigger than the cardinality of the set itself. Given any set with n elements, its 

power set must always include 2
n 

elements. Mathematical symbolization for this theorem is, for every 

set A, |A| < |P(A)| where |A| represents cardinality of the set A. 
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the cardinality of the power set of the set S by definition. But this is also impossible 

because the power set of a set cannot be smaller than the set itself. This is clearly a 

contradiction. Consequently, the set of all sets cannot be comprehended without any 

contradictory results. The property of containing itself as a member prevents the 

multiplicity from being a consistent set. For the same reason discussed here, some 

multiplicities, such as the set of all ordinals and the set of all alephs or the whole set-

theoretic universe, cannot be constructed as a single set in the Cantorian framework.  

Also, another reason why such multiplicities are left out is the impossibility 

of their enumeration. Every well-ordered set must have an ordinal number, which 

corresponds to its order type. However, these multiplicities cannot have an ordinal 

number because the elements of such sets do not satisfy the condition the set itself 

signifies in the first place. They become mathematically indeterminate and cannot be 

ordered. Since it is impossible to turn them into the form of well-ordered sets, they 

cannot be mathematically enumerated; consequently, they cannot be mathematical 

sets. This is exactly the emphasis on Cantor saying mathematically constructing 

them. In fact, the difference between inconsistent multiplicity and consistent 

multiplicity is as simple as Ignacio Jane stated in his article “The Role of the 

Absolute Infinite in Cantor’s Conception of Set”, “No possible collection can 

encompass all sets” (1995, p.400). Since inconsistent multiplicities cannot constitute 

a mathematically legitimate set in the first place, Cantor excluded them from his 

theory. 
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Many scholars, even today, identify the Cantorian Set Theory as a naïve set 

theory by ignoring the distinction between multiplicities
38

, but, in different passages, 

there are good reasons to believe that Cantor was already aware of the paradoxical 

situation of the unrestricted comprehension principle. In the correspondence with 

Gottlob Frege (1848-1925), in 1885, Cantor accused him to use the unrestricted 

comprehension principle, which turns out to be a failure in Frege's project, with too 

much confidence
39

. Another passage is about the Burali-Forti paradox, which came 

up on 28 March 1897. The paradox asserts that the set of all ordinal numbers leads to 

a contradiction
40

. However, Cantor wrote:  

I expressly say that I only call multiplicities ‘sets' if they can be conceived 

without contradiction as unities, that is, as things…What Burali-Forti has put 

forward is utterly foolish. If you will look at his paper in the Circolo 

Mathematico you will see that he has not even correctly understood the 

concept of a well-ordered set (Moore and Garciadiego, 1981, p.342) 

 

For the fact that an ordinal would always be left out, the set of all ordinals cannot 

consist of all ordinals. Consequently, the set turns out to be an inconsistent one. 

Similarly, the set of all alephs cannot also indicate a mathematical set in the 

Cantorian framework. In a letter to Hilbert, dated back 26 September 1897, Cantor 

puts it: 

                                                      
38

 As Ignacio Jane (2010) presented in his article, “Idealist and Realist Elements in Cantor’s 

Approach to Set Theory”, people identify his definition with the unrestricted comprehension principle, 

but what Cantor has presented is not the same idea with this principle. 

 

39
 In the review of Frege’s Grundlagen, Cantor warned Frege on the usage of notion “extension”, 

which eventually become the foundation of his Basic Law V that leads to Russell’s paradox. See 

Cantor on Frege’s Foundations of Arithmetic (1885) for more information.   

 

40
 When the set of all ordinals “Ω” is considered by the relation < on ordinals, another ordinal number 

must be assigned to the set as a successor ordinal (the second condition for well-ordered sets). But this 

is impossible because the ordinal that is assigned to the set would not be in the set. Consequently, “Ω” 

cannot consist of all the ordinals. This is obviously a contradiction. See for more detail Heijenoort 

(1967, pp. 104-113). 
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For the totality of all alephs is one that cannot be conceived as a determinate, 

well-defined, finished set. If this were the case, then this totality would be 

followed in size by a determinate aleph, which would therefore both belong to 

this totality (as an element) and not belong, which would be a contradiction. 

(1991, p.388) 

 

Inconsistent multiplicities are not regarded as mathematical sets in the 

Cantorian framework. In a letter to Hilbert, in 1897, Cantor wrote, “Totalities that 

cannot be regarded as sets, I have already many years ago called absolute infinite 

totalities
41

, which I sharply distinguish from infinite sets” (1991, p.389). Thus, 

contrary to common conception, both the Russell's paradox and the Burali-Forti 

paradox do not appear in the Cantorian Set Theory. 

From all these, what is most evident is that Cantor differentiated his theory 

from the naïve set theory
42

 by restricting multiplicities as consistent and inconsistent 

on the basis of well-ordered sets. Accordingly, I would like to pay attention to the 

fact that Cantorian Set Theory does not give rise to any antinomies or paradoxical 

sets unlike most of his contemporary colleagues think because only well-ordered 

multiplicities are considered as sets. Therefore, the analysis has sufficiently shown 

that the Cantorian Set Theory is neither naïve nor paradoxical.

                                                      
41

 The word "absolute infinities" used in two different meanings in Cantor's works. The first one is for 

inconsistent multiplicities which cannot coincide with a determinate multiplicity as we analyzed. The 

second usage is for the Absolute, which he defined as the unity of All. Cantor wrote, “The true infinite 

or absolute, which is in God, admits no kind of determination” (1976, p.76). This side of the notion is 

rather a metaphysical one and it is not the subject of this thesis. For more detail see Jané (1995), pp. 

383- 388.  

  

42
 In naïve set theory, any collection of objects can correspond to a set without restriction. It generally 

uses natural language to describe its objects, rather than formal language of mathematics. But these 

are not necessary conditions to declare theories as naïve set theory. Some theories which are proven to 

be inconsistent are also considered as naïve set theory. The obvious example is Frege’s project on 

reducing mathematics into pure logic. It is well-known fact that Frege’s Basic Law of V (also known 

as the axiom schema of unrestricted comprehension), which allows to create paradoxical sets - 

Russell’s paradoxical set is the example, lead to failure in the system.  
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3.4. Transfinite arithmetic 

 

With the paradoxes of infinity, it was assumed that the sizes of infinite 

quantities cannot be determined as a legitimate object of mathematical study. 

However, as the first man ever tried to do, Cantor demonstrated that it is 

mathematically possible to differentiate infinite sets and clarified their sizes by the 

concept of cardinal number. According to their cardinality, any two sets whether 

finite or infinite can be compared with the one-to-one correspondence principle. The 

principle implies that any two sets are the same size (or having the same cardinality) 

if it is possible to demonstrate a one-to-one correspondence between the members of 

sets. Each element in one set is matched with an element of another set to compare 

their size. The obvious example is that the elements of the set of natural numbers and 

the elements of the set of even natural numbers can be paired off with each other. 

Even though we intuitively inclined to claim that the set of all natural numbers must 

be greater than its subsets (including the set of even and odd numbers) because the 

size of natural numbers is twice the size of even numbers (and also odd numbers), 

there are as many natural numbers as even numbers. This implication led to the 

assumption that all infinite sets are the same size. 

