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ABSTRACT

PHILOSOPHICAL IMPLICATIONS OF CANTOR’S SET THEORY

SAHIN, Safak
M.A., The Department of Philosophy
Supervisor: Prof. Dr. David GRUNBERG

October 2020, 87 pages

This thesis is devoted to examining Georg Cantor’s understanding of infinity
and his philosophy of mathematics. Even though Aristotle differentiated the concept
of infinity as potential infinite and actual infinite, he argued against the existence of
actual infinity and accepted only the existence of potential infinity. With the effect of
this distinction, the impossibility of actual infinity was regarded as the fundamental
principle in the history of the concept of infinity. Cantor was the first thinker to
attempt to refute Aristotle’s arguments by introducing a new understanding of
infinity that has one of the greatest impacts on its development in mathematics.
Cantor mathematically demonstrated that there would not be any one-to-one
correspondence between the set of natural numbers and the set of real numbers. This
result implies that there must be at least two different sizes of infinite sets, namely
the set of real numbers and the set of natural numbers. Based on the concept of a
well-ordered set, Cantor not only showed the way how to count infinite sets but also

assigned numbers to differentiate the different sizes of infinite sets. Thus, transfinite



numbers and their arithmetic are introduced into mathematics. After examining the
distinction between potential infinite and actual infinite in both Aristotle’s
framework and Cantor’s framework, the existence of mathematical objects in the

Cantorian framework will be shown.

Keywords: Potential infinity, actual infinity, well-ordered sets, transfinite numbers,

transfinite arithmetic.
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CANTOR’UN KUMELER KURAMININ FELSEFI SONUCLARI

SAHIN, Safak
Yiksek Lisans, Felsefe Bolumi
Tez Yoneticisi: Prof. Dr. David GRUNBERG

Ekim 2020, 87 sayfa

Bu tez, Georg Cantor’un sonsuzluk anlayisini ve matematik felsefesini
incelemeye adanmistir. Aristoteles sonsuzluk kavramini potansiyel sonsuz ve aktiiel
sonsuz olarak ayirt etmesine ragmen aktiiel sonsuzlugun varligini reddederek
yalnizca potansiyel sonsuzlugun varligini kabul etmistir. Bu ayrimin etkisi ile, gergek
sonsuzlugun imkansizligi, sonsuzluk kavraminin tarihinde temel ilke olarak kabul
edilmistir. Cantor, matematikteki gelisimi iizerinde en biiyiik etkilerden birine sahip
olan yeni bir sonsuzluk anlayisi ortaya atarak Aristoteles'in argiimanlarini ¢iiriitmeye
calisan ilk diisliniir olmustur. Cantor matematiksel olarak dogal sayilar kiimesi ile
reel sayilar kiimesi arasinda bire bir eslesmenin olmayacagin1 géstermistir. Bu sonug,
en az iki farkli boyutta sonsuz kiimenin, yani reel sayilar kiimesi ve dogal sayilar
kiimesi, olmasi gerektigi anlamina gelir. lyi sirali kiime kavramina istinaden, Cantor
sonsuz kiimelerin nasil sayilacagimi gostermekle kalmadi, ayni zamanda sonsuz
kiimelerin farkli boyutlarini ayirt etmek i¢in onlara sayilar atfetti. Boylece sonlu 6tesi

sayilar ve sonlu Otesi aritmetik matematige tanitildi. Potansiyel sonsuz ve aktiiel

Vi



sonsuz ayrimini Aristoteles’in sisteminde ve Cantor’un sisteminde incelendikten

sonra, Cantor’un sistemindeki matematiksel nesnelerin varlig1 gosterilecektir.

Anahtar Kelimeler: Potansiyel sonsuzluk, aktiiel sonsuzluk, iyi sirali kiimeler,

sonlu Otesi sayilar, sonlu 6tesi aritmetik.
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CHAPTER 1

INTRODUCTION

The main purpose of this thesis is to investigate the Cantorian theory of
transfinite numbers, which had an undeniably crucial impact on the development of
set theory. In doing so, my study will answer three questions. First, what are the
underlying reasons for Aristotle’s rejection of actual infinity? In the case of this
question, I will examine Aristotle’s perspective of infinity with the distinction
between potential infinite and actual infinite. Then, I will discuss his mathematical
arguments that led people to assume the impossibility of infinite numbers. And the
second question: did Georg Cantor's counter-arguments succeed to respond to
Aristotle’s arguments against the existence of actual infinity? To answer this
question, I will first analyze Georg Cantor’s theory of infinity with the new numbers
that he introduced and called transfinite numbers, and then, | will examine the
counter-arguments that Cantor proposed against Aristotle’s mathematical rejection of
infinite numbers. The final and the third question is how Cantor managed to prove
the existence of actual infinity through both mathematical and philosophical
arguments in his framework? While providing an extensive analysis of Cantor's
theory, | will discuss his philosophical and mathematical framework behind the

existence of transfinite numbers.



There is no doubt that the concept of infinity is one of the most controversial
concepts of Western Philosophy. In the history of the concept of infinity, many
philosophers and mathematicians have tried to understand both the nature of the
concept and its mathematical implications. Some of these are Aristotle, Spinoza,
Leibniz, and Georg Cantor among many others. They all provided differing
presentations of the concept of infinity and, for this reason, 1 will briefly discuss the
historical evolution of the concept in section 2.1. It is a fact that the distinction
between potential infinite and actual infinite proposed by Aristotle dominated the
intellectual landscape without even being questioned for a long time. We will reveal
how the idea of potential infinite was considered as the only acceptable way of
understanding infinity in the literature. Then, in chapter 2.2., 1 will examine
Aristotle’s theory of infinity. He differentiated the concept as actual infinite and
potential infinite. The idea of infinity has taken its place in his framework as an
unending process that cannot be completed. For Aristotle, one of the obvious reasons
for the rejection of actual infinity is its inconsistency; an entity being actual and
being infinite is a contradiction in terms. Since the completion of the process of
infinity is impossible, the infinite cannot reveal itself as an actually existing entity.
Thus, by only allowing the existence of potential infinite, Aristotle completely
rejected the idea of actual infinity for several reasons that will be discussed.

In the history of the concept of infinity, the mathematical implication of
potential infinite gives rise to many paradoxical results. Although both philosophers
and mathematicians tried to explain those results, no one has been provided a
successful explanation until Georg Cantor. Up to the late 19" century, no one has

considered the endless sequence of natural numbers as a completed set, but Cantor



ascribed this feature to the sequence. And this reasoning brought him the idea of
transfinite numbers. Throughout his career, Cantor suggested that the idea of actual
infinity might be a subject for mathematics and dedicated his work to clarify the
concept of actual infinity. As we will analyze in chapter 2.3., he not only proved that
counting infinite numbers is mathematically possible, but he also provided two
counter-examples against Aristotle's rejection of actual infinity.

Furthermore, Cantor asserted that mathematics is free to create its objects on
the grounds of internal consistency because its objects have two sides of reality,
namely the transient reality and the immanent reality. At the beginning of the third
chapter, I will reflect on the result of these two sides in Cantor’s ontological
framework for transfinite numbers. Then, in chapter 3.3, 1 would like to remark on
the relation between sets and numbers in order to understand what Cantor presented
with the distinction between multiplicities. Cantor not only showed the way how to
count infinite sets by abstracting the properties of their elements but also assigned
numbers to mathematically differentiate them and introduced transfinite arithmetic

into mathematics. As a result, in chapter 3.4., transfinite arithmetic will be examined.



CHAPTER 2

THE DISTINCTION BETWEEN POTENTIAL INFINITE AND ACTUAL

INFINITE

2.1. History of the concept of infinity

In this section of my thesis, | examine the distinction between potential
infinity and actual infinity in terms of the Aristotelian rejection of actual infinity, and
I demonstrate the philosophical importance of this distinction in the Cantorian
framework.

To accomplish these, firstly, | examine the historical evolution of the concept
of infinity. It is generally accepted that the discussion about the concept of infinity
had begun with Anaximander. He, as an Ancient Greek philosopher, conceptualized
infinity as the principle that governs nature. He identified this principle with the
word “apeiron”, which literally means unlimited. The ultimate source of all things
cannot be subjected to any kind of limitations both in space and in time because it
must be boundless and indestructible by its nature. It generates the four primary
elements in the way that they all need an underlying changeless primary substance as

the source of all things. The opposites in nature (e.g. fire and water) are generated by



apeiron, then the transformations and interactions of four elements bring the
existence of objects around us. Nevertheless, when the objects in nature are
destroyed, they return back to their first cause, i.e. apeiron. Even though apeiron, as
the eternal movement, generates the four elements, it exists independently from
them. This makes apeiron indestructible and infinite substance for Anaximander.
Hence, the idea of infinity, for Anaximander, was emerged from the idea of apeiron
as the originating principle.

Many other Ancient Greek philosophers followed Anaximander’s footsteps
and conceptualized infinite as ipso facto a “principle” to explain other things as the
fundamental principle. Accordingly, the idea of infinity has emerged with their desire
to comprehend the most basic principle of nature. Since their first aim was to
understand the nature, the idea of infinity was associated with nature itself. As a
result, the concept was neither a mathematical notion nor a metaphysical notion,
rather it was only considered for explaining the unlimitedness of nature.

After the pre-Socratic philosophers, Aristotle’s distinction between potential
infinity and actual infinity dominated the intellectual landscape. To put it briefly,
Aristotle considered the notion of infinity as a continuously growing process that
cannot have a limitation. This is the idea of potential infinite. On the other hand, he
argued against the idea of a complete infinity or so-called actual infinity for several
reasons. One of the reasons is that human understanding cannot comprehend the
existence of actual infinite because such an entity transcends the human mind. Actual
infinite, if exists, must be a complete entity, but a complete entity cannot have parts
that are also infinite by themselves. This seems impossible because if the parts are

infinite, then the whole becomes indeterminate. Thus, actual infinite either does not



exist or exists as an indeterminate entity. And since indeterminacy is not acceptable,
actual infinite does not exist according to Aristotle.

Another reason why the idea of actual infinite seems to be unacceptable for
Aristotle is that what is actual must be complete whole that its parts must be present
“all at once”. Nevertheless, the parts of infinite present themselves successively, not
independent presence. The reason is that, in the case of infinitude, both infinite and
its parts are not infinite yet; rather a process that is never-ending. Either by addition
or by division the process proceeds indefinitely, and it cannot be completed at any
point in time. Hence, the idea of actual infinite seems to be incoherent for Aristotle.
For several other reasons that will be examined in the following chapter, he argued
against the idea of a complete infinity, which is considered as actual infinity.

Similar to Aristotle, many philosophers have argued against the existence of
actual infinity. Each of those philosophers presented differing reasons for this claim.
So, the history of the concept of infinity gives us many different arguments for
rejecting the existence of actual infinity. The finitude of human understanding is
perhaps the most common one. The argument basically claims that the human mind
is finite, and its capacity to comprehend the actual infinite seems to be impossible for
the fact that something finite could not understand the nature of infinite with its own
restricted understanding capacity. This idea is one of the most fundamental problems
of the notion of infinity because many philosophers and mathematicians analyze the
concept of infinity from this standpoint. Galileo Galilei (1564-1642), as an important
scholar for the impossibility of infinite numbers, defends a very similar view. In
Dialogues Concerning Two New Sciences, Galileo presented a paradoxical example

to show how mathematically problematic the idea of infinity is. The example is as



follows: it is always possible to demonstrate the one-to-one correspondence between
the set of natural numbers and the set of their squares because, for every natural

number n, there is always a corresponding squared number n:

O

The one-to-one corresponding demonstrates that the set of natural numbers and the
set of even numbers are the same sizes because it is possible to pair off their
elements. The problem, however, is the fact that the set of natural numbers contains
both squares and non-squares, which should have made the set of all natural numbers
mathematically greater than the set of squares. Therefore, these two sets are in a
sense equal; the set of natural numbers has as many elements as the set of squares,
and in a sense unequal; there are more numbers in the set of natural numbers. This is
clearly paradoxical. Accordingly, he defends that it is impossible to understand the
properties of infinity with a finite mind because the concept of infinity transcends
human understanding®. As his own words, “But let us remember that we are dealing
with infinites and indivisibles, both of which transcend our finite understanding...”
(1638, p. 26). The paradoxical results of infinity arise because of human
understanding. It uses finite understanding to conceptualize the concept of infinity
because it can only understand finite quantities, not infinite quantities. Hence,
Galileo concludes that infinite quantities, that has different characteristics from finite

quantities, cannot be comprehensible in human understanding. He wrote:

' For more detail, see Knobloch (1999).



This is one of the difficulties which arises when we attempt, with our finite

minds, to discuss the infinite, assigning to it those properties which we give

to the finite and limited; but this I think is wrong, for we cannot speak of
infinite quantities as being the one greater or less than or equal to another.

(1638, p.31)

Another general assumption about infinity is its indeterminacy. As clearly
stated by both Baruch Spinoza (1632-1677) and Gottfried Wilhelm Leibniz (1646-
1716), the concept of infinite cannot be the subject of any determination. They would
be the first people to come across after Aristotle's effect on the concept, accepting the
actual infinity to a certain level. For Spinoza, as one of the great rationalists of the
17" century, the concept of infinity has two sides. On the one side, similar to the idea
of potential infinity, he assigned the property of unlimitedness to the concept of
infinity. Since it does not have any kind of limitation either by addition or by
division, it must be mathematically indefinite and indeterminate.

On the other side, there is the concept of infinite that has infinitely many parts
that are also infinite themselves. Spinoza indicates that human understanding cannot
have the capacity to comprehend this kind of entity. In a letter to Louis Meyer?,
Spinoza wrote, “Finally, there are things that can be called infinite, or if you prefer,
indefinite, because they cannot be accurately expressed by any number, while yet

being conceivable as greater or less” (2002, p.790). Since infinite cannot have a

maximum or minimum in terms of magnitude, it thus follows that assigning a

2 The letter is also known as “Letter on the Infinite”(Letter XII). The purpose of the letter is to explain
the questions of infinity regarding its controversy and problems. For Spinoza, the uncertainty on
different types of infinity is the main reason why the concept of infinity is controversial. He
represented his account of the concept of infinity by differentiating the types of infinities in this letter.
For more detail, Morgan (2002), pp. 787-792.



number to infinite quantities becomes impossible. Nevertheless, he accepts the
possibility of different sizes of infinities by refuting their mathematical applications®.
On the other hand, Leibniz's conception of infinity is more related to nature.
For him, there is infinite in nature in the way that there are infinitely many
individuals in nature. In a letter to Foucher in 1693, Leibniz wrote:
| am so much in favor of an actual infinite that instead of admitting that
nature abhors it, as is commonly said, | hold that it affects nature everywhere
in order to indicate the perfections of its Author. So, | believe that every part
of matter is, | do not say divisible, but actually divided, and consequently, the
smallest particle should be considered as a world full of an infinity of
creatures. (1951, p.99)
As it seems, he accepted the idea of actual infinity in nature, but he argued against
the existence of actual infinity in mathematics. According to Leibniz, it is impossible
to think of an infinite number without contradictory results. Any number should be
definite and determined so that it has a definite place in arithmetic. However, in the
case of infinite numbers, this is impossible because the notion of infinite numbers
transcends the idea of numbers. After all, it is impossible to determine the
mathematical value of an infinite number. Consequently, infinite numbers, for
Leibniz, becomes indeterminate numbers, that cannot take place in mathematics. To
this respect, he derived two conclusions. The first one is that all numbers must be
inherently finite, and the second one is that the human mind cannot have the capacity
to understand the concept of infinite numbers. Even though he accepts the existence

of actual infinite in nature, he argues against the existence of actual infinities in

mathematics®.

® For more detail, see Bussotti and Tapp (2009) and Newstead (1975).

* For more detail, see Knobloch (1999).



After a long time, Georg Cantor (1845-1918) was the first man ever tried to
justify the existence of different kinds of infinities in mathematics. Before Cantor’s
revolutionary ideas, the concept of infinity had always been mathematically unclear
and counter-intuitive. Many philosophers and mathematicians interested in
researching the concept of infinity, but, before Georg Cantor, no one had ever
claimed that numbers can be assigned to infinite quantities and their arithmetic can
be well defined like finite arithmetic®. One of the most remarkable contributions of
Cantor’s theory, which I will analyze with all the details, is to suggest that an infinite
sequence can be mathematically determinate as much as finite numbers despite his
colleagues who were against this view. For this reason, | examine the distinction
between potential infinite and actual infinite in terms of Aristotelian understanding
and Cantorian understanding, then show the philosophical importance of this

distinction in the light of transfinite numbers.

2.2. Aristotle’s theory of infinity

In Physics, Aristotle properly formulated the idea of infinite in two categories
as potential infinite and actual infinite to clarify the paradoxical problems of the
concept of infinity. What he meant by potential infinity is a continuous process that
has the potency to proceed indefinitely. It is something limitless and boundless. In

addition, since it cannot have any limit or bound, its existence, for Aristotle, must

% It should be mentioned that even though Emmanuel Maignan (1601 — 1676), as a French physicist,
argued that one can compare different sizes of infinities as being the one greater or less than or equal,
he never asserted that numbers can be assigned to infinite quantities. For more detail, see Mancosu
(2009).
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always be incomplete and indeterminate. If the proceeding process had somehow
been terminated, then it would have an actuality. But this is impossible because there
will always be a possible division or addition, so infinite cannot present itself as a
completed entity. Therefore, potentially infinite sequences can only present
themselves as a continuous process that never reaches completion.

