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ABSTRACT

THERMODYNAMIC PROPERTIES OF THE HIGH-PRESSURE PHASES
IN SOLID NITROGEN CLOSE TO PHASE TRANSITIONS

Akay, Özge

Ph.D., Department of Physics

Supervisor: Prof. Dr. Hamit Yurtseven

November 2020, 114 pages

In this thesis,the physical properties of solid nitrogen are investigated in a wide range

of temperature and pressure by analyzing experimental data from the literature.For

this investigation, various models are implemented to the experimental data in order

to evaluate observed behavior of thermodynamic and spectroscopic properties of solid

nitrogen. By means of the calculating Grüneisen parameter which depends on the vol-

ume, the pressure and temperature dependence of the Raman and IR frequencies are

estimated for the internal(vibrons) and external modes (lattice) of solid nitrogen. Es-

pecially, the mean field theory based on Landau phenomenological model is used to

calculate P-T phase diagram of solid nitrogen. Also by using this model, we estimate

the inverse susceptibility, the entropy, the heat capacity and the thermal expansion as

a function of temperature close to the phase transition. Regarding to evaluation of

the thermodynamic properties, we also predict temperature dependence of the ther-

modynamic functions from frequency shift and volume data which are obtained from

literature and we use the Pippard relations to establish linearity for thermodynamic

and spectroscopic quantities. As another calculation, we calculated the frequency

shift and damping constant (FWHM) as a function of pressure via the anharmonic
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self energy. According to the evaluation of spectroscopic properties (frequency shift,

damping constant) , we also use the pseudospin-phonon coupling (PS) and the energy-

fluctuation (EF) models to obtain the damping constant as a function of temperature

at constant pressures. The inverse relaxation time and the activation energy as a func-

tion of temperature are also calculated close to the phase transition. In addition to

these calculations, we analyze the thermodynamic and dielectric properties at various

pressures and temperatures by using the Raman frequencies of cubic gauche solid ni-

trogen. All these calculations indicate that the methods used for analysis can also be

applied to some other molecular solids close to phase transitions.

Keywords: Vibrational Frequencies,Grüneisen Parameter, Mean Field Theory,Damping

constant,solid nitrogen
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ÖZ

FAZ GEÇİŞLERİ YAKININDA KATI AZOTUN YÜKSEK BASINÇ
FAZLARININ TERMODİNAMİK ÖZELLİKLERİ

Akay, Özge

Doktora, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Hamit Yurtseven

Kasım 2020 , 114 sayfa

Bu tezde, katı nitrojenin fiziksel özellikleri geniş bir sıcaklık ve basınç aralığında lite-

ratürden deneysel sonuçlar analiz edilerek incelenmiştir. Bu araştırmada, katı azotun

termodinamik ve spektroskopik özelliklerini değerlendirmek için deneysel verilere

çeşitli modeller uygulanmıştır. Hacme bağlı olan Grüneisen parametresi hesaplana-

rak, katı nitrojenin iç (vibronlar) ve dış modları (lattice) için Raman ve IR frekansla-

rının basınç ve sıcaklık bağımlılığı tahmin edilmiştir. Katı nitrojenin P-T faz diyag-

ramını hesaplamak için özellikle Landau fenomenolojik modeline dayanan ortalama

alan teorisi kullanılmıştır. Ayrıca bu modeli kullanarak, ters duyarlılığı, entropiyi, ısı

kapasitesini ve ısıl genleşmeyi faz geçişine yakın sıcaklığın bir fonksiyonu olarak tah-

min ettik. Termodinamik özelliklerin değerlendirilmesiyle ilgili olarak, termodinamik

fonksiyonların sıcaklık bağımlılığını da literatürden elde edilen frekans kayması ve

hacim verilerinden tahmin ettik ve termodinamik ve spektroskopik büyüklükler için

doğrusal ilişkiyi oluşturmak için Pippard bağıntılarını kullandık. Başka bir hesaplama

olarak, harmonik olmayan öz enerji yoluyla basıncın bir fonksiyonu olarak frekans

kayması ve sönümleme sabitini (FWHM) hesapladık. Spektroskopik özelliklerin (fre-
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kans kayması, sönümleme sabiti) değerlendirmesine göre, sönümleme sabitini sabit

basınçlarda sıcaklığın bir fonksiyonu olarak elde etmek için sanki spin-fonon birleş-

tirme (PS) ve enerji dalgalanması (EF) modellerini de kullandık. Ters gevşeme süresi

ve sıcaklığın bir fonksiyonu olarak aktivasyon enerjisi de faz geçişine yakın olarak

hesaplandı. Bu hesaplamalara ek olarak, çeşitli basınç ve sıcaklıklarda termodinamik

ve dielektrik özelliklerini kübik gauche katı nitrojenin Raman frekansları kullanılarak

analiz edildi. Tüm bu hesaplamalar, analiz için kullanılan yöntemlerin, faz geçişlerine

yakın diğer bazı moleküler katılara da uygulanabileceğini göstermektedir.

Anahtar Kelimeler: Titreşim Frekansları, Grüneisen Parametresi, Ortalama Alan Te-

orisi, Sönüm Sabiti, Katı Azot
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CHAPTER 1

INTRODUCTION

1.1 Phase and Phase transitions

The relation between macroscopic (mechanical) and microscopic properties of mat-

ter is an essential topic for condensed matter physics. In order to build the bridge

between microscopic attitude of atoms and observed macroscopic attitude of bulk

matter, the phase transition is a key issue since every material shows different prop-

erties at different phases according to thermodynamic conditions that it is subjected.

Hence, before investigating the phase transition of materials, we should mention to

understand the nature of phases. Phase is a homogeneous state where it shows same

macroscopic properties determined under the specified external conditions such as

temperature, pressure, electric fields.In the same phase, substance exhibits an equi-

librium state in which physical and chemical properties are uniform. Generally, most

of the materials shows four main phases that is solid, liquid, gas and plasma. In

each state, material is different in density, entropy, free energy, heat capacity etc. Ev-

ery matter has a variety of atomic arrangement that can be observed with different

properties regarding phases at certain pressures and temperatures. These different

orientations of their molecules provide to gain material to new optical,electrical and

mechanical features. In the same solid or liquid material, these distinct arrangements

can be observed. What it means that matter can possess several solid or liquid phases

at different pressures and temperatures. For instance, under high pressure, the crys-

tallic substance in the solid phase, can change its molecular arrangement to another

one hence it has another solid phase [1] Actually, phase transition modifies not only

atomic arrangement but also electric properties of materials such as ferromagnetism

and superconductivity. However, the important question why the materials undergo
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phase transition (change of state). The phase transition occurs when a phase becomes

unstable as a result of changing thermodynamic conditions. In nature, there are dif-

ferent phase transitions. One of the most common phase transitions is the change of

water into ice (solidification) or melting. Another one is that at above certain tem-

perature (Curie temperature), magnets cannot attract steel or iron pieces anymore.

Phase diagram is used to state the different phases in which a substance can exist. It

is a kind of chart with the two coordinate system. Generally, these two coordinates

are pressure and temperature as depicted in Fig. 1.1.while through the solid lines two

phases coexist, triple point represents that three phases (solid,liquid and vapor) can

exist together in an equilibrium state.

Figure 1.1: Typical phase diagram for pure substance.

1.2 Properties of Solid Nitrogen

In order to examine phase transitions, crystalline systems are preferred. To discover

the structures and space groups of molecular crystals at various temperatures and

pressures, intermolecular potentials can give a lot of information. Generally, be-

cause of complex interactions between atoms, simple diatomics such as H2, N2, I2

are preferred to investigate [2, 3]. Among them, solid nitrogen is an ideal diatomic
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molecule since it serves highly efficient properties in order to investigate intermolec-

ular interaction behaviors physically and chemically at high pressures , densities and

temperatures [4]. One of them is that solid nitrogen is a first-row element which has

a strong triple bond N ≡ N between atoms [5], and also dimolecular nitrogen is one

of the elements which have a greatest binding energy . For that reason, solid nitro-

gen can remain stable up to extreme pressures and temperatures. After H2 , it has a

shortest bond length about 1.09 Å [6, 7].The other importing feature is its transition

from molecular phase to non-molecular (polymeric) phase at which there is a single

bond between nitrogen atoms under any compression [6–9]. At moderate pressures

and temperatures, there is a strong covalent bond between N atoms, however, un-

der any high pressures, nitrogen undergoes a transition to mono atomic phase. This

transition is an essential to discover barely noticeable differences between intermolec-

ular interactions in condensed matter. Also during this distortion, a large amount of

energy is released so that molecular nitrogen has a huge binding energy [10–12]. Be-

cause of its low atomic number, its facilitating to theoretical calculations is the other

important reason why solid nitrogen is used widely in the theoretical and experimen-

tal molecular interactions studies such as Raman spectroscopy, infrared absorption,

NMR, density functional theory ,x-ray ,diamond anvil cell (DAC) [13, 14]. Besides

this simplifying, solid nitrogen has a rich phase diagram under a wide temperature

and pressure range [15–17].

1.3 Phase Diagram of Solid Nitrogen

With the advent of diamond-cell and some computational methods (MD, DFT, Monte

Carlo simulations), investigating of intermolecular transitions and spectroscopy of

materials become more possible and accessible. Hence, research interest of ana-

lyzing structures of molecular crystals at high pressures and temperatures have in-

creased [18]. According to the experimental [19–24] and theoretical [7,13,14,25–29]

studies in the literature, solid nitrogen has nine phases shown in Fig.1.2 [30] .Solid

nitrogen in each phase represents different orientational structures.And these different

structures can be defined by means of space groups. Space group is described sym-

metry of crystals.There are 230 space groups for crystal systems. According to space
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group, the first step is the determine the geometry of unit cell,then whether there are

reflection conditions should be checked for centred lattices, glide planes and screw

axes respectively.The information of all possible space groups can be find out in the

literature [31].Although solid nitrogen shows different behavior in different phases,

all phases are insulator with a large band gap.At low temperature and pressure be-

low 3500 atm , α ordered cubic phase exists [16]. Its space group is Pa3. There are

four atoms per unit cell. Molecular motion is rotational describing a sphere in three

dimensions. When the temperature is increased up to 63 K, β phase occurs [32, 33].