However, as I have mentioned before, Cantor showed that there would not be 

a one-to-one correspondence between the set of real numbers and the set of natural 

numbers in his article “On a Property of the Collection of All Real Algebraic 

Numbers” in 1874. Accordingly, not all infinite sets are the same size. In 1891, 

Cantor provided a much simpler proof for the non-denumerability of the set of real 
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numbers
43

. In the article, he showed the fact that, for any given set A, the cardinality 

of the power set of A has a greater cardinality than the cardinality of the set of A. For 

instance, let S be {1, 2, 3}, then P(S) = {Ø , {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 

2, 3}}. When this theorem is considered in infinite sets, it is possible to construct 

different sizes of infinite sets because every infinite set has at least one larger set as 

its own power set. Cantor wrote:  

This proof is remarkable not only because of its great simplicity, but more 

importantly because the principle followed therein can be extended 

immediately to the general theorem that the powers of well-defined manifolds 

have no maximum, or, what is the same thing, that for any given manifold L 

we can produce a manifold M whose power is greater than that of L. (1991, 

pp. 921-922) 

 

In fact, this theorem also led Cantor to defend the argument that different sizes of 

infinite sets can be constructed unlimitedly: 

|N| < |P(N)| < |P(P(N))| < |P(P(P(N)))|…  

As it appears, there is not just one size of infinity, but there are infinitely many 

different sizes of infinity, which necessarily requires the fact that there would not be 

the largest infinite in size.  

Cantor used the Greek letter ω (omega) for the symbolization of transfinite 

ordinal numbers and the Hebrew letter ℵ  (aleph) for the symbolization of transfinite 

cardinal numbers. An ordinal number
44

 describes the position of a member in a well-

ordered sequence. Given any set, the properties of its elements are abstracted from 

                                                      
43

 The name of the article is “On an Elementary Question in the Theory of Manifolds”. It is also 

marked Cantor’s diagonal argument, which is known nowadays as the diagonalization method. The 

method proves the existence of non-denumerable (or uncountable) sets, such as the set of real 

numbers. For more detail see Dauben (1991), pp. 165-168.  

  

44
 Given any set M, then the ordinal number or its order type is denoted as M*. 
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the set and what we have is the order of elements as the first element, as the second 

element, etc. This is the first abstraction on well-ordered sets to be able to clarify the 

ordinal number of any set. For instance, the order type of the empty set is 0 because 

it does not have any member to be ordered and let S be {a, b, c}, in this case, the 

ordinal number of the element ‘b’ would be 2. After all, ‘b’ is the second element in 

the order of the set. For all sets whether finite or transfinite, the last member, which 

pair off with the corresponding sequence, signifies the order type. Consider the S 

again, the ordinal number of the set would be 3 because the last element ‘c’ is the 3
rd

 

element for the set and the set is paired off with its correspondence, i.e. {1, 2, 3}. For 

this reason, as I mentioned before, different orderings on finite sets do not change the 

order type because the order of the last element will always be the same.  

Up to this point, there is no problem with clarifying the order type of finite 

sets. But when infinite sets are considered, the situation becomes complicated. 

Consider the usual ordering of natural numbers that is {1, 2, 3, …}. The sequence 

has no last element, but to identify its order type the first transfinite ordinal “ω” is 

assigned as the limit to the sequence. In the same way, even though the sequence {1, 

3, 5, …} has different ordering, it has also the order type of ω. Then, consider the 

following sequence; {1, 2, 3, …; 1, 2, 3, …}. It is obvious that the order type of it 

differs from previous examples; in fact, it is the order type of ω + ω (also equal to ω · 

2). If this is so, it is possible to add one more unit. The new sequence will be {1, 2, 3, 

…; 1, 2, 3, …; 1} which has the order type of  ω · 2 + 1.  By the first principle of 

generation and the second principle of generation, we may, therefore, claim that the 

formation of transfinite ordinal numbers is limitless with the proper ordering
45

.  

                                                      
45

 Consider the example ω + 1 ≠ 1 + ω I have given in section 2.3.1.  
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On the other hand, the concept of cardinal number is defined as the 

generalization of the number concept for infinite sets. Given an infinite set, the 

orders of its elements are abstracted and what we have is the size of the set as its 

cardinal number
46

. This is the second abstraction to clarify the size of a set. As 

Cantor’s own words; 

We will call by the name “power” or “cardinal number” of M the general 

concept which, by means of our active faculty of thought, arises from the 

aggregate M when we make abstraction of the nature of its various elements 

m and of the order in which they are given. (1895, p. 86) 

 

The cardinality of a set is the number of elements that are contained in the set. One 

way to clarify the cardinality of a set is to construct one-to-one correspondence. 

Given any two sets, A and B, they have the same cardinality if there exists a one-to-

one correspondence between them, mathematically denoted as |A| = |B|.  

For finite sets, cardinality corresponds to the number of the elements of the 

set, i.e. how many elements the set has, and this must be a finite number; all natural 

numbers are particularly finite sets in which their numbers correspond to their 

cardinal numbers. For instance, the cardinal number of the empty set is 0 because it 

has no elements. And let S be {a, b, c}, in this case, the cardinal number of S, 

denoted as |S|, would be 3 because it has 3 elements - 3 is the ordinal that has the 

order type of {1, 2, 3}, which paired off with the set. Two conclusions have been 

derived here. The first one is that cardinal number for a finite set is the same as its 

ordinal number. And the second one is that ordering in finite sets can be changed, but 

their corresponding cardinality would always be the same. For infinite sets, on the 

                                                                                                                                                      
   

46
 Given any set M, then the cardinal number of M is denoted as M**. 
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other hand, the cardinality cannot correspond to a finite number because there are 

infinitely many elements in the set; instead, it must be a transfinite cardinal. For 

instance, Cantor assigned ℵ 0 (aleph-null or aleph-zero) to the cardinality of the set of 

natural numbers
47

, and ℵ 1 to the cardinality of the set of all countable ordinal 

numbers
48

.  

Cantor introduced transfinite arithmetic (including ordinal arithmetic and 

cardinal arithmetic separately), but firstly the construction of natural numbers
49

 must 

be examined to understand the similarity with the construction of transfinite 

numbers. All natural numbers are constructed from the empty set and each one after 

that is constructed based on previous numbers;  

0 = ∅, that is the empty set 

1 = {0} = {∅} = ∅ ∪ {∅} = 0 ∪ {0} 

2 = {0, 1} = {∅, {∅}} = {∅} ∪ {{∅}} = 1 ∪ {1} 

3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}} = {∅, {∅}} ∪ {{∅, {∅}}} = 2 ∪ {2} … 

                                                      
47

 It is also denoted as |N| = Card (N) = ℵ 0 .  

 

48
 Cantor defended that there is no cardinality between the cardinality of set of real numbers (2

ℵ
0) and 

the cardinality of set of natural numbers (ℵ 0) and identified 2
ℵ

0  with the ℵ 1 as the next and smallest 

cardinal number after ℵ 0. This is known as the Continuum Hypothesis, that is listed as one of the 23 

most important unanswered mathematical question by David Hilbert. Nevertheless, neither Cantor nor 

anyone else has been able to prove this hypothesis. In fact, Kurt Gödel (1906-1978), in 1940, proved 

that the hypothesis cannot be disproved in ZFC. Then, in 1963, Paul Cohen (1934-2007) proved that 

the hypothesis also cannot be proved in ZFC. It is accepted that the hypothesis is independent from 

ZFC. For more detail see Dauben (1991), pp. 268-270. 