He also differentiated the idea of potential infinite into two categories to
better understand the notion, namely infinite by addition and infinite by division. The
idea of infinite by addition can be comprehended as the unending sequence of natural
numbers. The sequence consists of numbers that are constructed by the successive
addition of units. For a given number, it is always possible to construct a larger
number by the addition of units; consequently, there would be no greatest number
among them. Each number in the sequence has a definite magnitude and distinct
features, but the sequence can proceed towards infinity potentially. Since the process
never ends, the sequence is always incomplete; there would always be a greater
number that is not contained in the list. Consequently, the sequence itself cannot
correspond to an actually existing entity. As Aristotle puts it:

Hence this infinite is potential, never actual: the number of parts that can be

taken always surpasses any assigned number. But this number is not

separable from the process of bisection, and its infinity is not a permanent
actuality but consists in a process of coming to be, like time and the number
of time. (Physics, I11.7 207b10-15)
If the process of adding one more unit has an ending, then it would have an actuality,
but this seems impossible. For the fact that it is impossible to simplify all the

elements, this guarantees the potential infinity of the sequence of natural numbers for

Aristotle.
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On the other hand, infinite by division can be seen as the infinitude of a
straight line®. It is always possible to reveal different parts by dividing a finite
straight line; it can be divided into two parts, then each part after the division can
also be divided into two again and so on. Even though parts in the line get smaller
and smaller, there will always be another part that can be divided. Since there would
always be possible division left out, the divisibility of a straight line can be held
indefinitely. According to Aristotle, for the fact that the division of parts never ends,
a finite mind cannot actually comprehend the indefinite divisibility of a straight line.
It is only comprehensible as possible divisions that can be performed. So, dividing a
finite straight line can be a potentially infinite process for Aristotle. In the same way,
this reasoning also guarantees the infinite divisibility of a physical body for Aristotle.
Even though any physical body appears to be materially finite because it necessarily
has a finite surface, dividing any physical body into infinitely many parts seems to be
potentially possible. But this does not mean that body has actually infinite parts,
instead, dividing it into infinitely many parts is only potentially possible in thinking.
As Aristotle puts it, “For the fact that the process of dividing never comes to an end
ensures that this activity exists potentially, but not that the infinite exists separately”
(Metaphysics, 1X.6, 1048b14-17). Since the process of division is never-ending, it
follows that infinite by division is only possible in a potential sense. Therefore, for
Aristotle, potential infinite can manifest itself either infinite by addition or infinite by

division.

® Thales was the first man to suggest the process of dividing a straight line into infinitely many parts is
possible, which eventually led Zeno to come up with many paradoxes about the infinity.

12



As | briefly mentioned before, Aristotle argues against the existence of actual
infinity because the idea has some problematic features. According to Aristotle,
actual infinite is the infinite type that should present itself complete and definite.
However, it is obvious that this is impossible in the case of infinitude. Being
complete necessarily requires limitation, but infinite, by definition, cannot have
limitations. Therefore, completeness cannot be a characteristic of any infinitude.
Hence, the concept of actual infinite, for Aristotle, becomes contradiction in terms: to
be complete and to be infinite cannot be the properties of the same thing at the same
time. Aristotle wrote, “Whole and complete are either altogether the same or of a
similar nature. Nothing is complete which has no end, and the end is a limit”
(Physics, 111.6, 206b33-207al5). Even though a completed infinite must be
determined by definition, in the case of infinity, determinateness cannot be a feature.
The complete infinite, then, becomes incoherent and unknowable. As Aristotle

stated:

It is in fact the matter of the completeness which belongs to size, and what is
potentially a whole, though not in the full sense. It is divisible both in the
direction of reduction and of the inverse addition. It is a whole and limited;
not, however, in virtue of its own nature, but in virtue of what is other than it.

It does not contain, but, in so far as it is infinite, is contained. Consequently,

also, it is unknowable, qua infinite; for the matter has no form. (Physics, I11.6,

207a22-27)

Another reason for the impossibility of actual infinity lies in nature. Like
many other Ancient Greek philosophers, Aristotle conceptualized infinity as the
fundamental substance that governs everything in nature. For him, the important
question concerning infinity was whether there is infinite in nature or not. Aristotle

himself wrote, “The study of nature is concerned with extension, motion and time;

and since each one of these must be either limited or unlimited..., it follows that the

13



student of Nature must consider the question of the unlimited, with a view to
determining whether it exists at all, and, if so, what is its nature” (Physics, 111.4, 202b
30-35). Therefore, he first considered the concept of quantity. According to Aristotle,
quantity must be defined as that of which is divisible into parts, and each part would
necessarily be countable or measurable (Metaphysics, 1020a7-10). This definition
alone, for Aristotle, highlights the fact that there could not be an infinite quantity in
nature. The idea of infinite quantity is a contradiction in terms for Aristotle. The
reason is that if there is an actually infinite quantity in nature, then this would mean
that it must be divisible into parts in which those parts must also be infinite
themselves, which is unacceptable for Aristotle. Infinite quantities cannot have parts
that are also infinite by themselves and this necessitates the idea that infinite
quantities must be indivisible. Nevertheless, this is also self-contradictory because
any guantity whether finite or infinite must be divisible. Aristotle wrote:
It is impossible that the infinite should be a thing which is in itself infinite,
separable from sensible objects. If the infinite is neither a magnitude nor an
aggregate, but is itself a substance and not an accident, it will be indivisible;
for the divisible must be either a magnitude or an aggregate. But if
indivisible, then not infinite, except in the way in which the voice is invisible.
(Physics, 111.5 204a8-14)
It thus follows that there would not be an infinite quantity in nature. By only
allowing the existence of potential infinity, Aristotle concludes that actual infinity
does not exist.
In summary, what is most evident, for Aristotle, is that actual infinity or
completed infinite cannot exist as an actual entity. For the fact that it is impossible to
comprehend its actuality all at once, the idea of actual infinity only exists as a matter

of speaking. Therefore, he argues against the existence of actual infinity and states

that the concept of infinite is only comprehensible as either infinite by addition or

14



infinite by division, both of which are only potentially existing. In the following
section, I examine Aristotle’s mathematical arguments against the possibility of

infinite numbers.

2.2.1. Mathematical arguments against the existence of actual infinity

In addition to the philosophical arguments against the idea of actual infinity,
Aristotle also argued against the existence of actual infinity for mathematical
purposes. Aristotle offered two reasons why the idea of actual infinity seems to be
mathematically impossible. It should be noted that he did not provide these reasons
in formal argument forms, especially in the second argument. Aristotle, firstly, held
that counting cannot generate infinite numbers for the fact that the successive
addition of units ensures that all numbers are finite in number formation. For
Aristotle, this reasoning guarantees that the counting procedure is only applicable to
finite numbers. Secondly, he argued that there would be an infinite substance in
nature. If there was such an element, it would cause the destruction of other
elements. Georg Cantor interpreted these two arguments directly on numbers as the
mathematical arguments against the existence of actual infinity and indicated that
these arguments formed the traditional understanding of the concept of infinity.

The first argument clarifies that the main function of numbers is counting,
and only finite numbers are countable. For Aristotle, a number can only be
constituted by counting and what is uncountable cannot be a number. He wrote, “Nor
can number taken in abstraction be infinite, for number or that which has number is

numerable. If then the numerable can be numbered, it would also be possible to go
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through the infinite” (Physics, 111.5 204b8-10). All numbers in the unending
sequence of natural numbers are constructed in relation to the previous number,
which is already finite, each number exceeding the previous one would inherently be
finite by the process of counting. Although the sequence of natural numbers would
have infinitely many elements, all of its elements should be a finite number. In his
words, “For generally the infinite has this mode of existence: one thing is always
being taken after another, and each thing that is taken is always finite, but always
different” (Physics, 111.6, 206a26-29). In other words, all the elements in the
sequence are different from one another, but they are all finite numbers. Furthermore,
for Aristotle, mathematical objects are the entities that we abstracted their reality
from things in the physical world. Numbers are the results of this abstraction and rely
on quantities found in nature. Nevertheless, as we analyzed, infinite quantities are
necessarily indeterminate quantities in Aristotle’s philosophy. Since indeterminacy is
not acceptable in mathematics, there would not be any specific number for the
enumeration of infinite quantities. Thus, Aristotle concludes that the process of
counting is only applicable to finite numbers and it cannot generate an infinite
number’.

The second mathematical objection against the existence of actual infinity is
the annihilation of finite numbers. He did not present this argument directly on
numbers, but he indicated that if there was an infinite element in nature, it would

destroy finite elements in nature. The four primary elements (water, air, fire, and

" By considering Avristotle’s arguments in Metaphysics Book XI , Cantor represents “...only counting
procedures with respect to finite aggregates (sets) were known to him” (1976, p.75).
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earth) must be finite to coexist. If any of them were infinite, then it necessarily
destroys opposites elements. As Aristotle puts it:
The infinite can neither be composite nor simple. For it cannot be a composite
body if the elements are limited in number; for the contraries must be equal,
and no one of them must be infinite; for if the potency of one of the two
corporeal elements is in any way inferior, the finite element will be destroyed
by the infinite. (Metaphysics, 1., 1066b27-30)
For instance, a finite amount of fire cannot maintain its presence with an infinite
amount of water in nature, instead, it would be annihilated by water. As Aristotle
own words, “Nor can fire or any other of the elements be infinite. For generally, and
apart from the question of how any of them could be infinite, the All, even if it were
limited, cannot either be or become one of them...” (Physics, Il1.5, 205al-4).
Another reason why any of those elements cannot be infinite is the fact that the
physical body is generated from those elements. Since all bodies must be extended
finite space, they cannot contain any infinite element. He wrote:
It is impossible, however, that there should be such a body; not because it is
infinite on that point a general proof can be given which applies equally to
all, air, water, or anything else-but simply because there is, as a matter of fact,
no such sensible body, alongside the so-called elements. Everything can be
resolved into the elements of which it is composed. Hence the body in
question would have been present in our world here, alongside air and fire
and earth and water: but nothing of the kind is observed. (Physics, Il1.5,
204b29-35)
The non-existence of an infinite element in nature can be interpreted
mathematically as following; finite numbers would necessarily be annihilated by

infinite numbers when the calculation is applied to infinite numbers®. The unending

sequence of infinite numbers, assuming that they exist, must always be incomplete

8 Cantor represented his interpretation of Aristotle’s argument, <. ..the finite would be dissolved into
the infinite and destroyed, if the latter existed, since the finite number allegedly is annulled by an
infinite number” (1976, p.75).
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by definition, and destroy whatever it is added. Since infinite numbers contain every
number, they absorb what is contained in themselves. In this sense, when finite
numbers and infinite numbers are considered together in a mathematical operation,
the permanence of finite numbers would become impossible. As Aristotle stated, “It
is absurd and impossible to suppose that the unknowable and indeterminate should
contain and determine” (Physics, 111.6, 207a31-32). When finite numbers and infinite
numbers are considered together in a mathematical operation, what we have from
this operation would not be different from the unending sequence of infinite number.
The infinitude of the sequence must destroy the finite number in its sequence. As it
appears, even if we assume that it is possible to count infinite numbers, Aristotle had
a good reason to believe that the arithmetic of infinite numbers is not possible
because applying any mathematical operation to infinite numbers is impossible®.
Indeed, for Aristotle, these two mathematical arguments guarantee that there
would not be an infinite number, neither in nature nor in mathematics. Thus, by only
accepting the existence of potential infinite, he concludes that there are only finite

numbers for the reason that the counting cannot be considered in infinite numbers.

2.3. Georg Cantor’s theory of infinity

The traditional understanding of infinity relies on the idea that “Infinitum

actu non datur” which literally means that actual infinite does not exist.

% He states, “The unlimited, then, is the open possibility of taking more, however much you have
already taken; that of which there is nothing more to take is not unlimited, but whole or completed”
(Physics, 111.6, 207a 7-9).
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Accordingly, the impossibility of actual infinity was regarded as the fundamental
principle in the history of the concept of infinity. Any attempt to demonstrate the
reality of actual infinity had failed. Even if some scholars accept the idea of actual
infinity, such as Nicholas of Cusa (1401-1464) and Giordano Bruno (1548-1600),
Aristotle’s arguments have not been refuted successfully in the history of the concept
of infinity. Nevertheless, Georg Cantor was the first thinker who attempted to refute
Aristotle’s arguments against the existence of actual infinity.

He introduced his theory mainly in two articles; “Grundlagen einer

5510

Allgemeinen Mannigfaltigkeitslehre and “Beitrdge zur Begriindung der

»1 The first article, Grundlagen, is dedicated to

transfiniten Mengenlehre
constructing transfinite ordinal numbers while analyzing the arguments against the
existence of actual infinity. It should be noted that | will refer to the article as
Grundlagen in the rest of this thesis. The second article, on the other hand, is devoted
to the theory of transfinite numbers (including both ordinals and cardinals); the rules
of transfinite arithmetic are comprehensively provided. For this thesis, the first
article, Grundlagen, has an essential role in representing Cantor’s mathematical and
philosophical arguments about the existence of actual infinity.

In 1883, when Cantor published Grundlagen, the main purpose of the article
was to justify the existence of actual infinity in the light of transfinite numbers. He

used both philosophical arguments and mathematical arguments in defending his

theory and subtitled the article as “A Mathematical - Philosophical Study in the

1% Translated as “Foundations of a General Theory of Manifolds”.

! Translated as “Contributions to the Founding of the Theory of Transfinite Numbers”.
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Theory of the Infinite”. One of the most crucial points of the article is to defend that
it is not possible to understand the nature of infinity with finitist reasoning; in fact,
finitist reasoning necessarily leads to contradictory results in infinite quantities.

To give an illustration of finitist reasoning let me use John Locke’s (1632-
1704) reasoning in his An Essay Concerning Human Understanding. He
conceptualized infinity by assuming there is only one infinity and evaluated the
mathematical applications of infinity as absurd. Locke wrote: “If a man had a
positive idea of infinite, either duration or space, he could add two infinities together:
nay, make one infinite infinitely bigger than another, absurdities too gross to be
confuted” (as cited in Suber, 1998, p.29). In this sense, it is indeed impossible to
speak of infinite quantities with finitist understanding because of the paradoxical
results. However, in another sense, most scholars (including John Locke) only
assumed the existence of the properties of finite quantities. In other words, infinite
sets were regarded as if they have the same properties as finite sets. For Cantor, using
finitist reasoning to understand the concept of infinity was an undeniable mistake,
and this is the reason why the concept had been so problematic in the history of
mathematics. The possibility that infinite quantities might have different
characteristics was ignored by those great scholars'®. It was this reasoning that led
most people to presuppose the impossibility of infinite numbers in the first place.

At the beginning of his career, Cantor, as many other scholars, accepted the
idea that actual infinite has nothing to do with rigorous mathematics because he

believed that the concept of actual infinite was hard to consistently formulate in

121t should be noted that some scholars, such as Galileo and Blaise Pascal (1623-1662), suggested that
infinite quantities have different properties than finite quantities, but they also held that human
reasoning cannot understand those properties with its own restricted capacity.
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mathematical notions (Dauben, 1983, p.122). However, in 1874, Cantor came across
the existence of different infinite sets for the first time in the article called “On a
Property of the Collection of All Real Algebraic Numbers”. He mathematically
demonstrated the fact that the list of all real numbers is incomplete in this article.
Given the list of all real numbers in a closed interval (such as all the real numbers
which are > 0 and < 1), it is always possible to construct a new number that would
not be in the list of real numbers (1874, p.258). Since this number would not be on
the list, it is impossible to list all the real numbers. Consequently, Cantor states that
there would not be any one-to-one correspondence between the set of natural
numbers and the set of real numbers. Then, he derived two conclusions from what he
discovered. The first conclusion is the fact that the set of real numbers is non-
denumerable or uncountable®®, The second one is the fact that that there must be at
least two different sizes of infinite sets, namely the set of real numbers and the set of
natural numbers. The reason for both conclusions is that the set of real numbers must
have more elements than the set of natural numbers. Thus, Cantor suggested the idea
that some infinite sets must have a higher degree of infinity than other infinite sets.
He was surprised by the result, and, in a letter to Richard Dedekind (1831-
1916) in 1877, Cantor wrote “l see it, but | don't believe it!” (1991, p.44). By
mathematically proving that there are different sizes of infinities, he introduced the

concept of infinite sets into mathematical studies; in fact, there are infinitely many

3 Cantor differentiates denumerable sets and non-denumerable sets on the basis of the one-to-one
correspondence principle. Any set that can be paired with the set of natural numbers is identified as
denumerable and non-denumerable sets become the sets that cannot be paired off with the set of
natural numbers.
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different sizes of infinite sets. But he was already aware that he had been dealing
with something that no one had achieved:

The preceding exposition of my research in the theory of manifolds** has

come to a point when its further development depends on an extension of the

notion of true integer number beyond previous boundaries, an extension
which goes in a direction that, to my knowledge, nobody has tried yet. My
dependence on this extension of the notion of number is so great that without
it, it would be almost impossible for me to make freely the least step further

in set theory. (Cantor, 1976, p.70)

Cantor's views about the concept of infinity were radically different from the
great majority of his colleagues. The reason the Cantorian theory of infinity was
criticized so much at the time it appeared was that the general understanding about
the concept of infinity contradicts with what Cantor proposed. For this reason,
Cantor preferred to use the words “proper (or genuine)” and “improper (or non-
genuine)” instead of actual and potential while mentioning infinity™. What he
intended to explain by the word “improper infinite” is the concept of potential
infinite in exactly the same way Aristotle proposed. It is a variable that can be
increased indefinitely. Cantor defined as follows, “...the mathematical infinite has
principally occurred in the meaning of a variable magnitude, either growing beyond
all limits or diminishing to an arbitrary smallness, always, however remaining finite.
I call this infinite the non-genuine infinite” (1976, p.70).