Its structure is disordered hexagonal and space group is P63/mmc [34].In this phase

,molecules can rotate in two dimensions as disks. Beyond 3.5 kbar, tetragonal γ phase

occurs [15, 35]. It is an ordered tetragonal phase and its space group is P42/mnm. It

is stable in the pressure interval which is 0.4 – 1.9 GPa. There is a triple point among

the α, β and γ phases at 44.5 K and 4.7 kbar as seen in the phase diagram of nitrogen

(Fig. 1.2). At room temperature and P> 4.5 GPa, solid N2 has cubic disordered δ

phase as determined by the x-ray diffraction [36–38]. Its space group is Pm3n.When

the pressure is increased or temperature is decreased ,δloc occurs and It is cosidered

on as a partly ordered modification of the δ phase. ε−N2 that is rhombohedral phase

with eight oriented molecules per unit cell (R3c) exists below 40 GPa with increasing

temperature [39, 40]. At higher pressure up to 100 GPa ,a rhombohedral ζ phase oc-

curs [41] with the space group R3c. ı-N2 and θ-N2 phases appear at around 65 GPa

with 750 K and at around 69 GPa with 850 K, respectively [16, 22]. A high pressure

phase η − N2 has been detected at around 200 GPa with 300 K by Raman [18, 42]

and another high pressure phase κ has been investigated around 150 GPa by optical

spectroscopic techniques [20]. Polymeric solid nitrogen gains different structure and

properties according to temperature, pressure or synthesized methods. Cubic gauche,

black phosphorus, α-arsenic and chainlike are important polymeric forms of solid

nitrogen as shown in Fig. 1.3 [43]. Among these polymeric forms of solid nitrogen,

cubic gauche is the important one due to its low energy about 0.86 eV/atom [7,43–46].

In the literature, various physical properties of solid nitrogen have been investigated

experimentally and theoretically as pointed above. Some of these studies are as fol-

lows: Medina et al. [17] have obtained Raman frequency and linewidth data for the

Eg and B1g librational modes in the α phase of solid nitrogen. It has been reported
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Figure 1.2: Schematic representation of the observed T-P phase diagram of solid

nitrogen.Shaded areas are noncrystalline and liquid phases[30].

Figure 1.3: Polymeric forms of solid nitrogen[41].

that Tassini et al [23] have measured the Raman frequency and FWHM (linewidth)

data for the ν1 and ν2 internal modes at various temperatures for the ε, δloc and

δ phases of solid nitrogen.Transition of the molecular solid nitrogen to polymeric

forms (cubic-gauche) has been found experimentally by Eremest et al. [47, 48] and

this transformation has been also confirmed theoretically [43–46, 49, 50]. Regarding

phase transitions,at room temperature the δ−ε transition has been observed at around

17 GPa as obtained by Raman spectroscopy [42] and x-ray studies [51]. Besides vi-

brational properties, thermodynamic features of solid nitrogen have been reported in

the literature. Its thermal expansivity [52, 53] ,heat capacity [54, 55] and isothermal

compressibility [56] have been studied.

In this dissertation, we analyzed experimental results from the literature and calcu-

lated physical properties of solid nitrogen at wide pressures ( 0<P<300 GPa) and
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temperatures (0<T<1000 K). We predicted the Raman and IR frequencies of solid ni-

trogen at high pressures (at 160 GPa) through the Grüneisen parameter and its volume.

By obtaining phase line equations, we calculated phase diagram of solid nitrogen by

using mean field theory and we obtained some thermodynamic quantities as func-

tions of pressure and temperature. Also, we examined the thermodynamic quantities

of solid nitrogen by means of the Pippard relations. The Raman bandwidths (FWHM)

of the solid nitrogen was presicted for the librational and internal modes in various

phases of solid nitrogen by using pseudospin-phonon coupling(PS) , energy fluctu-

ation (EF) and anharmonic self energy models near the phase transitions. Finally,

we calculated the inverse relaxation time and the activation energy as a function of

temperature for the Raman modes close to phase transitions in solid nitrogen.

As included the general information about the phases and phase transitions of pure

substance; phases, phase diagram of solid nitrogen and some previous studies on solid

nitrogen in this chapter, in Chapter 2, an outline of the theoretical background about

physical quantities and methods, which we are used in our calculations is given. In

Chapter 3, we present our calculations and the results which we have obtained during

this thesis preparation process. With the articles published [57–61] and some articles

submitted to the journals. Finally, we summarize our all calculations and results in

chapter 4. Future work and applications are discussed in Chapter 4, conclusion.
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CHAPTER 2

THEORY

2.1 Classification of Phase transition

In nature, we can observe so many phase transitions which are extreme variations of

properties in the thermodynamic behaviors of the physical systems. Solid-solid transi-

tion in crystals, conducting-superconducting in metals, and paramagnetic-ferromagnetic

transition in magnets can be some of examples for phase transitions. Moreover, phase

transition is used in so many technical and industrial systems such as steam generator

of a nuclear power plant, metallurgical operations and food systems [62]. Although

these phase transitions show specific thermodynamic properties, they can be classi-

fied in accordance with thermodynamic characteristics of them and there are different

classifications systems. Modern classification and Ehrenfest classifications are most

familiar of them. In this dissertation, Ehrenfest classification that depends on the dis-

continuity of the thermodynamic potentials with respect to thermodynamic variable

that is temperature, pressure, volume or order parameter is preferred because of its

convenience and reliability. Ehrenfest states in 1993 that phase transitions can be

classified as a first order (discontinuous) transition, second order (continuous) transi-

tion and higher order transition by considering thermodynamic potentials [63] .

First order phase transition

In this case, the first derivative of thermodynamic potentials as a function of some

thermodynamic variables (temperature, pressure) is discontinuous. Hence according

to first order phase transition (discontinuous phase transition) , all the thermodynamic
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quantities such as volume, enthalpy, entropy are discontinues as given in Eq. 2.1 [64].

S = −
(
∂G

∂T

)
p

V =

(
∂G

∂P

)
T

H = T

(
∂G

∂T

)
(2.1)

G is the Gibbs free energy.Liquid-solid phase transition is familiar examples for first

order phase transitions. Fig.2.1 exhibits the behavior of the some thermodynamic

quantities in the first order phase transitions [64].

Figure 2.1: The changes in thermodynamic quantities due to first order phase tran-

sition.G are continuous in the transition, but the first derivatives of G (V and S) are

discontinious[62]

.

Second order phase transition

According to second order phase transitions (continuous phase transition) , thermody-

namic quantities are continuous but the first derivatives of thermodynamic quantities

are discontinuous. For example, isobaric specific heat and isothermal compressibility

are discontinuous thermal quantities for second order phase transition as given in Eq.
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2.2 [64].

Cp = T

(
∂S

∂T

)
KT = − 1

V

(
∂V

∂P

)
(2.2)

Figure 2.2: The changes in thermodynamic quantities due to second order phase tran-

sition. First derivatives of G are continuous, but some second derivatives (Cp) di-

verge[62]

.

Ferromagnetic transition [65] and superconducting transition [66] can be examples

for this kind of transition. In higher order transitions ( multicritical transitions), the

potential energy is continuous but the third and higher derivatives of the potential

energy with respect to variables are discontinuous and reduced to zero at the transition

point [62, 64]

2.2 Landau Phenomenological Theory

Although Ehrenfest’s classification is very valuable to exhibit similarities and differ-

ences between phase transitions, it is not sufficient to clarify all phenomena related

to phase transitions. Indeed, in the most of the phase transitions, a symmetry change

occurs. Hence, the symmetry change is also considered while studying phase transi-

tions. In 1937, a new approach was presented by L.D.Landau [67]. He suggested a

new concept (order parameter) accompanied with the change of symmetry with the

phase transition [67]. Order parameter is a physical quantity affected by changing

of thermodynamic variables. For instance, when the pressure increases or decreases,

the order parameter is also varied. Order parameter is different physical quantity

depending on the different phase transitions. For example while in magnetic tran-
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sition, order parameter is magnetization, change of density can be used as an order

parameter in liquid-solid transitions [68] Generally, order parameter is defined zero

or non-zero due to high symmetry phase (disordered)and low symmetry phase (or-

dered) respectively. Generally, to investigate the thermodynamic properties such as

the free energy, entropy or isothermal compressibility of the systems, the Schrödinger

equation should be solved. For this purpose, so many numerical and long calculations

should be made. For example, for crystals, density of states must be calculated by us-

ing dispersion relation that is used for the expression that the solutions of Schrödinger

equation for the microscopic states are labeled by k. Then, thermodynamic properties

can be obtained by using density of states [69]. However, Landau [67] proposed that,

in the vicinity of the transition, free energy can be expressed as an expansion in terms

of order parameter as Eq.2.3

F (ψ,T,P) = a0 +
1

2
a2ψ

2 +
1

3
a3ψ

3 +
1

4
a4ψ

4 +
1

5
a5ψ

5.... (2.3)

where ψ is an order parameter,a0 ,a2, a3, a4 and a5 are constants as a function pressure

and temperature. Generally, a0 does not depend on the order parameter. However,

while a2 depends on temperature or pressure strongly, a3, a4 (it can be positive or

negative) and a5 are nearly independent of temperature or pressure [70]. Since in the

transition region, order parameter is very small, we can expand free energy as a func-

tion of order parameter. By minimizing the free energy in terms of order parameter

(∂F/∂ψ = 0), we can easily get the value of the order parameter .After calculating

order parameter and free energy F (ψ,T,P), other thermodynamic quantities can be

obtained by using the expression below

Entropy S =− ∂F

∂T
(2.4)

Heat Capacity CP =−T

(
∂2F

∂T2

)
(2.5)

Inverse susceptibility χψ
−1 =

∂2F

∂ψ2
(2.6)

10



2.3 Mean Field Theory

Mean field theory is a kind of approximation theory to convert many body problems to

one-body problems [71]. According to this theory, all interactions between the atoms

can be considered average interaction between them. Hence, difficult calculations can

be solved by considering this average approximation. The mean field approach can

be applied for free energy calculations in the Landau phenomenological theory.

2.3.1 Calculations of the Landau Energy in the Mean Field Theory

The main idea of Landau theory is to construct the free energy of the system in the

transition region of the phase transition. In order the calculate free energy, a suitable

order parameter should be chosen and certain boundary conditions [72] should be

applied due to the properties of the systems. Phase transition is defined as a first order

and second order transition according to whether symmetry is broken or not.

First Order Phase Transition

As stated in Eq.2.3, free energy can be expanded in terms of the order parameter by

using Taylor expansion. Higher order terms can be neglected since order parameter is

very small and little effect around the transition region. First order transition should

be analyzed in two different cases according to the conservation of symmetry.