  

49
 Although there are some other ways to construct natural numbers, the way John von Neumann’s 

construction of natural numbers is commonly used in set theory related works.  
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As the same way, for a given ordinal α, the next one always is defined as α + 1 (or 

α ∪ {α})
50

. We have here infinitely many finite ordinals. Then, the second number 

generating principle is considered and Cantor introduced the first transfinite ordinal 

as the set of all finite ordinals, i.e. ω = {1, 2, 3…}. As Cantor puts it: 

As contradictory as it would be, therefore, to speak of a greatest number of 

class (I), there is, on the other hand, nothing objectionable in conceiving of a 

new number – we shall call it ω - which is intended to be the expression for 

the fact that the totality (I) as a whole be given in its natural and lawful 

succession. (1976, p.87) 

 

After constructing the first transfinite ordinal, Cantor indicated that there are also 

other numbers just like the first transfinite ordinal. He called them limiting ordinals. 

By the first number generating principle, a new number sequence is constructed as 

follows; 

ω + 1: = ω ∪ {ω}  

ω + 2: = (ω+1) ∪ {ω+1} … 

We have here infinitely many transfinite ordinals, i.e. ω, ω + 1, ω + 2, and so on. 

Since there would not be the greatest element, Cantor applied the second number 

generating principle again, and ω + ω (equal to ω · 2) is constructed as a limiting 

number to the sequence. By applying the same rules one by one, it is possible to 

construct the unending sequence of transfinite ordinals;  

0, 1, 2, …, ω, ω + 1, ω + 2…, ω + ω = ω · 2, ω · 2 + 1, ω · 2 + 2, …, ω · 3, …, 

ω · 4, …, ω · 5, …, ω · ω = ω
2
, …, ω

3
, …, ω

ω
, …, ω

ωω
, …, ω

ωω
, … and so on.  

                                                      
50

 The mathematical notation is following; for every ordinal α, there is a succeeding ordinal β such 

that α < β and there is no ordinal in between. So, β = α + 1 (every element must be followed by 

another element as a successor unless it is the last element of the succession).  
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Since every single element must have a successor, what we have then is infinitely 

many new number sequences that each of its elements has a definite magnitude and 

all of them are different from one another with respect to their orderings. As Cantor 

puts it: 

As one sees, there is no end to the formation of new numbers. By following 

both principles of generation, one obtains again and again new numbers and 

number sequences which have a fully definite succession. Thus, it first 

appears as if in this way of building new definitely infinite whole numbers 

we should lose ourselves in the limitless. (1976, p.88)  

 

Now, it is necessary to analyze the arithmetic of transfinite ordinal numbers. 

The addition operation in ordinal arithmetic is as follows;  

Let α and β be ordinal numbers. Then, α + β = Ord (α; β).  

2 + 3 = Ord ({0, 1}; {0, 1, 2}) = Ord {0, 1; 0, 1, 2} = 5 

ω + 1 = Ord ({0, 1, 2, …}; {0}) = Ord {0, 1, 2, …; 1} = ω + 1 

1 + ω = Ord ({0}; {0, 1, 2, …}) = Ord {1; 0, 1, 2, …} = ω 

The second and the third examples show that commutativity does not hold in the 

transfinite ordinal arithmetic for addition. It can be easily seen that the finite number, 

in the case of 1 + ω, is annulled in the sequence, and the result would be equal to ω. 

However, in the case of ω + 1, its order type is different from 1 + ω. What we have 

then is the sequence of ω and additionally one more elements, which is positioned as 

the ω
th

 element. In fact, the last element also makes ω + 1 is the immediate successor 

of ω. Accordingly, the most important conclusion regarding the Aristotle’s rejection 

manifest itself: 1 + ω = ω, but ω + 1 ≠ ω.  

The multiplication operation in ordinal arithmetic is as follows;  

Let α and β be ordinal numbers. Then, α · β = Ord (α × β).  
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2 · 3 = Ord ({0, 1} × {0, 1, 2}) = Ord {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 

2)} = 6 

ω · 2 = Ord ({0, 1, 2…} × {0, 1}) = Ord {(0, 0), (1, 0), (2, 0),…; (0, 1), (1, 1), 

(2, 1),…} = ω · 2 = ω + ω 

2 · ω = Ord ({0, 1} × {0, 1, 2…}) = Ord {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 

2) ,…} = ω 

The second and the third examples demonstrate that commutativity for multiplication 

is not held in the ordinal arithmetic.  

In addition to ordinal arithmetic, Cantor also introduced the cardinal 

arithmetic. It is not my intention here to analyze cardinal arithmetic in a detailed 

manner for the fact that transfinite ordinal arithmetic is alone the proof for the 

mathematical applications of transfinite numbers. For this reason, I will briefly 

mention the rules of cardinal arithmetic. Just like finite arithmetic and ordinal 

arithmetic, the concepts of being the one greater or less than or equal to another are 

the same in cardinal arithmetic. For any given two cardinal numbers m and n, there 

are only three possibilities; m = n, m < n, or m > n. However, there are some 

operational differences in cardinal arithmetic.  

For a given natural number k;  

ℵ 0 + k = k + ℵ 0 = ℵ 0 and ℵ 0 · k = k · ℵ 0 = ℵ 0 . 

The addition of a finite number does not correspond to a new cardinal, unlike in the 

case of ordinal arithmetic. In fact, the addition of the same cardinal number also does 

not generate a new cardinal; 

ℵ 0 + ℵ 0 = ℵ 0 and ℵ 0 · ℵ 0 = ℵ 0.  
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Consequently, it is possible to infer that ℵ 0
k 

= ℵ 0 because multiplication does not 

generate a different number in cardinal arithmetic if we use the same cardinal 

number for the multiplication operation. Furthermore, if there are two different 

cardinalities in the operation, the larger one specifies the result of the operation; 

ℵ 1 + ℵ 0 = ℵ 1 and ℵ 1 · ℵ 0 = ℵ 1
51

.  

We may, therefore, claim that differentiating infinite sets from each other in 

terms of sizes is the first step for constructing transfinite numbers. Then, Cantor 

proposed the method on how to count them systematically. Cantor's approach to 

multiplicities was to comprehend them as units composed of distinct elements. The 

properties of elements and their order are abstracted from the multiplicity and what 

we would have “one” entity. Then, the entity will be enumerated with the 

corresponding number to clarify its size. So, there are different sizes of infinities and 

all of them are countable as he argued throughout his works:  

The (infinite) 'cardinalities' represent the only and necessary generalization of 

the finite 'cardinal numbers', they are nothing else than the actual infinitely 

large cardinal numbers, and they have the same reality and definiteness as the 

former, save that the laws between them, i.e. the arithmetic in respect to them, 

is partly different from that in the domain of the finite. (Cantor, 1892, p. 280)  

 

As a result, there is no difference between finite numbers and transfinite numbers in 

terms of mathematical legitimacy; the foundation of transfinite numbers grounded 

upon the sequence of finite numbers by the number generating principles and the 

concept of well-ordered set. The above analysis has sufficiently shown that while the 

ordinal number of a set is related to the ordering, the cardinal number is related to the 

size. Transfinite arithmetic with the particular rules represents the same 
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 While ℵ 0 represents the cardinality of set of natural numbers, ℵ 1 represents the cardinality of set of 

all countable ordinal numbers. 
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determinateness of finite arithmetic. We cannot disregard the mathematical 

applications of transfinite numbers for their mathematical justification because 

transfinite arithmetic is a systematic and coherent theory of actual infinities. Thus, 

contrary to common conception, Cantor’s arguments about the existence of actual 

infinite are both mathematically and philosophically justified in his theory.  
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CHAPTER 4 

 

 

CONCLUSION 

 

 

For Aristotle, one of the most compelling reasons for the impossibility of 

infinite numbers is that no one could reach an infinite number by the successive 

addition of units. In counting, any number would still be a finite number no matter 

how big the number is. Since all numbers have been constructed from a specific set 

in which the number of objects corresponds to its number, the enumeration of infinite 

sets would become impossible. Hence, any counting would necessarily be limited to 

finite numbers. Nevertheless, Cantor showed otherwise. By applying certain rules 

(the number generating principles), firstly, Cantor suggested that a definite number 

can be assigned to the unending sequence of finite numbers as the first transfinite 

ordinal. Then, he suggested that differentiating the sizes of infinite sets is possible by 

the orderings of their elements. Thus, Cantor not only showed that counting can also 

be held in infinite sets, but also, he challenged Aristotle’s rejection of actual infinity. 

