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ABSTRACT

THERMODYNAMIC PROPERTIES OF THE HIGH-PRESSURE PHASES
IN SOLID NITROGEN CLOSE TO PHASE TRANSITIONS

Akay, Ozge
Ph.D., Department of Physics

Supervisor: Prof. Dr. Hamit Yurtseven

November 2020, [[14] pages

In this thesis,the physical properties of solid nitrogen are investigated in a wide range
of temperature and pressure by analyzing experimental data from the literature.For
this investigation, various models are implemented to the experimental data in order
to evaluate observed behavior of thermodynamic and spectroscopic properties of solid
nitrogen. By means of the calculating Griineisen parameter which depends on the vol-
ume, the pressure and temperature dependence of the Raman and IR frequencies are
estimated for the internal(vibrons) and external modes (lattice) of solid nitrogen. Es-
pecially, the mean field theory based on Landau phenomenological model is used to
calculate P-T phase diagram of solid nitrogen. Also by using this model, we estimate
the inverse susceptibility, the entropy, the heat capacity and the thermal expansion as
a function of temperature close to the phase transition. Regarding to evaluation of
the thermodynamic properties, we also predict temperature dependence of the ther-
modynamic functions from frequency shift and volume data which are obtained from
literature and we use the Pippard relations to establish linearity for thermodynamic
and spectroscopic quantities. As another calculation, we calculated the frequency

shift and damping constant (FWHM) as a function of pressure via the anharmonic



self energy. According to the evaluation of spectroscopic properties (frequency shift,
damping constant) , we also use the pseudospin-phonon coupling (PS) and the energy-
fluctuation (EF) models to obtain the damping constant as a function of temperature
at constant pressures. The inverse relaxation time and the activation energy as a func-
tion of temperature are also calculated close to the phase transition. In addition to
these calculations, we analyze the thermodynamic and dielectric properties at various
pressures and temperatures by using the Raman frequencies of cubic gauche solid ni-
trogen. All these calculations indicate that the methods used for analysis can also be

applied to some other molecular solids close to phase transitions.

Keywords: Vibrational Frequencies,Griineisen Parameter, Mean Field Theory,Damping

constant,solid nitrogen
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0z

FAZ GECISLERI YAKININDA KATI AZOTUN YUKSEK BASINC
FAZLARININ TERMODINAMIK OZELLIKLERI

Akay, Ozge
Doktora, Fizik Boliimii

Tez Yoneticisi: Prof. Dr. Hamit Yurtseven

Kasim 2020 , sayfa

Bu tezde, kat1 nitrojenin fiziksel 6zellikleri genis bir sicaklik ve basing araliginda lite-
ratiirden deneysel sonuclar analiz edilerek incelenmistir. Bu aragtirmada, kati azotun
termodinamik ve spektroskopik ozelliklerini degerlendirmek i¢in deneysel verilere
cesitli modeller uygulanmistir. Hacme bagli olan Griineisen parametresi hesaplana-
rak, kati nitrojenin i¢ (vibronlar) ve dig modlari (lattice) i¢in Raman ve IR frekansla-
rinin basing ve sicaklik bagimlilig1 tahmin edilmistir. Kat1 nitrojenin P-T faz diyag-
ramunt hesaplamak icin 6zellikle Landau fenomenolojik modeline dayanan ortalama
alan teorisi kullanilmistir. Ayrica bu modeli kullanarak, ters duyarliligi, entropiyi, 1s1
kapasitesini ve 1s1l genlesmeyi faz gecisine yakin sicakligin bir fonksiyonu olarak tah-
min ettik. Termodinamik 6zelliklerin degerlendirilmesiyle ilgili olarak, termodinamik
fonksiyonlarin sicaklik bagimliligin1 da literatiirden elde edilen frekans kaymasi ve
hacim verilerinden tahmin ettik ve termodinamik ve spektroskopik biiyiikliikler i¢in
dogrusal iligkiyi olusturmak icin Pippard bagintilarim1 kullandik. Bagka bir hesaplama
olarak, harmonik olmayan 6z enerji yoluyla basincin bir fonksiyonu olarak frekans

kaymasi ve soniimleme sabitini (FWHM) hesapladik. Spektroskopik 6zelliklerin (fre-

vii



kans kaymasi, soniimleme sabiti) degerlendirmesine gore, soniimleme sabitini sabit
basing¢larda sicakligin bir fonksiyonu olarak elde etmek i¢in sanki spin-fonon birles-
tirme (PS) ve enerji dalgalanmasi (EF) modellerini de kullandik. Ters gevseme siiresi
ve sicakligin bir fonksiyonu olarak aktivasyon enerjisi de faz gecisine yakin olarak
hesaplandi. Bu hesaplamalara ek olarak, cesitli basing ve sicakliklarda termodinamik
ve dielektrik 6zelliklerini kiibik gauche kat1 nitrojenin Raman frekanslar1 kullanilarak
analiz edildi. Tiim bu hesaplamalar, analiz i¢in kullanilan yontemlerin, faz gecislerine

yakin diger bazi molekiiler katilara da uygulanabilecegini gostermektedir.

Anahtar Kelimeler: Titresim Frekanslari, Griineisen Parametresi, Ortalama Alan Te-

orisi, Soniim Sabiti, Kat1 Azot
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CHAPTER 1

INTRODUCTION

1.1 Phase and Phase transitions

The relation between macroscopic (mechanical) and microscopic properties of mat-
ter is an essential topic for condensed matter physics. In order to build the bridge
between microscopic attitude of atoms and observed macroscopic attitude of bulk
matter, the phase transition is a key issue since every material shows different prop-
erties at different phases according to thermodynamic conditions that it is subjected.
Hence, before investigating the phase transition of materials, we should mention to
understand the nature of phases. Phase is a homogeneous state where it shows same
macroscopic properties determined under the specified external conditions such as
temperature, pressure, electric fields.In the same phase, substance exhibits an equi-
librium state in which physical and chemical properties are uniform. Generally, most
of the materials shows four main phases that is solid, liquid, gas and plasma. In
each state, material is different in density, entropy, free energy, heat capacity etc. Ev-
ery matter has a variety of atomic arrangement that can be observed with different
properties regarding phases at certain pressures and temperatures. These different
orientations of their molecules provide to gain material to new optical,electrical and
mechanical features. In the same solid or liquid material, these distinct arrangements
can be observed. What it means that matter can possess several solid or liquid phases
at different pressures and temperatures. For instance, under high pressure, the crys-
tallic substance in the solid phase, can change its molecular arrangement to another
one hence it has another solid phase [[1] Actually, phase transition modifies not only
atomic arrangement but also electric properties of materials such as ferromagnetism

and superconductivity. However, the important question why the materials undergo



phase transition (change of state). The phase transition occurs when a phase becomes
unstable as a result of changing thermodynamic conditions. In nature, there are dif-
ferent phase transitions. One of the most common phase transitions is the change of
water into ice (solidification) or melting. Another one is that at above certain tem-
perature (Curie temperature), magnets cannot attract steel or iron pieces anymore.
Phase diagram is used to state the different phases in which a substance can exist. It
is a kind of chart with the two coordinate system. Generally, these two coordinates
are pressure and temperature as depicted in Fig.[I.T]while through the solid lines two
phases coexist, triple point represents that three phases (solid,liquid and vapor) can

exist together in an equilibrium state.

CRITICAL POINT

SOLID
LIQUID

VAPOR

PRESSURE

TRIPLE POINT

TEMPERATURE

Figure 1.1: Typical phase diagram for pure substance.

1.2 Properties of Solid Nitrogen

In order to examine phase transitions, crystalline systems are preferred. To discover
the structures and space groups of molecular crystals at various temperatures and
pressures, intermolecular potentials can give a lot of information. Generally, be-
cause of complex interactions between atoms, simple diatomics such as Hy, No, Iy

are preferred to investigate [2,|3]. Among them, solid nitrogen is an ideal diatomic
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molecule since it serves highly efficient properties in order to investigate intermolec-
ular interaction behaviors physically and chemically at high pressures , densities and
temperatures [4]]. One of them is that solid nitrogen is a first-row element which has
a strong triple bond N = N between atoms [5]], and also dimolecular nitrogen is one
of the elements which have a greatest binding energy . For that reason, solid nitro-
gen can remain stable up to extreme pressures and temperatures. After H, , it has a
shortest bond length about 1.09 A [6,/7). The other importing feature is its transition
from molecular phase to non-molecular (polymeric) phase at which there is a single
bond between nitrogen atoms under any compression [6-9]. At moderate pressures
and temperatures, there is a strong covalent bond between N atoms, however, un-
der any high pressures, nitrogen undergoes a transition to mono atomic phase. This
transition is an essential to discover barely noticeable differences between intermolec-
ular interactions in condensed matter. Also during this distortion, a large amount of
energy is released so that molecular nitrogen has a huge binding energy [[10-12]]. Be-
cause of its low atomic number, its facilitating to theoretical calculations is the other
important reason why solid nitrogen is used widely in the theoretical and experimen-
tal molecular interactions studies such as Raman spectroscopy, infrared absorption,
NMR, density functional theory ,x-ray ,diamond anvil cell (DAC) [[13}|14]]. Besides
this simplifying, solid nitrogen has a rich phase diagram under a wide temperature

and pressure range [[15-17]].

1.3 Phase Diagram of Solid Nitrogen

With the advent of diamond-cell and some computational methods (MD, DFT, Monte
Carlo simulations), investigating of intermolecular transitions and spectroscopy of
materials become more possible and accessible. Hence, research interest of ana-
lyzing structures of molecular crystals at high pressures and temperatures have in-
creased [18]]. According to the experimental [[19-24] and theoretical [7,/13}/14,25-29]
studies in the literature, solid nitrogen has nine phases shown in Figl[1.2] [30] .Solid
nitrogen in each phase represents different orientational structures.And these different
structures can be defined by means of space groups. Space group is described sym-

metry of crystals.There are 230 space groups for crystal systems. According to space



group, the first step is the determine the geometry of unit cell,then whether there are
reflection conditions should be checked for centred lattices, glide planes and screw
axes respectively. The information of all possible space groups can be find out in the
literature [31]]. Although solid nitrogen shows different behavior in different phases,
all phases are insulator with a large band gap.At low temperature and pressure be-
low 3500 atm , o ordered cubic phase exists [[16]. Its space group is Pa3. There are
four atoms per unit cell. Molecular motion is rotational describing a sphere in three
dimensions. When the temperature is increased up to 63 K, 3 phase occurs [32}33]].
Its structure is disordered hexagonal and space group is P63/mmc [34].In this phase
;molecules can rotate in two dimensions as disks. Beyond 3.5 kbar, tetragonal -y phase
occurs [[15,35]]. It is an ordered tetragonal phase and its space group is P42/mnm. It
is stable in the pressure interval which is 0.4 — 1.9 GPa. There is a triple point among
the «, 8 and ~y phases at 44.5 K and 4.7 kbar as seen in the phase diagram of nitrogen
(Fig.[1.2). At room temperature and P> 4.5 GPa, solid N, has cubic disordered 0
phase as determined by the x-ray diffraction [36-38]. Its space group is Pm3n.When
the pressure is increased or temperature is decreased ,d,0c occurs and It is cosidered
on as a partly ordered modification of the ¢ phase. ¢ — N5 that is rhombohedral phase
with eight oriented molecules per unit cell (R3c) exists below 40 GPa with increasing
temperature [39,40]]. At higher pressure up to 100 GPa ,a rhombohedral ¢ phase oc-
curs [41] with the space group R3c. 1-/V; and 6-N, phases appear at around 65 GPa
with 750 K and at around 69 GPa with 850 K, respectively [16,22]]. A high pressure
phase n — N, has been detected at around 200 GPa with 300 K by Raman [[18,42]
and another high pressure phase x has been investigated around 150 GPa by optical
spectroscopic techniques [20]]. Polymeric solid nitrogen gains different structure and
properties according to temperature, pressure or synthesized methods. Cubic gauche,
black phosphorus, a-arsenic and chainlike are important polymeric forms of solid
nitrogen as shown in Fig. [1.3][43]]. Among these polymeric forms of solid nitrogen,

cubic gauche is the important one due to its low energy about 0.86 eV/atom [7,43-46].

In the literature, various physical properties of solid nitrogen have been investigated
experimentally and theoretically as pointed above. Some of these studies are as fol-
lows: Medina et al. [17]] have obtained Raman frequency and linewidth data for the

E, and B, librational modes in the o phase of solid nitrogen. It has been reported
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that Tassini et al [23]] have measured the Raman frequency and FWHM (linewidth)
data for the 14 and 1, internal modes at various temperatures for the ¢, ;. and
0 phases of solid nitrogen.Transition of the molecular solid nitrogen to polymeric
forms (cubic-gauche) has been found experimentally by Eremest et al. [47,/48]] and
this transformation has been also confirmed theoretically [43-46,49,/50]. Regarding
phase transitions,at room temperature the 0 — € transition has been observed at around
17 GPa as obtained by Raman spectroscopy [42] and x-ray studies [S1]]. Besides vi-
brational properties, thermodynamic features of solid nitrogen have been reported in
the literature. Its thermal expansivity [52, 53] ,heat capacity [54,55] and isothermal
compressibility [56]] have been studied.

In this dissertation, we analyzed experimental results from the literature and calcu-

lated physical properties of solid nitrogen at wide pressures ( 0<P<300 GPa) and
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temperatures (0<T<1000 K). We predicted the Raman and IR frequencies of solid ni-
trogen at high pressures (at 160 GPa) through the Griineisen parameter and its volume.
By obtaining phase line equations, we calculated phase diagram of solid nitrogen by
using mean field theory and we obtained some thermodynamic quantities as func-
tions of pressure and temperature. Also, we examined the thermodynamic quantities
of solid nitrogen by means of the Pippard relations. The Raman bandwidths (FWHM)
of the solid nitrogen was presicted for the librational and internal modes in various
phases of solid nitrogen by using pseudospin-phonon coupling(PS) , energy fluctu-
ation (EF) and anharmonic self energy models near the phase transitions. Finally,
we calculated the inverse relaxation time and the activation energy as a function of

temperature for the Raman modes close to phase transitions in solid nitrogen.

As included the general information about the phases and phase transitions of pure
substance; phases, phase diagram of solid nitrogen and some previous studies on solid
nitrogen in this chapter, in Chapter 2, an outline of the theoretical background about
physical quantities and methods, which we are used in our calculations is given. In
Chapter 3, we present our calculations and the results which we have obtained during
this thesis preparation process. With the articles published [[57-61] and some articles
submitted to the journals. Finally, we summarize our all calculations and results in

chapter 4. Future work and applications are discussed in Chapter 4, conclusion.



CHAPTER 2

THEORY

2.1 Classification of Phase transition

In nature, we can observe so many phase transitions which are extreme variations of
properties in the thermodynamic behaviors of the physical systems. Solid-solid transi-
tion in crystals, conducting-superconducting in metals, and paramagnetic-ferromagnetic
transition in magnets can be some of examples for phase transitions. Moreover, phase
transition is used in so many technical and industrial systems such as steam generator
of a nuclear power plant, metallurgical operations and food systems [62]. Although
these phase transitions show specific thermodynamic properties, they can be classi-
fied in accordance with thermodynamic characteristics of them and there are different
classifications systems. Modern classification and Ehrenfest classifications are most
familiar of them. In this dissertation, Ehrenfest classification that depends on the dis-
continuity of the thermodynamic potentials with respect to thermodynamic variable
that is temperature, pressure, volume or order parameter is preferred because of its
convenience and reliability. Ehrenfest states in 1993 that phase transitions can be
classified as a first order (discontinuous) transition, second order (continuous) transi-

tion and higher order transition by considering thermodynamic potentials [[63] .

First order phase transition

In this case, the first derivative of thermodynamic potentials as a function of some
thermodynamic variables (temperature, pressure) is discontinuous. Hence according

to first order phase transition (discontinuous phase transition) , all the thermodynamic
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quantities such as volume, enthalpy, entropy are discontinues as given in Eq. [2.1][64].

oG oG oG
=), v-(r), mr(e) e

G is the Gibbs free energy.Liquid-solid phase transition is familiar examples for first
order phase transitions. Fig[2.1] exhibits the behavior of the some thermodynamic

quantities in the first order phase transitions [64].

GA

Vi SA

|
|
|
1

Po P To ik
Figure 2.1: The changes in thermodynamic quantities due to first order phase tran-
sition.G are continuous in the transition, but the first derivatives of G (V and S) are

discontinious[62]

Second order phase transition

According to second order phase transitions (continuous phase transition) , thermody-
namic quantities are continuous but the first derivatives of thermodynamic quantities
are discontinuous. For example, isobaric specific heat and isothermal compressibility

are discontinuous thermal quantities for second order phase transition as given in Eq.