Symmetric case:

Because of the symmetry of the system, only even terms are taken into account, but

quartic term must be negative [71]

f =
1

2
a2ψ

2 +
1

4
a4ψ

4 +
1

6
a6ψ

6 (2.7)

where a4 < 0 , a6 > 0 and a2 = a
′
2 (T − Tc) with constant a′

2 and Tc is the transition

temperature. By using the stability condition (∂F/∂ψ = 0),

f = a2ψ + a4ψ
3 + a6ψ

5 = 0 (2.8)
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The solutions of equations(Eq.2.8) are

ψ = 0 for T > Tc

and

ψ = ±
[
a2 +

(
a4

2 − 4a2a6

)1/2
/2a6

]1/2
(2.9)

Since a4 is negative and a6 is positive, at T > Tc , the order parameter has a single

solution that is However,ψ = 0 below transition temperature, there are three solutions

with ψ = 0 and Eq. 2.9.

Asymmetric case:

According to the asymmetric case, cubic term is also used to calculate free energy

because the system does not have a symmetry [71].

f =
1

2
a2ψ

2 +
1

3
a3ψ

3 +
1

4
a4ψ

4 (2.10)

Again by minimizing free energy with respect to order parameter, we have

ψ = 0

and

ψ = −
[
a3 ±

(
a3

2 − 4a2a4

)1/2]
/ (2a4) (2.11)

as solutions of Eq.2.11 At high temperatures (T > Tc) , zero order parameter is the

only solution because nonzero solutions become complex since a2 = a
′
2 (T − Tc).

However, below the transition temperature (T < Tc), Eq.2.11 gives nonzero solu-

tions.

Second Order Phase Transition

In the second order phase transition,free energy has a symmetry,

f (ψ,T) = f (−ψ,T) (2.12)

and in order to preserve symmetry, odd terms are not allowed to calculate the free

energy given by

f =
1

2
a2ψ

2 +
1

4
a4ψ

4 (2.13)
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and a4 must be positive [71]. By minimizing free energy under the boundary condi-

tion (
∂f

∂ψ

)
= 0 = a2ψ + a4ψ

3 (2.14)

solutions are

ψ = 0

and

ψ = −± (−2a2/a4) (2.15)

ψ is zero for the disordered phase above Tc and below transition temperature, Eq.

2.13 gives the real solution for the second order phase transition as showed in Fig.

2.3 [71]

Figure 2.3: Landau free energy at different temperatures for second order phase tran-

sition[69].

2.4 Grüneisen Parameter

Grüneisen parameter is a unitless quantity defined by Grüneisen in 1912 [74] and it is

an important quantity to investigate thermoelastic properties of matters at high tem-

peratures and pressures. Actually, Grüneisen parameter is considered as a measure of

anharmonicity of the crystals since at high pressures and temperatures, anharmonic
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term of potential energy becomes dominant [75]. Basically, there are two ways to

define Grüneisen parameter denoted by γ [76]. One of them is microscopically rep-

resentation given as

γj = −d ln (νj)

d ln (V )
(2.16)

where νj is the vibrational frequency for mode j and V is volume of the material.

Macroscopic (thermodynamic) definition of Grüneisen parameter consists of familiar

thermodynamic quantities such as heat capacity (Cv), isothermal expansion (αT ) and

bulk modulus (κT ) is expressed by

γTH = −αTκTV
Cv

(2.17)

Grüneisen parameter can also be defined as isobaric (γp) and isothermal (γT ) Grüneisen

parameter according to its dependence on temperature and pressure as given by Eq.2.18

and 2.19, respectively,

γP = −V (∂ν/∂T )P
ν (∂V/∂T )P

(2.18)

γP = −V (∂ν/∂T )T
ν (∂V/∂T )T

(2.19)

2.5 Damping Constant

In 1972, Yamada et al. [77] used an Ising spin-phonon system to explain the temper-

ature dependence of phonons by setting the macroscopic Hamiltonian. Hamiltonian

including antisymmetric part that clarifies to coupling between phonons and spin, is

described by Yamada et al. [77] as follows:

H =
1

2

∑
−→
k s

(−→p −→
k s
−→p ∗−→

k s
+ ω2−→

k s
q−→
k s
q∗−→
k s

)
−1

2

∑
ij

Jijσiσj−
∑
−→
k s

∑
i

ω−→
k s√
N
g−→
k s
q−→
k s
σie

i
−→
k .−→r i

(2.20)

where q−→
k s

is the coordinate of phonon with the wave vector
−→
k for s mode, −→p −→

k s
is

the momentum of phonon, ω−→
k s

is the characteristic frequency of phonon , Jij is

the pair interaction energy between σi and σj , g−→k s is the coupling constant between

spin and phonon and σi is the Ising spin variable. N is the number of unit cell in

the molecular system. To simplify Eq.2.20, q−→
k s

is transformed by using canonical
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transformation [78]:

q−→
k s

= Q∗−→
k s

+
∑
j

1√
N

1

ω−→
k s

g−→
k s
σje
−i
−→
k .−→r j (2.21)

The normalized Hamiltonian can be written as

H =
1

2

∑
−→
k s

(−→p −→
k s
−→p ∗−→

k s
+ ω2−→

k s
Q−→

k s
Q∗−→

k s

)
+
∑

ij

Jeff (−→r ij)σiσj (2.22)

where Jeff is the effective pair interaction between spins given by,

Jeff = −1

2

Jij +
∑
−→
k s

1

N
g−→
k s
g∗−→
k s
ei
−→
k .−→r ij

 (2.23)

The first term denotes the direct coupling energy and the second term is indirect in-

teraction between spins [77]. By using Fourier transforms of the Ising spin variable

denoted by σi,

σ
(−→
k
)

=
1√
N

∑
i

σie
i
−→
k .−→r i (2.24)

the total Hamiltonian is provided with the σ(
−→
k ) as follows:

H =
1

2

∑
−→
k s

(−→p −→
k s
−→p ∗−→

k s
+ ω2−→

k s
Q−→

k s
Q∗−→

k s

)
− 1

2

∑
ij

Jeff (k)σ(
−→
k )σ(

−→
−k) (2.25)

with

Jeff (
−→
k ) = j(

−→
k ) +

∑
−→
k

g∗−→
k s
g−→
k s

(2.26)

In Eq.2.25, the first term is the anharmonic part (HA), the second term is the inter-

action of a phonon and pseudospin Hamiltonian (Hint) by using Ising pseudospin-

phonon coupled model, respectively. Under phase transition, only interaction is the

Hamiltonian part considered due to domination of the energy in the molecular sys-

tems. Matsushita [79] has improved the Hamiltonian due to Yamada et al. [77] by us-

ing the Ising pseudospin-phonon coupled model for the interaction between more than

one phonon and pseudospin. He explained the behavior of frequency and linewidth

(damping constant) in terms of the temperature under phase transition by considering

Hamiltonian of a pseudospin-phonon coupled system in molecular crystals. Mat-
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sushita expressed Hamiltonian with the temperature dependence of phonon as

H =
1

2

∑
−→
k ν

[−→
P (
−→
k ν)
−→
P ∗(
−→
k ν) + ω2(

−→
k ν)(

−→
k ν)Q(

−→
k ν)Q∗(

−→
k ν)

]
−1

2

∑
q

Jeff (q)σ(q)∗σ(q) +
∑
−→
k qνν′

K1,eff (
−→
k qνν ′)σ(q)Q∗(

−→
k ν)Q(

−→
k − qν ′)

+
∑
−→
k q′νν′

K2,eff (
−→
k qq′νν ′)σ(q)σ(q′)Q∗(

−→
k ν)Q(

−→
k − q − q′ν ′) +HA (2.27)

where Jeff (q) is the effective exchange energy of pseudospins which is defined as

Jeff (q) = J(q) +
∑
ν

|g(qν)|2. (2.28)

WhileK1,eff shows the interaction between two phonons (kν) and (k−q, ν ′) and one

pseudospin with wave vector q, K2,eff represents the interaction between two (kν)

and (k− q− q′, ν ′)) and two pseudospins with the wave vectors q and q′ respectively.

Eq.2.27 is the basic Hamiltonian described by Matsushita [79] to investigate the tem-

perature dependence of damping constant and frequency of phonons due to their dy-

namical behavior. The damping constant of phonon derived by Matsushita [79] is

given as

Γ
(−→
k ν
)

=
∑
qν′

∣∣∣K1

(−→
k , q, ν, ν ′

)∣∣∣2
8ωω0 (k − q, ν ′)

×

{ n
(
ω0

(−→
k − qν ′

))
nω −

(
ω0

(−→
k − qν ′

)) + 1


× S

(
q, ω − ω0

(−→
k − q, ν ′

))
+

 n
(
ω0

(−→
k − qν ′

))
n
(
ω − ω0

(−→
k − qν ′

)) + 1


× S

(
q, ω + ω0

(−→
k − q, ν ′

))}
(2.29)

where K1(k, q, ν, ν
′) is an effective coupling constant of the (kν) and (k − q, ν ′)

phonons and pseudospin with the wave vector q and S(q,ω) is the dynamic scatter-

ing function of the pseudospins. Laulicht and Luknar [80] made simpler Eq.2.29 by

means some assumptions:

(a) Γ(
−→
k ν, ω) can be nearly equal to Γ(

−→
k ν, ων), ων is the peak frequency and ων =

ω0(
−→
k , ν) ∼= ω0(

−→
k − q, ν).

(b) K1, ω’s and n’s are almost independent on q and temperature in the vicinity of

transition temperature Tc.
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(c) Integral can be used instead of summation on q.

(d) S(q, ων(
−→
k ) − ων(

−→
k − q)) ≈ S(q, 0) since S(q, ν) is the Debye type function

below Tc.

(e) All terms of S(q, ων − ω0) are zero.