The successive addition of units reveals that the process of constructing

numbers in the unending sequence of natural numbers is obviously never-ending.

Even though the sequence can proceed towards infinity, for Cantor, this does not

1 Used for “sets” in his writings.

> Even he sometimes misleads his articles to avoid prejudices, such as “On a Property of the
Collection of All Real Algebraic Numbers”. For more detail see Dauben (1989).

22



entail the argument that it is infinite. For the fact that each number in the sequence is
necessarily constructed with relation to the previous number, the sequence would
only consist of finite numbers. Cantor wrote, “Whereas the potential infinite means
nothing more than an indeterminate, always finite, variable magnitude taking values
which become either as small as we please or larger than any arbitrary finite
bound...” (1887, p. 409). To put it differently, all numbers must be finite because
each number is constructed from another finite number. For this reason, the concept
of potential infinite (or improper infinite) is not regarded as truly infinite in the
Cantorian framework.

On the other hand, proper infinite, as distinct from improper infinite, is the
infinite type that is completed and definite. While improper infinite remains finite in
terms of magnitude, proper infinite exceeds all the finite magnitudes and it is indeed
infinite. In the Cantorian framework, the idea of proper infinite bases upon the idea
of the complete collection of natural numbers as an actually existing entity™®. As
Cantor described:

...the actual infinite refers to a fixed in itself, constant quantum which is

larger than any finite magnitude of the same kind. Thus, for example, a

variable magnitude x successively taking the different finite whole number

values 1, 2, 3, ..., v, ... represents a potential infinite, while the set (v) of all
whole finite numbers, conceptually determined in full by a conceptual law,

offers the simplest example of an actual infinite quantum. (1887, p. 409)

For Cantor, “the set (v) of all whole finite numbers” represents an entity that is an

actually infinite quantity. He assigned a number to the entity and called it the first

transfinite ordinal number. Then, he applied the usual process of counting and

'® As his own words, “The infinity of this sequence [1, 2, 3, . . . v] affords the proof that the totality of
all finite numbers, considered as a thing in itself, is an actually infinite set, a transfinite” (Cantor 1887,
p. 419).
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constructed the rest of the transfinite numbers'’. As it appears, the idea of actual
infinity is reflected with the idea of transfinite numbers in the Cantorian framework.
According to Cantor, transfinite numbers are not becoming infinite because any kind
of limitation cannot be applied to them. Hence, these new numbers are actually
infinite themselves. In the following section, Cantor’s two counter-arguments against

Aristotle’'s mathematical rejection of the actual infinite are examined.

2.3.1. Rejection of Aristotelian arguments against the existence of actual infinity

The first argument which is defended by Aristotle relies on the assumption
that only finite numbers exist because the counting procedure can only be applied to
finite numbers. For Aristotle, since the main purpose of numbers is counting, all
numbers must only be countable by finite numbers. Then, he asserted that infinite
numbers do not exist since they cannot be counted. However, as Cantor stated, this
argumentation involves a petitio principii:

If one considers the arguments which Aristotle presented against the real

existence of the infinite (vid. his Metaphysics, Book XI, Chap. 10), it will be

found that they refer back to an assumption, which involves a petitio
principii, the assumption, namely, that there are only finite numbers, from
which he concluded that to him only enumerations of finite sets were

recognizable. (1976, p.75)

According to Aristotle, countability is only accessible on finite numbers. The reason
is that every number can only be numbered as finite numbers. By doing so, he

eliminated the possibility of infinite numbers in the first place and concluded that

infinite numbers do not exist. Nonetheless, for Cantor, showing the logical fallacy in

" The construction method for transfinite ordinal numbers will be examined in chapter 2.3.1.
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Aristotle’s arguments would not be sufficient to refute the arguments against the
existence of actual infinite. For this reason, he proposed two counter-arguments.

Before going into the details of Cantor’s arguments, it is noteworthy that the
new approach to the number concept is produced by the concept of a well-ordered
set, which has an essential role in the construction of transfinite numbers. A well-
ordered set is defined as follows; firstly, there must be a first element in the set in
terms of the order, not of the multitude. Secondly, every element must be followed
by another element as a successor unless it is the last element of the succession.
Lastly, for any finite or infinite set of elements, there must exist a determinate
immediate successor which is known as the limit ordinal. For instance, the natural
ordering of natural numbers is a well-ordered set; every number in the sequence is
defined as the next number then the previous one by the successor operation, i.e. a
well-ordering of natural numbers is {1, 2, 3, ...}. Then consider the ordering of the
sequence as {1, 3,5, ...,2,4, 6, ...}. This is an unusual ordering, but it is also a well-
ordering of the set of natural numbers.

Cantor believed that infinite sequences can also be numbered by using the
concepts of a well-ordered set. The reason is that the order of the last member of any
sequence signifies the order type of sequence. For finite sets, different orderings of
elements cannot change the order of the last member. In order to illustrate, consider
two different ordered sets {1, 3, 5, 7} and {7, 5, 3, 1}. Both have their last element as
the fourth element and they paired off with the sequence {1, 2, 3, 4} to be numbered.
Even though they have different orderings, they have the same order type because of
the order of their own last element. Nevertheless, as we will examine in the second-

counter argument, it is possible to differentiate infinite sets from each other in the
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way that, for infinite sets, different orderings can change their order types. Through
different orderings of elements, Cantor assigned numbers to infinite sets. This is the
reason why he called these new numbers transfinite ordinal numbers.

The first counter-argument, defended by Cantor, implies that infinite sets can
also be counted like finite sets. While finite numbers are dependent on finite sets,
which are enumerated by their own units, the enumeration of infinite sets can only be
held by their limiting elements. In this manner, Cantor demonstrated the new method
to count infinite sets in contrast to what Aristotle represented. To count an infinite
set, the size of the set is abstracted from its members because what we need is the
size of the set, not the members of the set. Then, Cantor showed the way the first
transfinite ordinal defined. “®” (omega) is constructed as the limit to the sequence of
natural numbers by the second number generating principle. As Cantor’s words,

If any definite succession of defined integers is put forward of which no

greatest exists, a new number is created by means of this second principle of

generation, which is thought of as the limit of those numbers; that is, it is

defined as the next number greater than all of them. (1976, p.87)

The principle basically allows us to conceive the sequence of natural numbers as a
completed entity, then a new number, that is the limiting number of the sequence as
the next number greater than all finite numbers, is assigned to the complete sequence
of natural numbers. The new number exceeds all finite numbers as the limiting
element; consequently, this makes it greater than any finite number. And since the
number cannot take its place in the sequence, it cannot be a finite number, but a
transfinite number.

Furthermore, Cantor showed the mathematical conditions to construct the rest

of the transfinite numbers. The new infinite numbers, after the first transfinite, are

constructed by the first number generating principle, i.e. the successive addition of
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units. By adding 1 to the first transfinite number, the second transfinite (o+1) is
constructed as a distinguishable number. Again, by adding 1 to the second number,
the third one is appeared and so on. Thus, the new number sequence, namely the
sequence of transfinite ordinal numbers, turns out to be ®, w+1, o+2... Thus,
contrary to Aristotle represented in his arguments, counting infinite quantities is
indeed mathematically possible®® and this implication alone, for Cantor, shows that
infinite numbers cannot be considered from a finitist point of view. As he stated:

There we only made use of the first principle of generation (the principle of

counting) and consequently stepping out of the series (the sequence of natural

numbers) was impossible. The second generation principle, however, not only
had to lead beyond the number field given up to now, but indeed proves itself
to be a means which, in conjunction with the first principle of generation,
provides the capacity to break through every boundary in the concept

formation of the real whole numbers. (1976, p.88)

The second counter-argument, on the other hand, is against the annihilation of
finite numbers. The argument proposed by Aristotle to refute the existence of actual
infinity implies that even if infinite numbers exist, finite numbers would be
annihilated by the sequence of infinite numbers when the calculation is applied™.
However, for Cantor, it is possible to apply mathematical operations to transfinite
numbers contrary to what Aristotle presented. It should be noted that transfinite

ordinal numbers are constructed as well-ordered sets and mathematical operations

have applied them by concatenating their order types. In the operation of addition,

18 According to Cantor, “Rather the number of elements of an infinite aggregate is an infinite whole
number co-determined by the law of counting; in this and in this alone lies the essential distinction
between the finite and the infinite, which has its basis in nature itself, and thus can never be removed”
(1976, p.75).

19 On finite arithmetic, for any finite numbers m and n, m + n > mand m + n > n. But it was accepted
that if we considered an infinite number, then the equations would turn out to be m + oo = orn + o
= oo. For the fact that any infinite quantity must be greater than all finite quantities, finite numbers
must necessarily be destroyed.
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for instance, two ordinals « and g are positioned one after another by keeping the
ordering they already have, and the sum « + £ (containing indexed order types of
these ordinals) is obtained as the sequence of o followed by the sequence of . For
the separation of distinct order types of ordinals, a semicolon is used in all
mathematical operations.

In Grundlagen, Cantor asserted that if any transfinite number is adjoined to a
finite number, the finite number would be dissolved in the sequence of transfinite
number as Aristotle did in his argument. But this does not mean that the annihilation
argument is always applicable in transfinite numbers. On the contrary, if any finite
number is added to a transfinite number, what the result of the operation would be a
new transfinite number according to Cantor. The main reason is that the finite
number would take its place with no immediate predecessor after the whole
sequence. Consequently, the new sequence would be different from the former one.
Cantor wrote:

To an infinite number (if it is thought of as determinate and complete) a finite

number can indeed be adjoined and united without effecting the dissolution of

the latter (the finite number)-the infinite number is itself modified by such an

adjunction of a finite number. (1976, p.75)

As can be seen from the quote that adjoining a finite number to a transfinite number
would give us a different sequence, which corresponds to a different number with its
new order type. This is the main reason why Cantor emphasized the order of finite
numbers to avoid the annihilation of finite numbers in mathematical operations.

Let me give an example, 1 + o is equal to ® because of the following reasons;
1 + o has the order type of {1; 1, 2, 3....} while ® has the order type of {1, 2, 3....}.

Both do not have the last element and have the same order type. Therefore, 1 + ® =

®. However, on the other hand, o + 1, which is the immediate successor of w, has a
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different order type. It has the order type of {1, 2, 3....; 1} and it is not ordered
isomorphic to ; the last element has no immediate predecessor and it is positioned
as the ®" element in the sequence. Therefore, » + 1 is a different number from both
o and 1 + ®. The order of the finite number in mathematical operations, as can be
seen above examples, is significant to avoid annihilation. This is because different
orderings can correspond to different numbers in the enumeration of infinite sets.
The analysis has sufficiently shown that the commutative law for addition does not
hold for transfinite numbers.

In conclusion, it is noteworthy that the number generating principles,
especially the second number generating principle, provide the mathematical
conditions that lead to the construction of transfinite numbers. The first counter-
argument provides the method to count infinite sequences by assigning a new
number to the unending sequence of natural numbers. As Cantor stated:

However, | believe | have proved above, and it will be shown even more

clearly in the rest of this work, that definite counting can be effected both on

finite and on infinite sets, assuming that one gives a definite law according to
which they become well-ordered sets. That without such a lawlike succession
of the elements of a set no counting with it can be affected lies in the nature

of the concept counting. (1976, p.75)

The second counter-argument demonstrates that the order of finite numbers is
significant in arithmetic operations to avoid the annihilation of finite numbers. When
the finite number takes its place after the sequence of transfinite number, the
annulment of finite numbers has not appeared. Hence, arithmetical operations can
also be applied to infinite sets with the proper ordering of elements of the operation.
For the fact that the results of those enumerations differ from one another, we cannot

disregard the characteristics of transfinite numbers; they behave differently in their

arithmetic operations. Thus, the annihilation argument, defended by Aristotle, is not
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always applicable to transfinite numbers. We may, therefore, assert that the
mathematical arguments against the existence of actual infinity were answered and

ruled out by these two counter-arguments.

2.4. Conclusion

For Cantor, to put it briefly, all anti-infinitistic arguments rely on two
assumptions. The first assumption is that all numbers are necessarily finite by the
counting method, and the second assumption is that an infinite number cannot be
subjected to any kind of determination. Nevertheless, for Cantor, the first assumption
is disputable because there are transfinite numbers, which have allowed us to exceed
the domain of finite magnitudes. The argument that infinite numbers do not exist
relies on the impossibility of enumeration of infinite sets, but Cantor proposed the
new way of enumerating infinite sets by their limiting numbers and constructed new
arithmetic for transfinite numbers. The second assumption, on the other hand, is also
disputable because transfinite numbers are constructed by their well-ordered sets that
make them mathematically as determinate as finite numbers. The rules of transfinite
arithmetic show us that transfinite numbers are grounded upon the objective reality
of finite numbers. Hence, we cannot disregard the determinateness of these new
numbers. About these two assumptions, Cantor wrote:

All so-called proofs against the possibility of actually infinite numbers are

faulty, as can be demonstrated in every particular case, and as can be

concluded on general grounds as well... From the outset they expect or even
impose all the properties of finite numbers upon the numbers in question,
while on the other hand the infinite numbers, if they are to be considered in

any form at all, must (in their contrast to the finite numbers) constitute an
entirely new kind of number, whose nature is entirely dependent upon the
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nature of things and is an object of research, but not of our arbitrariness or
prejudices. (as cited in Dauben, 1991, p.125)

Based on the enumeration of the unending sequence of natural numbers, Cantor not
only constructed the new kind of mathematical system but also showed that
paradoxical results in potentially infinite sequences have arisen from the finitist
reasoning; which is actually originated from the assumption that infinite sets have the
same characteristics as finite sets.

Apparently, if transfinite numbers are as legitimate as finite numbers, then the
Aristotelian rejection of actual infinity would confront a logical error, i.e. petitio
principii. Let me remind you that Aristotle asserted that the idea of actual infinite is
impossible by rejecting the existence of infinite numbers in the first place. However,
the assumption that only finite numbers can be counted does not entail the idea that
infinite numbers cannot be counted. Instead, it only implies that infinite numbers
cannot be counted as exactly the same way finite numbers are counted. The problem
of Aristotle's arguments is that he defends the idea that infinite numbers cannot exist
based on the assumption that all numbers are inherently finite. Accordingly, he
answered the question of whether infinite numbers exist or not by begging the
question and eliminated the possible existence of infinite numbers. Hence, they are
subjected to a logical fallacy, i.e. a petitio principii.

Setting that aside, in addition to petitio principii, there is another problem in
Aristotle’s arguments. In Aristotle’s philosophy, being is a process that is formed by
the actualization of potentials, and existence is regarded as the process of becoming

in which potentials are actualized and completeness acquired®’. For Aristotle, change

% For more detail, see Physics Book I11.
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in nature has emerged with the actualization of potentials, all things by their nature
are in a constant process of becoming; they change their potentials to reach their
ultimate actuality. Those potentials which are actualized made things actual and
complete. For instance, bricks have the potential to construct a house and when the
house is built, the potentiality of bricks has become actualized. They are no longer
some bricks, instead, they collectively constitute a house. Since their potentiality
became their complete actuality by constructing the house, they no longer have their
potentials. As long as there are potentials that remain unactualized, the entity must be
incomplete. But, firstly, to have potentials, there must be an entity whose potentials
are waiting to be actualized. Aristotle mentioned this in Physics. He wrote:
Then again, there must be something to initiate the process of the change or
its cessation when the process is completed, such as the act of a voluntary
agent (of the smith, for instance), or the father who begets a child; or more
generally the prime, conscious or unconscious, agent that produces the effect
and starts the material on its way to the product, changing it from what it was
to what it is to be. (Physics, 11.3, 194b 29-33)
Apparently, the Aristotelian ontology seems to presume the existence of an entity
that has the potentiality to become something other than itself. Accordingly, there
would not be any potentiality without an actual entity in the first place. However, this
assumption is not required in the course of infinitude. As Aristotle’s own words:
The infinite, then, exists in no other way, but in this way it does exist,
potentially and by reduction. It exists fully in the sense in which we say 'it is
day' or 'it is the games'’; and potentially as matter exists, not independently as
what is finite does. (Physics, 111.6, 206b13-16)
By rejecting the relation between potential infinite and actual infinite, he concludes

that the distinction between potential infinite and actual infinite is “sui gemeris”

which means something unique by its own characteristics. This seems to be a quite
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ad-hock attempt in his theory regarding the characterizations of potential infinity and
actual infinity.