2.2][64].
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Figure 2.2: The changes in thermodynamic quantities due to second order phase tran-
sition. First derivatives of G are continuous, but some second derivatives (C,) di-

verge[62]

Ferromagnetic transition [65] and superconducting transition [[66] can be examples
for this kind of transition. In higher order transitions ( multicritical transitions), the
potential energy is continuous but the third and higher derivatives of the potential
energy with respect to variables are discontinuous and reduced to zero at the transition
point [62]64]

2.2 Landau Phenomenological Theory

Although Ehrenfest’s classification is very valuable to exhibit similarities and differ-
ences between phase transitions, it is not sufficient to clarify all phenomena related
to phase transitions. Indeed, in the most of the phase transitions, a symmetry change
occurs. Hence, the symmetry change is also considered while studying phase transi-
tions. In 1937, a new approach was presented by L.D.Landau [67]]. He suggested a
new concept (order parameter) accompanied with the change of symmetry with the
phase transition [67]. Order parameter is a physical quantity affected by changing
of thermodynamic variables. For instance, when the pressure increases or decreases,
the order parameter is also varied. Order parameter is different physical quantity

depending on the different phase transitions. For example while in magnetic tran-
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sition, order parameter is magnetization, change of density can be used as an order
parameter in liquid-solid transitions [68] Generally, order parameter is defined zero
or non-zero due to high symmetry phase (disordered)and low symmetry phase (or-
dered) respectively. Generally, to investigate the thermodynamic properties such as
the free energy, entropy or isothermal compressibility of the systems, the Schrodinger
equation should be solved. For this purpose, so many numerical and long calculations
should be made. For example, for crystals, density of states must be calculated by us-
ing dispersion relation that is used for the expression that the solutions of Schrodinger
equation for the microscopic states are labeled by k. Then, thermodynamic properties
can be obtained by using density of states [69]. However, Landau [[67]] proposed that,
in the vicinity of the transition, free energy can be expressed as an expansion in terms

of order parameter as Eq[2.3]
Lo 1 s 1 gy 1 5
F (w, r:[‘7 P) = + §a2w + §a3w + 1342/} + ga5w (23)

where 1) is an order parameter,ag ,as, as, a4 and a5 are constants as a function pressure
and temperature. Generally, ay does not depend on the order parameter. However,
while a, depends on temperature or pressure strongly, as, a4 (it can be positive or
negative) and as are nearly independent of temperature or pressure [7/0]. Since in the
transition region, order parameter is very small, we can expand free energy as a func-
tion of order parameter. By minimizing the free energy in terms of order parameter
(OF /0v = 0), we can easily get the value of the order parameter .After calculating
order parameter and free energy F (¢, T, P), other thermodynamic quantities can be

obtained by using the expression below

F
Entropy S=- g—T (2.4)
. O’F
Heat Capacity Cp=-T (W) (2.5)
2
F
Inverse susceptibility Xo ! :g_lbz (2.6)
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2.3 Mean Field Theory

Mean field theory is a kind of approximation theory to convert many body problems to
one-body problems [71]. According to this theory, all interactions between the atoms
can be considered average interaction between them. Hence, difficult calculations can
be solved by considering this average approximation. The mean field approach can

be applied for free energy calculations in the Landau phenomenological theory.

2.3.1 Calculations of the Landau Energy in the Mean Field Theory

The main idea of Landau theory is to construct the free energy of the system in the
transition region of the phase transition. In order the calculate free energy, a suitable
order parameter should be chosen and certain boundary conditions [72] should be
applied due to the properties of the systems. Phase transition is defined as a first order

and second order transition according to whether symmetry is broken or not.

First Order Phase Transition

As stated in Eq.2.3, free energy can be expanded in terms of the order parameter by
using Taylor expansion. Higher order terms can be neglected since order parameter is
very small and little effect around the transition region. First order transition should

be analyzed in two different cases according to the conservation of symmetry.

Symmetric case:

Because of the symmetry of the system, only even terms are taken into account, but

quartic term must be negative [[71]]
1 1 1
f= §a2¢2 + 13477/)4 + 6a6¢6 (27)

where ay < 0, ag > 0 and ay = a, (T — T,) with constant a., and 7, is the transition

temperature. By using the stability condition (0F /0y = 0),

f =a)p 4+ a)® + ag)® =0 (2.8)

11



The solutions of equations(Eq[2.8)) are
=0 forT > T,

and
:| 1/2

b=+ [az + (as’ — dazag) "’ /2as (2.9)

Since a, is negative and ag is positive, at 7' > T'c, the order parameter has a single

solution that is However,1) = 0 below transition temperature, there are three solutions

with ¢» = 0 and Eq.

Asymmetric case:

According to the asymmetric case, cubic term is also used to calculate free energy

because the system does not have a symmetry [[71]].

1 1 1
f= §azw2 + §a3¢3 + 1341/14 (2.10)

Again by minimizing free energy with respect to order parameter, we have
Y =0

and
b= — [ag + (ag? — 4azay) " 2} /(2a4) @.11)

as solutions of Eq At high temperatures (7' > T'c) , zero order parameter is the
only solution because nonzero solutions become complex since ay = ay (T — T,).
However, below the transition temperature (7" < T'c), Eq gives nonzero solu-

tions.

Second Order Phase Transition

In the second order phase transition,free energy has a symmetry,

f(,T)=£(-¢,T) (2.12)

and in order to preserve symmetry, odd terms are not allowed to calculate the free
energy given by
1 1
f = §a2¢2 + Za4¢4 (2.13)
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and a4 must be positive [71]. By minimizing free energy under the boundary condi-

tion
of
<%) =0 = ag)) + ash® (2.14)
solutions are
=0
and
= — =+ (—2az/ay) (2.15)

1 is zero for the disordered phase above 7. and below transition temperature, Eq.

[2.13] gives the real solution for the second order phase transition as showed in Fig.

R.3[71]

Figure 2.3: Landau free energy at different temperatures for second order phase tran-

sition[69].

2.4 Griineisen Parameter

Griineisen parameter is a unitless quantity defined by Griineisen in 1912 [[74]] and it is
an important quantity to investigate thermoelastic properties of matters at high tem-
peratures and pressures. Actually, Griineisen parameter is considered as a measure of

anharmonicity of the crystals since at high pressures and temperatures, anharmonic
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term of potential energy becomes dominant [[75]]. Basically, there are two ways to
define Griineisen parameter denoted by ~ [[76]. One of them is microscopically rep-
resentation given as

d ln (v))

T T (V]) (210
where v; is the vibrational frequency for mode j and V is volume of the material.
Macroscopic (thermodynamic) definition of Griineisen parameter consists of familiar
thermodynamic quantities such as heat capacity (C, ), isothermal expansion («) and
bulk modulus (k1) is expressed by

CYTKJTV
Cly

YrH = — (2.17)

Griineisen parameter can also be defined as isobaric (y,,) and isothermal (y7) Griineisen

parameter according to its dependence on temperature and pressure as given by Eq[2.1§|

and [2.19] respectively,
V(0v/oT)p

v (8V/aT), (218)

TP =

V(0v/OT),

"= v, (2.19)

2.5 Damping Constant

In 1972, Yamada et al. [77] used an Ising spin-phonon system to explain the temper-
ature dependence of phonons by setting the macroscopic Hamiltonian. Hamiltonian
including antisymmetric part that clarifies to coupling between phonons and spin, is
described by Yamada et al. /7] as follows:

]_ * * ]‘ (JJ_>S iﬁ-?i
H = 3 Z <??s??s + w%sqﬁsqﬁs) —3 ZJ Jijaiaj—_Z Z \/kNg?sq?sUie %
1 ks

ﬁ
ks 1

(2.20)
where ¢ is the coordinate of phonon with the wave vector k& for s mode, ??S is
the momentum of phonon, w- is the characteristic frequency of phonon , J;; is

S
the pair interaction energy between o; and o, g7, is the coupling constant between
spin and phonon and o; is the Ising spin variable. N is the number of unit cell in

the molecular system. To simplify Eq{2.20] ¢ is transformed by using canonical
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transformation [78|]:

0= Q3,4 2 o swere T 221)
7 S

The normalized Hamiltonian can be written as
— % * -
H= 3 (Ve 7, +2,Q0,Q%,) + > e (Py) 010y (2.22)

where J. ¢ is the effective pair interaction between spins given by,

1 1 e

Js==5 | Jut 2o yorag. et @23
—
ks

The first term denotes the direct coupling energy and the second term is indirect in-
teraction between spins [77]. By using Fourier transforms of the Ising spin variable

denoted by o,
— 1 B
o k:> = — otk T 2.24
( — Z (2.24)

_>
the total Hamiltonian is provided with the o ( k) as follows:

1 . . 1 —-
=52 (P20, +93,00.03,) — 5 X darlon(Fo(-h) - @29
s ij
with
— g *
Topr(k) =3(k)+Y " g% gz, (2.26)
_)
k

In Eq[2.23] the first term is the anharmonic part (H4), the second term is the inter-
action of a phonon and pseudospin Hamiltonian (H,,;) by using Ising pseudospin-
phonon coupled model, respectively. Under phase transition, only interaction is the
Hamiltonian part considered due to domination of the energy in the molecular sys-
tems. Matsushita [79] has improved the Hamiltonian due to Yamada et al. [77] by us-
ing the Ising pseudospin-phonon coupled model for the interaction between more than
one phonon and pseudospin. He explained the behavior of frequency and linewidth
(damping constant) in terms of the temperature under phase transition by considering

Hamiltonian of a pseudospin-phonon coupled system in molecular crystals. Mat-
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sushita expressed Hamiltonian with the temperature dependence of phonon as

H :% > [BE)P(F0) + L (En)(Fn)QFnQ (R )

Ky
5 L@ @) ola) + Y Kuass (R )o@ (FnQ(E — )

q ?qu/
+ Z Kg,eff(?qq'uu’)a(q)a(q’)@*(?V)Q(E> —q—qV)+ Hy (2.27)

_
kq'vv!

where J.7r(q) is the effective exchange energy of pseudospins which is defined as
Jers(a) = () + ) _ lola))* (2.28)

While K s shows the interaction between two phonons (kv) and (k—g¢, ') and one
pseudospin with wave vector q, K, .ss represents the interaction between two (kv)
and (k —q— ¢/, 1)) and two pseudospins with the wave vectors q and ¢’ respectively.
Eq[2.27]is the basic Hamiltonian described by Matsushita [79] to investigate the tem-
perature dependence of damping constant and frequency of phonons due to their dy-
namical behavior. The damping constant of phonon derived by Matsushita [79] is

given as

—
‘Kl(k7QJV7V/>

8wwy (k — ¢, 1)

{[26C )

qv’

xS(q,w—wo (?—q,l/’)) +

x S <q,w + wp (? —q, 1/>) } (2.29)

where K;(k,q,v,1') is an effective coupling constant of the (kv) and (k — ¢,/')
phonons and pseudospin with the wave vector q and S(q,w) is the dynamic scatter-
ing function of the pseudospins. Laulicht and Luknar [80] made simpler Eq[2.29] by

means some assumptions:

%
v,w) can be nearly equal to I'( k v, w, ), w, is the peak frequency and w, =

N
J/)ng(k’ _qu)'

(b) Ki,w’s and n’s are almost independent on q and temperature in the vicinity of

transition temperature 7.
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(c) Integral can be used instead of summation on q.

— —
(d) S(q,w,(k)—w,(k —q)) =~ S(q,0) since S(q,v) is the Debye type function
below T..

(e) All terms of S(q,w, — wy) are zero.

According to all assumptions given above,damping constant was derived by Laulicht

(81]

[yp(w,) = A/S(q,w) (% + 1) d’q+ B (2.30)
where
S(q,w) = (n(w) + 1)% 2.31)

In Eq2.30, A and B are weakly temperature dependent constant,7, denotes the relax-
ation time and Y is dielectric susceptibility. Also, Laulicht [81] assumed that

n(w) + 1~ (kT/(hw)),(wr,)* < 1 and % < 1 for w =2 0.So, under this assump-
tion, damping constant can be written as

AKT
[yp(wy) = 5 x(q,0)7,d*q + B (2.32)

Lahajnar et al. [82]] have defined general dielectric susceptibility by using dynamic
Ising model in the random phase approximation as

C(1- P?r,

T (2.33)

x(q,0) =

where P is the order parameter, C is the Curie constant and 7 is the proton correlation
time. Then using all calculations of Lahajnar et al [[82], the temperature dependent of

damping constant near 7. can be written as [80,/82]

_ _ p2 Te
T, =To+A(l - P?)in <T g P?)) (2.34)

Here I'j is a background damping constant and A is constant.

A different approach to evaluate I';p has been presented by Schaack and Winter-
felt [83]] due to pseudospin phonon interaction. As a result of pseudospin- phonon
coupling, the phonon frequencies (w,h) undergoes a shift which is proportional to
order parameter (P). Then the broadening due to energy fluctuation of the mode has

been expressed as

k7x(q,0)

2 _
I, = =

(2.35)
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where V is the volume of the crystal. By using the dielectric susceptibility for a

dynamic Ising model (Eq[2.33)), damping constant is simply obtained as

T(1—P?) \Y?
T, =T)+ A 2.
= ot (T—Tc(1—P2)) (2-36)

As explained in Eq{2.34] I') and A’ are background damping constant and constant,
respectively. As a conclusion, in order to calculate and analyze the temperature de-
pendence of damping constant, pseudospin-phonon coupling (PS) and energy fluctu-

ation (EF) models can be used for molecular crystal systems.

2.6 Pippard Relations

Pippard relations are essentially phenomenological equations proposed by Pippard
[84]. He derived these relations on the basis of the cylindrical approximation of
pressure and temperature dependence of the entropy (S) close to the A transition given
as [85]]

S(P,T) = Sy + aT + f(T (d—P) —P) (2.37)
ar ) ,

Here, Sy and a are constants. By using this approximation, Pippard suggested two
equations as given below: First equation shows the linear relation between the heat

capacity (C, — C,,) and thermal expansion (a,)

dP dS
=T —_— T| — 2.38
o0=1ve, (i) +7 (i), @)
where T' (j—?) , corresponds to C), at constant volume, j—? is the variation of pressure

with temperature.
Second equation gives the linear relation between thermal expansion () with the

isothermal compressibility(xr) expressed as

dP 1dV

="t var

=T (2.39)

where as Eq , %’ is the variation of pressure with temperature and fl—‘T/ is the
variation of volume with temperature. Pippard relations are very useful equations in
order to calculate thermodynamic quantities of thermodynamic systems and compare
the linear variation of them as a function of pressures and temperatures.Hence, by

using these two Pippard relations, we analyzed and established the linear relation
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between C,, with ap (Eq2.38) and ap with r7 (Eqf2.39) for solid nitrogen.And also,
we predict dP/dT values for the fluid-solid, solid-solid phase transitions of molecular

nitrogen from these linear relations of thermodynamic functions.

2.7 Anharmonic Self Energy

Based on the harmonic approximation, there is no phonon interaction in crystals sys-
tems and lifetimes of phonons are infinite. However, within the real crystal, interac-
tions between phonons occur and are considered as anharmonic interactions which
contribute to the potential energy of crystals [86]]. These anharmonic (renormalized)
interactions are owing to quadric and cubic components of the total expanded crys-
tal potentials with respect to atomic displacement [[87]. The number of renormalized
phonons can be defined as occupation numbers (n) of all the phonons in the system
and to add one phonon k to the system (ny to nx + 1). This required energy can be

expressed as

hwy, + hwsk(quartic) 4+ hwsk(cubic) (2.40)

where hwy, and hwsk are first order and second order phonon energy, respectively
and depend on the occupation number of all the phonons. By using the second order

perturbation theory, energy shift can be obtained as a complex and it is written as

hAW(N) = RA(N) — ihT()) (2.41)

Here A()) is a frequency shift, 2I'(\) denotes a linewidth at half intensity of the
corresponding Raman line (FWHM) and X is a phonon mode with a particular wave
vector [87]. While the cubic and quartic anharmonic terms contribute the frequency,
only cubic anharmonic terms contribute to the linewidths (inverse phonon lifetimes).

By considering cubic and quartic terms of the second order phonon energy, frequency
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shift can be expressed as

18 2 (TL)\/ + nyr —+ 1)
hA =12 D, _ /,/277//4—1—— (OIVEY:

Yz )= S Lot [ e )

(TZ)\/ — TL)\//) _'_ (TL}\N — TL)\/) _ (n)\/ + TL)\N —|— ]_)

((,d)\ +w)\/ —(,U)\//) ((A)/\ —(,U)\/ —|—(,g)>\//) (WA _(,L))\/ —CL))\//)

2ny +1
205 APy —n—ar % } (2.42)
>\l/

and linewidth that consists of only cubic components of the second order phonon

energy is defined as

18
ALy :Tﬂ ; [Po v |* {(nx + o + 1)d(wn — wx — wir)
—|—(TL/\/ — n)\//)[(S((,L))\ + wy — CL))\”) — 5((,&.)/\ — Wy + W)\//)]} (243)

where @) y \» represents the potential energy coefficient and ny is the occupation

number at the equilibrium it is expressed as
1
- exp(hwy/kpT) — 1
In Eq[2.44] w), the is harmonic frequency and k5 is the Boltzman constant [87]. The

(2.44)

frequency shift can be expressed as [87],
Ax=CN)+ Y CX)n(N) (2.45)
)\/

In this equation, C'(A) and C'(\, \') are temperature independent factors and they rely
on cubic and quartic interactions [88]]. By assuming that the Raman mode interacts
only with one other excitation, its Raman frequency can be written as

%)

w(T) =w; + Ty —

(2.46)

where wq (') is the harmonic frequency of vibron, w; and w, are constants [88]]. Also
by assuming that vibron attracts with a second excitation to produce a third one, the

temperature dependence of the bandwidth can be given as

1 1
ehwo/kpT _ 1 o elw—w")/kpT _ 1]

T\ =Ti(V)] (2.47)

In Eq2.47, w, w" and w” = w + w’ denotes to the Raman frequencies of vibron (w)
and the other two excitations (w’ and w”) [88].';()\) is the background linewidth and
we take that I'; (\), I's(\) are the temperature independent. As mentioned above, only

cubic terms are considered while calculating the Raman linewidth [88]] .
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CHAPTER 3

CALCULATIONS AND RESULTS

3.1 '"Calculations of the Raman and IR frequencies from the volume data at

high pressures in Solid nitrogen."