The sequence of natural numbers which is considered as a completed infinite 

provides Cantor a basis to create a new understanding of infinity. Even though we 

could not identify all elements of infinite sets, as we analyzed in the previous 

chapters, it is possible to mathematically evaluate transfinite numbers as being 
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greater or smaller or equal by one-to-one correspondence principle
52

. Besides 

differentiating different sizes of infinite sets, transfinite arithmetic which is subjected 

to different arithmetical rules reveals that transfinite numbers are mathematically as 

legitimate as finite numbers. In a letter to Wilhelm Wundt (1832-1920) dated back 5 

October 1883, Cantor clarifies his belief on the existence of transfinite numbers:  

I claim that my infinite number concepts are free from any arbitrariness and 

that they arise by abstraction from reality with the same necessity as the usual 

finite whole numbers, which so far have been used as the unique source of all 

other mathematical conceptual constructions. The transfinite numbers are not 

in any way, as you say, mere ‘fictions’ or ‘logical postulates’, as the 

geometrical spaces of n dimensions are, but they have the same character of 

reality as the old numbers: 1, 2, 3, etc. (1991, p.136) 

 

In this sense, he defended the idea that transfinite numbers are not just symbols for 

infinity; rather, they are “concrete numbers having a real meaning” (1976, p.71). 

Accordingly, transfinite numbers represent a revolution in the history of 

mathematics; Cantor was the first man ever tried to refute the Aristotelian arguments 

against the existence of actual infinity and he successfully managed to stand against 

the traditional understanding of infinity. Thus, in my opinion, Cantor’s arguments 

about the existence of actual infinite are both mathematically and philosophically 

justified.  

In the Cantorian framework, as long as mathematical objects ground some 

certain mathematical principles, it is, therefore, possible to claim that they have an 

objective reality based on two sides of reality. Cantor constructed new numbers as 

the extension of natural numbers that is already assumed to be autonomous and 

systematic. In his own words: 
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 According to Hans Niels Jahnke, “Cantor was the first to use the concept of pairwise 

correspondence to distinguish meaningfully and systematically between the sizes of infinite sets” 

(2001, p.178). 
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…even for finite multiplicities a proof of their 'consistency' cannot be given. 

The fact of the ‘consistency’ of finite multiplicities is a simple, 

undemonstrable truth, it is ‘the axiom of arithmetic’. And likewise, the 

‘consistency’ of multiplicities to which I assign the alephs as cardinal 

numbers is ‘the axiom of the extended, of the transfinite arithmetic. (1991, 

p.412) 

 

By extending the number concept into infinities, Cantor established a new kind of 

arithmetical system with particular rules in mathematical operations. In his article 

“Beiträge zur Begründung der transfiniten Mengenlehre”, he provided every detail of 

transfinite arithmetic based on the concept of a well-ordered set. In this regard, 

Cantor indicated that transfinite numbers must be regarded as existent as finite 

numbers thanks to the new arithmetic system based on infinite sets. As a matter of 

fact, the hierarchy of infinite sets can be demonstrated both in terms of cardinality 

and ordinality. Hence, transfinite numbers gain their mathematical reality by the 

number generating principles. Additionally, Cantor also defended that one cannot 

accept the existence of the irrational numbers and, at the same time, denies the 

existence of transfinite numbers because both of them are defined via infinite sets. 

Cantor wrote:  

The transfinite numbers are in a certain sense themselves new irrationalities 

and in fact, in my opinion, the best method of defining the finite irrational 

numbers is wholly dissimilar to, and I might even say in principle the same 

as, my method described above of introducing transfinite numbers. One can 

say unconditionally: the transfinite numbers stand or fall with the finite 

irrational numbers; they are like each other in their innermost being; for the 

former like the latter are definite delimited forms or modifications of the 

actual infinite. (1887, pp. 395-396) 

 

Although Cantor’s account of multiplicities provides him stronger and more 

comprehensive theory to maintain the self-consistency of the system, the distinction 

can be regarded as “ad hoc”. The reason is that the distinction was constructed to 

avoid possible paradoxical outcomes and protect the theory from troublesome sets. It 
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is true that Cantor did not provide any distinction in multiplicities at first, but he 

realized that there must be a distinction on multiplicities to prevent paradoxical 

results. In fact, the emergence of paradoxes required the necessity to impose a 

restriction on the definition of a set. I would like to highlight the fact that ZFC, 

which is perhaps the most well-known axiomatic set theory, also restricts the 

definition of a set by its own axioms. The axiom of selection, which implies that 

subsets of a given set are also sets, allows constructing only subsets of existing sets. 

It avoids the formation of “too large” sets. Furthermore, the axiom of regularity 

which implies that no set is an element of itself entails that universal sets cannot be 

derivable in the system. For the fact that their sizes are undefined in the system, some 

sets (including the set of all ordinals or the set of all sets) do not appear in ZFC.  

All things considered, my analysis has sufficiently shown that Cantor’s 

definition of a set is not arbitrary as many scholars called; rather, some multiplicities 

lack the property of being a mathematical set. The distinction between multiplicities 

indicates that Cantor’s system does not allow the emergence of paradoxical sets. 

Hence, we cannot disregard the fact that Cantor eliminated paradoxical sets even 

before they appeared in the system. Thus, I intend to emphasize that the Cantorian 

Set Theory is neither naïve nor paradoxical.  
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APPENDICES 

 

 

A. TURKISH SUMMARY / TÜRKÇE ÖZET 

 

 

Bu tez Georg Cantor’un aktüel sonsuzluk düşüncesinin matematiksel olarak 

formalize edilmesi ve bu sayede ortaya çıkan sonlu ötesi sayılar teorisini konu 

edinmektedir. Kendisinden daha önceki dönemlerde sonsuzluk düşüncesinin 

kavramsallaştırılmasının belirli problemler içerdiğini iddia eden Cantor’un teorisini 

incelemek adına öncelikle sonsuzluk kavramının tarihsel gelişimi ele alınmalıdır. 

Sonsuzluk düşüncesi ile ilgili tartışmanın Eski Yunan’da başladığını varsayabiliriz. 

O zamanlarda birçok düşünürün öncelikli hedefi doğayı ve nesnelerin en temelinde 

yatan prensibi anlamak olduğundan, sonsuzluk fikri doğanın kendi temelinde yatan 

sınırsızlığı açıklamak için ortaya çıkmıştır. Bu nedenle, Sokrates öncesi dönemde 

sonsuzluk düşüncesi matematiksel ya da metafiziksel bir kavram değildir.  

Sokrates sonrası döneme bakıldığında ise Aristoteles’in yaptığı sonsuzluk 

ayrımının tarihsel etkisinin ne kadar önemli olduğu yadsınamaz. Aristoteles 

sonsuzluk düşüncesini potansiyel sonsuzluk ve aktüel sonsuzluk olarak ikiye 

ayırmıştır. Sonsuzluk düşüncesi herhangi bir sınırlamaya bağlı olmadan devam eden 

bir süreç olarak tanımlanabilir. Başka bir deyişle, sonsuzluk potansiyel olarak 

sonsuza kadar devam edebilecek bir süreçtir ve sadece potansiyel olarak var olabilir. 