According to all assumptions given above,damping constant was derived by Laulicht

[81]

Γsp(ων) = A

∫
S(q, ω)

(
n(ων)

n(ω + 1)
+ 1

)
d3q +B (2.30)

where

S(q, ω) = (n(ω) + 1)
χ(q, 0)ωτq
1 + (ωτq)2

(2.31)

In Eq.2.30, A and B are weakly temperature dependent constant,τq denotes the relax-

ation time and χ is dielectric susceptibility. Also, Laulicht [81] assumed that

n(ω) + 1 ∼ (kT/(~ω)),(ωτq)2 < 1 and n(ων)
n(ω+1)

< 1 for ω ∼= 0.So, under this assump-

tion, damping constant can be written as

Γsp(ων) =
AkT

~

∫
χ(q, 0)τqd

3q +B (2.32)

Lahajnar et al. [82] have defined general dielectric susceptibility by using dynamic

Ising model in the random phase approximation as

χ(q, 0) =
C(1− P 2)τq

Tτ
(2.33)

where P is the order parameter, C is the Curie constant and τ is the proton correlation

time. Then using all calculations of Lahajnar et al [82], the temperature dependent of

damping constant near Tc can be written as [80, 82]

Γsp = Γ0 + A(1− P 2)ln

(
Tc

T − Tc(1− P 2)

)
(2.34)

Here Γ0 is a background damping constant and A is constant.

A different approach to evaluate Γsp has been presented by Schaack and Winter-

felt [83] due to pseudospin phonon interaction. As a result of pseudospin- phonon

coupling, the phonon frequencies (ωph) undergoes a shift which is proportional to

order parameter (P). Then the broadening due to energy fluctuation of the mode has

been expressed as

Γ2
sp =

kτχ(q, 0)

V
(2.35)
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where V is the volume of the crystal. By using the dielectric susceptibility for a

dynamic Ising model (Eq.2.33), damping constant is simply obtained as

Γsp = Γ′0 + A′
(

T (1− P 2)

T − Tc(1− P 2)

)1/2

(2.36)

As explained in Eq.2.34, Γ′0 and A′ are background damping constant and constant,

respectively. As a conclusion, in order to calculate and analyze the temperature de-

pendence of damping constant, pseudospin-phonon coupling (PS) and energy fluctu-

ation (EF) models can be used for molecular crystal systems.

2.6 Pippard Relations

Pippard relations are essentially phenomenological equations proposed by Pippard

[84]. He derived these relations on the basis of the cylindrical approximation of

pressure and temperature dependence of the entropy (S) close to the λ transition given

as [85]

S(P, T ) = S0 + aT + f(T

(
dP

dT

)
λ

− P ) (2.37)

Here, S0 and a are constants. By using this approximation, Pippard suggested two

equations as given below: First equation shows the linear relation between the heat

capacity (Cp − Cv) and thermal expansion (αp)

Cp = TV αp

(
dP

dT

)
+ T

(
dS

dT

)
ν

(2.38)

where T
(
dS
dT

)
ν

corresponds to Cv at constant volume, dP
dT

is the variation of pressure

with temperature.

Second equation gives the linear relation between thermal expansion (αp) with the

isothermal compressibility(κT ) expressed as

αp =
dP

dT
κT +

1

V

dV

dT
(2.39)

where as Eq.2.37, dP
dT

is the variation of pressure with temperature and dV
dT

is the

variation of volume with temperature. Pippard relations are very useful equations in

order to calculate thermodynamic quantities of thermodynamic systems and compare

the linear variation of them as a function of pressures and temperatures.Hence, by

using these two Pippard relations, we analyzed and established the linear relation
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between Cp with αP (Eq.2.38) and αP with κT (Eq.2.39) for solid nitrogen.And also,

we predict dP/dT values for the fluid-solid, solid-solid phase transitions of molecular

nitrogen from these linear relations of thermodynamic functions.

2.7 Anharmonic Self Energy

Based on the harmonic approximation, there is no phonon interaction in crystals sys-

tems and lifetimes of phonons are infinite. However, within the real crystal, interac-

tions between phonons occur and are considered as anharmonic interactions which

contribute to the potential energy of crystals [86]. These anharmonic (renormalized)

interactions are owing to quadric and cubic components of the total expanded crys-

tal potentials with respect to atomic displacement [87]. The number of renormalized

phonons can be defined as occupation numbers (n) of all the phonons in the system

and to add one phonon k to the system (nk to nk + 1). This required energy can be

expressed as

~ωk + ~ω2k(quartic) + ~ω2k(cubic) (2.40)

where ~ωk and ~ω2k are first order and second order phonon energy, respectively

and depend on the occupation number of all the phonons. By using the second order

perturbation theory, energy shift can be obtained as a complex and it is written as

~∆ω(λ) = ~∆(λ)− i~Γ(λ) (2.41)

Here ∆(λ) is a frequency shift, 2Γ(λ) denotes a linewidth at half intensity of the

corresponding Raman line (FWHM) and λ is a phonon mode with a particular wave

vector [87]. While the cubic and quartic anharmonic terms contribute the frequency,

only cubic anharmonic terms contribute to the linewidths (inverse phonon lifetimes).

By considering cubic and quartic terms of the second order phonon energy, frequency
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shift can be expressed as

~∆λ =12
∑
λ′

Φλ,−λ,λ′,−λ′(2n
′
λ + 1)− 18

~
∑
λ′,λ′′

{
|Φλ,λ′,λ′′ |2

[
(nλ′ + nλ′′ + 1)

(ωλ + ωλ′ + ωλ′′)

+
(nλ′ − nλ′′)

(ωλ + ωλ′ − ωλ′′)
+

(nλ′′ − nλ′)
(ωλ − ωλ′ + ωλ′′)

− (nλ′ + nλ′′ + 1)

(ωλ − ωλ′ − ωλ′′)

]
+

2Φλ,−λ,λ′′Φλ′,−λ′,−λ′′
(2nλ + 1)

ωλ′′

}
(2.42)

and linewidth that consists of only cubic components of the second order phonon

energy is defined as

~Γλ =
18π

~
∑
λ′,λ′′

|Φλ,λ′,λ′′|2 {(nλ′ + nλ′′ + 1)δ(ωλ − ωλ′ − ωλ′′)

+(nλ′ − nλ′′)[δ(ωλ + ωλ′ − ωλ′′)− δ(ωλ − ωλ′ + ωλ′′)]} (2.43)

where Φλ,λ′,λ′′ represents the potential energy coefficient and nλ is the occupation

number at the equilibrium it is expressed as

nλ =
1

exp(~ωλ/kBT )− 1
(2.44)

In Eq.2.44, ωλ the is harmonic frequency and kB is the Boltzman constant [87]. The

frequency shift can be expressed as [87],

∆λ = C(λ) +
∑
λ′

C(λ, λ′)n(λ′) (2.45)

In this equation, C(λ) and C(λ, λ′) are temperature independent factors and they rely

on cubic and quartic interactions [88]. By assuming that the Raman mode interacts

only with one other excitation, its Raman frequency can be written as

ω(T ) = ω1 +
ω2

e~ω0/kBT − 1
(2.46)

where ω0(λ
′) is the harmonic frequency of vibron, ω1 and ω2 are constants [88]. Also

by assuming that vibron attracts with a second excitation to produce a third one, the

temperature dependence of the bandwidth can be given as

Γ(λ) = Γ1(λ)[
1

e~ω0/kBT − 1
− 1

e(ω−ω′)/kBT − 1
] (2.47)

In Eq.2.47, ω, ω′ and ω′′ = ω + ω′ denotes to the Raman frequencies of vibron (ω)

and the other two excitations (ω′ and ω′′) [88].Γ1(λ) is the background linewidth and

we take that Γ1(λ), Γ2(λ) are the temperature independent. As mentioned above, only

cubic terms are considered while calculating the Raman linewidth [88] .
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CHAPTER 3

CALCULATIONS AND RESULTS

3.1 "Calculations of the Raman and IR frequencies from the volume data at

high pressures in Solid nitrogen."

Raman and IR frequencies of molecular structures can be calculated by using statis-

tical models through observed data from the literature. In this study, we calculate

the pressure dependence of the Raman and IR frequencies of the lattice and internal

modes of solid nitrogen up to 160 GPa at room temperature. We used observed fre-

quency data [20] for the high-pressure phases of ε, ξ, κ and cg-N solid nitrogen. By

using experimental volume data [30] and the Raman and IR frequencies, Grüneisen

parameter at constant temperature (γT ) for the lattice and internal modes, are calcu-

lated at various pressures. First of all, by fitting experimental Raman and IR frequen-

cies (ν) and crystal volume (V) as a function of pressure of solid nitrogen through

quadratic equations which can be defined as

νT (P ) = a0 + a1P + a2P
2 (3.1)

and

VT (P ) = b0 + b1P + b2P
2 (3.2)

respectively, where a0, a1, a2 and b0 ,b1, b2 are constants, pressure dependence of

isothermal mode Grüneisen parameter (γT ) which defines the anharmonicity of the

systems is obtained according to,

γT (P ) = −V (P )(∂ν/∂P )T
ν(P )(∂V/∂P )T

(3.3)
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Also, we can obtain the Raman frequencies by using Eq.3.3 with the pressure depen-

dent additional term A(P)

γT (P ) = A(P ) + ν0exp

[
−γT (P )ln

(
VT (P )

V0

)]
(3.4)

where ν0 and V0 denote the values of the Raman frequency and volume at P=0 and

T=300 K. The pressure-dependent term can also be assumed as

A(P ) = a+ bP + cP 2 (3.5)

with constants a,b and c , which can be obtained by fitting to the experimental data

for the Raman frequencies. We analyzed the observed data for the crystal volume and

the experimental frequencies at various pressures due to Eqs.(3.1) and (3.2), respec-

tively, and we obtained the coefficients (a0 , a1, a2 and b0 ,b1, b2) as given in Table

3.1(Eq.3.2), Table 3.2 (Eq.3.1) for lattice modes and Table 3.3 (Eq.3.1) for vibrons

within the pressure intervals studied. We added the a3P 3 term in Eq 3.1 in order to

obtain the best fit for the lattice modes of νIV and νV I and the vibrons of ν2d and ν2f .

Value of the coefficient a3 is given for relevant lattice modes and vibrons in Table

3.2 and Table 3.3 respectively. Then, we computed isothermal mode Grüneisen pa-

rameter (Eq.3.3) by using values of coefficients (Tables 3.1–3.3) for the lattice modes

and vibrons. Figs.3.1–3.3 show the change of (γT ) with the pressure for the lattice

modes at room temperature. We plotted (γT ) as a function of pressure as indicated in

Figs.3.4 and 3.5 for vibrons of solid nitrogen.

Table 3.1: Values of the coefficients to Eq.(3.2) fitted to the observed volume data[30]

for solid nitrojen.