Raman and IR frequencies of molecular structures can be calculated by using statis-
tical models through observed data from the literature. In this study, we calculate
the pressure dependence of the Raman and IR frequencies of the lattice and internal
modes of solid nitrogen up to 160 GPa at room temperature. We used observed fre-
quency data [20] for the high-pressure phases of €, £, x and cg-N solid nitrogen. By
using experimental volume data [30] and the Raman and IR frequencies, Griineisen
parameter at constant temperature (yr) for the lattice and internal modes, are calcu-
lated at various pressures. First of all, by fitting experimental Raman and IR frequen-
cies (v) and crystal volume (V) as a function of pressure of solid nitrogen through

quadratic equations which can be defined as
vr(P) = ag + a; P + ay P? (3.1)

and

Vi (P) = by + b1 P + by P? (3.2)

respectively, where ag, a, as and by ,b;, by are constants, pressure dependence of
isothermal mode Griineisen parameter () which defines the anharmonicity of the
systems is obtained according to,

V(P)(0v/OP)r

) = =Ry av/aP), G
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Also, we can obtain the Raman frequencies by using Eq[3.3| with the pressure depen-

dent additional term A(P)

vr(P) = A(P) + vpexp [—fﬁ(P)ln (VT‘EOP N (3.4)

where 1 and V; denote the values of the Raman frequency and volume at P=0 and

T=300 K. The pressure-dependent term can also be assumed as
A(P) =a+bP + cP? (3.5)

with constants a,b and c¢ , which can be obtained by fitting to the experimental data
for the Raman frequencies. We analyzed the observed data for the crystal volume and
the experimental frequencies at various pressures due to Egs.(3.1)) and (3.2), respec-
tively, and we obtained the coefficients (aq , a;, as and by ,b1, bs) as given in Table
B.1(Eq[3.2), Table [3.2] (Eq[3.1) for lattice modes and Table [3.3| (Eq[3.1)) for vibrons
within the pressure intervals studied. We added the a3 P? term in Eq in order to
obtain the best fit for the lattice modes of vy and vy and the vibrons of v, and vsy.
Value of the coefficient a3 is given for relevant lattice modes and vibrons in Table
[3.2] and Table [3.3| respectively. Then, we computed isothermal mode Griineisen pa-
rameter (Eq[3.3) by using values of coefficients (Tables [3.143.3) for the lattice modes
and vibrons. Figs show the change of (v7) with the pressure for the lattice
modes at room temperature. We plotted (y7) as a function of pressure as indicated in

Figs[3.4)and [3.5] for vibrons of solid nitrogen.

Table 3.1: Values of the coefficients to Eq. lb fitted to the observed volume data[30]

for solid nitrojen.
o 3 o3

V(A | bo(A”) | 0,(A°/GPa) | by x 1074(A° /G Pa?)

Solid N, | 11.75 -0.076 2.58

We were then able to predict the Raman and IR frequencies of those modes for the
phases of ¢, &, x and cg-N solid nitrogen by the means of Eq[3.4] By fitting observed
frequency data [20] for the lattice modes and vibrons with respect to Eq[3.4] the co-
efficients of A(P) were obtained as given in Tables[3.4]and [3.5] respectively. We also
added cubic polynomial term dP? to Eq for the lattice modes of vy and vy ;and
the vibrons of 154 and v,y as implemented to Eq[3.T|for the observed frequency data
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Table 3.2: Values of the coefficients according to Eq fitted to the observed Raman

and IR frequencies [20] for the lattice modes indicated within the pressure interval

for solid nitrogen.

v ag a, —ay x 1072 as x 1074 Pressure interval
(em™) | (em™) | (em™'/GPa) | (em™/GPa?) | (em™ /GPa?) P(GPa)

vy 309.9 4.61 0.88 - 42.9<P<139.8
Vrr 308.5 491 1.23 - 80.4<P<160.1
VIirr 195.5 4.82 1.05 - 24.7<P<111.0
vrv 204.5 4.72 2.80 0.86 42.9<P<110.5
vy 70.2 4.28 1.15 - 60.7<P<124.1
Vyr 20.3 4.71 4.45 1.62 23.4<P<110.5
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Figure 3.1: Pressure dependence of the isothermal mode Griineisen parameter (yr)

calculated for lattice modes indicated according to Eq[3.3|by using the observed data

for the Raman and IR frequencies [20] and volume[30] of solid nitrogen.

fitting (a3 P?) .

At the end of the study, we calculated Raman and IR frequencies

of solid nitrogen by using Eq[3.4and depicted for the lattice modes and vibrons as a
function of pressures in Figs[3.6/and[3.7] respectively, with the observed data [20,30].

For the calculations provided, the pressure induced change in the isothermal mode
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Figure 3.2: Pressure dependence of the isothermal mode Griineisen parameter (7yr)

calculated for lattice modes indicated according to Eq[3.3|by using the observed data
for the Raman and IR [20] and volume [30] of solid nitrogen.
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Figure 3.3: Pressure dependence of the isothermal mode Griineisen parameter (7yr)

calculated for lattice modes indicated according to Eq[3.3|by using the observed data
for the Raman and IR frequencies[20] and volume [30] of solid nitrogen.

Griineisen parameter () represented in Figs for the Raman and IR frequen-
cies of the lattice modes and the vibrons v; and v; in solid nitrogen. According to our

results, calculated (yr) values of the lattice modes vy and vy (Fig3.1)) and vy (Fig3.3|
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Figure 3.4: Pressure dependence of the isothermal mode Griineisen parameter (7yr)
calculated for vibrons indicated according to Eq[3.3| by using the observed data for

the Raman and IR frequencies[20] and volume [30] of solid nitrogen.

increase with increasing pressure in the pressure interval 60 to 140 GPa except that
(vyr) value of the lattice mode vy ; decreases from 20 to 60 GPa. Griineisen parame-
ter () related the vibrons (v; and v5) is reduced (Figs and with increasing
pressure with the exception of the v, and 154 modes. While the (y7) values for the
Vs, mode increase (Fig) as the pressure increases, for the 1o, mode the (yr)
values decrease first then start to increase about 100 GPa (Fig. [3.5c). According to
Sherman’s studies where he predicts that at high pressures,(v7) values approach to

1 for molecular crystals, our (v7) calculations show nearly good agreement with his

80 90 100 110 120 130 140 100 110 120 130 140 150 160 30 40 50 60 70 80 90 100 110 120
Pressure(GPa) Pressure (GPa) Pressure(GPa)

Figure 3.5: Pressure dependence of the isothermal mode Griineisen parameter (vy7)
calculated for vibrons indicated according to Eq[3.3] by using the observed data for

the Raman and IR frequencies[20] and volume [30] of solid nitrogen.
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Table 3.3: Values of the coefficients according to Eq fitted to the observed Raman

and IR frequencies [20] for vibrons indicated within the pressure interval for solid

nitrogen.
v ag aq —ay x 1073 as x 107° Pressure interval
(em™) | (em™) | (em™'/GPa) | (em™/GPa?) | (em™ /G Pa?) P(GPa)
vy 2335.6 3.26 22.18 - 17.3<P<60.0
Vo 2368.4 1.30 3.76 - 98.3<P<152.0
Vop, 2402.0 0.65 1.19 - 97.7<P<141.2
Voe 2378.6 1.16 3.26 - 96.9<P<150.5
Vag 2307.4 3.60 33.27 1.12 36.2<P<110.2
Voe 2321.1 1.87 6.48 - 98.2<P<140.4
Vas 2323.1 2.20 13.14 2.51 17.2<P<141.3
Vag 2493.7 -0.91 -3.46 - 105.8<P<140.9
vy 2343.1 1.78 7.24 - 31.9<P<111.2
Vo1 2331.1 1.88 10.72 - 17.0<P<80.8
Voo 2389.4 0.80 10.72 - 80.8<P<139.4

Table 3.4: Values of the coefficients of the pressure-dependent term A(P) according

to EqJ3.5|for the lattice modes within the pressure intervals indicated for nitrogen.

A(P) a b cx 1073 dx10~* Pressure interval
(em™) | (em™'/GPa) | (em™/GPa?) | (em™ /GPa?) P(GPa)
vr 214.44 0.637 23.70 - 42.9<P<139.8
Vi -0.64 4.924 -12.32 - 80.4<P<160.1
virr | -154.17 7.698 -46.97 - 24.7<P<111.0
Vv 48.53 -2.873 109.49 -7.35 42.9<P<110.5
vy -59.64 4.117 -9.24 - 60.7<P<124.1
vyr | -16.04 4.376 -31.45 0.67 23.4<P<110.5
prediction for lattice modes and vibrons [|89} 90]. In the last part, we calculated

Raman and IR frequencies of lattice modes and vibrons studied above by means of
Eq[3.4|and we plotted with the observed data for the lattice modes (Fig[3.6) and vi-
brons (Fig[3.7). According to Figs[3.6] and [3.7] we obtained the same behavior of

the calculated frequencies by the change against pressure with the experimental ones,
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Table 3.5: Values of the coefficients of the pressure-dependent term A(P) according

to EqJ3.5|for the vibrons within the pressure intervals indicated for nitrogen.
A(P) a b cx 1073 dx 107%) Pressure interval
(em™) | (em™/GPa) | (em™'/GPa?) | (em™/GPa?) P(GPa)
vy 0.63 -0.013 21.50 - 17.3<P<60.0
Vg -29.45 0.714 0.66 - 98.3<P<152.0
Vab -4.19 0.140 2.58 - 97.7<P<141.2
Vae -24.31 0.596 0.73 - 96.9<P<150.5
Vg 7.17 -0.493 43.79 -3.03 36.2<P<110.2
Ve 353.78 -6.066 28.90 - 98.2<P<140.4
Vo -23.46 1.603 -17.09 0.95 17.2<P<141.3
Vay | -456.35 13.592 -80.58 - 105.8<P<140.9
vp 39.84 -1.494 14.79 - 31.9<P<111.2
Vo 1.97 -0.107 11.30 - 17.0<P<80.8
Vo | -5561.67 117.863 -618.09 - 80.8<P<139.4
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Figure 3.6: Raman and IR frequencies calculated for the lattice modes(red squares)

indicated as a function of pressure according to Eq[3.4] for solid nitrogen. Observed

data ( black squares)[20] are also given here.

which increase with pressure up to 160 GPa except that v, mode starts to decrease

after 80 GPa ,which is not shown in Fig Also, at around 100 GPa, 5 mode
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Figure 3.7: Raman and IR frequencies calculated for the vibrons(red squares) indi-

cated as a function of pressure according to Eq[3.4]for solid nitrogen. Observed data

( black squares)[20] are also given here.

splits out as it softens during the phase transition from the € to the £ phase in solid
nitrogen. This softening concerns with the increasing of the vibrational coupling or
the weakening of the intramolecular bonding between molecules [49,91,92]. As
pointed out previously [[14]], due to the interactions between high pressure-induced
molecules , pressure-induced decomposition creates a polymeric phase called a cubic
gauche [43]]. When we compared with the Fig[3.6]and Fig[3.7] the external (lattice )

modes are more sensitive than internal (vibrons) modes against the compression [93]].
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3.2 "Calculation of the phase diagrams for the fluid-solid and solid-solid (6 —

d10c — €) transitions in molecular nitrogen by using mean field model."

Phase diagram is the convenient way to describe the phases and phase transitions of
materials in terms of temperature and pressure as pointed out in Chapter 2] In this
study, we derived phase line equations in order to calculate phase diagrams using the
mean field theory for the models of the solid-fluid and the solid-solid transitions of
the 0 — d;, — € in nitrogen. To obtain phase line equations, free energy expanded in
terms of order parameter was analyzed. Pressure and temperature dependent coeffi-
cients in the expansion of the free energy were obtained by the means of fitting of
the phase like equations to the experimental data from the literature [23,|55,/94] As
mentioned in Chapter 2, according to mean field theory, there are two kinds of phase
transitions depending on the transition type. These are first order and second order
phase transitions. In these calculations, we predicted phase diagrams of nitrogen by
considering the first order fluid-solid transition and, the second order 6 — ;. and the

first order 9;,. — € transitions.

Fluid-solid transition

To describe the fluid-solid transition of nitrogen, the free energy expanded in terms

of order parameter 7 with the cubic term was used as given by
Fy = ayp® + azn’ + aqny’ (3.6)

where as ,a3 and a4 are the temperature and pressure dependent coefficients and we
assumed as > 0, ag < 0 and ay > 0 for the first order phase transition. By applying

two boundary conditions:

1) minimizing free energy with respect to order parameter (OF/0n = 0),

2) no ordering in liquid phase (Fg = Ff,:q = 0), we then get order parameter as

2
as 2(14
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Hence, we obtained the phase line equation for the first order fluid-solid phase tran-
sition in molecular nitrogen as

a3 = 4azay (3.8)

We assumed that a, and a3 are the temperature and pressure dependent, respectively,

while a4 is constant as given below :

[ ago(T - Tm) (39)
as = Cl,g()(P - Pm) (310)
ay = Q40 (311)

where 7}, and P, represent the temperature and pressure at the melting point, respec-
tively. By substituting Eqs[3.9]and [3.10]into Eq[3.8] phase line equation was obtained

as functions of pressure and temperature
ago(P — Py) = 4dagyas(T —T,) (3.12)

We expand Eq[3.12] as expressed in Eq[3.13]

f(T,P)=T —a; —ayP +asP?>=0 (3.13)
where
2 P2
ay = Ty 4 —300m. (3.14)
dazgas
2
P,
y = — 307 (3.15)
2a90a49
2
g = —— 230 (3.16)
dazoaso

Eq[3.13| was then fitted to the experimental phase diagram data and the values of aj,
as and a3 were predicted at the maximum values of 7;,=1769.4 K and F,,=74.3 GPa
on the melting line [|55]] for the fluid-solid transition in nitrogen as given in Table 1.We
plot the calculated phase diagram and experimental data with the uncertainties [S5]
as depicted in Figure 3.8 for the fluid-solid transition in N,.Also another observed P-

T [94] data taken from the literature were fitted through Eq[3.13]in order to calculate
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the coefficients of phase line equation. For the coefficients we used the maximum

values of 7},=1920 K and P,,,=50 GPa we assumed that

a9 = CL20(T - Tm) (317)
ag = azo(T — T)y,) (3.18)
ay = CL40(P - Pm) (319)
Again by inserting Eqs [3.17H3.19]into Eq[3.8] we get
a3o(T — Tp) = daspas(P — Py,) (3.20)

By expanding Eq[3.20] we get Eq[3.§| with the a3 = 0, where

4
o =T, — (24 p (3.21)
Qs
and
4
ay = 200 (3.22)
asg

Then, Eq[3.13] was fitted to the observed linear melting line according to the two
pressure intervals and the coeffcients a,(Eq[3.21), a; (Eq[3.22) were determined as
given in Table [3.6] This is plotted in Fig[3.8] for the melting temperature with the
observed data [94]. In Eq. [3.13] to get the best fit from experimental data, we took a;
as a zero. Regarding to the first order fluid-solid transition in nitrogen, we obtained
that the temperature increases with increasing pressure up to about 90 GPa in the
melting region as mentioned experimentally [55]. When we look at the change in
the temperature of melting, there is a linear increase up to a maximum point where
the temperature is 1920 K and the pressure is 50 GPa . However after this point, a
sharp linear decrease occurs down to 1400 K and 71 GPa as obtained experimentally
[94].Table gives us the dT/dP values of melting temperature according to linear
fit with the pressure and temperature intervals.The negative slope value in Fig[3.§]
implies that the liquid is denser than the underlying solid as stated previously [94].

Also, the sharpness of the changes in the melting temperature can be an evidence
of first order liquid-liquid polymer transition [94] that supports the molecular dy-

namic simulations [14]]. The reason why the experimental data taken from Refs. [55]]
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Table 3.6: Values of the fitted parameters within the pressure intervals indicated for
the fluid-solid transition[53] and the melting curves[92] according to Eq[3.13]and for
the solid-solid transitions of § — d;,. and d;,. — € [23] according to Eq{3.35 in Ns.

o as X 1072 | a3 x 1075 | Pressure interval
f(T, P)
(K) (K/GPa) | (K/GPa?) P(GPa)
Fluid — solid
43.6 -7.1 4.80 15.9<P<74.3
transition
200.98 3599.0 - 0.2<P<49.7
Meltingcurve
4.924 -12.32 - 49.5<P<71.2
Oloc — € -4.44 4.12 3.11 3.9<P<21.4
0 — Oloc -1.98 3.78 3.84 5.5<P<33.6
2000 -
m Observed [53]
e Observed [92]
—— Calculated §
1600
3
'_
1200
800 : . . : . -
20 40 60 80
P(GPa)

Figure 3.8: Calculated phase diagram of N, in the melting region according to
Eq.(3.6) by using the mean field model. Observed data (squares)[53] and (circles)[92]

with the uncertainities are also given for the fluid-solid transition in nitrogen.

and [94]are different is because of the difference methods used which are Raman
spectroscopy and visual observations from laser speckle motion for the melting curve
[94]]. When compared the calculated data with the experimental ones [55,94], there

is a good agreement between them so that mean field theory is a adequate to analyze
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Table 3.7: Values of the slope(dP/dT) within the temperature and pressure intervals
according to the equations indicated for the transitions in /N5. 7T}, and P. denote max-
imum (7, ,P,,) values for the melting curve and fluid —solid transition (Fig[3.8).
dT/dP values are calculated at 300 K for the § — 9;,. and d;,. — € transitions in N.

Transition T, P, dT/dP Temperature Pressure Reference | Equation

in N (K) (GPa) (K/GPa) Interval(K) Interval(GPa) No. No.
34.6(T <T.) | 74.57<T<1939.0 | 0.2<P<49.7

Melting Curves | 1920.0 | 50.0 92 3.13
-25.5(T < T.) | 1437.3<T<1932.2 | 49.5<P<71.2

Fluid — solid 1746.7 | 74.0 -0.0638 816.0<T<1769.41 | 15.9<P<74.3 53 3.13

Oloc — € 300.0 | 10.72 16.7 181.2<T<463.3 3.9<P<21.4 23 3.35

0 — loc 300.0 | 17.35 16.4 100.4<P<534.8 5.5<P<33.6 23 3.35

the phase transition in nitrogen.