İnsan zihni sonsuzluk düşüncesini sadece potansiyel olarak kavrayabilir çünkü 

herhangi bir sınırlamaya sahip olamayacağı için bu süreç her zaman eksik ve belirsiz 
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olmak zorundadır. Bu Aristoteles’e göre potansiyel sonsuz fikridir. Buna ek olarak 

potansiyel sonsuzluk kendisini iki şekilde ortaya çıkartabilir: toplamayla yoluyla 

sonsuz ve bölme yoluyla sonsuz.  

Aristoteles’e göre toplama yoluyla sonsuz fikri doğal sayıların sonsuz serisi 

olarak anlaşılabilir. Doğal sayıların her biri birimlerin art arda eklenmesiyle 

oluşturulan sayılardan oluşmaktadır, yani belirli bir doğal sayıya 1 sayısını ekleyerek 

daha büyük bir doğal sayı oluşturmak her zaman mümkündür. Bu durumda bütün 

doğal sayıların listesi her zaman eksiktir ve her zaman listede bulunmayan daha 

büyük bir sayı olacaktır. Başka bir deyişle, elimizdeki sayıya 1 ekleyerek elde 

edebileceğimiz yeni sayılar ile bu toplama süreci hiçbir zaman bitirilemeyeceği için 

doğal sayılar serisi potansiyel olarak sonsuza kadar devam edebilir. Bu sayı 

oluşturma işlemi sırasında en büyük sayı olarak adlandırılabilecek bir sayı 

olamayacaktır çünkü oluşturulan sayı ne kadar büyük olursa olsun onun da ardında 

olan bir başka sayı daima olacaktır. Bu durum, Aristoteles için, doğal sayıların 

serisinin potansiyel bir sonsuzluk oluşturduğunu garanti eder.  

Diğer taraftan bölme yoluyla sonsuz, düz bir çizginin sonsuzluğu olarak 

görülebilir. Aristoteles’e göre, bir doğru parçasını bölerek sonsuz sayıda farklı parça 

ortaya çıkarmak mümkündür. Bu doğru parçası sonlu olsa dahi bölme işlemi 

potansiyel olarak sonsuzdur. Örneğin, ilk başta ikiye böldüğümüz bir doğru parçası 

için bölümden sonraki her bir parça da tekrar ikiye bölünebilir. Daha sonra aynı 

şekilde her bir parça da tekrar ikiye bölünebilir ve bu bölme işlemi sonsuza kadar 

devam edebilir. Çünkü parçaların boyutları küçülse dahi, her zaman bölünebilecek 

başka bir parça olacaktır. Olası bir bölme işlemi her zaman dışarıda bırakılacağından, 
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bir doğru parçasının bölünebilirliği sınırsız olarak gerçekleştirilebilir. Dolayısıyla, 

Aristoteles'e göre, sonlu bir doğruyu bölmek potansiyel olarak sonsuzluğa 

gidebilecek bir süreçtir. Burada vurgulanması gereken şey şudur ki; parçaların 

sonsuz bölünmesi yalnızca potansiyel gerçekleştirilebilecek olası bölünmeler olarak 

kavranabilir ve bu bölme işleminin de sadece düşünme ile mümkün olduğu anlamına 

gelir. Bölünme olasılığı hiç bitmediğinden bölünmeyle sonsuzluk potansiyel anlamda 

mümkündür. Bu nedenle, potansiyel sonsuzluk kendisini ya toplamayla yoluyla 

sonsuz ya da bölme yoluyla sonsuz olarak tezahür edebilir. 

Öte yandan, Aristoteles’e göre aktüel sonsuzluk tanımı gereği kendisini 

eksiksiz ve tamamlanmış olarak sunması gereken sonsuz türüdür. Fakat çeşitli 

nedenlerden dolayı bu sonsuzluk mümkün değildir ve insan zihni tarafından 

kavranamazdır. Aristoteles’e göre aktüel sonsuzluğun bir varlık olarak var 

olamayacağının sebeplerden biri ve en önemlisi sonsuz olma sıfatının tamamlanmış 

olma sıfatı ile çelişmesidir. Tam olmak ya da tamamlanmış olmak zorunlu olarak 

belirli bir sınırlama gerektirir, ancak sonsuzluk tanımı gereği sınırlamalara sahip 

olamaz. Bu nedenle tamamlanmış olmak herhangi bir sonsuzluğun özelliği olamaz. 

Dolayısıyla sonsuzluk fikri ele alındığında bu durumun imkânsız olduğu açıktır ve 

Aristoteles’e göre aktüel sonsuzluk kavramı kendi içerisinde çelişkili bir kavram 

haline gelir: tam olmak ve sonsuz olmak aynı zamanda herhangi bir varlığın 

özellikleri olamaz. Söz konusu kavram Aristoteles felsefesinde tutarsız ve bilinemez 

bir kavram haline dönüşür.   

Aktüel sonsuzluğun imkansızlığının bir başka nedeni ise doğada yatmaktadır. 

Aristoteles için doğada aktüel olarak sonsuz bir nicelik olamaz. Eğer doğada aktüel 
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anlamda sonsuz bir nicelik varsa, bu nicelik sonsuz sayıda parçaya sahip olan ve aynı 

zamanda parçaları da sonsuz olan bir varlık olmalıdır. Fakat Aristoteles için bu kabul 

edilebilir değildir çünkü bir bütünün parçaları kendi başlarına da sonsuz olan 

parçalara sahip olamazlar. Bu imkânsız gibi görünüyor çünkü parçaların sonsuzluğu 

bütünü belirsiz bir varlık haline dönüştürür. Dolayısıyla, belirsizlik doğada kabul 

edilebilir olmadığından, Aristoteles'e göre aktüel anlamda sonsuz bir nicelik var 

olamaz. Özetle, Aristoteles için sonsuzluk düşüncesinde açık olan bir şey vardır ki o 

da aktüel sonsuzluk fikrinin gerçek bir varlık olarak doğada var olamayacağıdır. Bu 

da aynı zamanda aktüel sonsuzluğun yalnızca sözün gelişi olarak var olduğunun 

göstergesidir.  

Aktüel sonsuzluk fikrine karşı felsefi argümanlara ek olarak, Aristoteles 

aktüel sonsuzluğun imkansızlığına dair iki matematiksel argüman daha ortaya 

atmıştır. İlk argüman temelde sayma işleminin sonsuz sayı üretemeyeceğini 

savunmuştur. Doğal sayılar birimlerin art arda eklenmesi sayesinde oluşturulur ve bu 

yöntem oluşturulan bütün sayıların sonlu sayılar olmasını zorunlu kılar. Bunun 

nedeni ise her bir sayının başka bir sonlu sayı üzerinden oluşturulması ve olası bütün 

sayıların temelinin başka bir sonlu sayı olmasıdır. Bir başka deyişle, sayma sürecinde 

doğal sayılar serisi potansiyel olarak sonsuz sayıda öğeye sahip olabilir, fakat sayma 

metodumuza göre tüm öğeler sonlu birer sayı olmalıdır. Dolayısıyla sayma işlemi 

yalnızca sonlu sayılara uygulanabilir ve sayma prosedürü ile sonsuz bir sayı 

oluşturulamaz.     