V (Å
3
) b0(Å

3
) b1(Å

3
/GPa) b2 × 10−4(Å

3
/GPa2)

Solid N2 11.75 -0.076 2.58

We were then able to predict the Raman and IR frequencies of those modes for the

phases of ε, ξ, κ and cg-N solid nitrogen by the means of Eq.3.4. By fitting observed

frequency data [20] for the lattice modes and vibrons with respect to Eq.3.4, the co-

efficients of A(P) were obtained as given in Tables 3.4 and 3.5, respectively. We also

added cubic polynomial term dP 3 to Eq.3.5 for the lattice modes of νIV and νV Iand

the vibrons of ν2d and ν2f as implemented to Eq.3.1 for the observed frequency data
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Table 3.2: Values of the coefficients according to Eq.3.1 fitted to the observed Raman

and IR frequencies [20] for the lattice modes indicated within the pressure interval

for solid nitrogen.

ν a0 a1 −a2 × 10−2 a3 × 10−4 Pressure interval

(cm−1) (cm−1) (cm−1/GPa) (cm−1/GPa2) (cm−1/GPa3) P(GPa)

νI 309.9 4.61 0.88 - 42.9<P<139.8

νII 308.5 4.91 1.23 - 80.4<P<160.1

νIII 195.5 4.82 1.05 - 24.7<P<111.0

νIV 204.5 4.72 2.80 0.86 42.9<P<110.5

νV 70.2 4.28 1.15 - 60.7<P<124.1

νV I 20.3 4.71 4.45 1.62 23.4<P<110.5

Figure 3.1: Pressure dependence of the isothermal mode Grüneisen parameter (γT )

calculated for lattice modes indicated according to Eq.3.3 by using the observed data

for the Raman and IR frequencies [20] and volume[30] of solid nitrogen.

fitting (a3P
3) . At the end of the study, we calculated Raman and IR frequencies

of solid nitrogen by using Eq.3.4 and depicted for the lattice modes and vibrons as a

function of pressures in Figs.3.6 and 3.7, respectively, with the observed data [20,30].

For the calculations provided, the pressure induced change in the isothermal mode
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Figure 3.2: Pressure dependence of the isothermal mode Grüneisen parameter (γT )

calculated for lattice modes indicated according to Eq.3.3 by using the observed data

for the Raman and IR [20] and volume [30] of solid nitrogen.

Figure 3.3: Pressure dependence of the isothermal mode Grüneisen parameter (γT )

calculated for lattice modes indicated according to Eq.3.3 by using the observed data

for the Raman and IR frequencies[20] and volume [30] of solid nitrogen.

Grüneisen parameter (γT ) represented in Figs.3.1-3.5 for the Raman and IR frequen-

cies of the lattice modes and the vibrons ν1 and ν2 in solid nitrogen. According to our

results, calculated (γT ) values of the lattice modes νI and νV I (Fig.3.1) and νV (Fig.3.3
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Figure 3.4: Pressure dependence of the isothermal mode Grüneisen parameter (γT )

calculated for vibrons indicated according to Eq.3.3 by using the observed data for

the Raman and IR frequencies[20] and volume [30] of solid nitrogen.

increase with increasing pressure in the pressure interval 60 to 140 GPa except that

(γT ) value of the lattice mode νV I decreases from 20 to 60 GPa. Grüneisen parame-

ter (γT ) related the vibrons (ν1 and ν2) is reduced (Figs.3.4 and 3.5) with increasing

pressure with the exception of the ν2g and ν2d modes. While the (γT ) values for the

ν2g mode increase (Fig.3.5b) as the pressure increases, for the ν2d mode the (γT )

values decrease first then start to increase about 100 GPa (Fig. 3.5c). According to

Sherman’s studies where he predicts that at high pressures,(γT ) values approach to

1 for molecular crystals, our (γT ) calculations show nearly good agreement with his
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Figure 3.5: Pressure dependence of the isothermal mode Grüneisen parameter (γT )

calculated for vibrons indicated according to Eq.3.3 by using the observed data for

the Raman and IR frequencies[20] and volume [30] of solid nitrogen.
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Table 3.3: Values of the coefficients according to Eq.3.1 fitted to the observed Raman

and IR frequencies [20] for vibrons indicated within the pressure interval for solid

nitrogen.

ν a0 a1 −a2 × 10−3 a3 × 10−5 Pressure interval

(cm−1) (cm−1) (cm−1/GPa) (cm−1/GPa2) (cm−1/GPa3) P(GPa)

νI 2335.6 3.26 22.18 - 17.3<P<60.0

ν2a 2368.4 1.30 3.76 - 98.3<P<152.0

ν2b 2402.0 0.65 1.19 - 97.7<P<141.2

ν2c 2378.6 1.16 3.26 - 96.9<P<150.5

ν2d 2307.4 3.60 33.27 1.12 36.2<P<110.2

ν2e 2321.1 1.87 6.48 - 98.2<P<140.4

ν2f 2323.1 2.20 13.14 2.51 17.2<P<141.3

ν2g 2493.7 -0.91 -3.46 - 105.8<P<140.9

νh 2343.1 1.78 7.24 - 31.9<P<111.2

ν21 2331.1 1.88 10.72 - 17.0<P<80.8

ν22 2389.4 0.80 10.72 - 80.8<P<139.4

Table 3.4: Values of the coefficients of the pressure-dependent term A(P) according

to Eq.3.5 for the lattice modes within the pressure intervals indicated for nitrogen.

A(P ) a b c× 10−3 d× 10−4 Pressure interval

(cm−1) (cm−1/GPa) (cm−1/GPa2) (cm−1/GPa3) P(GPa)

νI 214.44 0.637 23.70 - 42.9<P<139.8

νII -0.64 4.924 -12.32 - 80.4<P<160.1

νIII -154.17 7.698 -46.97 - 24.7<P<111.0

νIV 48.53 -2.873 109.49 -7.35 42.9<P<110.5

νV -59.64 4.117 -9.24 - 60.7<P<124.1

νV I -16.04 4.376 -31.45 0.67 23.4<P<110.5

prediction for lattice modes and vibrons [89, 90]. In the last part, we calculated

Raman and IR frequencies of lattice modes and vibrons studied above by means of

Eq.3.4 and we plotted with the observed data for the lattice modes (Fig.3.6) and vi-

brons (Fig.3.7). According to Figs.3.6 and 3.7, we obtained the same behavior of

the calculated frequencies by the change against pressure with the experimental ones,
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Table 3.5: Values of the coefficients of the pressure-dependent term A(P) according

to Eq.3.5 for the vibrons within the pressure intervals indicated for nitrogen.

A(P ) a b c× 10−3 d× 10−4) Pressure interval

(cm−1) (cm−1/GPa) (cm−1/GPa2) (cm−1/GPa3) P(GPa)

νI 0.63 -0.013 21.50 - 17.3<P<60.0

ν2a -29.45 0.714 0.66 - 98.3<P<152.0

ν2b -4.19 0.140 2.58 - 97.7<P<141.2

ν2c -24.31 0.596 0.73 - 96.9<P<150.5

ν2d 7.17 -0.493 43.79 -3.03 36.2<P<110.2

ν2e 353.78 -6.066 28.90 - 98.2<P<140.4

ν2f -23.46 1.603 -17.09 0.95 17.2<P<141.3

ν2g -456.35 13.592 -80.58 - 105.8<P<140.9

νh 39.84 -1.494 14.79 - 31.9<P<111.2

ν21 1.97 -0.107 11.30 - 17.0<P<80.8

ν22 -5561.67 117.863 -618.09 - 80.8<P<139.4

Figure 3.6: Raman and IR frequencies calculated for the lattice modes(red squares)

indicated as a function of pressure according to Eq.3.4 for solid nitrogen. Observed

data ( black squares)[20] are also given here.

which increase with pressure up to 160 GPa except that ν2 mode starts to decrease

after 80 GPa ,which is not shown in Fig.3.7. Also, at around 100 GPa, ν2 mode
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Figure 3.7: Raman and IR frequencies calculated for the vibrons(red squares) indi-

cated as a function of pressure according to Eq.3.4 for solid nitrogen. Observed data

( black squares)[20] are also given here.

splits out as it softens during the phase transition from the ε to the ξ phase in solid

nitrogen. This softening concerns with the increasing of the vibrational coupling or

the weakening of the intramolecular bonding between molecules [49, 91, 92]. As

pointed out previously [14], due to the interactions between high pressure-induced

molecules , pressure-induced decomposition creates a polymeric phase called a cubic

gauche [43]. When we compared with the Fig.3.6 and Fig.3.7, the external (lattice )

modes are more sensitive than internal (vibrons) modes against the compression [93].
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3.2 "Calculation of the phase diagrams for the fluid-solid and solid-solid (δ −

δloc − ε) transitions in molecular nitrogen by using mean field model."

Phase diagram is the convenient way to describe the phases and phase transitions of

materials in terms of temperature and pressure as pointed out in Chapter 2. In this

study, we derived phase line equations in order to calculate phase diagrams using the

mean field theory for the models of the solid-fluid and the solid-solid transitions of

the δ − δloc − ε in nitrogen. To obtain phase line equations, free energy expanded in

terms of order parameter was analyzed. Pressure and temperature dependent coeffi-

cients in the expansion of the free energy were obtained by the means of fitting of

the phase like equations to the experimental data from the literature [23, 55, 94] As

mentioned in Chapter 2, according to mean field theory, there are two kinds of phase

transitions depending on the transition type. These are first order and second order

phase transitions. In these calculations, we predicted phase diagrams of nitrogen by

considering the first order fluid-solid transition and, the second order δ − δloc and the

first order δloc − ε transitions.