0 — ;.. — € transitions

In this section , we analyzed solid — solid transitions of J — d;,. — € in solid nitrogen
as a two separate transitions of  — d;,. and ;.. — € using mean field models. For
the & — 0y, transition, while ¢ is a disordered phase, d;,. is a partially-ordered phase.
Hence, this transition was assumed to be of a second order. For this calculation, we
used disorder parameter (o) and order parameter (x) for the disordered ¢ phase and
partially-ordered d,,. phase, respectively. The expansion of the free energy in terms

of the disorder parameter and order parameter could be represented as
Fs 5. = bok? + byr* + cp0? + cy0* + do*s? (3.23)

Here, bs, by, co, ¢4 were assumed to depend on the pressure and temperature and d is
the coupling constant. Since § — dy,. transition is considered as a second order, all
coefficients are taken positive. Due to the symmetry reasons and positive free energy
reason, we considered only even terms in the Eq[3.23] By taking derivation of Eq[3.23]

with respect to the order parameter  and disorder parameter o, we find

F
or _ 2k (by + 204> + do?) (3.24)
Ok
and
oF
S = 20 (cy + 2c40” + dr?) (3.25)
o
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For the disordered phase ¢, ordered parameter « was taken as zero (x = 0). Under

this condition, the solution of Eq[3.24 was obtained as

by 20
Oy =————K

7 7 (3.26)

Also, solution for Eq/3.25| 0=0 was defined for the J;,. phase with the nonzero order
parameter . By substituting Eq3.26]into the solution of Eq[3.25] the order parameter

Kk was obtained as
2b204 — CQd

N d2 — 4b4C4
For this calculation, the free energy Eq.(3.23) was arranged in terms of the order

R2

(3.27)

parameter ~ as follows:

bg b204 2b4 b204 4b4C4
Fs_s5.. = Pl <7 — 02> + 7 <7 —c ) K2 + by < 7z 1) kY (3.28)

Phase line equation was derived from Eq by applying condition for as given the

second order transition

2by [ byc
& (274 _ 02) _0 (3.29)
By assuming pressure and temperature dependence of coefficients as
b2 - bzo(T - TC) (330)
by = byo(T — T) (3.31)
cy = c(P — F.) (3.32)
Cy = C40(T - TC) (333)

with the constantd, we obtained temperature and pressure dependence of the phase

line equation (Eq[3.29) as
2b20c40(T — T0.)* = ca0d(P — P.) (3.34)

where 7. and P, are the critical temperature and pressure, respectively.

By expanding Eq[3.34] we get in the form of
f(I,P)=P —a; — T +asT? =0 (3.35)
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where
2bapca

=P, T2 3.36

aq +( Cgod ) c ( )
4baocao

_ T. 3.37

Qo ( Cood ) ( )

2b

(g = 22040 (3.38)

C20d

Then the coefficients oy , s and a3 were determined by fitting quadratic function
(Eq[3.35) to the observed data [23] as given in Table 3.6l We plot in Fig[3.9] the
calculated phase diagram according to Eq[3.34 with the observed data for the 6 — 0y,
transition in solid nitrogen. When the consider d;,. — € transition of nitrogen, the free
energy of the d;,. and e phases can be expressed based on the first order transition

with the order parameter « and p,respectively,
Fs,. = byr?® + byr®* + bgr® (3.39)

and

Fy,,, = eap? + eap’ + eop® (3.40)

where bs, by, bg and es, ¢4, €6 denote the pressure and temperature dependent coeffi-

cients. Due to the conditions for the first order ;.. — € transition , we have by > 0,

by < 0and bg > O for Fjs, _, and es > 0, ¢4 < 0 and eg > 0 for F,. By using two

boundary conditions which are the minimization of free energy with respect to the or-
OF, .

der parameter (% = 0 and %—ZE = 0) and equivalence of free energy of two phases

(010c and €) at the transition region (Fj,, = F.), we obtained phase line equation from

Eqs[3.39)and [3.40] as
b% b2b6 6% €2€6
226 2 2% 3.41
b4 ( + Qbi €4 + 26121 ( )

This phase line equation is valid under the ansatz bybs/b? << 1 and eseq/ed << 1.

We assumed here temperature and pressure dependence of phase line coefficients as

by = boo(T — 1) (3.42)

by = by(P — P,) (3.43)
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b@ - b@o(T - Tc)(P - Pc) (344)

for the ¢, phase and
€y = 620(T - Tc) (345)
€4 = 640(P - PC) (346)
€ — 660(T - TC)(P - Pc) (347)

for the € phase in V5. By using the same procedure as the d — ;. transition, functional
form of the coefficients (Eqs[3.42} was obtained and it was substituted into
the phase line equation (Eqi3.41)) to predict phase diagram of d;,. — € transition of

nitrogen.
o = b, 72 (P2bo0 _ ocoo / b _ oo (3.48)
! c ¢ Qbio 2be§10 b40 €40 )

b3,b es,e b3 €3
oy = 2T, (202 _ =20 60) (ﬂ - ﬁ) 3.49
! ( 2b20 2b620 / b40 €40 ( )

b3 b 3 b2 2
a = — ( 00— 620650) / <ﬂ - @) (3.50)

2b3, 2bey, bio €40

Eqgs. (3.48}{3.50) are the definition of the coefficients of Eq.(3.35)) for the &, — €
transition. Those values were predicted by Eq3.30| to the experimental data [23] as
given in Table Fig[3.9]gives the T-P phase diagram for the d;,. — ¢ transition with
the observed data 23] in nitrogen.  For the § — d;,. — € transitions, the T-P phase
diagram was predicted by using the mean field model with the free energies, that was
considered as of a second order transition for the o — 9, and a first order transition
di0c — € separately in nitrogen [23]]. The disordered ¢ phase undergoes the partially-
ordered d;,. phase at around 10.5 GPa and 300 K that is regarded as a second order due
the change of the orientational behavior of molecular nitrogen from the free rotation
to the localized mode. However, for the d;,,. — € transition, significant hysteresis
prevents to specify the transition temperature as pointed earlier [23]]. This uncertainty
indicates metastability of one phase with respect to the other [23]]. Both experimental
[14L122,23,51,95] and theoretical calculations [25]] stated that the ordered e phase

becomes stable in the pressure interval of 2-40 GPa. As a results, on the basis of
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Figure 3.9: Calculated phase diagram of N, for the transitions of d;,. — € and ;.. — €

according to Eq using the experimental data [23].

these calculations, the analyzing of the T-P phase diagram by using mean field theory

can also be used for the other molecular crystals.

3.3 '"Calculation of the thermodynamic functions using a mean field model for

the fluid-solid transition in nitrogen."

In our earlier studies, we calculated phase diagram of solid nitrogen by using the
phase line equation derived from the free energy for the solid-fluid and, solid-solid
transitions of the 6 — d;,. — € in nitrogen [23,55,94] through the mean field mod-
els [58]. In this part, we predicted some thermodynamic quantities of solid nitrogen
as a function of temperature near the melting temperature by applying same proce-
dure as the previous study. We investigated those temperature dependences of the
thermodynamic quantities such as order parameter, inverse susceptibility, thermal ex-
pansion, isothermal compressibility, specific heat etc. by using the measured melting
temperature [56] and the observed T-P data [55]].

First, we expanded free energy in terms of the order parameter v close to the solid-

liquid transition according to the Landau phenomenological model with the cubic
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term which leads to a first order solid-liquid transition as
Fy = ag® + agip® + agtp’ (3.51)

where a, , ag and a4 can generally depend on temperature and pressure. For this cal-
culations, density is considered as an order parameter. By minimizing the free energy
with respect to order parameter (0F /01 = 0) and using the first order condition ac-
cording to which there is no ordering in the liquid phase (Fs = F}, = 0) , we obtained
the solution as

e (3.52)

We then have the phase line equation from Eq/3.52]
a3 = 4azay (3.53)

We assumed the temperature and pressure dependence of the coefficient as (Eq[3.53))

as

a3y = (P — P) — asy — an (T — Ty) + ase(T — T) (3.54)

Here, aso , as; and aqy are constants and we took the value of the as as unity. To
determine the value of the coefficients of Eq[3.54] we fitted the experimental data
[55./56] through functional form of phase line equation (Eq[3.54) as given in Table
[3.8with the transition temperature (7}) and pressure () which have maximum values

for the solid-liquid transition.

Table 3.8: Values of the coefficients a;, which were obtained by fitting Eq.(3.54

(a9=0) to the experimental T-P data for the solid N,-liquid N, transition [54,53]
within the temperature and pressure intervals indicated. Values of the transition tem-

perature (7;) and pressure () in Eq.(]?fﬂ[), are also given here.

T, P, as0 | ag; X 1072 | a9y x 107° Temperature Pressure Ref.
(K) | (GPa) | (GPa) | (GPa/K?) | (GPa/K?) Interval(K) Interval(GPa)

1769.4 | 74.3 -8.70 8.80 3.90 816.0<T<1769.4 | 15.9<P<74.2 | 23
1972.7 | 1069 | 11.29 11.34 3.59 241.0<1972.7 1.5<P<106.9 | 54

First, we calculated the order parameter (1)) as a function of temperature and pressure
as plotted in Fig[3.10p and [3.10p, respectively, for the solid-liquid transition by using
Eq Calculated v decrease with the increment of the temperature and pressure
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Figure 3.10: Variation of the order parameter ¢ (normalized) with the temperature
(a) and the pressure (b) at the transition pressures of P, =74.3 GPa and P,=106.9 GPa
by using the observed T-P data (circles) [54] and (squares) [53], respectively, for the
solid —liquid transition in N, according to Eq@ through Eq@

as expected for two observed data taken from the literature [55,56]. By using the

definition of the inverse susceptibility (x,, D
Xy = OF/oy? (3.55)

and using the Eq we predicted the inverse susceptibility Xil as a function of
temperature and pressure. Figs[3.1Th and give the variation of the inverse sus-
ceptibility of the order parameter with the temperature and pressure, respectively.
According to these figures, there is an almost linear decrease of the inverse suscepti-

bility as the temperature and pressure increase.

The thermodynamic quantities of the entropy (S), heat capacity (Cp), thermal ex-
pansion (ap) and isothermal compressibility (k1) were also calculated by using their

definitions of S = (0F/0T),,
C, = T(9S/dT), (3.56)
ap = (1/V)(0V/oT)p

and

rr = —(1/V)(0V/OP)r

respectively, for the solid-liquid transition in Ns.

We depicted the normalized entropy (S/Sy) as function of temperature (Figi3.12)

39



12 4 Y (a) 12 4

T T T T T T T T T
200 400 600 800 1000 1200 1400 1600 1800

T(K)

Figure 3.11: Inverse susceptibility x,, ! of the order parameter v as a function of tem-

perature (a) and pressure (b) at the transition pressures of ,=74.3 GPa and F,=106.9

GPa by using the observed T-P data (circles) [54] and (squares) [53] respectively, for

the solid —liquid transition in N, according to Eq
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Figure 3.12: Entropy S (normalized ) calculated from the free energy (Eq.11) as a

function of temperature at the transition pressures of ,=74.3 GPa and F,=106.9 GPa

by using the observed T-P data (circles) [54] and (squares) [53] respectively, for the

solid —liquid transition in N, .

,the normalized heat capacity (Cy/Cyy) (Fig3.13),the normalized thermal expan-
sion (ap/apy) (Fig3.14) and the normalized isothermal compressibility (k7 /k70)

(Fig[3.15) as a function of temperature at the transition pressure (P=F;) for the solid
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Figure 3.14: Thermal expansion «, (normalized ) as function of temperature at the

transition pressures of £,=74.3 GPa and F,=106.9 GPa using the observed T-P data

(circles) [54] and (squares) [53] respectively, for the solid —liquid transition in V,.
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Figure 3.15: Isothermal compressibility x7 (normalized) as a function of temperature
at the transition pressures of F,=74.3 GPa and F,=106.9 GPa by using the T-P data

(circles) [54] and (squares) [53] respectively, for the solid —liquid transition in Vs.

liquid transition in N,. According to these figures (Figs. [3.12}{3.15), they show
the same behavior as a large increase especially close to the melting point. For C,,
(Fig[3.13), ap (Figl3.14), and k¢ (3.15)), we obtained nearly the same values by using
two different observed data [55,56]] as stated above. In the melting region, those ther-
modynamic quantities exhibit anomalous behavior due to the appearance of a liquid
which is denser than the solid. Hence this critical behavior of them states that the
mean field model with the cubic term is sufficient to analyze the first order liquid-

solid transition in nitrogen.

3.4 'Raman bandwidths calculated for the librational ( a-phase) and internal
(€, 010 and & phases) modes in [N, using pseudospin-phonon coupling (PS)

and energy-fluctuation (EF) models"

The temperature dependence of Raman bandwidths was calculated by using the pseudospin-
phonon coupling (PS), energy fluctuation models and Raman frequencies with respect

to the order parameter was analyzed for the for the £, librational mode in the « -phase
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(P=0) and for the internal mode v in the phases of ¢, d;,. and J at constant pressure
(P=18 GPa) using the experimental data from the literature [23| 88].In this context,
the frequency difference of the internal modes v, and 15 as a function of temperature
was also analyzed at various pressures (13.2, 14.95, 18.5 and 21.2 GPa) using the ex-
perimental data [23]]. Regarding to calculation of the Raman frequency, temperature
dependence of the order parameter was studied in the molecular field theory [[79,96]

as given by
2T,
T

below the critical temperature (7..). We calculated the order parameter (S) as a func-

s=1—exp(——) (3.57)

tion of temperature at the P=0 for the £/;mode in the o phase and at the 18 GPa for
the 14 mode in the ¢, d;,. and ¢ phases in nitrogen. In this calculation, normalized
Raman frequency (/1) was considered as an order parameter which various from 0

(disordered phase) to 1 (ordered phase) and it was examined through Eq[3.58]
v/vg = ag+ a;T + apT? (3.58)

where 1 is the maximum frequency , the coefficients ag , a; and as are constants.
By the fact that we fitted experimental v data for the £, librational mode at P=0 [88]]
and for the internal mode 1, at P=18 GPa [23]]in the solid nitrogen, the coefficients of

Eq3.58|(ao , a1 and ay) were determined as given in Table3.9]

Table 3.9: Values of the coefficients ag , a; and ay (Eq3.58) and, of the a,b and ¢

(Eq3.59) with the 1 and T values for the Raman modes of £, for the transition of
a — [ [86] and v for the transition of € - ;. -  [23] at the pressures indicated within

the temperature intervals in solid nitrogen.

P T. Transition | Raman | ag | a; x 1073 | —ag x 1078 v a b c Temperature
(GPa) | (K) modes (K1) (K72) (em™h) Interval(K)
0 38.74 a—f. E, 0.99 24 9930 34.98 17.39 -35.88 19.56 4.88<T<38.74
18 413.87 Oloc—> 0 0.99 0.0398 6.76 2388.35 | 8.95 x 10° | —1.79 x 10° | 8.95 x 10° | 332.54<T<413.87
v
323.34 € — o ! 0.97 0.19 31.8 2389.57 -57.28 58.20 - 299.54<T<323.34

To analyze the correlation between order parameter S and the normalized Raman

frequency (v/1y), the quadratic expression
S =a+b(v/v) +c(v/v)? (3.59)

was used. Values of coefficients a,b and ¢ were obtained (Table [3.9) by means of

fitting the order parameter calculated (Eq3.57) to the normalized Raman frequency
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(v/wg) (Eq for the £, librational mode and v; mode in the €, ;.. and § phases
in nitrogen. Fig[3.16] gives the temperature dependence of Raman frequency for the
Eg librational mode in the o phase [88]] calculated via Eq[3.59 with the observed data.
The calculated Raman frequency of the v; mode with the variation of temperature
(P=18 GPa) according to Eq[3.59] was plotted in Fig[3.17in the €, d;,. and ¢ phases
[23]] of solid nitrogen.

B observed
35'0 u Calculated

34,5

_.34,0

v(cm

33,5

33,0
p=0
32,5 ]

0 I 5 10 15 20 25 30 35 40

T(K)
Figure 3.16: Raman frequency calculated for the Raman modes of £, by using
Eqs.(3.57) and (3.58)) through Eq. (3.59) for the aphase (P=0) with the observed

data [86] in solid nitrogen.

We also analyzed the difference between the Raman internal modes of 1, and v at
constant pressures of 13.2, 14.95,18.5 and 21.2 GPa for the ¢, ;.. and J phases [23]]
of solid nitrogen. We obtained values of the coefficients of ag , a; and ay (Eq3.58)
by fitting observed frequency shift (4 - 15) [23]] data through the Eq[3.58]. Then
we calculated the order parameter S by the molecular field theory and the values of
coefficients of a, b and ¢ (Eq[3.59) were determined from our analysis of v, - v, with
respect to the temperature at constant pressures for the transitions of solid nitrogen
as given in Table3.10] with the critical temperatures (7). We depicted the Raman
frequencies calculated from Eq[3.59| for the frequency difference v; - 1 as a function
of temperature at constant pressures with the observed data in Fig[3.1§|

Damping constant was then calculated according to the pseudospin-phonon coupled
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Figure 3.17: Raman frequency calculated for the internal mode of v; by using

Eqs.(3.57) and (3.58)) through Eq. (3.59) for the ¢, ;. and 6 phases (P=18 GPa)
with the observed data [23] in solid nitrogen.

Table 3.10: Values of the coefficients ay , a; and ay (EqJ3.57) and of the a,b and ¢
(Eq3.58) with the vpand 7. values for the frequency difference (v; - v, ) of the 1, and

vy for the transition of € - d;,. - 0 [23] at the pressures indicated within the temperature

intervals in solid nitrogen.