Aristoteles’in aktüel sonsuzluğun varlığına karşı sunduğu ikinci matematiksel 

argüman ise sonlu sayıların matematiksel işlemlerde yok edilmesidir. Burada 
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vurgulanması gereken şey şudur ki Aristoteles bu argümanı doğrudan sayılar 

üzerinden sunmamıştır. Aristoteles’e göre doğada sonsuz bir madde varsa, bu madde 

doğadaki sonlu maddeleri yok etmelidir. Bunun temel nedeni ise dört ana elementin 

(su, hava, ateş ve toprak) bir arada var olabilmesi için sonlu olması gerekliliğidir. 

Aralarından herhangi biri sonsuz olsaydı, o zaman zorunlu olarak karşıt element 

sonsuz element tarafından yok edilirdi. Bu noktada doğada sonsuz bir maddenin 

bulunmaması matematiksel olarak şu şekilde yorumlanabilir; sonsuz sayılar ile sonlu 

sayılar birlikte düşünülüp matematiksel işlem uygulandığında sonsuz sayılar sonlu 

sayıları yok etmelidir ve sonlu sayıların kalıcılığı imkânsız hale gelir. Bu işlemden 

elde ettiğimiz sonuç sonsuz sayının kendisinden farklı olmayacaktır çünkü sonsuz 

sayı kendi içerisinde sonlu sayıyı ortadan kaldırmak zorundadır. Aristoteles için bu 

durum şu anlama gelir; sonsuz sayıları saymanın mümkün olduğunu varsaysak bile 

sonsuz sayılara herhangi bir matematiksel işlem uygulamak imkansızdır. Sonuç 

olarak, Aristoteles için bu iki matematiksel argümanı ne doğada sonsuz bir maddenin 

ne de matematikte sonsuz bir sayının var olmayacağını garanti eder. Bu nedenlerden 

dolayı, Aristoteles yalnızca potansiyel sonsuzluğun varlığını kabul ederek, aktüel 

sonsuzluğun varlığını reddetmiştir.  

Aristoteles’in yaptığı potansiyel ve aktüel sonsuzluk ayrımının etkisiyle 

tarihsel süreçte aktüel sonsuzluğun imkansızlığı reddedilemez bir argüman olarak 

görülmüş ve Cantor’a kadar hiçbir düşünür bu argümanları başarılı bir şekilde 

çürütememiştir. Cantor ise üzerinde çalıştığı bir makale sırasında reel sayılar 

kümesinin doğal sayılar kümesinden daha yüksek bir sonsuzluk derecesine sahip 

olması gerektiğini fark etmiştir. Bu durumun nedeni ise bu iki küme arasında 
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herhangi bir şekilde bire bir eşleşme söz konusu olamamasıdır. Cantor bu 

argümandan yola çıkarak farklı sonsuz kümeler olduğunu iddia etmiştir. Hatta bu 

sonsuz kümelere sayılar atfedilebileceğini ve bu sayılarında yeni bir matematik 

sistemi oluşturacağını savunmuştur. Fakat bunun için alışılmış sayı kavramının 

genişletilmesi gerektiğini belirterek yeni bir yöntem ortaya atmıştır. Sonlu ötesi 

sayılar ve sonlu ötesi aritmetik bu şekilde ortaya çıkmıştır. Bu noktada sayı 

kavramına yeni yaklaşımın temeli iyi sıralı küme kavramıdır. İyi sıralı küme kavramı 

ile sonlu ötesi sayıların oluşturulması mümkün hale gelmiştir çünkü sayılar artık 

büyüklükleri üzerinden değil sıralanış biçimleri üzerinden numaralandırılırlar. 

Örneğin, iki farklı sıralı kümeyi {1, 3, 5, 7} ve {7, 5, 3, 1} düşünelim. Her ikisinin de 

son öğesi kümedeki dördüncü öğe olduğu için bu iki küme de 4 sayısı ile 

numaralandırılırlar. İyi sıralı küme kavramı ile Cantor farklı sıralanış biçimlerine 

sahip olan sonsuz kümelerin numaralandırılabileceğini ve bu numaraların farklı 

büyüklükteki sonsuzluklara matematiksel olarak denk geleceğini iddia etmiştir. Bu 

yeni sayılara sonlu ötesi ordinal sayılar demesinin nedeni temelde budur. 

Bu sayıların matematiksel olarak kurulumunu sağlayan iki prensip vardır ve 

Cantor bu prensiplere sayı üretme prensipleri olarak adlandırmıştır. Birinci prensip 

temel olarak alışılmış sayma yöntemine denk gelmektedir, yani verilen herhangi bir 

sayıya 1 eklenerek bir sonraki sayıyı tanımlamamızı sağlar. Bu prensip ile doğal 

sayılar kümesi potansiyel olarak sonsuz elemana sahiptir ve bütün elemanları 

belirlemek mümkün değildir. İkinci prensip ise doğal sayıların dizisini tamamlanmış 

bir küme olarak algılamamıza izin verir ve ardından yeni bir sayı “ω” (omega) doğal 

sayılar kümesinin tamamını numaralandırmak için atanır. Bunu yapabilmemizi 
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sağlayan şey bu kümenin elemanlarının her birinin kendinden önce gelen sayı 

üzerinden tanımlanarak bütün kümenin belirli bir sıraya sahip olmasıdır. Bu yeni sayı 

bütün doğal sayılardan daha büyüktür çünkü tüm doğal sayıların sayısı olarak bütün 

sonlu sayıları aşmaktadır. Başka bir deyişle, bu yeni sayı sıralama olarak bütün doğal 

sayılardan daha sonraki bir sırada yer alır ve bu onu herhangi bir sonlu sayıdan daha 

büyük yapar. Aynı nedenle bu sayı sonlu bir sayı olamaz, aksine sonlu ötesi bir 

sayıdır. Sonlu ötesi sayıların her biri farklı sıralanışa sahip olan sonsuz kümeleri 

numaralandırmak için kullanılırlar ve bu sayılar ile sonsuz kümeleri saymak 

mümkün hale gelmiştir. Aslında “ω” en küçük sonlu ötesi ordinal sayıdır çünkü bu 

iki prensip kullanılarak sonsuz sayıda sonlu ötesi üretmek mümkündür: ω, ω + 1, ω + 

2…, ω + ω = ω · 2, ω · 2 + 1, ω · 2 + 2, …, ω · 3, …, ω · 4, …, ω · 5, …, ω · ω = ω
2
, 

…, ω
3
, …, ω

ω
, …, ω

ωω
, …, ω

ωω
, …  

Daha önce belirttiğim gibi Aristoteles’in yaptığı potansiyel sonsuzluk ve 

aktüel sonsuzluk ayrımı sonsuzluk düşüncesini temelden etkilemiş ve birçok düşünür 

benzer nedenlere dayanarak aktüel sonsuzluğun varlığını reddetmiştir. Dolayısıyla 

Cantor, Aristoteles’in argümanlarının ne kadar büyük bir öneme sahip olduğunu 

bilerek kendi teorisini ortaya atmış ve aynı zamanda Aristoteles’in sunduğu her bir 

argümana karşı bir argüman getirmiştir. Bu argümanları incelemeden önce kısaca 

bahsetmek isterim ki, Cantor'a göre Aristoteles'in aktüel sonsuzluğun varlığına karşı 

argümanları mantıksal bir yanılgıya tabidir. Bunun nedeni, Aristoteles'in tüm 

sayıların sonlu sayılarla sayılabilir olması gerektiği varsayımına dayanarak sonsuz 

sayıların olmadığı fikrini savunmasıdır. Cantor burada Aristoteles’in 

argümanlarındaki mantıksal hatayı göstermekle kalmayıp aynı zamanda bu 
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argümanların her birine karşıt bir argüman ortaya sunmuştur. Bunu yapabilmesini 

sağlayan durum ise sonlu ötesi sayılar ve sonlu ötesi aritmetiğin varlığıdır.  