Fluid-solid transition

To describe the fluid-solid transition of nitrogen, the free energy expanded in terms

of order parameter η with the cubic term was used as given by

Fs = a2η
2 + a3η

3 + a4η
4 (3.6)

where a2 ,a3 and a4 are the temperature and pressure dependent coefficients and we

assumed a2 > 0 , a3 < 0 and a4 > 0 for the first order phase transition. By applying

two boundary conditions:

1) minimizing free energy with respect to order parameter (∂F/∂η = 0),

2) no ordering in liquid phase (FS = Ffluid = 0), we then get order parameter as

η = −2a2
a3

= − a3
2a4

(3.7)
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Hence, we obtained the phase line equation for the first order fluid-solid phase tran-

sition in molecular nitrogen as

a23 = 4a2a4 (3.8)

We assumed that a2 and a3 are the temperature and pressure dependent, respectively,

while a4 is constant as given below :

a2 = a20(T − Tm) (3.9)

a3 = a30(P − Pm) (3.10)

a4 = a40 (3.11)

where Tm and Pm represent the temperature and pressure at the melting point, respec-

tively. By substituting Eqs.3.9 and 3.10 into Eq.3.8, phase line equation was obtained

as functions of pressure and temperature

a230(P − Pm) = 4a20a40(T − Tm) (3.12)

We expand Eq.3.12 as expressed in Eq.3.13,

f(T, P ) = T − α1 − α2P + α3P
2 = 0 (3.13)

where

α1 = Tm +
a230P

2
m

4a20a40
(3.14)

α2 = − a230Pm
2a20a40

(3.15)

α3 = − a230
4a20a40

(3.16)

Eq.3.13 was then fitted to the experimental phase diagram data and the values of a1,

a2 and a3 were predicted at the maximum values of Tm=1769.4 K and Pm=74.3 GPa

on the melting line [55] for the fluid-solid transition in nitrogen as given in Table 1.We

plot the calculated phase diagram and experimental data with the uncertainties [55]

as depicted in Figure 3.8 for the fluid-solid transition in N2.Also another observed P-

T [94] data taken from the literature were fitted through Eq.3.13 in order to calculate
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the coefficients of phase line equation. For the coefficients we used the maximum

values of Tm=1920 K and Pm=50 GPa we assumed that

a2 = a20(T − Tm) (3.17)

a3 = a30(T − Tm) (3.18)

a4 = a40(P − Pm) (3.19)

Again by inserting Eqs.3.17–3.19 into Eq.3.8, we get

a230(T − Tm) = 4a20a40(P − Pm) (3.20)

By expanding Eq.3.20, we get Eq.3.8 with the a3 = 0, where

α1 = Tm − (
4a20a40
a230

)Pm (3.21)

and

α2 =
4a20a40
a230

(3.22)

Then, Eq.3.13 was fitted to the observed linear melting line according to the two

pressure intervals and the coeffcients a1(Eq.3.21), a2 (Eq.3.22) were determined as

given in Table 3.6. This is plotted in Fig.3.8. for the melting temperature with the

observed data [94]. In Eq. 3.13, to get the best fit from experimental data, we took a3

as a zero. Regarding to the first order fluid-solid transition in nitrogen, we obtained

that the temperature increases with increasing pressure up to about 90 GPa in the

melting region as mentioned experimentally [55]. When we look at the change in

the temperature of melting, there is a linear increase up to a maximum point where

the temperature is 1920 K and the pressure is 50 GPa . However after this point, a

sharp linear decrease occurs down to 1400 K and 71 GPa as obtained experimentally

[94].Table 3.7 gives us the dT/dP values of melting temperature according to linear

fit with the pressure and temperature intervals.The negative slope value in Fig.3.8

implies that the liquid is denser than the underlying solid as stated previously [94].

Also, the sharpness of the changes in the melting temperature can be an evidence

of first order liquid-liquid polymer transition [94] that supports the molecular dy-

namic simulations [14]. The reason why the experimental data taken from Refs. [55]
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Table 3.6: Values of the fitted parameters within the pressure intervals indicated for

the fluid-solid transition[53] and the melting curves[92] according to Eq.3.13,and for

the solid-solid transitions of δ − δloc and δloc − ε [23] according to Eq.3.35 in N2.

f(T, P )
α1 α2 × 10−2 α3 × 10−5 Pressure interval

(K) (K/GPa) (K/GPa2) P(GPa)

Fluid− solid
43.6 -7.1 4.80 15.9<P<74.3

transition

Meltingcurve
200.98 3599.0 - 0.2<P<49.7

4.924 -12.32 - 49.5<P<71.2

δloc − ε -4.44 4.12 3.11 3.9<P<21.4

δ − δloc -1.98 3.78 3.84 5.5<P<33.6
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2000
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Observed [92]
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T(
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Figure 3.8: Calculated phase diagram of N2 in the melting region according to

Eq.(3.6) by using the mean field model. Observed data (squares)[53] and (circles)[92]

with the uncertainities are also given for the fluid-solid transition in nitrogen.

and [94]are different is because of the difference methods used which are Raman

spectroscopy and visual observations from laser speckle motion for the melting curve

[94]. When compared the calculated data with the experimental ones [55, 94], there

is a good agreement between them so that mean field theory is a adequate to analyze
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Table 3.7: Values of the slope(dP/dT) within the temperature and pressure intervals

according to the equations indicated for the transitions in N2. Tc and Pc denote max-

imum (Tm ,Pm) values for the melting curve and fluid –solid transition (Fig.3.8).

dT/dP values are calculated at 300 K for the δ − δloc and δloc − ε transitions in N2.

Transition Tc Pc dT/dP Temperature Pressure Reference Equation
in N2 (K) (GPa) (K/GPa) Interval(K) Interval(GPa) No. No.

Melting Curves 1920.0 50.0
34.6(T < Tc) 74.57<T<1939.0 0.2<P<49.7

92 3.13
-25.5(T < Tc) 1437.3<T<1932.2 49.5<P<71.2

Fluid− solid 1746.7 74.0 -0.0638 816.0<T<1769.41 15.9<P<74.3 53 3.13

δloc − ε 300.0 10.72 16.7 181.2<T<463.3 3.9<P<21.4 23 3.35

δ − δloc 300.0 17.35 16.4 100.4<P<534.8 5.5<P<33.6 23 3.35

the phase transition in nitrogen.

δ − δloc − ε transitions

In this section , we analyzed solid – solid transitions of δ − δloc − ε in solid nitrogen

as a two separate transitions of δ − δloc and δloc − ε using mean field models. For

the δ − δloc transition, while δ is a disordered phase, δloc is a partially-ordered phase.

Hence, this transition was assumed to be of a second order. For this calculation, we

used disorder parameter (σ) and order parameter (κ) for the disordered δ phase and

partially-ordered δloc phase, respectively. The expansion of the free energy in terms

of the disorder parameter and order parameter could be represented as

Fδ−δloc = b2κ
2 + b4κ

4 + c2σ
2 + c4σ

4 + dσ2κ2 (3.23)

Here, b2, b4, c2, c4 were assumed to depend on the pressure and temperature and d is

the coupling constant. Since δ − δloc transition is considered as a second order, all

coefficients are taken positive. Due to the symmetry reasons and positive free energy

reason, we considered only even terms in the Eq.3.23. By taking derivation of Eq.3.23

with respect to the order parameter κ and disorder parameter σ, we find

∂F

∂κ
= 2κ(b2 + 2b4κ

2 + dσ2) (3.24)

and
∂F

∂σ
= 2σ(c2 + 2c4σ

2 + dκ2) (3.25)
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For the disordered phase δ, ordered parameter κ was taken as zero (κ = 0). Under

this condition, the solution of Eq.3.24 was obtained as

σ2 = −b2
d
− 2b4

d
κ2 (3.26)

Also, solution for Eq.3.25, σ=0 was defined for the δloc phase with the nonzero order

parameter κ. By substituting Eq.3.26 into the solution of Eq.3.25, the order parameter

κ was obtained as

κ2 =
2b2c4 − c2d
d2 − 4b4c4

(3.27)

For this calculation, the free energy Eq.(3.23) was arranged in terms of the order

parameter κ as follows:

Fδ−δloc =
b2
d

(
b2c4
d
− c2

)
+

2b4
d

(
b2c4
d
− c2

)
κ2 + b4

(
4b4c4
d2
− 1

)
κ4 (3.28)

Phase line equation was derived from Eq.3.28 by applying condition for as given the

second order transition
2b4
d

(
b2c4
d
− c2

)
= 0 (3.29)

By assuming pressure and temperature dependence of coefficients as

b2 = b20(T − Tc) (3.30)

b4 = b40(T − Tc) (3.31)

c2 = c20(P − Pc) (3.32)

c4 = c40(T − Tc) (3.33)

with the constantd, we obtained temperature and pressure dependence of the phase

line equation (Eq.3.29) as

2b20c40(T − Tc)2 = c20d(P − Pc) (3.34)

where Tc and Pc are the critical temperature and pressure, respectively.

By expanding Eq.3.34, we get in the form of

f(T, P ) = P − α1 − α2T + α3T
2 = 0 (3.35)
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where

α1 = Pc + (
2b20c40
c20d

)T 2
c (3.36)

α2 = −(
4b20c40
c20d

)Tc (3.37)

α3 =
2b20c40
c20d

(3.38)

Then the coefficients α1 , α2 and α3 were determined by fitting quadratic function

(Eq.3.35) to the observed data [23] as given in Table 3.6. We plot in Fig.3.9 the

calculated phase diagram according to Eq.3.34 with the observed data for the δ− δloc
transition in solid nitrogen. When the consider δloc− ε transition of nitrogen, the free

energy of the δloc and ε phases can be expressed based on the first order transition

with the order parameter κ and ρ,respectively,

Fδloc = b2κ
2 + b4κ

4 + b6κ
6 (3.39)

and

Fδloc = e2ρ
2 + e4ρ

4 + e6ρ
6 (3.40)

where b2, b4, b6 and e2, e4, e6 denote the pressure and temperature dependent coeffi-

cients. Due to the conditions for the first order δloc − ε transition , we have b2 > 0,

b4 < 0 and b6 > 0 for Fδloc , and e2 > 0, e4 < 0 and e6 > 0 for Fε. By using two

boundary conditions which are the minimization of free energy with respect to the or-

der parameter (
∂Fδloc
∂κ

= 0 and ∂Fε
∂ρ

= 0) and equivalence of free energy of two phases

(δloc and ε) at the transition region (Fδloc = Fε) , we obtained phase line equation from

Eqs.3.39 and 3.40 as

b22
b4

(
1 +

b2b6
2b24

)
=
e22
e4

(
1 +

e2e6
2e24

)
(3.41)

This phase line equation is valid under the ansatz b2b6/b24 << 1 and e2e6/e24 << 1.

We assumed here temperature and pressure dependence of phase line coefficients as

b2 = b20(T − Tc) (3.42)

b4 = b40(P − Pc) (3.43)
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b6 = b60(T − Tc)(P − Pc) (3.44)

for the δloc phase and

e2 = e20(T − Tc) (3.45)

e4 = e40(P − Pc) (3.46)

e6 = e60(T − Tc)(P − Pc) (3.47)

for the ε phase inN2. By using the same procedure as the δ−δloc transition, functional

form of the coefficients (Eqs.3.42- 3.47) was obtained and it was substituted into

the phase line equation (Eq.3.41) to predict phase diagram of δloc − ε transition of

nitrogen.