P T. Transitions | ag | aq x 107 | —ay x 107° Y a -b c Temperature
(GPa) | (K) (KY) (K2 | (em™) Interval(K)
13.2 336 £ 6 Oloe — O -0.34 11.23 2.26 15.58 1.17 | 0.88 | 0.60 | 300.88<T<333.23
1495 | 364+6 Oloc — 0 0.065 7.64 1.50 17.53 1.35 1.32 | 0.87 | 304.56<T<358.97
419+9 Oloe — O 0.42 4.5 0.838 20.75 1.34 1.34 | 0.93 | 321.47<T<425.15
18.5 € = Oloc
329+ 3
(heating) 0.56 3.31 0.614 21.65 | 35.67 | 71.63 | 36.84 | 300.15<T<323.68
6106 —€
312+3
(cooling)
456 £ 12 Oloe — O 0.46 4.03 0.710 22.67 1.24 1.10 | 0.79 | 352.35<T<451.62
21.2 € = Oloc
372+3
(heating) 0.88 1.08 0.231 23.76 | 15.83 | 31.90 | 16.98 | 302.35<T<371.47
6[05 — €
351+3
(cooling)

(PS) model (Eq[2.34) and the energy fluctuation (EF) model (Eq[2.36) by taking by

Raman frequency as an order parameter (S). The values of the background damping
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Figure 3.18: Raman frequency calculated for the frequency difference (v - 15 ) of
the v; and 1, by using Eqgs.(3.57) and (3.58)) through Eq. (3.59) for the €, ;. and

phases at constant pressures with the observed data [23] in solid nitrogen.

constant ['((I';) and the amplitude A’(A) was obtained for the librational £;mode in
the « phase (P=0), the internal mode 1;(P=18 GPa) and for the frequency difference
(v1 - 1) at constant pressures (P=13.2, 14.95, 18.5 and 21.2 GPa) in the phases of ¢,
di0c and ¢ as a function of temperature by fitting the experimental Raman linewidth
(FWHM) data through Eqs[2.34] and 2.36|the £, [88], 1 and ( vy - 1) [23] in solid
nitrogen, as given in Tables [3.113.12] and [3.13] respectively. Then, we calculated

damping constant ' as a function of temperature by means of two models (PS and EF)
using the values of order parameter S, the background damping constant I'j(I';) and
the amplitude A’(A) for the E, [88], 1 and (14 - v2) [23]] in solid nitrogen. Figs.

give our calculated temperature dependent damping constant (I') according to the
PS (Eq[2.34) and EF (Eq{2.36)) models for the librational mode £, (P=0), the internal
mode v; (P=18 GPa) and the frequency difference (v, - 15) at constant pressures (13.2,

14.95, 18.5 and 21.2 GPa) with the observed data.

For this study, as observed experimentally studies of Medina et.al. [[88]] and Tassini et
al. [23] , the librational £, mode and the internal mode v; were preferred because of

their soft mode behaviors since their Raman frequencies decreases as the temperature
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Table 3.11: Values of the coefficients calculated according to the Eqs)2.34{ and [2.36
for the £, librational mode of the a-phase (P=0) in solid nitrogen.

P Models | I'{(Ty) A'(A) Temperature
(GPa) (em™) | (em™) | Interval(K)
0.11 5429 | 5.01<T<24.17
oS -0.17 337.31 | 26.94<T<38.57
0 - 3.3821073 | 7.62 5.01<T<20.99
-3.36 22.92 | 24.17<T<38.56

Table 3.12: Values of the coefficients calculated according to the Eqsj2.34|and [2.36
for the 1y mode for the phases of €, d;,. and 6 (P=18 GPa) in solid nitrogen.

P Phases | Models | I'j(T'g) | A'(A) Temperature
(GPa) (em™) | (em™) Interval(K)
PS 3.03 | -33.32
€ 298.92<T<325.47
EF 0.23 1.06
PS -3.77 72.59
18 Oloc 338.40<T<418.38
EF -1.02 5.21
PS 236 | 59.56
o 423.06<T<443.46
EF 0.07 3.89

increase towards 7. (Figs[3.16/and [3.17)). This decrease of the Raman frequency was

also observed for the frequency difference (v; - 1) with the increasing temperature

at constant pressures (Fig[3.18).Related to the order parameter, there is a nonlinear
relationship for the Raman frequency (Eq[3.59) i.e. S o< (v/1)?, as obtained for the
E, librational mode in the o phase at P=0 (Fig[3.16) and for the v, internal mode
in the phases €, dj,. and 0 at P= 18 GPa (Fig[3.18) of solid nitrogen. Regarding

to bandwidth of the librational £, mode, the lines broaden as the temperature in-

creases [97-99] (Fig[3.19). The combination of E,with T, librons in order to create

47




Table 3.13: Values of the coefficients calculated according to the Egs. [2.34{and [2.36

for the frequency difference (v/1-1,) for the phases of ¢, 9, and d at constant pressures

in solid nitrogen.

P Phases | Models | I'j(Ig) | A'(A) Temperature
(GPa) (em™) | (em™) Interval(K)
PS -2.29 3.42
Oloc 295.60<T<331.49
EF -0.79 6.95
13.2
PS 0.06 0.42
) 340.85<T<386.10
EF 0.29 0.52
PS -1.47 2.52
Oloc 315.09<T<362.95
EF -0.37 5.16
14.95
PS -1.47 2.78
) 338.40<T<418.38
EF -0.29 5.93
PS -0.28 0.49
€ 298.92<T<325.47
EF -0.06 0.95
PS -1.27 2.56
18.5 Oloc 338.40<T<418.38
EF -0.22 5.72
PS -3.12 5.32
) 423.06<T<443.46
EF -1.15 13.66
PS -0.03 0.23
€ 302.81<T<361.26
EF 0.08 0.49
PS -0.38 1.32
21.2 Oloc 365.34<T<431.23
EF 0.16 2.98
PS -2.83 5.28
) 455.53<T<480.26
EF -0.45 10.38

T, phonon clarifies this behavior of the temperature dependence of the linewidth for

E, mode [88]]. According to temperature dependence of damping constant (FWHM),
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Figure 3.19: Damping constant (linewidth) calculated from Eqs)2.34/and [2.36

E, mode for the a-phase (P=0) with the observed data[86] in solid nitrogen.
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Figure 3.20: Damping constant (linewidth) calculated from Eqs)2.34/and [2.36,

for the

for the

v1 mode of the €, d;,. and  phases at constant pressures with the observed data [23]

in solid nitrogen.

there is an abnormal jump for the phase transitions especially from e to ¢, for £, and

v1 modes as shown in Figs. and Although ¢ and ¢,,. phases are disordered

49



040 . m Observed (23] .
® PS model (Eq.2.34)
13.2 GPa . I 'y s 8 14.95 GPa A EF model (Eq.2.36) Iy
035 o ‘ -
=
d .
0,30 a
. ]
§ . *
025 loc = . a
-
0,20 HEC | 8
[y . [
0,15
~ .t e 8Ioc
LE> 010 | & L]
=
=
10
5 8
09 :: 21.2GPa 8 _!l
18.5 GPa
08 . am
] 3 ¢
07 .
S, LR D
06 loc o 6
| ]
a
05 M 6|OC
L ]
04 ] N a 4
[} | R4
0s ¢ 1
02 8 8 2
L]
0.1 e a s ss amEsS o
300 320 340 360 380 400 420 440 300 320 340 360 380 400 420 440 460 480

Figure 3.21: Damping constant (linewidth) calculated from Eqs{2.34{and [2.36] for the

frequency difference (v;-1,) for the phases of ¢, d;,. and ¢ at constant pressures with

the observed data [23] in solid nitrogen.

, 010c phase becomes increasingly order with decreasing temperature [23]]. In addition
to that larger bandwidth value of the ; mode (sphere) when compared to the 1, mode
(disks) is the result of rising of the solid angle proped by the disk type molecules in
the disordered o phase [23]].

3.5 "Calculation of the thermodynamic functions from the Raman frequency
shifts close to the e- d;,. - 6 phases transitions and Pippard relations in

nitrogen."

In this part, we calculated the thermodynamic quantities of the thermal expansion
(o), isothermal compressibility (x7) and the difference in the heat capacity (C,-
C, ) as a function of temperature close to the transitions of e- d;,. and d;,. - 0 by
examining the experimental Raman frequency shifts of the internal modes v , v5 and
Voo 1n the solid nitrogen [23]]. For this prediction, in addition to the observed Raman
frequency shifts data, observed volume data as a function of various pressures from
the literature were used for the e- 0, - J transitions [56,/94]]. And also, the Pippard

relations are analyzed for the e- §;,. and d;,. - 9, fluid-solid transition and melting
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curves in nitrogen.
Regarding the volume dependence of the vibrational frequency, the isobaric mode

Griineisen parameter was calculated by using the Eq[3.60]

__ (A/v)(ov/oT)p
TV @v/aT) (360

where v is the vibrational frequency and V is the crystal volume. To calculate the
thermal expansion with the definition ap = (1/V)(0V/0T)p, Eq was arranged
according to the frequency shifts of the Raman modes and their vp values expressed

as
ap = —(1/vp)(1/v)(0V/OT)p (3.61)

In order to calculate the thermal expansion, observed Raman frequency was analyzed

by using quadratic function as a function of temperature,
v(T) = ag + a;T + axT? (3.62)

In Eq[3.62] the values of coefficients ag , a; and ay were determined for v , 15 and v,
in the ¢, d;,. and 0 phases of solid nitrogen as given in Table within the tempera-
ture intervals. For the calculation of thermal expansion ( Eq[3.61)), we used a constant
~vp value (-0.14) determined for the vibron v5 in the § phase of solid nitrogen in an
earlier study [100] for the v; , v, and v in the €, d;,. and 0 phases of solid nitrogen.
After calculating the thermal expansion, we calculated the isothermal compressibility

w7 and the difference in the heat capacity C,-C,, as function of temperature by using

Eqs[3.63] and [3.64] respectively,
ap/kr = dP/dT (3.63)

and

C,=C,+TVas/kr (3.64)

For calculating the isothermal compressibility (Eq[3.63)), we obtained dP/dT values
from the observed T-P data [[23]] due to

P=a+bT +cT? (3.65)

where a,b and ¢ are constants and given in Table for the 0- ;. and 0;,.-€ transi-

tions in solid nitrogen [23]]. Finally, we calculated the difference in the heat capacity

51



Table 3.14: Values of the coefficients calculated according to the Eq|3.62

vibrons indicated in solid nitrogen.

for the

Raman modes | Phases | ag(cm™!) | a;(em™'/K) | aa(em™/K?) | Temperature Interval(K)
€ 2320.32 0.46 —7.61 x 1074 298.9<T<325.5
21 Oloc 2374.51 0.09 —7.6 x 107* 327.3<T<407.1
) 2402.93 -0.06 5.20 x 107 423.1<T<477.5
€ 2363.10 0.03 -5.32 301.3<T<323.6
Vy Oloc 23717.73 -0.06 9.39 332.6<T<413.6
) 2366.06 0.01 -1.05 423.4<T<472.8
€ 2372.90 -0.02 3.98 301.6<T<325.2
Voo Oloc 2367.29 0.01 -1.20 331.3<T<411.78

per unit volume (C, — C,,)/V (Eq{3.64) with regard to the ap and k7 at 18 GPa for

the phases of ¢, d;,. and ¢ in solid nitrogen.

Table 3.15: Values of the coefficients calculated according to the Eq/3.65

phase transitions indicated in solid nitrogen.

for the

Transitions | a(GPa) | b x 1072(GPa/K) | ¢ x 107°(GPa/K?)
0 — Oloc -3.7 3.57 4.09
Ooc — € 0.51 4.56 3.40

Fig[3.22}{3.24] represent the calculated thermal expansion «p, the isothermal com-

pressibility xr and the difference in the molar heat capacity (C}, — C,,)/V in terms of

temperature for the internal modes v/ ,1, and 9 in the €, §;,. and d phases of solid ni-

trogen. According to these figures, the ap (Fig{3.22), 57 (Fig{3.23) and (C, — C,)/V
(Figi3.24)) for the vibron v, increase with increasing of temperature in the d;,. phase

while they decrease with temperature in the € and J phases. However, the calculated

ap, kr and (C, — C,)/V for the vy mode decrease with increasing temperature in

the € and ¢;,. phases.

Considering the linear variations between the calculated thermodynamic quantities

ap, kr and (C, — C,)/V, we examined Pippard relations according to
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Figure 3.22: Temperature dependent thermal expansion calculated from Eq{3.61

ax10°(K™)

5 18 GPa °
_ .y,
[ ]
[ J A2
[ ]
4 v v
° 22
Sloc [ ]
3_
[ ]
2_ .
[ ]
1 ¢ °
_ v oy
e YV v °
[ ]
[ ) Vv vy v ®0 o ° o
04 Wwv vy
[ |
[ |
|
T T T T T T T T T T T T T T T T
300 320 340 360 380 400 420 440 460
T(K)

480

for

the Raman modes of v; , 5 and v, for the phases of €, d;,. and ¢ in solid nitrogen.
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Figure 3.23: Temperature dependent isothermal compressibility calculated from

Eq[3.63] for the Raman modes of v, , v, and v, for the phases of €, ;.. and J in

solid nitrogen.

C, = TVap(dP/dT)T + T(dS/dT)
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Figure 3.24: Difference in the heat capacity calculated from Eq/3.64{ for the Raman

modes of v , v, and 14, for the phases of ¢, d;,. and d in solid nitrogen.

and

ap = kp(dP/dT)T + (1)V)(dV/dT) (3.67)

We plotted (C,, — C.,)/V versus apT (Fig[3.25) and ap versus « (Fig[3.26) and we
obtained the slope values of dP/dT (Eqs[3.66and[3.67) and the intercept (1/V)(dV/dT)
(Eq3.67) as given in Table at 18 GPa for the phases of €, d;,. and 4 in solid
nitrogen [23[].We also compared those dP/dT values with the values obtained from
the Eq[3.63| using the coefficients in Table for the J- 9, [101] and J;,.- € [102]

transitions.

Table 3.16: Calculated dP/dT values by using Eq{3.65
dP/dT and the intercept of (1/V)(dV/dT) (Eq.7) derived from the Pippard relations
(Eqsm andm for the vibrons of solid nitrogen.

and the values of the slope

Transitions T.(K) | dP/dT x 1072(GPa/K) | dP/dT x 1072(GPa/K) | (1/V)(dV/dT) x 10~8(K ') Temperature
N, Eq.(3.64) Eqs.(3.66) and (3.67) Eq.(3.67) Tnterval(K)
0 — dioc 419+9 71+0.1 332.62<T<472.83
€ — Ojoc (heating) | 329 £ 3 680 £ 0.02 6.8 4.86
= 301.29<T<413.60
€ — 0jpc(cooling) | 312 £ 3 6.68 +0.02

From linear variation of (C, —C,,)/V with ap T (Fig3.25) and avp with 1 (Figi3.26),
we obtained the same slope value of dP/dT (Table [3.17) as pointed in Figs[3.25 and
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Figure 3.25: (C, — C,)/V versus apT for the phases of ¢, d,. and 0 in solid nitrogen
according to the Pippard relation (Eq.
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Figure 3.26: Thermal expansion (cy,) versus the isothermal compressibility (x7) for

the phases of ¢, d;,. and ¢ in solid nitrogen according to the Pippard relation (Eq .

for the vibrons vy , 5 and vy in the €, 05, and & phases of solid nitrogen.
By means of the pressure dependence of the isothermal compressibility x , thermal

expansion ap and heat capacity C,which were calculated, we examined the Pippard
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relations (Eqs[3.66] and for the fluid-solid transitions [55]] and melting curves
[94] in nitrogen. First of all, we analyzed the pressure dependence volume data to

calculate the isothermal compressibility as a function of pressure
V =by+ b1 P+ byP° (3.68)

Here, the values of coefficients b, ,b; and b, were obtained by fitting Eq to the ob-
served volume data [56]] as given in Table Then, we calculated the isothermal

Table 3.17: Values of the fitted parameters according to Eq)3.68| for the fluid-solid

transition[53] in nitrogen.

V-P | boA’/atom) | b;A°(Jatom.GPa) | by x 10-4(A’ Jatom.GPa?) | Pressure range (GPa)

(Eq368 | 1241 | -0.105 | 5.29 | 18.63<P<80.23

compressibility with the definition

10V
R = —va—PT (369)

close to the fluid-solid phase transition in nitrogen. Fig[3.27|represents the isothermal
compressibility as a function of pressure for the two different observed V-P data [55,
56] for solid nitrogen. The thermal expansion ap was calculated via the calculated
isothermal compressibility xr through Eq[3.63] In this relation, the value of dP/dT
was obtained from the observed P-T phase diagrams [[55,/94]] for nitrogen.

We analyzed the P-T phase diagrams by the quadratic functions expressed as

f(T,P)=T —a; +ayP + azP* =0 (3.70)

Table 3.18: Values of the fitted parameters according to Eq)3.70| for the fluid-solid

transition[53] and melting curve[92] in nitrogen.

f(T,P) a1 (K) | as x 1072(K/GPa) | az x 1073(K/GPa?) | Pressure Interval(GPa)
Fluid-Solid transition | 265.12 39.99 -0.27 15.9<P<74.3
Melting curve 200.98 3599.0 - 0.2<P<49.7

where «; , as and ag are constants. By fitting this equation to the two observed T-P
data [55,94]], the values of coefficients «; , as and as were obtained for the fluid

solid transition as given in Table For melting curves in nitrogen, because of the
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Figure 3.27: Isothermal compressibility (k1) at various pressures calculated accord-

ing to Eq for the two different observed V-P data (circle[53] and square[54]).

Table 3.19: Values of the dP/dT and the (1/V)(dV/dT) according to the Pippard rela-
tions (Eqsm anqm]) for the fluid-solid transition in nitrogen.