İlk karşıt argüman olarak Cantor, Aristoteles'in savunduğunun aksine, sonsuz 

elemana sahip olan setlerin de numaralandırılabileceğini ve bu numaraların sonsuz 

ya da sonlu ötesi sayılar olduğunu savunmuştur. Bu noktada farklı bir sayma 

metodunun kullanıldığı unutulmamalıdır. ω doğal sayılar kümesinin sayısıdır {1, 2, 

3, . . .} ve ilk sonlu ötesi sayıdır. Ayrıca ω kendisinden sonra gelen bir başka sonlu 

ötesi sayıya sahiptir, yani ω + 1. Cantor matematiksel olarak sonlu ötesi sayıların 

aynı anda denk geldikleri kümelerdeki bütün sayılara karşılık geldiğini ve bu sayede 

sonsuz kümelerin numaralandırılması için kullanılabileceklerini iddia etmiştir. Bu 

şekilde Aristoteles’in argümanlarında savunulanın aksine sonsuz kümeleri saymanın 

matematiksel olarak mümkün olduğunu göstermekle kalmayıp, bunu yapabilmek için 

iyi sıralı kümeler kavramı ile bu sayıların matematiksel olarak sağlam bir temele 

dayandığını kanıtlamıştır.  

Aristoteles sunduğu ikinci argümanda sonsuz sayıların varlığını kabul etmiş 

olsak bile sonsuz sayıları ve sonlu sayıları birlikte matematiksel işleme tabi 

tutamayacağımızı çünkü sonlu sayıların sonsuz sayılar tarafından yok edileceğini 

savunmuştur. Bunun aksine Cantor, sonlu sayıların yok oluşu olmaksızın sonlu ötesi 

sayılar ile matematiksel işlemlere tabi olabileceğini matematiksel olarak göstermiştir. 

Bu aritmetikte sonlu sayılar aritmetiğinden farklı kurallar geçerlidir çünkü sonlu 

ötesi sayılar sıralamanın önem arz ettiği iyi sıralı kümeler kavramından yola çıkarak 

oluşturulmuştur. Örneğin, ω + 1 sayısı ile 1 + ω sayısı birbirlerine eşit değillerdir. Bu 

iki farklı durumun nedeni bu işlemde karşımıza çıkan 1 sayısının ω sayısının 
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sıralanışında farklı bir pozisyon alması ve iki farklı sonsuz küme oluşturarak, farklı 

bir şekilde numaralandırılmaya neden olmasıdır. Başka bir deyişle ω + 1 sayısındaki 

1 kendisini sonsuz elemana sahip olan kümenin sonuncu sırasındaki eleman olarak 

konumlandırdığı için ω + 1 ile 1 + ω birbirine eşit değildir. Aynı zamanda 1 + ω 

sayısı matematiksel olarak ω sayısına eşittir çünkü ikisi de numaralandırılmayı 

sağlayan son elemana sahip değillerdir ve 1 sayısı aldığı pozisyondan dolayı ω sayısı 

tarafından yok edilmektedir. Bu sayılar arasındaki ayrım sonlu sayıların mutlaka 

sonlu sayılar tarafından yok edilmeyeceğini garanti eder. Sonlu bir sayıya herhangi 

bir sonlu ötesi sayı eklenirse sonlu yok edilecektir. Ancak, sonlu bir sayı bir sonlu 

sayıya eklenirse, işlemin sonucu yeni bir sonlu ötesi sayıya neden olacaktır. 

Dolayısıyla, Aristoteles’in savunduğunun aksine aritmetik işlemler uygun sıralama 

ile sonlu ötesi sayılara da uygulanabilirler ve bu aynı zamanda sonlu ötesi aritmetiğin 

sonlu aritmetikten ne kadar farklı kurallara sahip olduğunu göstermektedir.  

Sonlu aritmetiğin kuralları bize sonlu ötesi sayıların sonlu sayılar kadar 

belirgin nesnel bir gerçekliğe dayandığının kanıtıdır. Bu noktada, Cantor’un sonlu 

ötesi sayıların varlığına olan güçlü bağlılığı ona geleneksel sonsuzluk anlayışını 

çürütmek için bir yol sağlamıştır. Cantor’un sonsuzluk felsefesini incelediğimizde, 

potansiyel sonsuzluk kavramının tam olarak Aristoteles’in savunduğu gibi olduğu 

görülebilir. Fakat bu iki düşünürü birbirinden ayıran farklılık ise Cantor’un 

matematiğe tanıttığı yeni sistem içerisindeki sonlu ötesi sayılar aktüel sonsuzluğun 

örnekleridir. Potansiyel sonsuzluk kavramı üzerinden baktığımızda doğal sayılar 

kümesindeki her bir eleman sonlu birer sayıdır ve bu sayıların oluşturdukları seri 

potansiyel olarak sonsuz bir seridir. Fakat sonlu ötesi sayılar kendisini oluşturan tüm 
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sayıları aynı anda içerir. Sonlu ötesi sayılar kendilerini sonsuza kadar devam eden 

değişkenler olarak göstermezler, bunun yerine bir bütünlük oluştururlar ve bu 

bütünlük Cantor’un sonsuzluk felsefesinde aktüel sonsuzluk olarak adlandırılmıştır. 

Bu açıdan, sonlu matematiğin dogmalarına karşı olan ve Cantor'un başarıyla 

gösterdiği sonsuz kümelerin matematiğe kazandırılması sonsuzluk kavramı tarihinde 

bir devrim niteliği taşımaktadır.  

Tezimin ikinci kısmı ise Cantor’un sonsuzluk felsefesi içerisinde 

matematiksel nesnelerin varlığını doğrulamak adına savunduğu felsefi ve 

matematiksel arka plana adanmıştır. Cantor'un sonlu ötesi sayıları savunma stratejisi 

matematiğin özgürlüğü prensibine dayanmaktadır. Bu prensibe göre matematik kendi 

nesnelerini oluşturma noktasında özgürdür çünkü matematik için yeni nesneler 

halihazırda var olan daha önceki başka matematiksel nesneler üzerinden tanıtılabilir. 

Yeni nesneler ile eski nesneler arasındaki ilişkiler ve tanımlar birbiri ile çelişmediği 

sürece yeni nesnelerin varlığı kolayca kabul edilebilir. Dolayısıyla, Cantor’a göre, 

tutarlı bir aritmetik sistem içerisinde matematik yeni nesneler yaratmakta özgürdür 

ve bu özgürlük matematiği diğer bütün bilimlerden ayrı bir noktaya koyar. 

Matematiğin özgürlüğü, tanımlar ve ilişkiler açısından yeni kavramların varlığını 

sağladığı için sonlu ötesi sayılar sayı üretme prensipleri üzerinden oluşturulmuştur. 

Bu noktada her bir sayı üretme prensibi sonlu sayılar ile sonlu ötesi sayılar 

arasındaki ilişkide önemli bir role sahiptir. Cantor yeni sayıların matematiksel 

varoluşlarını haklı çıkarmak adına yeni sayıları doğal sayıların kümesi üzerinden 

oluşturmuştur. Bu sayede hem sonlu sayıları hem de sonlu ötesi sayıları içeren yeni 
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matematiksel sistemin tutarlılığı sayı üretme prensipleri ile korunur ve bu iki farklı 

sayı çeşidi arasındaki matematiksel ilişki tutarlı bir şekilde gösterilmiştir.  