In the Cantorian framework, this is a problem; the concepts of potential
infinite and actual infinite are not as separate as Aristotle presented. For Cantor,
potential infinite is meaningless without actual infinite because potentials have only
occurred if there is an underlying reality. As his words, “In truth the potentially
infinite has only a borrowed reality, insofar as a potentially infinite concept always
points towards a logically prior actually infinite concept whose existence it depends
on” (as cited in Rucker, p.3). This would mean that, at least for Cantor, actual infinite
has ontologically superiority to potential infinity because potential infinite
presupposes an actual infinite to exist in the first place. Therefore, this reasoning
alone necessitates the existence of actual infinity for Cantor in order to speak of the
existence of potential infinity.

On the one hand, Cantor’s strong commitment to the existence of transfinites
provided him a way to refute the traditional understanding of infinity. Nevertheless,
on the other hand, he has also fallen into the same position with Aristotle; Cantor
also begged the question and answered the question of whether infinite numbers exist
or not by showing transfinite numbers. He used these numbers to show the fact that
infinite numbers can also be enumerated as finite numbers after mathematically
constructing them. In this regard, claiming that these numbers correspond to the
existence of actual infinities seems to be an overstatement. One can, for instance,
argue against the existence of these numbers and defends that they are not essentially
different from potentially infinite sequences. As an example, Anne Newstead wrote,

However, finitists would argue that Cantor’s transfinite numbers are too
determinate, too similar to finite numbers, to be truly infinite. Finitists agree
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with Aristotle that the proper conception of infinity is that of something that
is endless and essentially incomplete and indeterminate. (1975, p.10)

Probably, the answer that Cantor would offer is the differences between transfinite
numbers and finite numbers. Then, the question that would be examined turns out to
be what makes transfinite numbers different from finite numbers.

First of all, according to Cantor, a new criterion is required for the
arithmetization of different sizes of infinite sets. The criterion is the one-to-one
correspondence between infinite sets and their proper subsets?'. When this criterion
is applied to finite sets, the pairing would be impossible for the fact that the members
of any finite set must have more in quantity than its proper subsets in all conditions.
Consequently, it is impossible to construct such a pairing between a finite set and its
proper subsets. Nonetheless, this kind of correspondence can be constructed in
infinite sets. Accordingly, the first distinction between finite sets and infinite sets has
emerged in this way: infinite sets become the sets that can be paired off with their
own proper subsets. Even though this implication seems counterintuitive, it was
exactly the point Cantor emphasized the different characteristics between infinite sets
and finite sets.

Secondly, although it is also possible to construct an unlimited amount of
transfinite number by using the same principles, having unlimited elements does not
make these numbers incomplete for Cantor. On the contrary, they are the instances of
complete infinite. The set of natural numbers itself contains all of its numbers all at
once. Numbers in this set do not manifest themselves as variables that proceed

indefinitely, instead, they collectively constitute a whole that Cantor identified as a

! As it is known, Richard Dedekind (1831-1916) firstly mentioned this criterion as the definition of
infinite sets: infinite sets are the sets that have the same cardinality with their proper subsets.
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genuine constant. This constant as the limiting number really belongs to actual
infinite because the limiting number corresponds to all the numbers in the sequence
simultaneously. In this manner, the sequence whose process is not yet completed is
regarded as completed. On this subject manner, David Hilbert (1862- 1943) states:

We meet the true infinite when we regard the totality of numbers 1, 2, 3, 4, ...

itself as a completed unity, or when we regard the points of an interval as a

totality of things which exists all at once. This kind of infinity is known as

actual infinity. (1926, p.188)

Thirdly, the laws that are applied to the arithmetical operations of transfinite
numbers are different from the arithmetical operations of finite numbers. For finite
numbers, the commutative law for addition always holds. Nevertheless, in the course
of transfinite numbers, the order of numbers is significant to clarify the result of the
operation because infinite sets would have different enumerations with different
orderings?. For the same reason, the commutative law for multiplication does not
hold in transfinite arithmetic. Furthermore, since transfinite ordinals do not have a
predecessor unlike finite numbers, it is impossible to clarify the previous number
before transfinite ordinals. It thus follows that the subtraction operation and the
division operation cannot be applied for all transfinite ordinals®®. As it seems, even
though transfinite numbers are subjected to have different rules, their arithmetic is

well-defined as finite arithmetic. We may, therefore, claim that these new numbers

are mathematically different from finite numbers.

?2 See the examples | have given in 2.3.1.

** Given any transfinite numbers « and 4, subtraction operation is possible as following: assuming that
we have an equation as a + y = 5, where y can be either finite or transfinite, it is possible to derive S -
a, that is equal to y. But if we rewrite the equation as y + a = f8, then we cannot always derive  — « for
the non-commutativity of transfinite operations.
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I would like to conclude that, for Cantor, Aristotle’s arguments against the
existence of actual infinity were the source of the scholastic position towards the
concept®®. But the proper way of understanding the concept of infinity cannot be
potential infinity as Aristotle did in his opposition. Cantor introduced a new
understanding of the concept of infinity that has one of the greatest impacts on its
development in mathematics:

Once the actual infinite in the form of actually infinite sets had in this way

asserted its citizenship in mathematics, then the development of the actually

infinite number concept became inevitable, through appropriate, natural
abstractions, just as the finite number concept, the material of arithmetic
hitherto, had been achieved through abstraction from finite sets. (Cantor,

1887, p. 411)

Cantor not only provided an account of how to count infinite sets but also, introduced
transfinite numbers and their arithmetic to stand against the traditional understanding
of infinity. In this respect, | intend to claim that the Cantorian Set Theory which is
against the dogmas of finitist mathematics is an outstanding response what most
people thought after Aristotle’s ideas. The arithmetization of infinite sets, which
Cantor successfully demonstrated, leads us to conclude that the Cantorian Set Theory
is a revolution in the history of the concept of infinity. So far, I have dealt with the
Aristotelian rejection of actual infinity within the framework of Cantorian transfinite

numbers. Now, | proceed to the next chapter where the existence of mathematical

objects in the Cantorian framework is examined.

**In the article called “Cantor’s Transfinite Numbers and Traditional Objections to Actual Infinity”,
Jean Rioux states “Cantor saw Aristotle as the source of the Scholastic position on infinity, and in the
Grundlagen, he addressed the basic error involved in all 'finitist' reasoning” (2000, p.101).
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CHAPTER 3

THE EXISTENCE OF MATHEMATICAL OBJECTS IN CANTORIAN

FRAMEWORK

3.1. Introduction

Cantor formulated his theory that has intertwined with different distinctions
(including the distinction between the two sides of reality and the distinction between
multiplicities), and it turns out that all the distinctions he made are proposed to prove
the existence of actual infinity. My intention in this chapter is to examine these
distinctions in Cantor’s theory and to show their importance as the ontological
framework of actual infinity in the light of transfinite numbers.

In Grundlagen, when Cantor dealt with the foundation of transfinite numbers,
he was building the theory of transfinite numbers based on the order type of different
infinite sets. Cantor's strategy was to defend transfinite numbers as the legitimate
extensions of finite numbers in which the relations between transfinite numbers and
finite numbers provide the objective reality of transfinite numbers in mathematics.
The reason for this strategy is the freedom of mathematics. Cantor believed that new

concepts for mathematics can be introduced through already existing definitions and
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relations. As we will see in section 3.2., when the construction of transfinite numbers
considered, the number generating principles have a significant role regarding the
correlation between natural numbers and transfinite numbers.

Another significant aspect of Cantor’s theory is that the objective reality of
transfinite numbers actually depends on the two aspects of reality, namely the
immanent reality and transient reality. | will describe these two sides in more detail
in chapter 3.2.1., for now, let me summarize the distinction briefly. While the
immanent reality of concepts corresponds to a possible idea in the human mind, the
transient reality of concepts is an object that is corresponding to images of physical
phenomena independent from the human mind. The importance of this distinction
particularly lies in mathematics. Mathematical objects are abstract entities; they do
not have an existence as physical objects around us. For the fact that transfinite
numbers are required justification for their usage in mathematics, Cantor considered
these two sides. For him, the duality between immanent reality and transient reality
makes transfinite numbers actually infinite numbers, rather than just symbols of

infinity.

3.2. Free mathematics

Mathematical objects, for Cantor, are the concepts that we abstract, and their
reality as mathematical objects rely on definitions and relations. If these definitions
and relations are established without any contradictory result, then one can easily
accept the existence of new objects based on earlier concepts within the consistent

arithmetic system. The idea behind this reasoning is the freedom of mathematics. For
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Cantor, mathematic is entirely free to create new concepts on the grounds of
intellectual consistency because the freedom is the essence of mathematics. As
Cantor puts it:
Mathematics is in its development entirely free and is only bound in the self-
evident respect that its concepts must both be consistent with each other and
also stand in exact relationships, established by definitions, to those concepts
which have previously been introduced and are already at hand and
established. (1976, p.79)
According to this criterion, as long as new mathematical objects stand in a certain
relationship among others, they must be regarded as real as other objects because
mathematics itself guarantees their reality via definitions and relations. Cantor states
the argument as follows:
In particular, in the introduction of new numbers, it is only obligated to give
definitions of them which will bestow such a determinacy and, in certain
circumstances, such a relationship to the older numbers that they can in any
given instance be precisely distinguished. As soon as a number satisfies all
these conditions it can and must be regarded in mathematics as existent and
real. (1976, p.79)
Since mathematics is free to generate its own objects, Cantor used this freedom to
establish transfinite numbers on the basis of the number generating principles,
namely the first generation principle and the second generation principle. The first
principle of generation, which | examined above in section 2.3.1, provides a way to
define the immediate successor of any number by the repeated addition of units. This
is the usual process of counting®. We have the unending sequence of finite numbers

with no greatest among them. But Cantor’s main interest, of course, was not to

validate the unending sequence of the finite numbers, instead, his intention here was

% This is also known as the principle of induction or mathematical induction in contemporary
mathematics. Given an infinite sequence, if a proposition P(1) is true, and by assuming that P(X) is
also true, then it can be shown that the proposition is also true for x + 1, then the proposition is true for
all natural numbers.
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to comprehend the sequence as a complete entity to construct infinite numbers. When
the second principle of generation is considered, the properties and orders of
elements are abstracted from the sequence and a completed entity, i.e. {1, 2, 3...}, is
acquired. Then, a new number® is assigned to the entity as the limit of previous
numbers:

If any definite succession of defined integers is put forward of which no

greatest exists, a new number is created by means of this second principle of

generation, which is thought of as the limit of those numbers; that is, it is

defined as the next number greater than all of them. (Cantor, 1976, p.87)

The new number is called the first transfinite ordinal number “®” and it is the
limiting element of the previous number sequence, i.e. natural numbers. Being the
limit makes the number greater than all elements of the sequence and, at the same
time, the smallest one after the whole sequence. Since it exceeds all finite numbers in
terms of size, it cannot take its place in the sequence and, more importantly, it cannot
be a finite number for the same reason.

Since the freedom of mathematics ensures the existence of new concepts with
regard to definitions and relations, Cantor constructed the new numbers based on the
sequence of natural numbers by way of the number generating principles to justify
their mathematical existence. As long as the mathematical system, which includes
both transfinite numbers and finite numbers, maintains its consistency and

coherency, then transfinite numbers must be acknowledged as a legitimate extension

of finite numbers. As William Walker Tait stated in his article “Cantor’s Grundlagen

% After defining the first limit ordinal by the second principle of generation, Cantor introduced the
principle of transfinite induction. While the principle of mathematical induction only works for finite
ordinals, transfinite induction is used for limit ordinals. Given a well-ordered set A, if a proposition
P(0) is true, then it is possible to assume that P(p) is true for all # < a. Then, by assuming P(f), it is
possible to prove P(a) for all « € A. After verifying these, then it is possible to prove that for any limit
ordinal y, P(y) is also true for all g < y. The principle of transfinite induction implies that the
proposition P is true for all ordinals.
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and the Paradoxes of Set Theory”, “We are justified in regarding the numbers as real
in so far as the system of transfinite numbers has been consistently defined and
integrated with the finite numbers” (2000, p.258).

All things considered; it is not unreasonable to claim that transfinite numbers
have a conceptual base in our understanding with the number generating principles.
Cantor wrote:

What | declare and believe to have demonstrated in this work as well as in

earlier papers is that following the finite there is a transfinite (transfinitum)

that is, there is an unlimited ascending ladder of modes, which in its nature is
not finite but infinite, but which can be determined as can the finite by

determinate, well-defined and distinguishable numbers. (1976, p.76)

Each number generating principles evidently has a significant role in the relations
between transfinite numbers and other mathematical objects. Therefore, the freedom
of mathematics and the number generating principles lead us to conclude that these
new numbers are mathematically as justifiable as finite numbers. The following

section is devoted to examining the two sides of reality which underlies the argument

for the freedom of mathematics.

3.2.1. Two sides of reality from Cantor’s perspective

Under the influence of Plato’s two-world doctrine®’, many philosophers

believed that there are two sides of reality in which we live in as the physical

?’Plato indicates that the world composed of two distinct realms; the material world and the world of
ideas. The world of ideas is the realm that is perfect itself and contains every perfect form as ideas. On
the other hand, the material world is just a reflection of the world of ideas in the sense that entities in
the material world are imperfect copies of those perfect forms. The importance of this distinction
grounds the argument that it is impossible to think of the reflection of any form without the underlying
perfect form in the world of ideas. For more detail see Ross (1951), pp. 22-37.
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manifestation of concepts and the ideal side as the source of knowledge. Of course,
this duality was reflected in different ways by the people who believed this duality,
but the underlying reason is generally the same. Georg Cantor also was one of them.
He stated:

For this (any secure knowledge) can be obtained only from concepts and

ideas that are stimulated by external experience, and are essentially formed by

inner induction and deduction as something that, as it were, was already in us

and is merely awakened and brought to consciousness. (1976, p.95)

In this regard, the distinction between the two sides of reality, namely the immanent
reality and the transient reality, has a significant role in his philosophical framework
for the justification of transfinite numbers.

He describes immanent or intrasubjective reality as “in a connectional sense
to modify the object of thought” (1976, p.79). The immanent side of concepts is
concerned with the relations with the already well-defined objects. This means the
internal consistency between old concepts and new concepts will guarantee the
legitimacy of new concepts in mathematics. For Cantor, as long as the consistency of
the system is held, then any new concept will have an existence in the immanent side
as possibly exist ideas. In a sense, every consistent and coherent idea in the
Cantorian framework can eventually correspond to an actuality as a possible being,
but this does not always mean that they will exist as an actual entity in the physical
world. Instead, he wrote:

| call the being concerned a ‘possible’ being. By this is not meant that the

being somewhere, somehow and sometime exists, since that depends on

further factors, but only that it can exist. Thus, for me, the two concepts

‘suited for existence, i.e., for being created’ and ‘possibility’ coincide. (as

cited in Hallett, 1986, p.20)

On the other side, he describes transient or transsubjective reality as

“expressions or images in the physical world” (1976, p.79). The transient reality is
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the reality side that concepts have their physical reality independent from the human
mind. To put it differently, transient reality of an object is concerned with the
physical manifestation in the natural world. According to Cantor, when mathematical
objects are considered, these two sides cannot be differentiated from each other;
instead, they always coexist together. As he puts it:

Given the thoroughly realist foundations of my investigations, there is no

doubt in my mind that these two types of reality will also be found together,

in the sense that a concept to be regarded as existent in the first respect

(immanently real) will always in certain, even in infinitely many ways,

possess a transient reality as well. (1976, p.79)

Accordingly, any well-defined mathematical idea, which is immanently real
in mathematics, it would have a corresponding reality in the transient side as well
because the idea always exists as a possible idea. However, for the fact that
mathematical objects are abstract entities, their manifestation can only occur in
definitions and relations with former objects. This is the reason why Cantor
suggested the argument that mathematics must only concern with the immanent
reality of concepts because its objects have relational existence. In Cantor’s words,
“... mathematics in the shaping of its conceptual material need take into account
solely and uniquely the immanent reality of its concepts and thus is under no
obligation whatsoever to also test these concepts with respect to their transient
reality?®” (1976, p.79).

Furthermore, for Cantor, so long as any new mathematical concept is

constructed based on former concepts without any contradiction, the immanent

reality of this concept guarantees its place as a distinct object of thought by the free

%8 On the determination of transient reality of mathematical objects, Cantor infers the following,
“Admittedly, the determination of this reality generally is among the most troublesome and difficult
tasks of metaphysics...”(1976, p.79).
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act of our construction ability. In this regard, the construction of transfinite numbers
on the grounds of the number generating principles justifies that these new numbers
have their existence as distinguishable numbers because the integration and
consistency with finite numbers assure their place in our understanding:

First, we may regard the whole numbers as real in so far as, on the basis of

definitions, they occupy an entirely determinate place in our understanding,

are well distinguished from all other parts of our thought and stand to them in

determinate relationships, and thus modify the substance of our minds in a

determinate way. (Cantor, 1976, p.79)

This argument is also provided the reason why Cantor has suggested the freedom of
mathematics on the grounds of internal consistency. Accordingly, on the authenticity
of mathematics, he infers the following, “Because of this distinguished position,
which differentiates mathematics from all other sciences..., it quite specifically
deserves the name of free mathematics, a designation to which, if | had the choice, |
would give preference over the now customary ‘pure’ mathematics” (1976, p.79).