Transitions | dP/dT x 1073(GPa/K) | Pressure Interval | dP/dT x 1073(GPa/K) | (1/V)(dV/dT) x 10~*(K ') | Pressure Interval
N Eq.(3.63) (GPa) (Eq.3.67) (Eq.3.67) (GPa)
18 -19.0 24.3<P<48.79
Fluid-Solid 36 15.85<P<74.26
(Calculated) 34 -1.18 52.64<P<74.26
Melting curve 28.6 0.17<P<49.72 36 0 0.17<P<49.72
(Observed|2])

linear relationship between temperature and pressure, we found a3 as zero when we
calculated dP/dT value as pointed in Table [3.18] We depicted pressure dependence of
thermal expansion ap according to Eq[3.63| by using observed T-P data of the fluid-
solid transition [55] and melting curve [94] in Fig[3.28] Then by using Eq[3.64] we
predicted the difference in the heat capacity C,, — C,, as a function of pressure for the
fluid-solid transition as given in Fig[3.29] when the x (Fig[3.27), ap (Fig[3.28)) and
C, — C, (Fig[3.29) .We find that they decrease with increasing pressure. As obtained
above, we also obtained linear variation (C, — C,)/V with apT (Fig[3.30) and ovp
with rp (Fig[3.31) for the fluid-solid transition. Table [3.19|gives the values of dP/dT
obtained from Pippard relations (Figs[3.30]and [3.31)) and the experimental values for

the fluid-solid transition [94]. When our calculated slope values were compared (
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Figure 3.28: Thermal expansion (ap) at various pressures calculated according to

Eq@ for the two different observed T-P data (circle[92] and square[53]).
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Figure 3.29: Difference in the heat capacity at various pressures calculated according

to Eq.@ for the fluid-solid transition in nitrogen.

36 x 1073G Pa/K) with the experimental data(34 x 1072 GPa/K) (52.64<P<74.26),
we nearly obtained the same value for the fluid-solid transition [55]]. For the melt-

ing curve, it can also be compared with the observed value of 28.6 GPa/K in the
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Figure 3.31: Thermal expansion (ap) versus isothermal compressibility (k1) as a
function of pressures according to the Pippard relation (Eq[3.67) at two different pres-

sure interval.

pressure interval of 0<P<50 GPa [94]. In the pressure interval 49.72<P<71 GPa ,the

slope is negative that can be explained with the denser liquid phase than the under-
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lying solid [94]. This sharp change of the slope can be evidence of a first order
liquid-liquid polymer transition and transition of molecular nitrogen into a chainlike

polymeric form [94].

3.6 '"Calculation of the Raman frequency and linewidth of vibrons using an-

harmonic self energy model for the e- ;.. - 4 phases in nitrogen."

In this study, we analyzed the Raman frequency shifts and linewidth (FWHM) of
the vibrons v4,v5 and 155 with respect to temperature (P=18 GPa) and also frequency
difference (v1-15) at constant pressures of 13.2, 14.95,18.5 and 21.2 GPa by the an-
harmonic self energy model in the €, d;,. (localized d) and ¢ phases of solid nitrogen.
According to anharmonic self energy, energy shifts can be expressed as a complex ,

as pointed out in Chapter 2]
hRAw(N) = RA(N) —ihl(X) (3.71)

for a mode A with a particular wavevector and polarization [87,88].So that the temper-
ature dependence of frequency shift and linewidth of vibrons can be calculated close
the phase transitions by using this expression (Eq[3.71).Regarding to Raman frequen-
cies of vibrons vy, and 19y , Eq[2.46] was fitted to experimental data [23]], for the
vy , Vo and vy at various temperatures (P=18 GPa) and also the frequency difference
(v1-11) at constant pressures indicated above for the phases of ¢, d;,. and d in solid
nitrogen. We plot temperature dependence of Raman shift calculated for the vibrons
v1(Fig[3.32)) and 14 and 15 (Fig[3.33) with the observed data [23]]. Fig[3.34jgives the
frequency shifts (v1-1,) of the Raman vibrons as a function of temperature for the
v, and v, in Fig.(3.34) for the phases of €, J;,. and 0 at constant pressures (13.2,
14.95,18.5 and 21.2). Table and Table |3.21| represent the fitted parameters of
Eq[2.46] ( wo, wiand wy) for the vibrons vy , 15, 155 and for the frequency difference

(v1-11), respectively, in the phases of ¢, ;. and ¢ in solid nitrogen.

As observed experimentally [23], we found decrease of the Raman frequency of
vibron 14 with increasing temperature at 18.5 GPa in the phases of ¢, d;,. and 0

(Fig[3.32). The Raman frequency of vibrons v, and v, increase with the increas-
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Figure 3.32: Temperature dependence of the Raman frequency for the vibron v, as
a function of temperature (P=18.5 GPa) according to Eq[2.46| which was fitted to the

experimental data [23] for the phases of ¢, ;.. and ¢ in the solid nitrogen.
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Figure 3.33: Temperature dependence of the Raman frequency for the vibrons v, and
99 as a function of temperature (P=18.5 GPa) according to Eq[2.46| which was fitted

to the experimental data [23] for the phases of ¢, ;.. and ¢ in the solid nitrogen.

ing temperature in the ) phase while they are independent of the temperature in the €

phase as shown in Fig Similar behavior of decreasing 1/; with increasing tem-
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Table 3.20: Values of the parameters for the Raman frequencies of the vibrons v, , v
and v, according to Eq[2.46| by using the observed data [23] within the temperature
intervals indicated for the phases of €, d;,. and ¢ (P=18 GPa) in solid nitrogen.

Vibron modes | Phases | wi(em™!) | wa(em™) | wo(em™?) | Temperature Interval(K)
€ 2393.61 -0.80 55.03 298.9<T<325.5
121 Oloc 2388.76 | -1912.74 | 273247 327.3<T<407.1
o 2392.48 -0.05 3.20 423.1<T<477.5
€ 2367.99 -18.62 1777.37 301.3<T<323.6
) Oloc 2365.35 0.13 15.05 332.6<T<413.6
) 2368.52 0.003 1.95 423.4<T<472.8
€ 2368.99 -0.01 25.6 301.6<T<325.2
v Owe | 236897 | 0.04 17.57 331.3<T<411.78

Table 3.21: Values of the parameters for the frequency difference (1-15) of the Ra-
man internal modes v4 and v, according to Eq[2.46| by using the observed data [23]
within the temperature intervals at constant pressures indicated for the phases of e,

010 and ¢ in the solid nitrogen.

Pressures | Phases | wi(em™) | —wa(em™) | wo(em™1) | Temperature Interval(K)

) 18.56 0.04 2.88 342.06<T<384.71

132 Oloc 30.08 0.10 2.08 300.88<T<333.24
14.95 4] 21.09 0.08 4.83 367.06<T<442.06
Oloc 30.03 0.08 1.98 304.56<T<358.97

) 24.70 0.08 4.13 425.15<T<472.20

18.5 Oloc 32.74 0.08 2.20 321.47<T<425.15
€ 2191 4282.16 2919.59 300.15<T<323.68

4] 29.66 0.09 3.70 459.71<T<489.85

21.2 Oloc 36.18 0.09 2.42 352.35<T<451.62
€ 24.14 142.20 1790.64 302.35<T<371.47

perature, was observed in the frequency difference (v;-1,) at constant pressures (13.2,
14.95, 18.5 and 21.2 GPa) (Fig[3.34) since frequency of the vibron 14 is constant in
the phases of € and ¢ in solid nitrogen. It has been indicated that when the pressure
increases in the ¢, d;,. and § phases of solid nitrogen, the magnitude of the frequency

difference (v1-1,) increases with increasing temperature (Fig{3.34)). As a second or-
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der transition associated with changes in the orientational behavior of N, molecules
from a free rotation into orientationally located mode, it has been stated that an ab-
normal behavior of the vibration frequency shift occurs with decreasing temperature
in the ¢ phase of nitrogen [23]]. This anomalous behavior can give softening of some
of the intermolecular vibrations [49,92] that can be either caused by the weakening
of intramolecular bonding or increased vibrational coupling [41]. On the basis of in-
creasing intermolecular interactions, vibrational splitting can occur as observed for
the internal mode v, which splits into a v, internal mode in the € and d;,. phases
of solid nitrogen (Fig[3.33). Our calculations for the temperature dependent Raman
frequencies follow the same trend as observed values except the change of Raman
frequencies of the v, vibron between the ¢;,. and ¢ phases at 18.5 GPa (Fig.
The nitrogen molecules are orientated in the ordered e phase when compared to the
partially ordered ¢;,. and disordered § phases. Hence, this unexpected behavior of the
vy vibron between the ¢;,. and € phases at 18.5 GPa may occur due to the orientation-
vibron coupling. On this basis, the anharmonic self energy model is insufficient with
strong orientation-vibron coupling for the v; internal mode in the € phase in Ns.

By using anhormanic self energy model, the temperature dependence of linewidths
(FWHM) I'(\) was calculated for the v, , v and 15 vibrons and also for the v;-1, of
the modes v; and 14 of the phases €, dj,. and ¢ in N,. For this calculation, Eq[2.47]
was fitted to the experimental FWHM data taken from the literature [23|]. The value
of coefficients (I'; (\), I's(A) and w') (Eq are represented for the v , 15 and 1o
vibrons at 18 GPa and frequency difference (,-11) at constant pressures (13.2, 14.95,
18.5 and 21.2 GPa) in Tablg3.22] and Table3.23] respectively, within the temperature
intervals.

We give our calculated FWHM values as a function of temperature according to
Eq[2.47)in Fig[3.35] for the vibrons vy , 15 and 1y (P=18.5GPa) and in Fig[3.36| for
the frequency difference (v1-1v5) (P= 13.2, 14.95, 18.5 and 21.2 GPa) with the ob-
served data [23]] for the phases of ¢, d;,. and ¢ in solid nitrogen. FWHM of the 1

internal mode increases as the temperature increase in the phases of ¢, d;,. and § and
also the same behavior is observed for the v; vibron in ¢, d;,. phases except the 15 in
the 0 phase where the FWHM decreases with the increasing temperature as shown in
Fig In the case of the 15 , its FWHM increases in ¢;,. while it remains nearly

constant in the e phase of solid nitrogen. As shown in Fig[3.36], we obtained the same
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Figure 3.34: Temperature dependence of the Raman frequency shifts (v;-15) for the
Raman internal modes 1; and v5 as a function of temperature at constant pressures

according to Eq[2.46| which was fitted to the experimental data [23] for the phases of

€, 00 and ¢ in the solid nitrogen.

Table 3.22: Values of the parameters for the linewidths, of the vibrons vy, 15 and vy
according to Eq by using the observed data [23] within the temperature intervals
indicated for the phases of ¢, d;,. and 0 (P= 18 GPa) in solid nitrogen.

Vibron modes | Phases | T'y(\)(em™) | To(A)(em™!) | w'(em™!) | Temperature Interval(K)

€ -0.17 0.01 4.33 298.9<T<325.5

vy Oloc -1.61 0.01 1.06 327.3<T<407.1
) -1.41 0.08 9.38 423.1<T<477.5
€ -0.26 0.01 243 301.3<T<323.6

12 Oloc -0.32 0.01 243 332.6<T<413.6
) 1.83 -0.03 23.59 423.4<T<472.8
€ 0.62 -0.01 10.10 301.6<T<325.2

Va2 d1oc - - - -
s ] . . ]

picture for the FWHM of the 1/, mode for the FWHM of the frequency difference (1-
v9) of the vy and v, at constant pressures in the €, d;,. and 0 phases. Its magnitude

increases as the pressure increases. There is a good agreement between our fits and
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Table 3.23: Values of the parameters for the linewidths, of the frequency difference

(v1-12) of the Raman internal modes v, and v, according to Eq[2.47| by using the

observed data [23] within the temperature intervals at constant pressures indicated

for the phases of ¢, d;,. and 0 in the solid nitrogen.

Pressures | Phases | I'1(A\)(cm™) | To(A)(em™) | W'(ecm™!) | Temperature Interval(K)
132 ) 0.12 2.38 x 1073 3.11 342.06<T<384.71
' Oloc -2.02 3.35 x 1073 0.47 300.88<T<333.24
14.95 o -1.40 0.013 2.35 367.06<T<442.06
' Oloc -1.10 1.92 226.1 304.56<T<358.97
) 0.07 4.57 x 107° 526.0 425.15<T<472.20
18.5 Oloc -2.21 -2.04 -1538.94 321.47<T<425.15
€ -2.09 16.92 423.73 300.15<T<323.68
) 0.66 0.94 729.2 459.71<T<489.85
21.2 Oloc -0.24 0.92 477.68 352.35<T<451.62
€ -0.24 1.57 x 107° 0.01 302.35<T<371.47
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Figure 3.35: Temperature dependence of the linewidths for vibrons 14, 15 and 199 as

a function of temperature (P=18.5 GPa) according to Eq[2.47| which was fitted to the

experimental data [23] for the phases of €, d;,. and ¢ in the solid nitrogen.

the experimental linewidth at constant pressures [23]]. However, in Figs[3.35/and[3.36]

our fits were not compatible for the difference in FWHM of the corresponding fre-
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Figure 3.36: Temperature dependence of the difference in the linewidths for the cor-
responding to the frequency difference (11-1,) of vibrons 14 and v, as a function of
temperature at four constant pressures indicated according to Eq[2.47|which was fitted

to experimental data [23] for the phases of ¢, d;,. and 0 in the solid nitrogen.

quency difference (v1-1) of the 14 and v5 internal modes at 18.5 GPa in the 0 phase

of solid nitrogen.

3.7 '"Calculation of the inverse relaxation time and the activation energy as a
function of temperature for the Raman modes close to the phase transitions

in solid nitrogen."

The inverse relaxation time 7' as a function of temperature was calculated for the a-
S transition (P=0) and €-6;,.-0 transitions at constant pressures in solid nitrogen. On
that basis, we used the observed data from the literature for the Raman frequencies
and linewidths for the F, librational mode (a-/3) [88] and the v; and v, vibrons (e-
010¢-0) in the nitrogen [23]]. The inverse relaxation time was able to be calculated via
the Eq3.72]expressed as

=

v? /T (3.72)
where v is the frequency and I is the linewidths of a vibrational mode. Fig[3.37]
and Fig[3.38] gives the inverse relaxation time as a function of temperature for the
librational £, mode (P=0) in the v phase and the internal modes v and v, (P=18
GPa) in the phases of ¢, d;,. and ¢ , respectively. We also predicted also activation
energy I, by using calculated relaxation time for the Eg librational mode [88] and

the v; and v, vibrons [23] in solid nitrogen. For this calculation, the relaxation time

66



was investigated through the Arrhenious law (in the logarithmic form) defined as
InT = Inty — E,/kgT (3.73)

Here, 7 is the attempt relaxation time and kg is the Boltzmann constant. We extracted
the values of the activation energy from Eq[3.73| by taking the linear fit of the —inr
vs. /T for the E; mode in the a phase (Fig[3.39) and for the Raman modes v, and
vy (P=18GPa) (Fig[3.40) in the phases of €, d;,. and §. The values of the attempt
relaxation time 7y and kg are given in Tabl for the £, mode and Table for
the internal modes 1y and 15 in solid nitrogen. We also predicted inverse relaxation
time (7~ !) by using observed Raman frequency and damping constant (linewidth) via
the Eq[3.72) for the frequency difference (1, - 1) of the internal modes 14 and v, at
constant pressures ( 13.2, 14.95 and 21.2 GPa) in solid nitrogen [28]]. We gave the
inverse relaxation time as a function of temperature for the frequency differences v -
v, in Figs[3.41(a) (P=13.2 GPa) [3.41[b) (P=14.95 GPa) and [3.41[c)(P=21.2 GPa) in
the phases of ¢, d;,. and J in solid nitrogen. As before, the time dependent activation
energy E, was obtained by the means of Eq[3.73|for the 14 - 1, within the temperature
interval. The values of F, and 7y( attempt relaxation time) due to the vy - v, of the
internal modes ; and v, which were obtained from the linear fit of the -In7 vs (1/T)
(Fig are given in Table The inverse relaxation time 7! decreases in a
smooth manner with the temperature for the £, mode in the a phase at P=0 (Fig.1)
however, there is a sharp decrease in 7~ 'towards € phase to J;,. phase at 18 GPa for
the internal modes 14 and v (Fig[3.38) which represents the order-disorder transition
in Ny. From Fig[3.38] this sharp decrease softens in the d;,. phase even in § phase
and the 77! is nearly independent of the temperature at P=18 GPa. In the case of 77!
of the frequency differences (v - ), while at 13.2 GPa and 14.95 GPa, it decreases
with the increasing temperature for d;,. and  phases, in the € phase the 7! increases
with the temperature, then remains almost constant in the phases of d;,. and J phases

at 21.2 GPa (Fig[3.41)) in solid nitrogen.

We are able to approximate damping constant (FWHM) as a function of temperature
by

(FWHM) = A+ BT + Cexp(—E,/kgT) (3.74)
where A,B and C are the coefficients. The coefficient A depends on the structural and

compositional defects, the linear BT term represents the influence of phonon-phonon
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Table 3.24: Values of the activation energy (F,) and the attempt relaxation time (7;),
which were extracted from Eq for the £, librational mode [86] in the solid ni-
trogen (P=0).

Raman mode

7o(s)

E, x 1072Y(J/mol)

E, x 107*(eV/mol)

Temperature Interval(K)

L,

5.61

1.03

64.4

5.01<P<38.57

Table 3.25: Values of the activation energy (F,) and the attempt relaxation time (7;),
which were extracted from Eq[3.73| for the internal modes of v4, v, and 14, in the
solid nitrogen (P=18 GPa).