Cantor’un teorisinin bir başka önemli yönü de içkin gerçeklik ile bireyin 

zihinden bağımsız olarak var olan gerçekliği birbirinden ayırmasıdır. Kısaca 

bahsetmek gerekirse, kavramların içkin gerçekliği daha önceden tanımlanmış 

nesnelerle olan ilişkileri ile ilgilidir. Cantor'a göre eski kavramlar ile yeni kavramlar 

arasındaki iç tutarlılık yeni kavramın olası bir varlık olarak bir gerçekliğe karşılık 

geldiğini iddia etmiştir. Ancak bu gerçekliğin her zaman fiziksel yansıması olacağı 

anlamına gelmez. Aksine muhtemel bir fikir olarak her zaman içkin tarafta bir 

varlığa sahip olacaktır. Bireyin zihinden bağımsız olarak var olan gerçeklik ise bir 

nesnenin doğal dünyadaki fiziksel tezahürü ile ilgilidir. Cantor'a göre matematiksel 

nesneler düşünüldüğünde bu iki taraf birbirinden ayırt edilemez çünkü matematiksel 

nesneler soyut varlıklardır ve tezahürleri ancak tanımlarda ve diğer nesnelerle olan 

ilişkilerde ortaya çıkabilir. Dolayısıyla, Cantor'un matematiğin yalnızca kavramların 

içkin gerçekliği ile ilgilenmesi gerektiği düşüncesi bu argümana dayanmaktadır. 

Bunun nedeni matematikte içkin olarak var olan herhangi bir fikir, Cantor için her 

zaman olası bir fikir olarak gerçektir ve insan zihninden bağımsız olarak da bir 

gerçekliğe sahip olacaktır. Bu bağlamda sonlu ötesi sayıların sayı üretme prensipleri 

temelinde inşa edilmesi ve kendilerine ait bir aritmetik sistem oluşturmaları bu yeni 

sayıların varlığını Cantor’un felsefesi içerisinde haklı çıkarmaktadır. Çünkü önemli 

olan nokta bu iki farklı sayı çeşidi arasındaki bütünleşme ve tutarlılık sayesinde yeni 

sayılar zihnimizde yerini temin etmektedir.  
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Cantor’un kümeler teorisi küme kavramına bir sınırlama getirmediği için 

çeşitli matematikçiler ve filozoflar tarafından eleştirilmiştir. Fakat sanılanın aksine 

Cantor çoklukları birbirinden ayırarak, hangi çoklukların matematiksel bir küme 

olarak ifade edilebileceğini ve hangi çoklukların matematiksel bir küme 

oluşturamayacağının sınıflandırmasını yapmıştır. Bu sınıflandırmanın temeli iyi sıralı 

küme kavramı içerisinde yatmaktadır. Cantor’a göre çokluklar ikiye ayrılır: 

matematiksel kümeler olarak karşımıza çıkan tutarlı çokluklar ve tutarsız çokluklar. 

Tutarlı çokluklar matematiksel olarak gösterilebilen ve çelişkiye sahip olmayan 

çokluklardır. Başka bir deyişle, bu tür çoklukların öğeleri birbirinden ayrı 

düşünülebilir ve aynı zamanda bu öğelerin oluşturduğu bütünlüğü matematiksel 

olarak kavramak mümkündür. Örneğin, doğal sayılar kümesi tutarlı bir çokluktur; 

kümenin bütün öğeleri farklı özelliklere sahiptir ve aynı zamanda matematiksel bir 

bütünlük “ω” oluştururlar.  

Tam tersine, tutarsız çokluklar matematiksel bir bütünlük oluşturamazlar 

çünkü bulundurdukları ayrı öğelerin bütünlüğünü matematiksel olarak formalize 

etmek imkansızdır. Bu tarz çokluklar düşünce temelinde bir fikre karşılık gelebilirler, 

fakat matematiksel olarak bir küme oluşturamazlar. Bu durumun iki nedeni vardır. 

İlk olarak tutarlı çokluklar kendilerini aynı zamanda bir eleman olarak içeremezler 

çünkü aksi durumda elemanlarını birbirine bağlayan özellik kendi içerisinde çelişki 

ortaya çıkartarak bütünlüğün matematiksel olarak formalize edilmesine engel olur. 

Bir diğer neden ise bu tür çoklukların numaralandırılmalarının imkansızlığıdır. Her 

iyi sıralı küme bir ordinal sayıya karşılık gelmek zorundadır. Tutarsız çokluklar 

herhangi bir ordinale karşılık gelemezler çünkü çokluğun kendisinin ilk başta ifade 
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ettiği koşul öğeleri tarafından karşılanamaz ve matematiksel olarak belirsiz hale 

gelirler. Dolayısıyla bu tarz çoklukları numaralandırmak imkânsız hale gelir çünkü 

onları iyi sıralı kümeler biçimine dönüştürmek imkânsızlaşır ve matematiksel 

kümeler oluşturamazlar. Örneğin, Burali-Forti tarafından ortaya atılan paradoksa 

göre bütün ordinallerin kümesi de bir ordinal olmak zorundadır. Fakat bu ordinal 

bütün ordinaller kümesinin içerisinde yer alamaz çünkü kümenin kendisine atanan 

ordinal kümenin içerisinde yer alamaz. Tam olarak aynı nedenden dolayı, Cantor’un 

yaptığı ayrıma göre bu tutarsız bir çokluktur ve matematiksel olarak formüle 

edilemez. Cantor’un küme teorisinde paradoksal kümelerin ortaya çıkması yapılan 

bu ayrım ile engellenmiştir ve yalnızca iyi sıralı kümeler haline dönüştürülebilen 

çokluklar teori içerisinde matematiksel kümeler olarak kabul edilirler. Sonuç olarak 

Cantor’un küme teorisi ne sezgisel ne de paradoksaldır. Tutarlı çokluklar ve tutarsız 

çokluklar ayrımı içerisinde savunulan bütün argümanlar alıntılar eşliğinde bölüm 3.3. 

içerisinde yer almaktadır.  

Sonlu ötesi sayılar düşünüldüğünde, Cantor sayı kavramını sonsuz kümeleri 

de kapsayacak şekilde genişleterek kendine özgü belirli kuralları olan yeni bir tür 

aritmetik sistem inşa etmiştir. Örneğin, bu aritmetikte toplama işleminin ve çarpma 

işleminin değişme özelliği yoktur çünkü sonsuz kümeler farklı sıralamalara sahip 

olduklarında farklı şekilde numaralandırılırlar. Bu nedenle, sonlu ötesi sayıların 

aritmetiğinde matematiksel işlemin sonucunu sayıların sıralamaları belirler. Fakat 

burada vurgulanması gereken şey şudur ki; sonsuz kümelerin hiyerarşisi hem 

büyüklük olarak hem de sıralanış olarak farklılık göstermektedir. Cantor’un bu iki 

açıdan farklı matematiksel kurallar etrafında ortaya koyduğu aritmetik sistemleri 
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bölüm 3.4. içerisinde benzerlikleri ve farklılıkları ile detaylıca anlatılmaktadır. Söz 

edilen bölümdeki analiz yeterince göstermiştir ki, bir kümenin büyüklüğü sahip 

olduğu eleman sayısı ile ilgili iken, bir kümenin ordinal sayısı kümedeki elemanların 

sıralamasıyla ilişkilidir. Bunun sonucu olarak ortaya çıkan sonlu ötesi sayıların, yani 

bir anlamda aktüel sonsuzlukların, matematiksel uygulamaları ve tutarlı teorisi hem 

matematiksel hem de felsefi olarak göz ardı edilemez.  
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