In conclusion, Cantor’s arguments for the freedom of mathematics and the
objective reality of transfinite numbers are based on the distinction between the two
aspects of reality, namely the immanent reality and transient reality and what he
proposed with this distinction is an interesting framework to demonstrate the
existence of these new numbers. Cantor believed the consistency of the mathematical
system, in which all transfinite ordinal numbers are obtained through abstraction
from the set of natural numbers by the second number generating principles, would
demonstrate the mathematical reality of transfinite numbers based on the well-
ordered sets. Cantor infers the following:

Then again we can ascribe reality to numbers insofar as they must be

regarded as an expression or image of occurrences and relationships in the
external world confronting the intellect, further insofar as the different
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number classes (1), (11), (111) *°, and so on represent powers, which in fact
occur in corporeal and mental nature. (1976, p.79)

Each number generating principles has a significant role regarding the correlation
between natural numbers and transfinite numbers, and this is the way the
mathematical consistency of these new numbers is maintained, and their immanent
reality is shown in the Cantorian framework. Therefore, it can be concluded that the
immanent side of transfinite numbers assures that the new numbers, which are
constructed in a similar way to finite numbers, are as legitimate as finite numbers

based on the two aspects of reality.

3.3. The notion of set in Cantorian framework

Before going into the arithmetization of transfinite numbers, the concept of a
set must be analyzed to understand Cantor's transfinite theory; it should not be
forgotten that the idea of transfinite numbers is emerged from the set of natural
numbers by considering it as a completed set. And this is the reason why he puts the
concept of a set at the center of his theory. For this reason, the following section of
my thesis is dedicated to analyzing the concept of set in the Cantorian framework.

First of all, it is noteworthy that Bernard Bolzano (1781-1848), as an Austrian

mathematician, had an undeniable impact in Cantor’s work both in the concept of set

2 Cantor not only mathematically constructed infinitely many number sequences which enumerate
infinite sets, but also distinguished them into number classes. At this point, he introduced the third
number generating principle (also called as limiting principle), which reveals the different number
classes. The first number class is the set of natural numbers whose cardinality is equal to X,. The

. . . . 2
unending series of transfinite ordinals (w,® + 1, ..., 0 - 2,0 -2+ 1,..., 0" 3, ..., ®, ..., 0)3, e, @°,

oo co‘”m, ...) is named as the second number class which is the next higher cardinality (X ;) after than
the first number class.
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and in the concept of actual infinity. Bolzano studied the concepts of set in his works
and the way he defined it contributed to the formation of this concept in modern
mathematics. In fact, he added four different attributes to the concept (Felgner,
2010). To put it briefly, the first attribute is that the totality of elements determines
sets. In other words, the collection of objects constitutes a new object which we
defined as a set. The second one is that, for Bolzano, sets can consist of different
kinds of entities; any collection of objects can form a set. The third is that the
existence of sets does not need to be definable. And the last attribute is that sets have
mind-independent existence for Bolzano. These four attributes not only improved the
formation of the modern concept of a set but also affected Cantor’s way of the
conception of sets.

Furthermore, in Paradoxes of the Infinite, Bolzano questioned the nature of
infinity to solve paradoxical results, especially Galileo’s paradoxical examples. He
was the first person to claim that the idea of actual infinite can be introduced in
mathematics as a legitimate object after properly clarifying its mathematical nature.
Contrary to the traditional understanding, the idea of actual infinity was
indispensable for Bolzano. Since mathematic deals with abstract sets, infinite
sequences can also be constructed as mathematical sets with the true criteria. The
subset criteria, for Bolzano, were the true criteria for comparing infinite sets in sizes.
Any subset whether finite or infinite must always be smaller than the set itself in
terms of numerosity. If this criterion is applied properly, then it is possible to show
that one infinite set can be greater than another infinite set. Even though Bolzano

failed in arithmeticity of infinite quantities, the subset criteria influenced Cantor
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about infinite sets; different infinite sets can be obtained according to their order
type.

For a long time, it is assumed that enumerating an infinite sequence is
impossible, but Cantor realized that if the infinite sequences are demonstrated as
well-ordered sets, then the enumeration of them can be mathematically obtained. In
fact, Cantor believes that every set can be turned into a well-ordered set. This is also
known as the well-ordering theorem™®. He wrote:

The concept of a well-ordered set is fundamental for the whole theory of

manifolds. It is a basic law of thought, rich in consequences and particularly

remarkable for its general validity, that it is always possible to bring any well-

defined set into the form of a well-ordered set. (1976, p.72)

With the concept of a well-ordered set, Cantor not only indicated that infinite sets are
countable as finite sets but also, he argued that infinite sets would certainly generate
different implications in mathematics with their different order types. Consequently,
it is not unreasonable to argue that transfinite numbers secure their place in
mathematics with regard to well-ordered sets they depend on.

In Grundlagen, Cantor defined a set as following, “By an aggregate, |
generally understand every multiplicity which can be thought of as one, i.e. any

totality of definite elements which by means of a law can be bound up into a whole”

(1976, p.93). The problematic aspect of this definition is that, as many people has

%0 |t should be emphasized here that the well-ordering theorem and the well-ordering principle are
different from each other. The well-ordering principle implies that, in every non-empty set of positive
integers, there is always a least element, that makes them well-ordered sets. The well-ordering
theorem is reflected as the Axiom of Choice in ZFC (Zermelo-Fraenkel Set Theory with the Axiom of
Choice). The Axiom of Choice is in fact formally equivalent to Cantor’s well-ordering theorem. The
axiom implies that it is possible to demonstrate one set which its elements are chosen from infinite
collection of sets one by one. Since it does not indicate the choice function obviously, i.e. a function f
such that every non-empty subset Y € X, f(Y) €Y, it leads to many controversial debates in set theory.
Even some mathematicians reject the axiom and prefer to use ZF over ZFC (note that ‘C’ indicates the
Axiom of Choice). For more detail see Gillman (2002).
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argued, the unrestricted comprehension principle®! can be applied to his conception
of a set. The principle, which gives rise to paradoxical sets in the set-theoretical
universe, has no rule to determine a set; every collection of objects can determine a
set e.g. the collection of all natural numbers between 10 and 35 or the collection of
all sets in the set-theoretical universe. Nonetheless, it is possible to think of a set that
leads to a contradiction in the system, so-called Russell's paradoxical set is such an
example. The set is defined as “the set of all sets which are not members of
themselves”. But since it is a self-referential set®?, it contradicts its definition and
leads to problematic results in the system.

However, Cantor realized the problematic situation of some collections
beforehand. The idea that a set is a member of itself is substantially problematic
when the concept of well-ordered set is considered. For this reason, Cantor believed
that any consistent set cannot consist of itself as a member. Accordingly, Cantor did
not accept the unrestricted comprehension principle in his framework and, even
before Russell’s paradox, already recognized that there must be a distinction between
multiplicities for the fact that some multiplicities cannot constitute mathematically
consistent sets.

So, in what sense Cantor differentiate multiplicities and considered some of
them as sets and some not? To find out which multiplicities can determine a
mathematical set, he made a distinction between multiplicities, namely consistent

multiplicities, that are regarded as mathematical sets, and inconsistent multiplicities.

3! The unrestricted comprehension is the statement that, given any condition expressible by a formula
d(x), it is possible to form the set of all sets x meeting that condition, denoted {x | $(x)}-

%2 et me call this set R. If R is a member of R, then R is not a member of R by the definition of the
set. And if R is not a member of R, then R is a member of R. Thus, the contradiction occurs by the
definition of the set. Accordingly, it is concluded that no set can be a member of itself.

48



On the one hand, consistent sets®* are the multiplicities that have no contradiction
while mathematically constructing them. In a letter to David Hilbert dated 2 October
1897, Cantor wrote:
One must only understand the expression ‘finished’ correctly. I say of a set
that it can be thought as finished (and call such a set, if it contains infinitely
many eclements, 'transfinite' or ‘super-finite’) if it is possible without
contradiction (as can be done with finite sets) to think of all its elements as
existing together, and so to think of the set itself as a compounded thing for
itself; or ( in other words) if it is possible to imagine the set as actually
existing with the totality of its elements. (1991, p.390)
In other words, the elements of such multiplicities can be thought as distinct from
each other and, at the same time, it is possible to comprehend the totality as a
mathematical collection. The elements and the totality as a separate entity must be
coexisted to determine a mathematical set in the Cantorian framework. For instance,
the set of natural numbers is a consistent multiplicity; each number has distinct
properties and we can conceptualize the whole set as a totality “w”. Hence,
multiplicity itself and its elements must be particularly distinct to have a definite
place in our understanding while constituting a mathematical set.
On the other hand, inconsistent multiplicities cannot be mathematically
conceivable. Either they are too large® to mathematically construct, or the totality of

their elements as distinct units is mathematically impossible. Cantor wrote:

For a multiplicity can be such that the assumption that all of its elements "are
together” leads to a contradiction, so that it is impossible to conceive of the

% In his writings, Cantor also used the term “finished set” to identify consistent multiplicities. A
finished set is not the set that has a finite number of elements, instead if it is possible to think of “all of
its elements as existing together’ and the set as ‘a compounded thing for itself” without any
contradiction, only then it becomes a set in the Cantorian framework.

3 Von Neumann also considered some sets as “too big” and identified them as classes to resolve the
paradoxical results they lead. For example, there is no such a thing as the set of all sets, instead, it
appears as the class of all sets. In his hierarchical universe, classes are ranked above sets. For more
detail, see Hallett (1986).
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multiplicity as a unity, as "one finished thing". Such multiplicities I call
absolutely infinite or inconsistent multiplicities. (1991, p.407)

To be more precise, such a multiplicity can correspond to an idea in thinking, but not
a mathematically well-defined multiplicity; its totality as a whole cannot be
mathematically formed®. Such multiplicities would never be considered as
mathematically definite sets in the Cantorian framework™®. To give an illustration of
what he meant, consider Russell’s paradoxical set. The property that collects its
members turns out to be contradictory to its definition. Thus, some multiplicities
(including Russell’s set, the set of all sets, and the set of all ordinals) became
mathematically indeterminate since they cannot contain themselves as a member.

Let us examine the problem of one of these. We can think of a set S
represents the set of all sets, when we apply the Cantor’s theorem®’, what we would
have is that the cardinality of the power set of S is greater than the cardinality of the
set S. Since the power set of any set must be greater than the set itself, the set S
should have smaller cardinality than its power set. However, this is impossible
because the set S is defined as the set of all sets (including all possible sets). At the

same time, we would also have that the cardinality of the set S must be greater than

% In the Fundamental Ideas and Axioms of Mathematics, Bernard Russell (1872-1970), with similar
reasoning, wrote, “This arises most simply from applying the idea of a totality to numbers. There is,
and is not, a number of numbers. This and causality are the only antinomies known to me. This one is
more all-pervading.... No existing metaphysics avoids this antinomy” (1899a, p.267).

% As Cantor puts it, “Only complete things can be taken as elements of a multiplicity, only sets, but
not inconsistent multiplicities, in whose nature it lies, that they can never be conceived as complete
and actually existing” (as cited in Lavine, 1994, p.99).

% The theorem implies that given any set, the cardinality of a set must always smaller than the
cardinality of its power set, which consist of all of its subsets. In other words, the cardinality of power
set of a set has always bigger than the cardinality of the set itself. Given any set with n elements, its
power set must always include 2" elements. Mathematical symbolization for this theorem is, for every
set A, |A| < |P(A)| where |A| represents cardinality of the set A.
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the cardinality of the power set of the set S by definition. But this is also impossible
because the power set of a set cannot be smaller than the set itself. This is clearly a
contradiction. Consequently, the set of all sets cannot be comprehended without any
contradictory results. The property of containing itself as a member prevents the
multiplicity from being a consistent set. For the same reason discussed here, some
multiplicities, such as the set of all ordinals and the set of all alephs or the whole set-
theoretic universe, cannot be constructed as a single set in the Cantorian framework.
Also, another reason why such multiplicities are left out is the impossibility
of their enumeration. Every well-ordered set must have an ordinal number, which
corresponds to its order type. However, these multiplicities cannot have an ordinal
number because the elements of such sets do not satisfy the condition the set itself
signifies in the first place. They become mathematically indeterminate and cannot be
ordered. Since it is impossible to turn them into the form of well-ordered sets, they
cannot be mathematically enumerated; consequently, they cannot be mathematical
sets. This is exactly the emphasis on Cantor saying mathematically constructing
them. In fact, the difference between inconsistent multiplicity and consistent
multiplicity is as simple as Ignacio Jane stated in his article “The Role of the
Absolute Infinite in Cantor’s Conception of Set”, “No possible collection can
encompass all sets” (1995, p.400). Since inconsistent multiplicities cannot constitute
a mathematically legitimate set in the first place, Cantor excluded them from his

theory.
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Many scholars, even today, identify the Cantorian Set Theory as a naive set
theory by ignoring the distinction between multiplicities®®, but, in different passages,
there are good reasons to believe that Cantor was already aware of the paradoxical
situation of the unrestricted comprehension principle. In the correspondence with
Gottlob Frege (1848-1925), in 1885, Cantor accused him to use the unrestricted
comprehension principle, which turns out to be a failure in Frege's project, with too
much confidence®. Another passage is about the Burali-Forti paradox, which came
up on 28 March 1897. The paradox asserts that the set of all ordinal numbers leads to
a contradiction®®. However, Cantor wrote:

| expressly say that | only call multiplicities ‘sets' if they can be conceived

without contradiction as unities, that is, as things...What Burali-Forti has put

forward is utterly foolish. If you will look at his paper in the Circolo

Mathematico you will see that he has not even correctly understood the

concept of a well-ordered set (Moore and Garciadiego, 1981, p.342)

For the fact that an ordinal would always be left out, the set of all ordinals cannot
consist of all ordinals. Consequently, the set turns out to be an inconsistent one.
Similarly, the set of all alephs cannot also indicate a mathematical set in the

Cantorian framework. In a letter to Hilbert, dated back 26 September 1897, Cantor

puts it:

% As Ignacio Jane (2010) presented in his article, “Idealist and Realist Elements in Cantor’s
Approach to Set Theory”, people identify his definition with the unrestricted comprehension principle,
but what Cantor has presented is not the same idea with this principle.

% In the review of Frege’s Grundlagen, Cantor warned Frege on the usage of notion “extension”,
which eventually become the foundation of his Basic Law V that leads to Russell’s paradox. See
Cantor on Frege’s Foundations of Arithmetic (1885) for more information.

0 When the set of all ordinals “Q” is considered by the relation < on ordinals, another ordinal number
must be assigned to the set as a successor ordinal (the second condition for well-ordered sets). But this
is impossible because the ordinal that is assigned to the set would not be in the set. Consequently, “Q”
cannot consist of all the ordinals. This is obviously a contradiction. See for more detail Heijenoort
(1967, pp. 104-113).
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For the totality of all alephs is one that cannot be conceived as a determinate,
well-defined, finished set. If this were the case, then this totality would be
followed in size by a determinate aleph, which would therefore both belong to
this totality (as an element) and not belong, which would be a contradiction.
(1991, p.388)

Inconsistent multiplicities are not regarded as mathematical sets in the
Cantorian framework. In a letter to Hilbert, in 1897, Cantor wrote, “Totalities that
cannot be regarded as sets, | have already many years ago called absolute infinite
totalities*, which | sharply distinguish from infinite sets” (1991, p.389). Thus,
contrary to common conception, both the Russell's paradox and the Burali-Forti
paradox do not appear in the Cantorian Set Theory.

From all these, what is most evident is that Cantor differentiated his theory
from the naive set theory*? by restricting multiplicities as consistent and inconsistent
on the basis of well-ordered sets. Accordingly, | would like to pay attention to the
fact that Cantorian Set Theory does not give rise to any antinomies or paradoxical
sets unlike most of his contemporary colleagues think because only well-ordered

multiplicities are considered as sets. Therefore, the analysis has sufficiently shown

that the Cantorian Set Theory 1is neither naive nor paradoxical.

* The word "absolute infinities" used in two different meanings in Cantor's works. The first one is for
inconsistent multiplicities which cannot coincide with a determinate multiplicity as we analyzed. The
second usage is for the Absolute, which he defined as the unity of All. Cantor wrote, “The true infinite
or absolute, which is in God, admits no kind of determination” (1976, p.76). This side of the notion is
rather a metaphysical one and it is not the subject of this thesis. For more detail see Jané (1995), pp.
383- 388.