Raman modes | Phases | 79(s) | E, x 1072(J/mol) | E, x 107*(eV/mol) | Temperature Interval(K)
€ 3.62 5.65 353.1 298.92<T<325.47
21 Oloc 16.2 8.89 555.6 338.40<T<418.38
) 14.8 8.26 516.2 423.06<T<443.06
€ 2.50 4.63 289.4 298.87<T<325.44
Vo Oloc 4.47 4.04 252.5 327.30<T<407.07
) 1.36 -3.56 -222.5 427.36<T<475.70
Va2 € 0.025 -0.14 -8.75 300.35<T<323.75
107 =
o — phase P=0
gt E, Mode
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Figure 3.37: Temperature dependence of the inverse relaxation time (7! ) calculated
according to Eq for the £/, mode of solid nitrogen (« phase, P=0) by using the
observed data [86].
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Figure 3.39: Relaxation time (logarithmic ) as a function of the inverse temperature
for the £/, mode according to Eq[3.73|in the solid nitrogen(o phase, P=0). Solid line
represents the best fit (Eq@ to the values given.
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anharmonic interactions and the exponential term with the coefficient C describes
the thermally activated reorientational processes. We predicted the coefficient A,B,C
and the activation energy F, by fitting Eq.(3.74) to the observed data for the E,
mode [88]] in the o phase and vy, 1, and 19, modes (18 GPa) in the ¢, ;. and ¢
phases [23]] in the solid nitrogen. Table gives the estimated values of A,B,C
and the F, within the temperature intervals indicated in solid nitrogen. The values
of A,B,C and the FE, are given in Table for the (v - 1,) at constant pressures (
13.2 ,14.95 and 21.2 GPa) in the ¢, d;,. and 0 phases in N5. We plot the linewidth
data with respect to temperatures through EqJ3.74|for the E; mode at P=0 (Fig[3.43),
for the v, v5 and 149 vibrons at 18 GPa (Fig and for the frequency differences
(1 - 112) at the pressures of 13.2 ,14.95 and 21.2 GPa (Fig[3.49) in solid nitrogen.

Corresponding to the temperature dependent damping constant (linewidth), as
expected, calculated linewidth I' increases as the temperature increases for the £
mode in the o phase (Fig[3.43), for the 14 and v, modes P= 18 GPa and for the
for the 1y - v, at the pressures of 13.2, 14.95 and 21.2 GPa with the exception of
the 15 mode at 18 Gpa(Fig[3.44) and the frequency difference 14 - 1, at 21.2 GPa
(Fig[3.45) in the ¢ phase. Linewidths decrease with temperature in solid nitrogen
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Figure 3.42: Relaxation time (logarithmic) as a function of the inverse temperature
for the difference in the frequency shifts ( v4- ) of the internal modes v, and v by
using the observed Raman frequency and FWHM data [23] according to Eq.(3.73)
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Table 3.26: Values of the activation energy (F,) and the attempt relaxation time (7;),
which were extracted from Eq[3.74]for the difference in the frequency shifts (4- v )
of the Raman internal modes 14 and 1, within the temperature intervals for the phases

at constant pressures indicated in N, by using the observed frequency and linewidth

data [23].
Pressures | (v1-15) | To X 2 (8) | E, x 1072(J/mol) | E, x 1074(eV/mol) | Temperature Interval(K)
132 Oloc 10170 0.41 25.6 295.60<T<331.49
0 9.4 7.28 455.0 340.85<T<386.10
14.95 Oloc 570 0.27 16.9 315.09<T<362.95
§ 440 0.37 23.1 371.86<T<430.13
€ 1.93 9.94 621.2 315.13<T<361.26
21.2 Oloc 15.1 0.14 8.75 365.34<T<431.23
0 0.93 8.19 511.9 455.53<T<480.26

Table 3.27: Values of the activation energy (F,) with the coefficients A,B and C
which were extracted by fitting (EqJ3.74) to the observed FWHM for the £, mode
at P=0 [86] and for the internal modes of 11, v, and 199 at P=18 GPa [23] within the

temperature intervals indicated in the solid nitrogen.

Raman | Pressures | Phases A Bx1072 C E,x1072 | B, x 107* Temperature
modes | (GPa) (em™) | (em™1/K) | (em™) | (J/mol) | (eV/mol) Interval(K)
by 0 o -0.27 6.0 121.58 1.46 91.2 5.01<T<38.57
€ -0.65 -4.0 34.21 4.15 259.4 298.92<T<325.47
vy 18 Otoc -1.04 0.3 6.22 6.93 433.1 338.40<T<418.38
) -1.40 1.0 1.28 6.68 417.5 423.06<T<443.06
€ 0.04 -2.0 15.89 4.38 273.2 298.87<T<325.44
Uy 18 Otoc 1.41 2.0 -13.53 3.70 237.2 327.30<T<407.07
) 0.18 -0.4 5.27 -3.05 -190.6 427.36<T<475.70
Voo 18 € 3.03 -0.06 -2.62 -0.18 -11.2 300.35<T<323.75

similar anamolous decreasing of 77! (Fig, FWHM increases drastically for the
for the v and v»internal modes at 18 GPa (Fig from the € to the J;,. phase in
nitrogen. As stated above, we deduced activation energy £, by using Eq[3.73|for the
E, mode (Table [3.24), for the v, and v, vibrons (Table3.25) and by using Eq[3.74] as
given in Table When compared the these two E, values, there is a inconsistent
between the two results as expected, and the £, values extracted from Eqis more
reliable because there is a phonon-phonon anharmonic interactions (BT term) on the

basis of Eq[3.74] and it also depends on the structural and compositional defects (A
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Table 3.28: Values of the activation energy F, with the coefficients A,B and C which
were extracted from Eq[3.74] by fitting to the observed FWHM data [23] for the dif-
ference in the frequency shifts (v1- 15 ) of the Raman internal modes v, and v, at

constant pressures within the temperature intervals indicated in the solid nitrogen.

Pressures | Phases A Bx1072 C E,x107%' | B, x 107 Temperature
(GPa) (em™) | (em™Y/K) | (em™) | (J/mol) | (eV/mol) Interval(K)
132 Oloc 27.10 4.0 -55.28 1.27 79.4 295.60<T<331.49
1) 0.82 -0.5 6.27 7.51 469.4 340.85<T<386.10
14.95 Oloc 2.22 0.5 -3.59 0.24 15.0 315.09<T<362.95
1) 2.58 0.6 -4.54 0.36 22.5 371.86<T<430.13
€ 18.80 -12.0 139.74 8.85 553.1 315.13<T<361.26
21.2 Oloc 2.42 0.2 -2.96 0.12 7.5 365.34<T<431.23
0 8.73 -7.0 81.31 8.06 503.7 455.53<T<480.26

term) as pointed out above. Similarly, Table and Table3.28] gave the estimated
E, values via the Eqs[3.73 and respectively, for the frequency difference v; -
vy at constant pressures within the temperature intervals in the ¢, ;. and ¢ phases of
N5. When we examined the values of the activation energy £, in the phase transition,
E, values of the 11 ( 1) increase (decrease) at the transitions from the ordered to
the disordered phases (e-0;,.-0) for the internal modes 14 and v even E, of the v,
gets negative value in the § phase (Table and [3.27). Also the E, values of the
frequency difference v; - v, for the transitions of d;,.-0 increase at 13.2 and 14.95
GPa except the order-disorder transition at 21.2 GPa (Table [3.26). This is correlated
with the behavior of the inverse relaxation time 7! that decreases for the vy and v,
modes as the temperature increases at 18 GPa (Fig[3.38)) and also for the v - 15 at
the pressures of 13.2 and 14.95 GPa ( for the 0,,.-0 transition) except the ¢ phase
at 21.2 GPa (Fig[3.41)). For the £, mode, increasing damping constant (FWHM) is

accompanied with the decreasing of the 7! in the « phase of solid nitrogen.
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Figure 3.43: Temperature dependence of the linewidth of the £, line of the o phase
(P=0) in N,. Solid line represents best fit (Eq@ to the experimental data [86].
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Figure 3.44: Temperature dependence of the FWHM of the internal modes of the
vy and 1, for the phases of €, d;,. and 0 (P=18 GPa) in N,. Solid lines represent
best fit (Eq[3.74) to the observed FWHM data [23]. Vertical lines denote the phase

boundaries (at 7;.) between the two phases.
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3.8 '"Calculations of the temperature and pressure dependence of the thermo-
dynamic quantities and analysis of the dielectric properties by using the

Raman frequencies of cubic gauche nitrogen."

In this study, the pressure and temperature dependence of the thermodynamic quan-
tities of cubic gauche nitrogen (cg-N) that is a kind of polymeric nitrogen, was pre-
dicted by using the observed volume [48,103] and thermodynamic data [28]] from the
literature.In this part of study, we also investigated the vibrational frequencies, dielec-
tric and elastic properties of cubic gauche solid nitrogen. We started to calculate the
temperature dependence of the thermodynamic quantities with the thermal expansion

ap through its definition given by
ap = (1/V)(0VIT)p (3.75)

For this calculation, assuming the variation of volume with the temperature quadrat-

ically, we fitted the observed volume data (P=0) according to Eq[3.76] expressed as

V(T) = Vo +aT + BT? (3.76)

The values of fitted parameters of Eq[3.76] are given in Table3.29We then analyzed
the bulk modulus B that is the inverse isothermal compressibility «7 (=1/B) as a

function of temperature by using
B(T) = ko +o'T + B'T? (3.77)

where kg,o/,3" are constant and determided as given in Table in the cg-N phase.
We also analyzed the C'y (T') data [28] at P=0 according to Eq

Table 3.29: Values of the coefficients V{ , a and 3 (Eq/3.75)) at the pressures indicated

for the cubic gauche solid nitrogen.

V(T) | —Vo(A”) | a x 1078(A°/K) | =B x 1077(A°/ K?)

Eq. | 5247 4.73 7.63

We also analyzed the C'y(T") data [28] at P=0 according to Eq
Cy(T) =eg+e1T + exT? (3.78)
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Figure 3.46: Temperature dependence of volume at various pressures (0,35,125 and

250 GPa) for the cubic gauche solid nitrogen.
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Figure 3.47: Time dependence thermal expansion («ap) calculated through Eq

various pressures for the cg-N.

3.75

at

where eg,e;,e5 are constants. Values of coefficients of are given in Table [3.31]

at constant pressures in the cg-N phase by fitting Eq. [3.78 to the observed data

[28]].There is a linear relation between isothermal compressibility and thermal ex-
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pansion with the slope of P-T phase diagram (dP/dT) defined as
dP/dT = ap/kr (3.79)

This provided us to determine the slope value of dP/dT in the P-T phase diagram of
the cg-N phase by using the values of ap and B at P=0, T=295 K. The values of the
thermal expansion ap , bulk modulus B and the dP/dT value at T=295 K (P=0) are
given in [3.30

Table 3.30: Values of the fitted parameters for the the temperature dependence of the
isothermal compressibility x,=(1/B) (Eq[3.77) with the thermal expansion ap at 295
K and the slope dP/dT of the transition line in the P-T phase diagram for the cubic

gauche nitrogen.

BMT) | wo | —a'x103 | -3 x107° | cgN |apx10°| B | (dP/dT)x 1073 | ~
(GPa) | (GPa) | (GPa/K) | (GPa/K?) (K- | (GPa) | (GPa/K)
(EqB77|[ 20828 | o1 | 13 [T=00s5k| 081 | 29446 2385 335 |
0| P=0 = P=0GPa
A cg-N e P=35GPa
25 A P=125GPa
° v P=250GPa
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Figure 3.48: Temperature dependence of the isothermal compressibility «, calculated

(3.79) at the pressures indicated for the cubic gauche nitrogen.

By using the dP/dT value at 295 K (P=0) with the temperature dependence of V(T)
(Eqi3.77) and the C,(7") data analyzed through the Eq (Table[3.31)), we obtained
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Figure 3.49: Temperature dependence of the bulk modulus B(T) according to

B(T)=1/kr (Eq at the pressures indicated for the cubic gauche nitrogen.

Table 3.31: Values of the coefficients eg,e1,eo at constant pressures indicated

(Eq{?]g) for cubic gauche solid nitrogen.

P(GPa) | —eo(J/mol.K) | ey (J/mol. K?) | —ey x 107°(J/mol . K3)
0 18.72 0.16 5.77
35 18.41 0.18 7.72
125 19.06 0.21 10.3
250 16.59 0.22 11.9

the macroscopic Griineisen parameter vy defined as

v = (V/Co)ap/rr) (3.80)

as a functions of temperature at P=0 in the cubic gauche phase.We analyzed here the

volume at various pressures according to relation
V(P) = by + by P + by P? (3.81)

where by, b; and b, are constants, as given in Table @At constant pressures of 35,

125 and 250 GPa, we were also able to evaluate the v values (Eq[3.80) by using the
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Figure 3.50: Heat capacity (C'p) as a function of temperature by using the calculated
V(T) and C), data[28] through Eq at the pressures indicated for the cubic gauche

nitrogen.

V(P) [48] and the Cy data [28] with a constant dP/dT value(Table [3.30]). For this
calculation, we analyzed the Cy data [28]] according to Eq.(3.78) for the pressures
considered with the coefficients of ey,e; and e, determined , as given in Table m
By means of the 7y values determined, we then calculated the temperature dependence
of the volume V(T) using the C'y data [28] with the constant dP/dT (Table[3.30) at the
pressures of 0, 35, 125 and 250 GPa, as plotted in Fig[3.46 Values of the coefficients
for V(T) for constant pressures studied according to Eq.(3.76), are given in Table[3.33]

Table 3.32: Values of the coefficients by, b; and by (EqJ3.81) and b), 0] and b,

(Eqm for various pressures for the cubic gauche solid nitrogen.

KT b6 —bll X 10_4 b/2 X 10_6 V(P) b() —bl X 10_2 b2 X 10_5
(GPaY) | (GPa™Y) | (GPa™?) | (GPa™®) (A | (A’/GPa) | (A’/GPa™Y)
Eq{3.83 0.99 7.4 1.06 Eq{3.81|| 6.76 2.21 7.35

Then,by using the coeffcients of by,b; and by at constant pressures, (Tablg3.33)), we
obtained the thermal expansion as a function of temperature at constant pressures as

illustrated in Fig[3.47] As seen in Fig[3.47] there is a sharp drop up to about 400
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Table 3.33: Values of the coefficients V;, , a and 5 (Eq/3.75]) at the pressures indicated

for the cubic gauche solid nitrogen.

P(GPa) | —Vp(A) | a x 102(A°/K) | =8 x 10-5(A°/K?)
0 6.28 5.21 1.90
35 4.01 3.89 1.68
125 | 3.18 3.46 1.72
250 | 2.54 3.28 1.83

GPa and ap shows temperature independent behavior for the cubic gauche solid ni-
trogen.This also gave us the temperature dependence of the isothermal compressibil-
ity k7(3.79) where dP/dT value (Table3.30) was used, and the bulk modulus B(T)
(=1/kr) at constant pressures considered as plotted in Figs[3.48| and [3.49] respec-
tively. The isothermal comprassibility represents same behaviour for the cubic gauche
nitrogen.Since we have the values of V, ap ,x7 and specific heat C,,, we calculated

the heat capacity C'p via the thermodynamic relation,
Cp=Cy+TV(a}p/kr) (3.82)

Fig[3.50] gives the variation of heat capacity with the temperature at constant pres-
sures (P=0,35,125 and 250 GPa). Unlike isothermal expansion, the heat capacity
increases with increasing temperature (3.50). Regarding the pressure dependence of
the thermodynamic quantities for the cubic gauche nitrogen, we calculated the pres-
sure dependence of the thermal expansion ap by analyzing the compressibility (k1)
of the cubic gauche structure by using the a/ay lattice parameter data [28] at 295 K

by means of the expression,
Ky /Ko = by + by P + by P? (3.83)

where b)), b} and b/, are constants. The values of coefficients of Eq[3.83]are given in
Table[3.32]as also given in our previous work [[104]]. In Figs[3.5T]and[3.52] we plot the
K1 /Ko and the thermal expansion ap as a function of pressure (Eq with the def-
inition of kK = ((—1)/V)(0V)/(0P)r at 295 K and the constant dP/dT value (3.30)

for cg-N,respectively.As expected, ap decreases almost linearly with the increasing
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pressure (Fig[3.52)) and xr exhibits similar critical behavior for the cubic gauche ni-
trogen . By having V(P), ap and k1 (P)at T=295 K, the heat capacity C'p was also
evaluated as a function of pressure according to Eq.(3.82)) for cg-N. For this calcula-
tion, values of V (Eq[3.81)), xr [28] and ap (Eq[3.79) through the dP/dT value (Table
@[) at constant pressures of P=0, 35,125 and 250 GPa were determined and by us-
ing the C, data at those pressures [28]. We were then able to calculate C'p (Eq[3.82)
and v(Eq at T=295K in the cg-N phase, as plotted in Figs. and (3.54),
respectively. Owing to the inverse relation between thermal expansion ap (Eq[3.79),
Cp increases as the pressure increases (Fig[3.52)) at 295 K.

T=295K

K/ipx107
/

-3 T T T T T T T T T T T
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Figure 3.51: Thermal expansion k7 /K as a function of pressure (T=295 K), which

was calculated according to Eq for cubic gauche solid nitrogen.