α1 = Pc − T 2
c

(
b320b60
2b340

− e320e60
2be340

)
/

(
b220
b40
− e220
e40

)
(3.48)

α1 = 2Tc

(
b320b60
2b340

− e320e60
2be340

)
/

(
b220
b40
− e220
e40

)
(3.49)

α1 = −
(
b320b60
2b340

− e320e60
2be340

)
/

(
b220
b40
− e220
e40

)
(3.50)

Eqs. (3.48-3.50) are the definition of the coefficients of Eq.(3.35) for the δloc − ε

transition. Those values were predicted by Eq.3.30 to the experimental data [23] as

given in Table 3.6. Fig.3.9 gives the T-P phase diagram for the δloc− ε transition with

the observed data [23] in nitrogen. For the δ − δloc − ε transitions, the T-P phase

diagram was predicted by using the mean field model with the free energies, that was

considered as of a second order transition for the δ − δloc and a first order transition

δloc − ε separately in nitrogen [23]. The disordered δ phase undergoes the partially-

ordered δloc phase at around 10.5 GPa and 300 K that is regarded as a second order due

the change of the orientational behavior of molecular nitrogen from the free rotation

to the localized mode. However, for the δloc − ε transition, significant hysteresis

prevents to specify the transition temperature as pointed earlier [23]. This uncertainty

indicates metastability of one phase with respect to the other [23]. Both experimental

[14, 22, 23, 51, 95] and theoretical calculations [25] stated that the ordered ε phase

becomes stable in the pressure interval of 2-40 GPa. As a results, on the basis of
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Figure 3.9: Calculated phase diagram of N2 for the transitions of δloc − ε and δloc − ε
according to Eq.3.35 using the experimental data [23].

these calculations, the analyzing of the T-P phase diagram by using mean field theory

can also be used for the other molecular crystals.

3.3 "Calculation of the thermodynamic functions using a mean field model for

the fluid-solid transition in nitrogen."

In our earlier studies, we calculated phase diagram of solid nitrogen by using the

phase line equation derived from the free energy for the solid-fluid and, solid-solid

transitions of the δ − δloc − ε in nitrogen [23, 55, 94] through the mean field mod-

els [58]. In this part, we predicted some thermodynamic quantities of solid nitrogen

as a function of temperature near the melting temperature by applying same proce-

dure as the previous study. We investigated those temperature dependences of the

thermodynamic quantities such as order parameter, inverse susceptibility, thermal ex-

pansion, isothermal compressibility, specific heat etc. by using the measured melting

temperature [56] and the observed T-P data [55].

First, we expanded free energy in terms of the order parameter ψ close to the solid-

liquid transition according to the Landau phenomenological model with the cubic
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term which leads to a first order solid-liquid transition as

Fs = a2ψ
2 + a3ψ

3 + a4ψ
4 (3.51)

where a2 , a3 and a4 can generally depend on temperature and pressure. For this cal-

culations, density is considered as an order parameter. By minimizing the free energy

with respect to order parameter (∂F/∂ψ = 0) and using the first order condition ac-

cording to which there is no ordering in the liquid phase (FS = FL = 0) , we obtained

the solution as

ψ = −2a2
a3

= − a3
2a4

(3.52)

We then have the phase line equation from Eq.3.52

a23 = 4a2a4 (3.53)

We assumed the temperature and pressure dependence of the coefficient a2 (Eq.3.53)

as

a32 = (P − Pt)− a20 − a21(T − Tt) + a22(T − Tt)2 (3.54)

Here, a20 , a21 and a22 are constants and we took the value of the a2 as unity. To

determine the value of the coefficients of Eq.3.54, we fitted the experimental data

[55, 56] through functional form of phase line equation (Eq.3.54) as given in Table

3.8 with the transition temperature (Tt) and pressure (Pt) which have maximum values

for the solid-liquid transition.

Table 3.8: Values of the coefficients a2, which were obtained by fitting Eq.(3.54)

(a2=0) to the experimental T-P data for the solid N2-liquid N2 transition [54,53]

within the temperature and pressure intervals indicated. Values of the transition tem-

perature (Tt) and pressure (Pt) in Eq.(3.54), are also given here.

Tt Pt a20 a21 × 10−2 a22 × 10−5 Temperature Pressure Ref.
(K) (GPa) (GPa) (GPa/K2) (GPa/K2) Interval(K) Interval(GPa)

1769.4 74.3 -8.70 8.80 3.90 816.0<T<1769.4 15.9<P<74.2 23

1972.7 106.9 11.29 11.34 3.59 241.0<1972.7 1.5<P<106.9 54

First, we calculated the order parameter (ψ) as a function of temperature and pressure

as plotted in Fig.3.10a and 3.10b, respectively, for the solid-liquid transition by using

Eq.3.52. Calculated ψ decrease with the increment of the temperature and pressure
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Figure 3.10: Variation of the order parameter ψ (normalized) with the temperature

(a) and the pressure (b) at the transition pressures of Pt =74.3 GPa and Pt=106.9 GPa

by using the observed T-P data (circles) [54] and (squares) [53], respectively, for the

solid –liquid transition in N2 according to Eq.3.52 through Eq.3.54.

as expected for two observed data taken from the literature [55, 56]. By using the

definition of the inverse susceptibility (χ−1ψ )

χ−1ψ = ∂2F/∂ψ2 (3.55)

and using the Eq.3.51, we predicted the inverse susceptibility χ−1ψ as a function of

temperature and pressure. Figs.3.11a and 3.11b give the variation of the inverse sus-

ceptibility of the order parameter with the temperature and pressure, respectively.

According to these figures, there is an almost linear decrease of the inverse suscepti-

bility as the temperature and pressure increase.

The thermodynamic quantities of the entropy (S), heat capacity (CP ), thermal ex-

pansion (αP ) and isothermal compressibility (κT ) were also calculated by using their

definitions of S = (∂F/∂T )ν ,

Cp = T (∂S/∂T )v (3.56)

αP = (1/V )(∂V/∂T )P

and

κT = −(1/V )(∂V/∂P )T

respectively, for the solid-liquid transition in N2.

We depicted the normalized entropy (S/S0) as function of temperature (Fig.3.12)
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Figure 3.11: Inverse susceptibility χ−1ψ of the order parameter ψ as a function of tem-

perature (a) and pressure (b) at the transition pressures of Pt=74.3 GPa and Pt=106.9

GPa by using the observed T-P data (circles) [54] and (squares) [53] respectively, for

the solid –liquid transition in N2 according to Eq.3.55.
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Figure 3.12: Entropy S (normalized ) calculated from the free energy (Eq.11) as a

function of temperature at the transition pressures of Pt=74.3 GPa and Pt=106.9 GPa

by using the observed T-P data (circles) [54] and (squares) [53] respectively, for the

solid –liquid transition in N2 .

,the normalized heat capacity (CV /CV 0) (Fig.3.13),the normalized thermal expan-

sion (αP/αP0) (Fig.3.14) and the normalized isothermal compressibility (κT/κT0)

(Fig.3.15) as a function of temperature at the transition pressure (P=Pt) for the solid
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Figure 3.13: Heat capacityCv (normalized ) calculated from the free energy (Eq.3.56)

as a function of temperature at the transition pressures of Pt=74.3 GPa and Pt=106.9

GPa by using the observed T-P data (circles) [54] and (squares) [53] respectively, for

the solid –liquid transition in N2 .
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Figure 3.14: Thermal expansion αp (normalized ) as function of temperature at the

transition pressures ofPt=74.3 GPa and Pt=106.9 GPa using the observed T-P data

(circles) [54] and (squares) [53] respectively, for the solid –liquid transition in N2.
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Figure 3.15: Isothermal compressibility κT (normalized) as a function of temperature

at the transition pressures of Pt=74.3 GPa and Pt=106.9 GPa by using the T-P data

(circles) [54] and (squares) [53] respectively, for the solid –liquid transition in N2.

liquid transition in N2. According to these figures (Figs. 3.12-3.15), they show

the same behavior as a large increase especially close to the melting point. For Cv

(Fig.3.13), αP (Fig.3.14), and κT (3.15), we obtained nearly the same values by using

two different observed data [55,56] as stated above. In the melting region, those ther-

modynamic quantities exhibit anomalous behavior due to the appearance of a liquid

which is denser than the solid. Hence this critical behavior of them states that the

mean field model with the cubic term is sufficient to analyze the first order liquid-

solid transition in nitrogen.

3.4 "Raman bandwidths calculated for the librational ( α-phase) and internal

( ε, δloc and δ phases) modes inN2 using pseudospin-phonon coupling (PS)

and energy-fluctuation (EF) models"

The temperature dependence of Raman bandwidths was calculated by using the pseudospin-

phonon coupling (PS), energy fluctuation models and Raman frequencies with respect

to the order parameter was analyzed for the for theEg librational mode in the α -phase
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(P=0) and for the internal mode ν1 in the phases of ε, δloc and δ at constant pressure

(P=18 GPa) using the experimental data from the literature [23, 88].In this context,

the frequency difference of the internal modes ν1 and ν2 as a function of temperature

was also analyzed at various pressures (13.2, 14.95, 18.5 and 21.2 GPa) using the ex-

perimental data [23]. Regarding to calculation of the Raman frequency, temperature

dependence of the order parameter was studied in the molecular field theory [79, 96]

as given by

s = 1− exp(−2Tc
T

) (3.57)

below the critical temperature (Tc). We calculated the order parameter (S) as a func-

tion of temperature at the P=0 for the Egmode in the α phase and at the 18 GPa for

the ν1 mode in the ε, δloc and δ phases in nitrogen. In this calculation, normalized

Raman frequency (ν/ν0) was considered as an order parameter which various from 0

(disordered phase) to 1 (ordered phase) and it was examined through Eq.3.58

ν/ν0 = a0 + a1T + a2T
2 (3.58)

where ν0 is the maximum frequency , the coefficients a0 , a1 and a2 are constants.

By the fact that we fitted experimental ν data for the Eg librational mode at P=0 [88]

and for the internal mode ν1 at P=18 GPa [23]in the solid nitrogen, the coefficients of

Eq.3.58 (a0 , a1 and a2) were determined as given in Table3.9.

Table 3.9: Values of the coefficients a0 , a1 and a2 (Eq.3.58) and, of the a,b and c

(Eq.3.59) with the ν0 and Tc values for the Raman modes of Eg for the transition of

α−β [86] and ν1 for the transition of ε - δloc - δ [23] at the pressures indicated within

the temperature intervals in solid nitrogen.