*2 In naive set theory, any collection of objects can correspond to a set without restriction. It generally
uses natural language to describe its objects, rather than formal language of mathematics. But these
are not necessary conditions to declare theories as naive set theory. Some theories which are proven to
be inconsistent are also considered as naive set theory. The obvious example is Frege’s project on
reducing mathematics into pure logic. It is well-known fact that Frege’s Basic Law of V (also known
as the axiom schema of unrestricted comprehension), which allows to create paradoxical sets -
Russell’s paradoxical set is the example, lead to failure in the system.
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3.4. Transfinite arithmetic

With the paradoxes of infinity, it was assumed that the sizes of infinite
quantities cannot be determined as a legitimate object of mathematical study.
However, as the first man ever tried to do, Cantor demonstrated that it is
mathematically possible to differentiate infinite sets and clarified their sizes by the
concept of cardinal number. According to their cardinality, any two sets whether
finite or infinite can be compared with the one-to-one correspondence principle. The
principle implies that any two sets are the same size (or having the same cardinality)
if it is possible to demonstrate a one-to-one correspondence between the members of
sets. Each element in one set is matched with an element of another set to compare
their size. The obvious example is that the elements of the set of natural numbers and
the elements of the set of even natural numbers can be paired off with each other.
Even though we intuitively inclined to claim that the set of all natural numbers must
be greater than its subsets (including the set of even and odd numbers) because the
size of natural numbers is twice the size of even numbers (and also odd numbers),
there are as many natural numbers as even numbers. This implication led to the
assumption that all infinite sets are the same size.

However, as | have mentioned before, Cantor showed that there would not be
a one-to-one correspondence between the set of real numbers and the set of natural
numbers in his article “On a Property of the Collection of All Real Algebraic
Numbers” in 1874. Accordingly, not all infinite sets are the same size. In 1891,

Cantor provided a much simpler proof for the non-denumerability of the set of real
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numbers®. In the article, he showed the fact that, for any given set A, the cardinality
of the power set of A has a greater cardinality than the cardinality of the set of A. For
instance, let S be {1, 2, 3}, then P(S) = {0, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1,
2, 3}}. When this theorem is considered in infinite sets, it is possible to construct
different sizes of infinite sets because every infinite set has at least one larger set as
its own power set. Cantor wrote:
This proof is remarkable not only because of its great simplicity, but more
importantly because the principle followed therein can be extended
immediately to the general theorem that the powers of well-defined manifolds
have no maximum, or, what is the same thing, that for any given manifold L
we can produce a manifold M whose power is greater than that of L. (1991,
pp. 921-922)
In fact, this theorem also led Cantor to defend the argument that different sizes of
infinite sets can be constructed unlimitedly:
IN| < [P(N)| < [P(P(N))| < [P(P(P(N)))]....
As it appears, there is not just one size of infinity, but there are infinitely many
different sizes of infinity, which necessarily requires the fact that there would not be
the largest infinite in size.
Cantor used the Greek letter @ (omega) for the symbolization of transfinite
ordinal numbers and the Hebrew letter X (aleph) for the symbolization of transfinite

cardinal numbers. An ordinal number** describes the position of a member in a well-

ordered sequence. Given any set, the properties of its elements are abstracted from

* The name of the article is “On an Elementary Question in the Theory of Manifolds”. It is also
marked Cantor’s diagonal argument, which is known nowadays as the diagonalization method. The
method proves the existence of non-denumerable (or uncountable) sets, such as the set of real
numbers. For more detail see Dauben (1991), pp. 165-168.

* Given any set M, then the ordinal number or its order type is denoted as M*.
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the set and what we have is the order of elements as the first element, as the second
element, etc. This is the first abstraction on well-ordered sets to be able to clarify the
ordinal number of any set. For instance, the order type of the empty set is 0 because
it does not have any member to be ordered and let S be {a, b, c}, in this case, the
ordinal number of the element ‘b’ would be 2. After all, ‘b’ is the second element in
the order of the set. For all sets whether finite or transfinite, the last member, which
pair off with the corresponding sequence, signifies the order type. Consider the S
again, the ordinal number of the set would be 3 because the last element ‘c’ is the 3"
element for the set and the set is paired off with its correspondence, i.e. {1, 2, 3}. For
this reason, as | mentioned before, different orderings on finite sets do not change the
order type because the order of the last element will always be the same.

Up to this point, there is no problem with clarifying the order type of finite
sets. But when infinite sets are considered, the situation becomes complicated.
Consider the usual ordering of natural numbers that is {1, 2, 3, ...}. The sequence
has no last element, but to identify its order type the first transfinite ordinal “®” is
assigned as the limit to the sequence. In the same way, even though the sequence {1,
3, 5, ...} has different ordering, it has also the order type of ®. Then, consider the
following sequence; {1, 2, 3, ...; 1, 2, 3, ...}. It is obvious that the order type of it
differs from previous examples; in fact, it is the order type of ® + ® (also equal to ® -
2). If this is so, it is possible to add one more unit. The new sequence will be {1, 2, 3,
...; 1,2, 3, ...; 1} which has the order type of ® - 2 + 1. By the first principle of
generation and the second principle of generation, we may, therefore, claim that the

formation of transfinite ordinal numbers is limitless with the proper ordering™®.

4 Consider the example ® + 1 # 1 + o [ have given in section 2.3.1.
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On the other hand, the concept of cardinal number is defined as the
generalization of the number concept for infinite sets. Given an infinite set, the
orders of its elements are abstracted and what we have is the size of the set as its
cardinal number®®. This is the second abstraction to clarify the size of a set. As
Cantor’s own words;

We will call by the name “power” or “cardinal number” of M the general

concept which, by means of our active faculty of thought, arises from the

aggregate M when we make abstraction of the nature of its various elements

m and of the order in which they are given. (1895, p. 86)

The cardinality of a set is the number of elements that are contained in the set. One
way to clarify the cardinality of a set is to construct one-to-one correspondence.
Given any two sets, A and B, they have the same cardinality if there exists a one-to-
one correspondence between them, mathematically denoted as |A| = |B|.

For finite sets, cardinality corresponds to the number of the elements of the
set, i.e. how many elements the set has, and this must be a finite number; all natural
numbers are particularly finite sets in which their numbers correspond to their
cardinal numbers. For instance, the cardinal number of the empty set is O because it
has no elements. And let S be {a, b, c}, in this case, the cardinal number of S,
denoted as |S|, would be 3 because it has 3 elements - 3 is the ordinal that has the
order type of {1, 2, 3}, which paired off with the set. Two conclusions have been
derived here. The first one is that cardinal number for a finite set is the same as its

ordinal number. And the second one is that ordering in finite sets can be changed, but

their corresponding cardinality would always be the same. For infinite sets, on the

*® Given any set M, then the cardinal number of M is denoted as M**.
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other hand, the cardinality cannot correspond to a finite number because there are
infinitely many elements in the set; instead, it must be a transfinite cardinal. For
instance, Cantor assigned X o (aleph-null or aleph-zero) to the cardinality of the set of
natural numbers*’, and X to the cardinality of the set of all countable ordinal
numbers*.

Cantor introduced transfinite arithmetic (including ordinal arithmetic and
cardinal arithmetic separately), but firstly the construction of natural numbers* must
be examined to understand the similarity with the construction of transfinite
numbers. All natural numbers are constructed from the empty set and each one after

that is constructed based on previous numbers;

0 = @, that is the empty set

1={0}={0}=0 u {0} =0uU{0}

2={0,1}={0. {03} = {0} v {{0}} =1 U {1}

3={0,1,2}={0, {0} {0. {o}}} = {0, {e}} v {{0. {@}}}=2U {2} ...

* It is also denoted as |N| = Card (N) = K.

*8 Cantor defended that there is no cardinality between the cardinality of set of real numbers (2%;) and
the cardinality of set of natural numbers (X ) and identified 2%, with the X ; as the next and smallest
cardinal number after X . This is known as the Continuum Hypothesis, that is listed as one of the 23
most important unanswered mathematical question by David Hilbert. Nevertheless, neither Cantor nor
anyone else has been able to prove this hypothesis. In fact, Kurt Godel (1906-1978), in 1940, proved
that the hypothesis cannot be disproved in ZFC. Then, in 1963, Paul Cohen (1934-2007) proved that
the hypothesis also cannot be proved in ZFC. It is accepted that the hypothesis is independent from
ZFC. For more detail see Dauben (1991), pp. 268-270.

* Although there are some other ways to construct natural numbers, the way John von Neumann’s
construction of natural numbers is commonly used in set theory related works.
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As the same way, for a given ordinal «, the next one always is defined as « + 1 (or
a U {a})*°. We have here infinitely many finite ordinals. Then, the second number
generating principle is considered and Cantor introduced the first transfinite ordinal
as the set of all finite ordinals, i.e. ® = {1, 2, 3...}. As Cantor puts it:
As contradictory as it would be, therefore, to speak of a greatest number of
class (1), there is, on the other hand, nothing objectionable in conceiving of a
new number — we shall call it ® - which is intended to be the expression for
the fact that the totality (I) as a whole be given in its natural and lawful
succession. (1976, p.87)
After constructing the first transfinite ordinal, Cantor indicated that there are also
other numbers just like the first transfinite ordinal. He called them limiting ordinals.

By the first number generating principle, a new number sequence is constructed as

follows;

ot+tl:=0oU{o}

o+2:=(otl) U {otl} ...
We have here infinitely many transfinite ordinals, i.e. ®, ® + 1, ® + 2, and so on.
Since there would not be the greatest element, Cantor applied the second number
generating principle again, and ® + ® (equal to ® - 2) is constructed as a limiting
number to the sequence. By applying the same rules one by one, it is possible to

construct the unending sequence of transfinite ordinals;
0,1,2,....,0o,0+t1l,0+2...,0t0o=0"2,0 - 2+1,0-2+2,...,0"-3, ...,

2 3 (O] (O]
o4 ..,05 . .. ,0 0=0,...,0,..,0°..,0°,.. 0", .. andso on.

%0 The mathematical notation is following; for every ordinal «, there is a succeeding ordinal 8 such
that o < B and there is no ordinal in between. So, # = « + 1 (every element must be followed by
another element as a successor unless it is the last element of the succession).
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Since every single element must have a successor, what we have then is infinitely
many new number sequences that each of its elements has a definite magnitude and
all of them are different from one another with respect to their orderings. As Cantor
puts it:

As one sees, there is no end to the formation of new numbers. By following

both principles of generation, one obtains again and again new numbers and

number sequences which have a fully definite succession. Thus, it first

appears as if in this way of building new definitely infinite whole numbers

we should lose ourselves in the limitless. (1976, p.88)

Now, it is necessary to analyze the arithmetic of transfinite ordinal numbers.
The addition operation in ordinal arithmetic is as follows;

Let « and S be ordinal numbers. Then, a + = Ord (a; /).

2+3=0rd ({0,1};{0,1,2})=0rd {0,1;0,1,2} =5

o+1=0rd({0,1,2,...}; {0})=0rd {0, 1,2, ...; 1} =0+ 1

l1+wo=0rd ({0}; {0,1,2,...})=0rd {1;0,1,2, ...} =o
The second and the third examples show that commutativity does not hold in the
transfinite ordinal arithmetic for addition. It can be easily seen that the finite number,
in the case of 1 + w, is annulled in the sequence, and the result would be equal to .
However, in the case of o + 1, its order type is different from 1 + ©. What we have
then is the sequence of ® and additionally one more elements, which is positioned as
the ™ element. In fact, the last element also makes @ + 1 is the immediate successor
of . Accordingly, the most important conclusion regarding the Aristotle’s rejection
manifest itself: 1 + ® = o, but ® + 1 # o.

The multiplication operation in ordinal arithmetic is as follows;

Let a and g be ordinal numbers. Then, a - = Ord (a x f).
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2-3=0rd ({0, 1} x {0, 1, 2}) = Ord {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1,
2)}=6

®-2=0rd ({0, 1,2...} x {0, 1})=0rd {(0, 0), (1, 0), (2, 0),...; (0, 1), (1, 1),
2, 1),...}=0-2=0+0

2-®=0rd ({0, 1} x {0, 1,2...})=0rd {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1,
2),...}=o
The second and the third examples demonstrate that commutativity for multiplication
is not held in the ordinal arithmetic.

In addition to ordinal arithmetic, Cantor also introduced the cardinal
arithmetic. It is not my intention here to analyze cardinal arithmetic in a detailed
manner for the fact that transfinite ordinal arithmetic is alone the proof for the
mathematical applications of transfinite numbers. For this reason, | will briefly
mention the rules of cardinal arithmetic. Just like finite arithmetic and ordinal
arithmetic, the concepts of being the one greater or less than or equal to another are
the same in cardinal arithmetic. For any given two cardinal numbers m and n, there
are only three possibilities; m = n, m < n, or m > n. However, there are some
operational differences in cardinal arithmetic.

For a given natural number k;

No+tk=k+Xo=Kpand Xo-k=k-NXg=Kg.

The addition of a finite number does not correspond to a new cardinal, unlike in the
case of ordinal arithmetic. In fact, the addition of the same cardinal number also does
not generate a new cardinal;

No+Nog=Ngand Xg - Ng=No.
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Consequently, it is possible to infer that X o = X, because multiplication does not
generate a different number in cardinal arithmetic if we use the same cardinal
number for the multiplication operation. Furthermore, if there are two different
cardinalities in the operation, the larger one specifies the result of the operation;

Ni+Xo=Njand X; - Rg=8"%

We may, therefore, claim that differentiating infinite sets from each other in
terms of sizes is the first step for constructing transfinite numbers. Then, Cantor
proposed the method on how to count them systematically. Cantor's approach to
multiplicities was to comprehend them as units composed of distinct elements. The
properties of elements and their order are abstracted from the multiplicity and what
we would have “one” entity. Then, the entity will be enumerated with the
corresponding number to clarify its size. So, there are different sizes of infinities and
all of them are countable as he argued throughout his works:

The (infinite) ‘cardinalities’ represent the only and necessary generalization of

the finite ‘cardinal numbers', they are nothing else than the actual infinitely

large cardinal numbers, and they have the same reality and definiteness as the
former, save that the laws between them, i.e. the arithmetic in respect to them,

is partly different from that in the domain of the finite. (Cantor, 1892, p. 280)
As a result, there is no difference between finite numbers and transfinite numbers in
terms of mathematical legitimacy; the foundation of transfinite numbers grounded
upon the sequence of finite numbers by the number generating principles and the
concept of well-ordered set. The above analysis has sufficiently shown that while the

ordinal number of a set is related to the ordering, the cardinal number is related to the

size. Transfinite arithmetic with the particular rules represents the same

51 While R represents the cardinality of set of natural numbers, X , represents the cardinality of set of
all countable ordinal numbers.
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determinateness of finite arithmetic. We cannot disregard the mathematical
applications of transfinite numbers for their mathematical justification because
transfinite arithmetic is a systematic and coherent theory of actual infinities. Thus,
contrary to common conception, Cantor’s arguments about the existence of actual

infinite are both mathematically and philosophically justified in his theory.
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CHAPTER 4

CONCLUSION

For Aristotle, one of the most compelling reasons for the impossibility of
infinite numbers is that no one could reach an infinite number by the successive
addition of units. In counting, any number would still be a finite number no matter
how big the number is. Since all numbers have been constructed from a specific set
in which the number of objects corresponds to its number, the enumeration of infinite
sets would become impossible. Hence, any counting would necessarily be limited to
finite numbers. Nevertheless, Cantor showed otherwise. By applying certain rules
(the number generating principles), firstly, Cantor suggested that a definite number
can be assigned to the unending sequence of finite numbers as the first transfinite
ordinal. Then, he suggested that differentiating the sizes of infinite sets is possible by
the orderings of their elements. Thus, Cantor not only showed that counting can also
be held in infinite sets, but also, he challenged Aristotle’s rejection of actual infinity.