In this part, the vibrational frequencies were estimated with the volume change through
the mode Griineisen parameter. For this calculation, we used the isothermal mode
Griineisen parameter (Eq[3.84) to analyze the relation between the Raman frequency

shift and the volume change in the cubic gauche nitrogen,
(P) V(P)(Ov/OP)r
T = (Y 0V /0P,

In order to analyze the Raman frequencies of various modes and the volume as a

(3.84)

function of pressure, expressions,

vr(P) = ag + ay P + bya® (3.85)
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Figure 3.52: Thermal expansion ap as a function of pressure (T=295 K), which was

calculated according to Eq for cubic gauche solid nitrogen.
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Figure 3.53: Heat capacity as a function of pressure (T=295 K) which was calculated

according to Eq@ for cg-N.

and
Vr(P) = by + by P + by P?
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Figure 3.54: Griineisen parameter «y as a function of pressure, which was calculated

according to Eq@ for the cubic gauche solid nitrogen.

were used, where ag , a1, a2 and by , by , by are constants. We fitted the Eqs and
[3.86] to the observed Raman and infrared frequency data for the optic modes of A,
E and the translational modes of T(TO) and T(LO) at the center (I' point) [28] with
volume data within the 0-140 GPa pressure interval (295 K) [48] for the structure
of cubic gauche nitrogen. The values of fitted parameters (aq , a1, as and by , by ,
be) are given in Tablg3.34] for the optical (A,E) and the translational (T(T0), T(LO))
modes [28]] and in Table [3.33] for the observed V-P data at 295 K [48]]. Then, with
the isothermal mode Griineisen parameter determined by using the constants (Table
and Tabld3.35) through Eq3.84], we obtained the pressure dependence Raman
frequency for the cg-N phase via

ur(P) = AP) + eyl (Pin ()] (387)

In Eq[3.87] v and V}, are the frequency and volume values at ambient conditions
(P=0, T=295 K), respectively. A(P) is the additional term and it was determined by
fitting Eq[3.87)to the observed frequency data for the cg-N with the relation

A(P) = ¢y + 1 P + o P? (3.88)

where ¢ , ¢; and ¢, are constants and their values are given in Table [3.34] Figs[3.55

and [3.56 give the pressure dependence of isothermal mode Griineisen parameter (yr
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(Eq3.84) and calculated frequencies of the Raman and optic modes (Eq[3.87) indi-
cated [28,44]] with the observed A mode only [47]], respectively. There is a good
relation between the calculated frequency values for the optical modes in the zone
center of cg-N structure [28,44]. As stated by Caracas [28], when the pressure in-

creases, all the modes harden with a nonlinear behavior (Fig[3.56).

Table 3.34: Values of coefficientsag , a1, as for the Raman and infrared modes in
the phases indicated according to Eq.(3.85)) and the coefficients of the additional term
A(P) which were determined by fitting Eq.(3.88) to the observed frequency data[28]

for the cubic gauche solid nitrogen.

Raman and IR | ao(= o) a —ag x 1072 —Ch o —Ch
modes (em™) | (em™/GPa) | (em™/GPa?) | (cm_1) | (em™'/GPa) | (em™ /G Pa?)

A 628.01 2.29 2.99 1031.17 30.72 0.21

T(LO) 806.98 1.72 2.65 573.74 17.18 0.12

T(TO) 842.41 1.59 2.45 523.54 15.68 0.11

E 985.58 3.52 5.04 1438.59 4291 0.29

T(LO) 1257.35 2.19 2.55 891.43 26.67 0.19

Table 3.35: Values of the coefficients by , b; and b, by using the volume-pressure
(V-P) data [46] according to Eq.(3.86) within the pressure range indicated for cubic
gauche solid nitrogen.

V(A% | bo(=Vo)(A%)

—by x 10°2(A*/GPa) | by x 1075(A° /G Pa?)

Pressure Interval(GPa)

Cg-Ny| 667 | 221 | 7.35 | 0<P<140

Table 3.36: Values of coefficients aq , a1, as for the frequencies of zone-center phonon

modes according to Eq.q'm]) by using the observed data [42].

Raman and IR modes | ag(cm™) | a1(em™ /GPa) | —ag x 1073(cm™ /G Pa?)
600 cm ™! (1xRaman) 586.54 2.03 2.28
900 cm ™! (2xRaman) 941.94 3.53 4.19
900 cm~! (3xRaman) 802.19 1.52 1.91
1200 em~! (3xRaman) | 1234.46 2.40 2.68

In an another analysis, we used the Raman frequencies (1xRaman, 2xRaman and
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Figure 3.55: Isothermal mode Griineisen parameter 7 as a function of pressure which

was calculated using Eq@ for the optic modes indicated in cg-N.
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Figure 3.56: Calculated frequencies of the optic modes as a function of pressure

through Eq with the observed data only [45] for the cg-N.

3xRaman) which were obtained by density functional theory [44]] within the 0<P<360
GPa pressure interval. Then, we investigated the Raman frequencies for the phases

of zone center phonon modes for cg-N according to Eq[3.85] and V-P data [103] in
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Table 3.37: Values of the coefficients by , by and by using the volume-pressure (V-
P) data [101] according to Eq.(3.86) with V[, within the pressure range indicated for
cubic gauche solid nitrogen.

Vo(A) | bo(R) | by x 10°2(A°/GPa) | by x 10-5(A° /G Pa?) | Pressure Interval(GPa)

cg— N | 6.86 -2.22 7.93 0<P<100

the pressure interval of 0-100 GPa according to Eq[3.86] The values of the coeffi-
cients of Eq[3.85] (ap , a1 and ay) (Table [3.36) and of Eq[3.86] (by , by and bs) (Ta-
ble were determined. By the correlation of the Raman frequency and volume
data, we predicted the isothermal mode Griineisen parameter as a function of pres-
sure through Eq[3.84] as plotted in Fig[3.57| for the Raman modes of the zone-center
phonon modes [44] in cubic gauche nitrogen. According to Fig[3.57] ¢ remains
nearly constant first in the pressure interval 0 to 40 GPa, then it increases with the

pressure increase, as expected.  In order to understand the anharmonic properties
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Figure 3.57: Static frequency dielectric constant as a function of frequency for the

pressure dependent optic modes [28] in the cg-N.

of the cg-N, we analyzed the relation between the vibrational frequency (v) and the

elastic modulus (c;;) which can be expressed as

v? = a+ beyj (3.89)
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Figure 3.58: The Raman frequencies (v?) [45] as a function of the elastic
anisotropy(A) [12] due to the elastic constant cy; , ¢12 and c44 in the pressure range of

0-360 GPa (a) and 0-100 GPa (b).

where a and b are constants. The variation of Raman frequency(squared) with the
elastic constants (c;;) was examined by using the pressure dependence of the Ra-
man frequencies [44]] and the elastic constants (¢, ¢1o and cy4) within the pressure
interval of 0-360 GPa [[105]. We plot the Raman frequencies (v?) against the elastic
anisotropy (A) which is the ratio of the two shear modulu c44 and (¢11 — ¢12)/2 [12] in
). We also obtained Raman frequencies (%) [44] with the pressure dependence
of elastic constants ¢y1, ¢12 and ¢y4) in the range of 0-100 GPa [12] in Fig.(3.58b). As
seen in Figs.) and ), v? decreases as the pressure increases and there is a
good agreement between the variation of the Raman frequency (%) with the elastic
anisotropy (A) in the two pressure intervals of 0-360 GPa (3.58p) [[105] and 0-100
GPa (3.58p) [12].According to the elastic constants,the cg phase is the most stable
one among the polymeric phases of nitrogen [105] which agrees with the other stud-
ies up to 170 GPa [27,/106,/107]. Regarding the investigation of the relation between
the Raman frequency and the elastic modulu (c;;), we plot the Raman frequency shifts
(1/v)(9v/ OP ) against the elastic anisotropy (A) in Fig[3.59] We obtained nearly in-
creasing trend for the Raman frequency shift as a function of the elastic anisotropy as
shown in Fig[3.59]

We also investigated dielectric properties of cubic gauche solid nitrogen by using
the real and imaginary parts of the complex dielctric permittivity. Materials contain
permanent dipoles and they are randomly oriented in polar materials. When the elec-

tric field is applied, these dipoles reoriented towards the direction of electromagnetic
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Figure 3.59: Static frequency dielectric constant as a function of Variation of the
frequency shifts (1/v)(Ov/ OP) as derived from the Raman frequencies as a function
of elastic anisotropy (A) for the Raman frequencies of the zone-center phonon modes

in cubic gauche nitrogen. for the pressure dependent optic modes [28] in the cg-N.

field. And when electric field is turned off, the time is required in order to turn back
to a random distribution dipoles and the delay occurs on molecular polarization that
is called dielectric relaxation. When the electric field is exerted to a polar dielectric,

the polarization builds up expressed as
f%t)::Fgg<1——e*£) (3.90)

P(t) is polarization at time t, 7 is relaxation time and is a function of temperature
[108]].By taking the derivation of Eq[3.90] the rate of polarization building is obtained

as
t

dP(t) —Pxer
dt T
Then, by putting Eq into Eql3.91| and assuming the total polarization due to

(3.91)

dipoles expressed as
dP(t) ., P, — P(t)

dt T
where P, is the orientational polarization.By neglecting atomic polarization, the total

(3.92)

polarization Pr(t) is got
Pr(t) = P,(t) + P, (3.93)



with
Pr=cey(e, —1)E (3.94)
and

P, = eofe — 1)E (3.95)

where €, and €., are the electric constants under voltage and at infinity frequency
respectively and E is the electric field. Then by substituting Eqs[3.94] and [3.95] in
Eq and simplifiying it, we obtain

P, =e(es — €x0)E (3.96)

we get Eq[3.97| by solving Eq[3.92] via the solution of first-order diffrential equation

with the alternating electric field (E = E,,q.¢™?) as

(€5 — €oo) Epe™

P(t) = 3.97
() =<0 (14 dwr) (397)
We get total polarization by using Eq[3.96/and Eq/3.97]
(€5 — €x) jwt
Pt) = |ew — 1 + "—2| B, 3.98
(t) = |e T i | C0Fme (3.98)
The value of flux density can be defined as
D(t) = eoe* Epe™ (3.99)
and
D(t) = egEpne™ + P(t) (3.100)

Hence, by equating these two flux density functions (Eqs.(3.99] [3.100) to each other,

we get

i) — 1 e —1 4 ) 3.101
(€ —i€e") + e + T iwr ( )
The imaginary and real parts of permitivity are obtained as
/ €0 — €x
€ (W) = m + €co (3102)
and
€' (w) = _wrlen — teo) (3.103)

1+ w?r?
where €, and €., are the static and high-frequency dielectric constants respectively

[108]. The frequency dependence of € (w) and €’(w) was predicted according to
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Eqs[3.102] and [3.103| by using the pressure dependence of optical modes A,E,T(TO)

and T(LO) in the zone center of cubic gauche structure with the values of ¢, and €.,
at the pressures of 35,75, 125,175 and 250 GPa as taken from literature [28]]. The pre-
dicted values of the frequency dependence of real ¢'(w) and imaginary parts €”(w)of
the complex dielectric permittivity, are given in Figs[3.60] and [3.61] respectively for
the optic modes studied at various pressures [28]. Finally, we gave the relation be-
tween the €'(w) and the dielectric loss €’(w) in terms of the cole- cole plot for the

optic modes of A,E, T(TO) and T(LO) at various pressures for the cg-N as shown in

Fig[3.62]

' cg-N '
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P(GPa
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4,4

T T T T T T T T T
800 1000 1200 1400 1600
o(cm™)
Figure 3.60: Static frequency dielectric constant as a function of the frequency for the

pressure dependent optic modes [28] in the cg-N.Solid lines represent the best fits to

the values given.

92



cg-N x A
6 295 K e T(TO)
P(GPa) | o 710y
* E
5
k=
x4 Q
)
:w3 o
O
2
1

700 800 900 1000 1100 1200 1300 1400 1500 1600
o(cm™)
Figure 3.61: High frequency dielectric constant as a function of the frequency for the

pressure dependent optic modes [28] in the cg-N.Solid lines represent the best fits to

the values given.
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Figure 3.62: Colo-cole plot of the optic modes at various pressures [28] for the cg-

N.Solid lines represent the best fits to the values given.
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CHAPTER 4

CONCLUSIONS

In this thesis, the thermodynamic and the spectroscopic properties of solid nitrogen
in the vicinity of the phase transitions was investigated. By means of using vari-
ous models and methods, we analyzed the experimental and theoretical data which
were taken from the literature in order to explain the observed behavior of thermo-
dynamical quantities and dynamical properties of solid nitrogen at high temperatures
and pressures. The dynamical properties of solid nitrogen were studied by using the
Raman frequencies that vary with the pressures and temperatures close to the phase
transitions and solid nitrogen is one of the most convenient molecular structures to
analyze these properties since it has a fundamental pressure and temperature induced
phase transitions. The pressure dependence of the Raman and IR frequencies of solid
nitrogen was predicted by using observed volume and frequency data up to 160 GPa
at the room temperatures. For this calculation, the isothermal mode Griineisen pa-
rameter as a function of pressure was calculated for the lattice and internal modes of
the solid nitrogen and then it was used to predict the Raman and IR frequencies of
Raman modes studied at high pressures for solid nitrogen. Our calculated the Ra-
man and IR frequencies are in good agreement with the observed frequency data for
the vibrons and lattice modes of solid nitrogen as expected that they increase as the
pressure increases except the vibron 15 that decreases with the increasing pressure
at the 80-160 GPa pressure interval. Hence, our results shows that this methods is
adequate the calculate Raman frequencies of solid nitrogen and it can be used for
other molecular crystals. The phase diagram of nitrogen was calculated for the fluid-
solid and solid- solid (e-d;,.-0) by using the mean field model at high pressures. By
using the free energy expanded in terms of order parameter, the phase line equation

was derived and it was fitted the observed data. Temperature and pressure dependent
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coefficients of free energy were determined and used to calculate the phase diagram
of solid nitrogen for the fluid-solid ,the 0-0;,. and the ¢;,. -¢ transitions. Also, by
using free energy, we predicted thermodynamic quantities of the order parameter,
inverse susceptibility, entropy, heat capacity thermal expansion and the isothermal
compressibility as a function of temperature. Again, observed P-T data was used to
calculate thermodynamic quantities. According to our results, while order parame-
ter and inverse susceptibility decrease with increasing temperature and pressure, the
entropy, heat capacity, thermal expansion and isothermal compressibility increase as
the temperature increasing and they represent abnormal behavior near the phase tran-
sition region. The mean field model can be an applicable model to calculate phase
diagram (P-T or X-T) and thermodynamic quantities of molecular crystals close to
the phase transitions. As an another calculation ,the temperature dependence of the
Raman bandwidths (linewidths) of Eg librational mode (P=0) and the internal modes
of 11 and v, (P=18 GPa) was calculated by using pseudospin-phonon coupling (PS)
and energy fluctuation (EF) models. First of all, the temperature dependence of the
Raman frequency as assumed the order parameter was calculated from the molec-
ular field theory by analyzing the experimental frequency data from the literature.
By using these calculated frequencies, Linewidth (FWHM) was predicted at various
temperature via the PS and EF models for the Eg mode, 14, and 1, internal modes
and the difference in the frequency (v;-1») at constant pressures. As observed ex-
perimentally, our calculated linewidth values increase as the temperature increases
at constant pressures. Hence, Our results indicate that pseudospin-phonon coupling
and energy fluctuation model can be used to describe the observed behavior of the
Raman bandwidth of the molecular crystals. Regarding to thermodynamic proper-
ties of solid nitrogen, we calculated the thermodynamic functions of the isothermal
compressibility, the difference of heat capacity and the thermal expansion in terms of
temperature and pressure from the Raman frequency of the internal modes v, and
V99 close to the phase transition of ¢,0;,. and ¢ in solid nitrogen. The observed volume
data was also used to predict the thermodynamic functions. After calculations of the
thermodynamic functions, the Pippard relations were employed in order to investi-
gate linear relations between the heat capacity with the thermal expansion and the
isothermal compressibility with the thermal expansion. By using this linear relation,

we obtained dP/dT values for the fluid solid and €-d;,.- ¢ transitions for solid nitrogen
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and compared the previous values obtained by Mukherjee et al. for melting curve
of solid nitrogen [94]. The method of calculating thermodynamic functions from the
Raman frequency shift and volume data can be applicable for the other molecular
crystals as shown in our results. We calculated in section 3.6 the Raman frequency
and Raman bandwidth by means of the anharmonic self energy model at various tem-
perature for the vibrons v4, 15 in the phases of €,0;,. and d(P=18.5 GPa) of solid
nitrogen. The anharmonic self energy model was also caried out for the calculation
of the Raman frequency and linewidth of the v;- 15 as a function of temperature at
constant pressure (P= 13.2 ,14.95, 18.5 and 21.2 GPa). when compared our results
to the observed values, there is some inconsistency between them, as expected since
the anharmonic self energy model does not work well at high temperatures. Values
of the inverse relaxation time and activation energy was obtained by consulting the
power law formula for the liberational £, mode (c-f3), the vibrons vy, vo (€-01oc-
0) and also the frequency difference (- 1, )in the nitrogen. The activation energy
were derived from the temperature dependence of inverse relaxation time close the
phase transitions studied. The inverse relaxation time decreases when the tempera-
ture increase as we expected from the mechanism of the order-disorder transition (
a-fF and (e-0;.- 0) in the solid nitrogen. As stated in our results, the values of ac-
tivation energy are too large compared to those obtained for some other molecular
solids. As a last part of this thesis work, we investigated the thermodynamic func-
tions at various temperatures and pressures and analyzed the dielectric properties of
cubic gauche solid nitrogen(cg-N).By analyzing temperature dependence of volume
, we obtained the thermal expansion and the isothermal compressibility as a function
of temperature. The values of heat capacity were also predicted by using the observed
volume data, calculated thermal expansion and the isothermal compressibility for cu-
bic gauche nitrogen. The pressure dependence of thermodynamic functions was also
calculated with the observed volume data as a function of pressure. The vibrational
frequencies of cg-N were predicted by applying the correlation between the Raman
frequency and volume change established by the mode Griineisen parameter. These
predictions of the vibrational frequencies were used the investigate the dielectric and

elastic properties of solid nitrogen and also the anharmonic properties of cg-N.
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