The sequence of natural numbers which is considered as a completed infinite
provides Cantor a basis to create a new understanding of infinity. Even though we
could not identify all elements of infinite sets, as we analyzed in the previous

chapters, it is possible to mathematically evaluate transfinite numbers as being
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greater or smaller or equal by one-to-one correspondence principle®’. Besides
differentiating different sizes of infinite sets, transfinite arithmetic which is subjected
to different arithmetical rules reveals that transfinite numbers are mathematically as
legitimate as finite numbers. In a letter to Wilhelm Wundt (1832-1920) dated back 5
October 1883, Cantor clarifies his belief on the existence of transfinite numbers:
I claim that my infinite number concepts are free from any arbitrariness and
that they arise by abstraction from reality with the same necessity as the usual
finite whole numbers, which so far have been used as the unique source of all
other mathematical conceptual constructions. The transfinite numbers are not
in any way, as you say, mere ‘fictions’ or °‘logical postulates’, as the
geometrical spaces of n dimensions are, but they have the same character of
reality as the old numbers: 1, 2, 3, etc. (1991, p.136)
In this sense, he defended the idea that transfinite numbers are not just symbols for
infinity; rather, they are ‘“concrete numbers having a real meaning” (1976, p.71).
Accordingly, transfinite numbers represent a revolution in the history of
mathematics; Cantor was the first man ever tried to refute the Aristotelian arguments
against the existence of actual infinity and he successfully managed to stand against
the traditional understanding of infinity. Thus, in my opinion, Cantor’s arguments
about the existence of actual infinite are both mathematically and philosophically
justified.
In the Cantorian framework, as long as mathematical objects ground some
certain mathematical principles, it is, therefore, possible to claim that they have an
objective reality based on two sides of reality. Cantor constructed new numbers as

the extension of natural numbers that is already assumed to be autonomous and

systematic. In his own words:

52 According to Hans Niels Jahnke, “Cantor was the first to use the concept of pairwise
correspondence to distinguish meaningfully and systematically between the sizes of infinite sets”
(2001, p.178).
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...even for finite multiplicities a proof of their 'consistency' cannot be given.
The fact of the ‘consistency’ of finite multiplicities is a simple,
undemonstrable truth, it is ‘the axiom of arithmetic’. And likewise, the
‘consistency’ of multiplicities to which I assign the alephs as cardinal
numbers is ‘the axiom of the extended, of the transfinite arithmetic. (1991,
p.412)
By extending the number concept into infinities, Cantor established a new kind of
arithmetical system with particular rules in mathematical operations. In his article
“Beitrdge zur Begriindung der transfiniten Mengenlehre”, he provided every detail of
transfinite arithmetic based on the concept of a well-ordered set. In this regard,
Cantor indicated that transfinite numbers must be regarded as existent as finite
numbers thanks to the new arithmetic system based on infinite sets. As a matter of
fact, the hierarchy of infinite sets can be demonstrated both in terms of cardinality
and ordinality. Hence, transfinite numbers gain their mathematical reality by the
number generating principles. Additionally, Cantor also defended that one cannot
accept the existence of the irrational numbers and, at the same time, denies the
existence of transfinite numbers because both of them are defined via infinite sets.
Cantor wrote:
The transfinite numbers are in a certain sense themselves new irrationalities
and in fact, in my opinion, the best method of defining the finite irrational
numbers is wholly dissimilar to, and | might even say in principle the same
as, my method described above of introducing transfinite numbers. One can
say unconditionally: the transfinite numbers stand or fall with the finite
irrational numbers; they are like each other in their innermost being; for the
former like the latter are definite delimited forms or modifications of the
actual infinite. (1887, pp. 395-396)
Although Cantor’s account of multiplicities provides him stronger and more
comprehensive theory to maintain the self-consistency of the system, the distinction

can be regarded as “ad hoc”. The reason is that the distinction was constructed to

avoid possible paradoxical outcomes and protect the theory from troublesome sets. It
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is true that Cantor did not provide any distinction in multiplicities at first, but he
realized that there must be a distinction on multiplicities to prevent paradoxical
results. In fact, the emergence of paradoxes required the necessity to impose a
restriction on the definition of a set. | would like to highlight the fact that ZFC,
which is perhaps the most well-known axiomatic set theory, also restricts the
definition of a set by its own axioms. The axiom of selection, which implies that
subsets of a given set are also sets, allows constructing only subsets of existing sets.
It avoids the formation of “too large” sets. Furthermore, the axiom of regularity
which implies that no set is an element of itself entails that universal sets cannot be
derivable in the system. For the fact that their sizes are undefined in the system, some
sets (including the set of all ordinals or the set of all sets) do not appear in ZFC.

All things considered, my analysis has sufficiently shown that Cantor’s
definition of a set is not arbitrary as many scholars called; rather, some multiplicities
lack the property of being a mathematical set. The distinction between multiplicities
indicates that Cantor’s system does not allow the emergence of paradoxical sets.
Hence, we cannot disregard the fact that Cantor eliminated paradoxical sets even
before they appeared in the system. Thus, | intend to emphasize that the Cantorian

Set Theory is neither naive nor paradoxical.
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APPENDICES

A. TURKISH SUMMARY / TURKCE OZET

Bu tez Georg Cantor’un aktiiel sonsuzluk diisiincesinin matematiksel olarak
formalize edilmesi ve bu sayede ortaya ¢ikan sonlu Otesi sayilar teorisini konu
edinmektedir. Kendisinden daha onceki donemlerde sonsuzluk diisiincesinin
kavramsallastirilmasinin belirli problemler i¢erdigini iddia eden Cantor’un teorisini
incelemek adma oncelikle sonsuzluk kavraminin tarihsel gelisimi ele alinmalidir.
Sonsuzluk diisiincesi ile ilgili tartismanin Eski Yunan’da bagladigini varsayabiliriz.
O zamanlarda bir¢ok disiiniiriin 6ncelikli hedefi dogay1 ve nesnelerin en temelinde
yatan prensibi anlamak oldugundan, sonsuzluk fikri doganin kendi temelinde yatan
sinirsizligr agiklamak icin ortaya ¢ikmistir. Bu nedenle, Sokrates dncesi donemde
sonsuzluk diigiincesi matematiksel ya da metafiziksel bir kavram degildir.

Sokrates sonras1 doneme bakildiginda ise Aristoteles’in yaptig1 sonsuzluk
ayriminin tarihsel etkisinin ne kadar Onemli oldugu yadsinamaz. Aristoteles
sonsuzluk diisiincesini potansiyel sonsuzluk ve aktiiel sonsuzluk olarak ikiye
ayirmistir. Sonsuzluk diisiincesi herhangi bir sinirlamaya bagli olmadan devam eden
bir siire¢ olarak tanimlanabilir. Baska bir deyisle, sonsuzluk potansiyel olarak
sonsuza kadar devam edebilecek bir siirectir ve sadece potansiyel olarak var olabilir.
Insan zihni sonsuzluk diisiincesini sadece potansiyel olarak kavrayabilir ¢iinkii

herhangi bir sinirlamaya sahip olamayacagi i¢in bu siire¢ her zaman eksik ve belirsiz
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olmak zorundadir. Bu Aristoteles’e gore potansiyel sonsuz fikridir. Buna ek olarak
potansiyel sonsuzluk kendisini iki sekilde ortaya ¢ikartabilir: toplamayla yoluyla
sonsuz ve bolme yoluyla sonsuz.

Aristoteles’e gore toplama yoluyla sonsuz fikri dogal sayilarin sonsuz serisi
olarak anlagsilabilir. Dogal sayilarin her biri birimlerin art arda eklenmesiyle
olusturulan sayilardan olusmaktadir, yani belirli bir dogal sayiya 1 sayisini ekleyerek
daha biiyiik bir dogal say1 olusturmak her zaman miimkiindiir. Bu durumda biitiin
dogal sayilarin listesi her zaman eksiktir ve her zaman listede bulunmayan daha
biiylik bir say1 olacaktir. Baska bir deyisle, elimizdeki sayiya 1 ekleyerek elde
edebilecegimiz yeni sayilar ile bu toplama siireci hi¢cbir zaman bitirilemeyecegi igin
dogal sayilar serisi potansiyel olarak sonsuza kadar devam edebilir. Bu sayi
olusturma islemi sirasinda en biiyilkk say1r olarak adlandirilabilecek bir say1
olamayacaktir ¢linkii olusturulan say1 ne kadar biiyiik olursa olsun onun da ardinda
olan bir baska say1 daima olacaktir. Bu durum, Aristoteles igin, dogal sayilarin
serisinin potansiyel bir sonsuzluk olusturdugunu garanti eder.

Diger taraftan bolme yoluyla sonsuz, diiz bir ¢izginin sonsuzlugu olarak
goriilebilir. Aristoteles’e gore, bir dogru parcasini bdlerek sonsuz sayida farkl parca
ortaya ¢ikarmak miimkiindiir. Bu dogru pargast sonlu olsa dahi bolme islemi
potansiyel olarak sonsuzdur. Ornegin, ilk basta ikiye boldiigiimiiz bir dogru pargasi
icin bdliimden sonraki her bir parca da tekrar ikiye boliinebilir. Daha sonra ayni
sekilde her bir par¢a da tekrar ikiye boliinebilir ve bu bolme islemi sonsuza kadar
devam edebilir. Ciinkii parcalarin boyutlar1 kiiciilse dahi, her zaman bdliinebilecek

baska bir parca olacaktir. Olas1 bir bélme islemi her zaman disarida birakilacagindan,
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bir dogru parcasinin bdoliinebilirligi sinirsiz olarak gergeklestirilebilir. Dolayisiyla,
Aristoteles'e gore, sonlu bir dogruyu bolmek potansiyel olarak sonsuzluga
gidebilecek bir siirectir. Burada vurgulanmasi gereken sey sudur ki; pargalarin
sonsuz boliinmesi yalnizca potansiyel gerceklestirilebilecek olasi boliinmeler olarak
kavranabilir ve bu bolme isleminin de sadece diisiinme ile miimkiin oldugu anlamina
gelir. Boliinme olasilig1 hi¢ bitmediginden boliinmeyle sonsuzluk potansiyel anlamda
miimkiindiir. Bu nedenle, potansiyel sonsuzluk kendisini ya toplamayla yoluyla
sonsuz ya da bolme yoluyla sonsuz olarak tezahiir edebilir.

Ote yandan, Aristoteles’e gore aktiiel sonsuzluk tanimi geregi kendisini
eksiksiz ve tamamlanmis olarak sunmasi gereken sonsuz tiiridiir. Fakat cesitli
nedenlerden dolayr bu sonsuzluk miimkiin degildir ve insan zihni tarafindan
kavranamazdir. Aristoteles’e gore aktliel sonsuzlugun bir varlik olarak var
olamayacaginin sebeplerden biri ve en 6nemlisi sonsuz olma sifatinin tamamlanmis
olma sifat1 ile ¢elismesidir. Tam olmak ya da tamamlanmis olmak zorunlu olarak
belirli bir sinirlama gerektirir, ancak sonsuzluk tanimi geregi sinirlamalara sahip
olamaz. Bu nedenle tamamlanmis olmak herhangi bir sonsuzlugun o6zelligi olamaz.
Dolayisiyla sonsuzluk fikri ele alindiginda bu durumun imkansiz oldugu aciktir ve
Aristoteles’e gore aktiiel sonsuzluk kavrami kendi icerisinde celigkili bir kavram
haline gelir: tam olmak ve sonsuz olmak ayni zamanda herhangi bir varligin
ozellikleri olamaz. S6z konusu kavram Aristoteles felsefesinde tutarsiz ve bilinemez
bir kavram haline doniisiir.

Aktiiel sonsuzlugun imkansizliginin bir baska nedeni ise dogada yatmaktadir.

Aristoteles icin dogada aktiiel olarak sonsuz bir nicelik olamaz. Eger dogada aktiiel
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anlamda sonsuz bir nicelik varsa, bu nicelik sonsuz sayida pargaya sahip olan ve ayni
zamanda parcalar1 da sonsuz olan bir varlik olmalidir. Fakat Aristoteles i¢in bu kabul
edilebilir degildir ¢iinkii bir biitliniin parcalar1 kendi baslarina da sonsuz olan
parcalara sahip olamazlar. Bu imkansiz gibi goriiniiyor ¢iinkii pargalarin sonsuzlugu
biitiinii belirsiz bir varlik haline doniistiiriir. Dolayisiyla, belirsizlik dogada kabul
edilebilir olmadigindan, Aristoteles'e gore aktiiel anlamda sonsuz bir nicelik var
olamaz. Ozetle, Aristoteles i¢in sonsuzluk diisiincesinde acik olan bir sey vardir ki o
da aktiiel sonsuzluk fikrinin gercek bir varlik olarak dogada var olamayacagidir. Bu
da ayn1 zamanda aktiiel sonsuzlugun yalnizca soziin gelisi olarak var oldugunun
gostergesidir.

Aktiiel sonsuzluk fikrine karsi felsefi argiimanlara ek olarak, Aristoteles
aktiiel sonsuzlugun imkansizligina dair iki matematiksel argiiman daha ortaya
atmistir. Ik argiiman temelde sayma isleminin sonsuz say! iretemeyecegini
savunmustur. Dogal sayilar birimlerin art arda eklenmesi sayesinde olusturulur ve bu
yontem olusturulan biitiin sayilarin sonlu sayilar olmasin1 zorunlu kilar. Bunun
nedeni ise her bir sayinin baska bir sonlu say1 iizerinden olusturulmasi ve olas1 biitiin
sayilarin temelinin bagka bir sonlu say1 olmasidir. Bir baska deyisle, sayma siirecinde
dogal sayilar serisi potansiyel olarak sonsuz sayida 6geye sahip olabilir, fakat sayma
metodumuza gore tiim 6geler sonlu birer sayr olmalidir. Dolayisiyla sayma islemi
yalnizca sonlu sayilara uygulanabilir ve sayma prosediirii ile sonsuz bir sayi
olusturulamaz.

Aristoteles’in aktiiel sonsuzlugun varligina kars1 sundugu ikinci matematiksel

argliman ise sonlu sayilarin matematiksel islemlerde yok edilmesidir. Burada
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vurgulanmasi1 gereken sey sudur ki Aristoteles bu arglimani dogrudan sayilar
tizerinden sunmamustir. Aristoteles’e gére dogada sonsuz bir madde varsa, bu madde
dogadaki sonlu maddeleri yok etmelidir. Bunun temel nedeni ise dort ana elementin
(su, hava, ates ve toprak) bir arada var olabilmesi i¢in sonlu olmasi gerekliligidir.
Aralarindan herhangi biri sonsuz olsaydi, o zaman zorunlu olarak karsit element
sonsuz element tarafindan yok edilirdi. Bu noktada dogada sonsuz bir maddenin
bulunmamas1 matematiksel olarak su sekilde yorumlanabilir; sonsuz sayilar ile sonlu
sayilar birlikte diigtiniiliip matematiksel islem uygulandiginda sonsuz sayilar sonlu
sayilar1 yok etmelidir ve sonlu sayilarin kaliciligi imkansiz hale gelir. Bu islemden
elde ettigimiz sonug¢ sonsuz saymin kendisinden farkli olmayacaktir ¢linkii sonsuz
say1 kendi icerisinde sonlu sayiy1 ortadan kaldirmak zorundadir. Aristoteles i¢in bu
durum su anlama gelir; sonsuz sayilar1 saymanin miimkiin oldugunu varsaysak bile
sonsuz sayilara herhangi bir matematiksel islem uygulamak imkansizdir. Sonug
olarak, Aristoteles i¢in bu iki matematiksel argiimani ne dogada sonsuz bir maddenin
ne de matematikte sonsuz bir saymin var olmayacagini garanti eder. Bu nedenlerden
dolay1, Aristoteles yalnizca potansiyel sonsuzlugun varligimi kabul ederek, aktiiel
sonsuzlugun varligini reddetmistir.

Aristoteles’in yaptig1 potansiyel ve aktiiel sonsuzluk ayriminin etkisiyle
tarihsel siiregte aktiiel sonsuzlugun imkansizlig1 reddedilemez bir argiiman olarak
goriilmiis ve Cantor’a kadar hicbir diislinlir bu argiimanlar1 basarili bir sekilde
clirlitememistir. Cantor ise ilizerinde calistigi bir makale sirasinda reel sayilar
kiimesinin dogal sayilar kiimesinden daha yiliksek bir sonsuzluk derecesine sahip

olmas1 gerektigini fark etmistir. Bu durumun nedeni ise bu iki kiime arasinda
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herhangi bir sekilde bire bir eslesme s6z konusu olamamasidir. Cantor bu
argiimandan yola ¢ikarak farkli sonsuz kiimeler oldugunu iddia etmistir. Hatta bu
sonsuz kiimelere sayilar atfedilebilece§ini ve bu sayilarinda yeni bir matematik
sistemi olusturacagin1 savunmustur. Fakat bunun ic¢in alisilmis sayr kavraminin
genisletilmesi gerektigini belirterek yeni bir yontem ortaya atmustir. Sonlu Gtesi
sayillar ve sonlu Otesi aritmetik bu sekilde ortaya c¢ikmistir. Bu noktada sayi
kavramina yeni yaklasimin temeli iyi sirali kiime kavramidir. lyi sirali kiime kavrami
ile sonlu Otesi sayilarin olusturulmast miimkiin hale gelmistir cilinkii sayilar artik
biiyiikliikleri tizerinden degil siralanis bicimleri tiizerinden numaralandirilirlar.
Ornegin, iki farkli sirali kiimeyi {1, 3, 5, 7} ve {7, 5, 3, 1} diisiinelim. Her ikisinin de
son 0Ogesi kiimedeki dordiincii 6ge oldugu icin bu iki kiime de 4 sayis1 ile
numaralandirilirlar. Iyi sirali kiime kavrami ile Cantor farkli siralanis bigimlerine
sahip olan sonsuz kiimelerin numaralandirilabilecegini ve bu numaralarin farkl
biiyiikliikteki sonsuzluklara matematiksel olarak denk gelecegini iddia etmistir. Bu
yeni sayilara sonlu otesi ordinal sayilar demesinin nedeni temelde budur.

Bu sayilarin matematiksel olarak kurulumunu saglayan iki prensip vardir ve
Cantor bu prensiplere say1 iiretme prensipleri olarak adlandirmistir. Birinci prensip
temel olarak alisilmig sayma yontemine denk gelmektedir, yani verilen herhangi bir
saytya 1 eklenerek bir sonraki sayiy1 tanimlamamizi saglar. Bu prensip ile dogal
sayilar kiimesi potansiyel olarak sonsuz elemana sahiptir ve biitiin elemanlar
belirlemek miimkiin degildir. Ikinci prensip ise dogal sayilarmn dizisini tamamlanmis
bir kiime olarak algilamamiza izin verir ve ardindan yeni bir say1 “®” (omega) dogal

sayilar kiimesinin tamamini numaralandirmak i¢in atanir. Bunu yapabilmemizi
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saglayan sey bu kiimenin elemanlarinin her birinin kendinden 6nce gelen sayi
tizerinden tanimlanarak biitiin kiimenin belirli bir siraya sahip olmasidir. Bu yeni say1
biitlin dogal sayilardan daha biiyliktiir ¢iinkii tiim dogal sayilarin sayisi olarak biitiin
sonlu sayilar1 asmaktadir. Bagka bir deyisle, bu yeni say1 siralama olarak biitiin dogal
sayilardan daha sonraki bir sirada yer alir ve bu onu herhangi bir sonlu sayidan daha
bliyiik yapar. Ayni nedenle bu say1 sonlu bir say1r olamaz, aksine sonlu Gtesi bir
sayidir. Sonlu 6tesi sayilarin her biri farkli siralaniga sahip olan sonsuz kiimeleri
numaralandirmak i¢in kullanilirlar ve bu sayilar ile sonsuz kiimeleri saymak
miimkiin hale gelmistir. Aslinda “®” en kiiciik sonlu 6tesi ordinal sayidir ¢iinkii bu
iki prensip kullanilarak sonsuz sayida sonlu 6tesi tiretmek miimkiindiir: ®, ® + 1, o +

2...,03+0)=0)-2,co-2+1,0)-2+2,...,c0-3,...,03-4,...,0)-5,...,03-0):(02,

Daha oOnce belirttigim gibi Aristoteles’in yaptigi potansiyel sonsuzluk ve
aktiiel sonsuzluk ayrimi sonsuzluk diisiincesini temelden etkilemis ve bir¢ok diigiiniir
benzer nedenlere dayanarak aktiiel sonsuzlugun varligini reddetmistir. Dolayisiyla
Cantor, Aristoteles’in argiimanlarinin ne kadar biiyiik bir éneme sahip oldugunu
bilerek kendi teorisini ortaya atmis ve ayn1 zamanda Aristoteles’in sundugu her bir
arglimana karsi bir argiiman getirmistir. Bu argiimanlar1 incelemeden 6nce kisaca
bahsetmek isterim ki, Cantor'a gore Aristoteles'in aktiiel sonsuzlugun varligina karst
argiimanlar1 mantiksal bir yanilgiya tabidir. Bunun nedeni, Aristoteles'in tim
sayilarin sonlu sayilarla sayilabilir olmas1 gerektigi varsayimina dayanarak sonsuz
sayillarm  olmadigr  fikrini  savunmasidir.  Cantor burada Aristoteles’in

arglimanlarindaki mantiksal hatayr gdstermekle kalmayip aym1 zamanda bu
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argliimanlarin her birine karsit bir argiiman ortaya sunmustur. Bunu yapabilmesini
saglayan durum ise sonlu 6tesi sayilar ve sonlu 6tesi aritmetigin varligidir.

[lk karsit argiiman olarak Cantor, Aristoteles'in savundugunun aksine, sonsuz
elemana sahip olan setlerin de numaralandirilabilecegini ve bu numaralarin sonsuz
ya da sonlu Gtesi sayilar oldugunu savunmustur. Bu noktada farkli bir sayma
metodunun kullanildigr unutulmamalidir. © dogal sayilar kiimesinin sayisidir {1, 2,
3, ...} ve ilk sonlu 6tesi sayidir. Ayrica ® kendisinden sonra gelen bir baska sonlu
Otesi sayiya sahiptir, yani @ + 1. Cantor matematiksel olarak sonlu Gtesi sayilarin
ayn1 anda denk geldikleri kiimelerdeki biitiin sayilara karsilik geldigini ve bu sayede
sonsuz kiimelerin numaralandirilmas: ic¢in kullanilabileceklerini iddia etmistir. Bu
sekilde Aristoteles’in arglimanlarinda savunulanin aksine sonsuz kiimeleri saymanin
matematiksel olarak miimkiin oldugunu gdstermekle kalmayip, bunu yapabilmek icin
iyi sirali kiimeler kavrami ile bu sayilarin matematiksel olarak saglam bir temele
dayandigini kanitlamistir.

Aristoteles sundugu ikinci arglimanda sonsuz sayilarin varligini kabul etmis
olsak bile sonsuz sayilari ve sonlu sayilari birlikte matematiksel isleme tabi
tutamayacagimizi ¢iinkli sonlu sayilarin sonsuz sayilar tarafindan yok edilecegini
savunmustur. Bunun aksine Cantor, sonlu sayilarin yok olusu olmaksizin sonlu 6tesi
sayilar ile matematiksel iglemlere tabi olabilecegini matematiksel olarak gostermistir.
Bu aritmetikte sonlu sayilar aritmetiginden farkli kurallar gecerlidir ¢ilinkii sonlu
Otesi sayilar siralamanin 6nem arz ettigi iyi sirali kiimeler kavramindan yola ¢ikarak
olusturulmustur. Ornegin,  + 1 sayisi ile 1 + o sayis1 birbirlerine esit degillerdir. Bu

iki farklt durumun nedeni bu islemde karsimiza ¢ikan 1 sayisinin @ sayisinin
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siralanisinda farkli bir pozisyon almasi ve iki farkli sonsuz kiime olusturarak, farkl
bir sekilde numaralandirilmaya neden olmasidir. Baska bir deyisle o + 1 sayisindaki
1 kendisini sonsuz elemana sahip olan kiimenin sonuncu sirasindaki eleman olarak
konumlandirdig1 i¢in @ + 1 ile 1 + ® birbirine esit degildir. Ayn1 zamanda 1 + ®
sayis1 matematiksel olarak ® sayisina esittir ¢linkii ikisi de numaralandirilmay1
saglayan son elemana sahip degillerdir ve 1 sayis1 aldig1 pozisyondan dolay1 o sayisi
tarafindan yok edilmektedir. Bu sayilar arasindaki ayrim sonlu sayilarin mutlaka
sonlu sayilar tarafindan yok edilmeyecegini garanti eder. Sonlu bir sayiya herhangi
bir sonlu 6tesi say1 eklenirse sonlu yok edilecektir. Ancak, sonlu bir say1 bir sonlu
saytya eklenirse, islemin sonucu yeni bir sonlu Otesi sayiya neden olacaktir.
Dolayisiyla, Aristoteles’in savundugunun aksine aritmetik iglemler uygun siralama
ile sonlu 6tesi sayilara da uygulanabilirler ve bu ayn1 zamanda sonlu Gtesi aritmetigin
sonlu aritmetikten ne kadar farkli kurallara sahip oldugunu gostermektedir.

Sonlu aritmetigin kurallar1 bize sonlu Gtesi sayilarin sonlu sayilar kadar
belirgin nesnel bir gerceklige dayandiginin kanitidir. Bu noktada, Cantor’un sonlu
Otesi sayilarin varhigina olan giiglii baglhligi ona geleneksel sonsuzluk anlayisini
cliritmek i¢in bir yol saglamistir. Cantor’un sonsuzluk felsefesini inceledigimizde,
potansiyel sonsuzluk kavraminin tam olarak Aristoteles’in savundugu gibi oldugu
goriilebilir. Fakat bu iki disiiniirii birbirinden ayiran farklilik ise Cantor’un
matematige tanittig1 yeni sistem icerisindeki sonlu Gtesi sayilar aktiiel sonsuzlugun
ornekleridir. Potansiyel sonsuzluk kavrami iizerinden baktigimizda dogal sayilar
kiimesindeki her bir eleman sonlu birer sayidir ve bu sayilarin olusturduklar: seri

potansiyel olarak sonsuz bir seridir. Fakat sonlu 6tesi sayilar kendisini olusturan tiim
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sayilar1 ayni anda icerir. Sonlu Gtesi sayilar kendilerini sonsuza kadar devam eden
degiskenler olarak gostermezler, bunun yerine bir biitiinlik olustururlar ve bu
biitiinliik Cantor’un sonsuzluk felsefesinde aktiiel sonsuzluk olarak adlandirilmistir.
Bu ac¢idan, sonlu matematigin dogmalarma karsi olan ve Cantor'un basariyla
gosterdigi sonsuz kiimelerin matematige kazandirilmasi sonsuzluk kavrami tarihinde
bir devrim niteligi tasimaktadir.

Tezimin ikinci kismi ise Cantor’un sonsuzluk felsefesi igerisinde
matematiksel nesnelerin varligmmi dogrulamak adina savundugu felsefi ve
matematiksel arka plana adanmigtir. Cantor'un sonlu 6tesi sayilar1 savunma stratejisi
matematigin 6zgiirliigli prensibine dayanmaktadir. Bu prensibe gore matematik kendi
nesnelerini olusturma noktasinda 6zgilirdiir ¢iinkii matematik i¢in yeni nesneler
halihazirda var olan daha 6nceki baska matematiksel nesneler {lizerinden tanitilabilir.
Yeni nesneler ile eski nesneler arasindaki iligkiler ve tanimlar birbiri ile gelismedigi
stirece yeni nesnelerin varlig1 kolayca kabul edilebilir. Dolayisiyla, Cantor’a gore,
tutarli bir aritmetik sistem icerisinde matematik yeni nesneler yaratmakta 6zgiirdiir
ve bu Ozgilrlik matematigi diger biitiin bilimlerden ayr1 bir noktaya koyar.
Matematigin ozgiirligli, tanimlar ve iliskiler agisindan yeni kavramlarin varligini
sagladigi icin sonlu Gtesi sayilar say1 iiretme prensipleri {izerinden olusturulmustur.
Bu noktada her bir say1 iiretme prensibi sonlu sayilar ile sonlu Gtesi sayilar
arasindaki iliskide 6nemli bir role sahiptir. Cantor yeni sayilarin matematiksel
varoluslarin1 hakli ¢ikarmak adina yeni sayilart dogal sayilarin kiimesi iizerinden

olusturmustur. Bu sayede hem sonlu sayilari hem de sonlu Gtesi sayilari igeren yeni
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matematiksel sistemin tutarliligl sayi iiretme prensipleri ile korunur ve bu iki farkh
say1 ¢esidi arasindaki matematiksel iliski tutarli bir sekilde gosterilmistir.

Cantor’un teorisinin bir bagska 6nemli yonii de ickin gergeklik ile bireyin
zihinden bagimsiz olarak var olan gercekligi birbirinden ayirmasidir. Kisaca
bahsetmek gerekirse, kavramlarin igkin gergekligi daha Onceden tanimlanmis
nesnelerle olan iliskileri ile ilgilidir. Cantor'a gore eski kavramlar ile yeni kavramlar
arasindaki i¢ tutarlilik yeni kavramin olasi1 bir varlik olarak bir gergeklige karsilik
geldigini iddia etmistir. Ancak bu gergekligin her zaman fiziksel yansimasi olacagi
anlamima gelmez. Aksine muhtemel bir fikir olarak her zaman ickin tarafta bir
varliga sahip olacaktir. Bireyin zihinden bagimsiz olarak var olan gerceklik ise bir
nesnenin dogal diinyadaki fiziksel tezahiirii ile ilgilidir. Cantor'a gére matematiksel
nesneler diisliniildiigiinde bu iki taraf birbirinden ayirt edilemez ¢iinkii matematiksel
nesneler soyut varliklardir ve tezahiirleri ancak tanimlarda ve diger nesnelerle olan
iligskilerde ortaya ¢ikabilir. Dolayisiyla, Cantor'un matematigin yalnizca kavramlarin
ickin gergekligi ile ilgilenmesi gerektigi diislincesi bu arglimana dayanmaktadir.
Bunun nedeni matematikte ickin olarak var olan herhangi bir fikir, Cantor igin her
zaman olast bir fikir olarak gercektir ve insan zihninden bagimsiz olarak da bir
gerceklige sahip olacaktir. Bu baglamda sonlu Gtesi sayilarin sayi1 liretme prensipleri
temelinde insa edilmesi ve kendilerine ait bir aritmetik sistem olusturmalar1 bu yeni
sayilarin varligim1 Cantor’un felsefesi icerisinde hakli ¢ikarmaktadir. Clinkii 6nemli
olan nokta bu iki farkli say1 ¢esidi arasindaki biitiinlesme ve tutarlilik sayesinde yeni

sayilar zihnimizde yerini temin etmektedir.
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Cantor’un kiimeler teorisi kiime kavramina bir sinirlama getirmedigi igin
cesitli matematikciler ve filozoflar tarafindan elestirilmistir. Fakat sanilanin aksine
Cantor ¢okluklar1 birbirinden ayirarak, hangi ¢okluklarin matematiksel bir kiime
olarak ifade edilebilecegini ve hangi c¢okluklarin matematiksel bir kiime
olusturamayacaginin siniflandirmasini yapmaistir. Bu siniflandirmanin temeli 1yi siralt
kiime kavrami igerisinde yatmaktadir. Cantor’a gore ¢okluklar ikiye ayrilir:
matematiksel kiimeler olarak karsimiza ¢ikan tutarli ¢okluklar ve tutarsiz ¢okluklar.
Tutarlt ¢okluklar matematiksel olarak gosterilebilen ve celiskiye sahip olmayan
cokluklardir. Baska bir deyisle, bu tiir cokluklarin 06geleri birbirinden ayr1
diisiiniilebilir ve ayni zamanda bu 6gelerin olusturdugu biitiinliigii matematiksel
olarak kavramak miimkiindiir. Ornegin, dogal sayilar kiimesi tutarli bir ¢okluktur;
kiimenin biitiin 6geleri farkli 6zelliklere sahiptir ve ayn1 zamanda matematiksel bir
biitiinliik “®” olustururlar.

Tam tersine, tutarsiz c¢okluklar matematiksel bir biitlinliik olusturamazlar
clinkii bulundurduklar1 ayr1 6gelerin biitiinliiglinii matematiksel olarak formalize
etmek imkansizdir. Bu tarz ¢okluklar diisiince temelinde bir fikre karsilik gelebilirler,
fakat matematiksel olarak bir kiime olusturamazlar. Bu durumun iki nedeni vardir.
[k olarak tutarli gokluklar kendilerini ayn1 zamanda bir eleman olarak igeremezler
clinkii aksi durumda elemanlarini birbirine baglayan 6zellik kendi igerisinde geligki
ortaya c¢ikartarak biitiinliiglin matematiksel olarak formalize edilmesine engel olur.
Bir diger neden ise bu tiir ¢cokluklarin numaralandirilmalarinin imkansizligidir. Her
iyi sirali kiime bir ordinal sayiya karsilik gelmek zorundadir. Tutarsiz ¢okluklar

herhangi bir ordinale karsilik gelemezler ¢ilinkii ¢oklugun kendisinin ilk basta ifade
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ettigi kosul Ogeleri tarafindan karsilanamaz ve matematiksel olarak belirsiz hale
gelirler. Dolayistyla bu tarz ¢okluklar1 numaralandirmak imkéansiz hale gelir ¢iinkii
onlar1 iyi sirali kiimeler bi¢imine doniistirmek imkansizlasir ve matematiksel
kiimeler olusturamazlar. Ornegin, Burali-Forti tarafindan ortaya atilan paradoksa
gore biitiin ordinallerin kiimesi de bir ordinal olmak zorundadir. Fakat bu ordinal
biitiin ordinaller kiimesinin igerisinde yer alamaz ¢iinkii kiimenin kendisine atanan
ordinal kiimenin igerisinde yer alamaz. Tam olarak ayn1 nedenden dolayi, Cantor’un
yaptig1 ayrima gore bu tutarsiz bir ¢okluktur ve matematiksel olarak formdiile
edilemez. Cantor’un kiime teorisinde paradoksal kiimelerin ortaya ¢ikmasi yapilan
bu ayrim ile engellenmistir ve yalnizca iyi sirali kiimeler haline donistiiriilebilen
cokluklar teori igerisinde matematiksel kiimeler olarak kabul edilirler. Sonug¢ olarak
Cantor’un kiime teorisi ne sezgisel ne de paradoksaldir. Tutarli ¢okluklar ve tutarsiz
cokluklar ayrimi icerisinde savunulan biitiin argimanlar alintilar esliginde boliim 3.3.
icerisinde yer almaktadir.

Sonlu 6tesi sayilar diisiiniildiiglinde, Cantor say1 kavramini sonsuz kiimeleri
de kapsayacak sekilde genisleterek kendine 6zgii belirli kurallar1 olan yeni bir tiir
aritmetik sistem insa etmistir. Ornegin, bu aritmetikte toplama isleminin ve ¢arpma
isleminin degisme Ozelligi yoktur ¢linkii sonsuz kiimeler farkli siralamalara sahip
olduklarinda farkli sekilde numaralandirilirlar. Bu nedenle, sonlu 6tesi sayilarin
aritmetiginde matematiksel islemin sonucunu sayilarin siralamalar1 belirler. Fakat
burada vurgulanmasi gereken sey sudur ki; sonsuz kiimelerin hiyerarsisi hem
biiyiikliik olarak hem de siralanis olarak farklilik gdstermektedir. Cantor’un bu iki

acidan farkli matematiksel kurallar etrafinda ortaya koydugu aritmetik sistemleri
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boliim 3.4. icerisinde benzerlikleri ve farkliliklar1 ile detaylica anlatilmaktadir. S6z
edilen boliimdeki analiz yeterince gdstermistir ki, bir kiimenin buytlikligli sahip
oldugu eleman sayisi ile ilgili iken, bir kiimenin ordinal sayis1 kiimedeki elemanlarin
siralamasiyla iligkilidir. Bunun sonucu olarak ortaya ¢ikan sonlu 6tesi sayilarin, yani
bir anlamda aktiiel sonsuzluklarin, matematiksel uygulamalar1 ve tutarl teorisi hem

matematiksel hem de felsefi olarak g6z ardi edilemez.
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