P Tc Transition Raman a0 a1 × 10−3 −a2 × 10−8 ν0 a b c Temperature
(GPa) (K) modes (K−1) (K−2) (cm−1) Interval(K)

0 38.74 α− β. Eg 0.99 2.4 9930 34.98 17.39 -35.88 19.56 4.88<T<38.74

18
413.87 δloc−, δ

ν1
0.99 0.0398 6.76 2388.35 8.95× 105 −1.79× 106 8.95× 105 332.54<T<413.87

323.34 ε− δloc 0.97 0.19 31.8 2389.57 -57.28 58.20 - 299.54<T<323.34

To analyze the correlation between order parameter S and the normalized Raman

frequency (ν/ν0), the quadratic expression

S = a+ b(ν/ν0) + c(ν/ν0)
2 (3.59)

was used. Values of coefficients a,b and c were obtained (Table 3.9) by means of

fitting the order parameter calculated (Eq.3.57) to the normalized Raman frequency
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(ν/ν0) (Eq.3.59) for the Eg librational mode and ν1 mode in the ε, δloc and δ phases

in nitrogen. Fig.3.16 gives the temperature dependence of Raman frequency for the

Eg librational mode in the α phase [88] calculated via Eq.3.59 with the observed data.

The calculated Raman frequency of the ν1 mode with the variation of temperature

(P=18 GPa) according to Eq.3.59, was plotted in Fig.3.17 in the ε, δloc and δ phases

[23] of solid nitrogen.
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Figure 3.16: Raman frequency calculated for the Raman modes of Eg by using

Eqs.(3.57) and (3.58) through Eq. (3.59) for the αphase (P=0) with the observed

data [86] in solid nitrogen.

We also analyzed the difference between the Raman internal modes of ν1 and ν2 at

constant pressures of 13.2, 14.95,18.5 and 21.2 GPa for the ε, δloc and δ phases [23]

of solid nitrogen. We obtained values of the coefficients of a0 , a1 and a2 (Eq.3.58)

by fitting observed frequency shift (ν1 - ν2) [23] data through the Eq.3.58 . Then

we calculated the order parameter S by the molecular field theory and the values of

coefficients of a, b and c (Eq.3.59) were determined from our analysis of ν1 - ν2 with

respect to the temperature at constant pressures for the transitions of solid nitrogen

as given in Table3.10 with the critical temperatures (Tc). We depicted the Raman

frequencies calculated from Eq.3.59 for the frequency difference ν1 - ν2 as a function

of temperature at constant pressures with the observed data in Fig.3.18

Damping constant was then calculated according to the pseudospin-phonon coupled
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Figure 3.17: Raman frequency calculated for the internal mode of ν1 by using

Eqs.(3.57) and (3.58) through Eq. (3.59) for the ε, δloc and δ phases (P=18 GPa)

with the observed data [23] in solid nitrogen.

Table 3.10: Values of the coefficients a0 , a1 and a2 (Eq.3.57) and of the a,b and c

(Eq.3.58) with the ν0and Tc values for the frequency difference (ν1 - ν2 ) of the ν1 and

ν2 for the transition of ε - δloc - δ [23] at the pressures indicated within the temperature

intervals in solid nitrogen.

P Tc Transitions a0 a1 × 10−3 −a2 × 10−5 ν0 a -b c Temperature
(GPa) (K) (K−1) (K−2) (cm−1) Interval(K)

13.2 336± 6 δloc − δ -0.34 11.23 2.26 15.58 1.17 0.88 0.60 300.88<T<333.23

14.95 364± 6 δloc − δ 0.065 7.64 1.50 17.53 1.35 1.32 0.87 304.56<T<358.97

18.5

419± 9 δloc − δ 0.42 4.5 0.838 20.75 1.34 1.34 0.93 321.47<T<425.15

329± 3
ε− δloc

(heating) 0.56 3.31 0.614 21.65 35.67 71.63 36.84 300.15<T<323.68

312± 3
δloc − ε

(cooling)

21.2

456± 12 δloc − δ 0.46 4.03 0.710 22.67 1.24 1.10 0.79 352.35<T<451.62

372± 3
ε− δloc

(heating) 0.88 1.08 0.231 23.76 15.83 31.90 16.98 302.35<T<371.47

351± 3
δloc − ε

(cooling)

(PS) model (Eq.2.34) and the energy fluctuation (EF) model (Eq.2.36) by taking by

Raman frequency as an order parameter (S). The values of the background damping
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Figure 3.18: Raman frequency calculated for the frequency difference (ν1 - ν2 ) of

the ν1 and ν2 by using Eqs.(3.57) and (3.58) through Eq. (3.59) for the ε, δloc and δ

phases at constant pressures with the observed data [23] in solid nitrogen.

constant Γ′0(Γ1) and the amplitude A′(A) was obtained for the librational Egmode in

the α phase (P=0), the internal mode ν1(P=18 GPa) and for the frequency difference

(ν1 - ν2) at constant pressures (P=13.2, 14.95, 18.5 and 21.2 GPa) in the phases of ε,

δloc and δ as a function of temperature by fitting the experimental Raman linewidth

(FWHM) data through Eqs.2.34 and 2.36 the Eg [88], ν1 and ( ν1 - ν2) [23] in solid

nitrogen, as given in Tables 3.11,3.12 and 3.13, respectively. Then, we calculated

damping constant Γ as a function of temperature by means of two models (PS and EF)

using the values of order parameter S, the background damping constant Γ′0(Γ1) and

the amplitudeA′(A) for theEg [88], ν1 and ( ν1 - ν2) [23] in solid nitrogen. Figs. 3.19-

3.21 give our calculated temperature dependent damping constant (Γ) according to the

PS (Eq.2.34) and EF (Eq.2.36) models for the librational mode Eg (P=0), the internal

mode ν1 (P=18 GPa) and the frequency difference (ν1 - ν2) at constant pressures (13.2,

14.95, 18.5 and 21.2 GPa) with the observed data.

For this study, as observed experimentally studies of Medina et.al. [88] and Tassini et

al. [23] , the librational Eg mode and the internal mode ν1 were preferred because of

their soft mode behaviors since their Raman frequencies decreases as the temperature
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Table 3.11: Values of the coefficients calculated according to the Eqs.2.34 and 2.36

for the Eg librational mode of the α-phase (P=0) in solid nitrogen.

P Models Γ′0(Γ0) A′(A) Temperature
(GPa) (cm−1) (cm−1) Interval(K)

0

PS
0.11 54.29 5.01<T<24.17

-0.17 337.31 26.94<T<38.57

EF
3.38x10−3 7.62 5.01<T<20.99

-3.36 22.92 24.17<T<38.56

Table 3.12: Values of the coefficients calculated according to the Eqs.2.34 and 2.36

for the ν1 mode for the phases of ε, δloc and δ (P=18 GPa) in solid nitrogen.

P Phases Models Γ′0(Γ0) A′(A) Temperature
(GPa) (cm−1) (cm−1) Interval(K)

18

ε
PS 3.03 -33.32

298.92<T<325.47
EF 0.23 1.06

δloc
PS -3.77 72.59

338.40<T<418.38
EF -1.02 5.21

δ
PS -2.36 59.56

423.06<T<443.46
EF 0.07 3.89

increase towards Tc (Figs.3.16 and 3.17). This decrease of the Raman frequency was

also observed for the frequency difference (ν1 - ν2) with the increasing temperature

at constant pressures (Fig.3.18).Related to the order parameter, there is a nonlinear

relationship for the Raman frequency (Eq.3.59) i.e. S ∝ (ν/ν0)
2, as obtained for the

Eg librational mode in the α phase at P=0 (Fig.3.16) and for the ν1 internal mode

in the phases ε, δloc and δ at P= 18 GPa (Fig.3.18) of solid nitrogen. Regarding

to bandwidth of the librational Eg mode, the lines broaden as the temperature in-

creases [97–99] (Fig.3.19). The combination of Egwith Tg librons in order to create
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Table 3.13: Values of the coefficients calculated according to the Eqs. 2.34 and 2.36

for the frequency difference (ν1-ν2) for the phases of ε, δloc and δ at constant pressures

in solid nitrogen.

P Phases Models Γ′0(Γ0) A′(A) Temperature
(GPa) (cm−1) (cm−1) Interval(K)

13.2

δloc
PS -2.29 3.42

295.60<T<331.49
EF -0.79 6.95

δ
PS 0.06 0.42

340.85<T<386.10
EF 0.29 0.52

14.95

δloc
PS -1.47 2.52

315.09<T<362.95
EF -0.37 5.16

δ
PS -1.47 2.78

338.40<T<418.38
EF -0.29 5.93

18.5

ε
PS -0.28 0.49

298.92<T<325.47
EF -0.06 0.95

δloc
PS -1.27 2.56

338.40<T<418.38
EF -0.22 5.72

δ
PS -3.12 5.32

423.06<T<443.46
EF -1.15 13.66

21.2

ε
PS -0.03 0.23

302.81<T<361.26
EF 0.08 0.49

δloc
PS -0.38 1.32

365.34<T<431.23
EF 0.16 2.98

δ
PS -2.83 5.28

455.53<T<480.26
EF -0.45 10.38

Tu phonon clarifies this behavior of the temperature dependence of the linewidth for

Eg mode [88]. According to temperature dependence of damping constant (FWHM),
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Figure 3.19: Damping constant (linewidth) calculated from Eqs.2.34 and 2.36 for the

Eg mode for the α-phase (P=0) with the observed data[86] in solid nitrogen.
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Figure 3.20: Damping constant (linewidth) calculated from Eqs.2.34 and 2.36 for the

ν1 mode of the ε, δloc and δ phases at constant pressures with the observed data [23]

in solid nitrogen.

there is an abnormal jump for the phase transitions especially from ε to δloc forEg and

ν1 modes as shown in Figs. 3.20 and 3.21. Although δ and δloc phases are disordered
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Figure 3.21: Damping constant (linewidth) calculated from Eqs.2.34 and 2.36 for the

frequency difference (ν1-ν2) for the phases of ε, δloc and δ at constant pressures with

the observed data [23] in solid nitrogen.

, δloc phase becomes increasingly order with decreasing temperature [23]. In addition

to that larger bandwidth value of the ν1 mode (sphere) when compared to the ν2 mode

(disks) is the result of rising of the solid angle proped by the disk type molecules in

the disordered δ phase [23].

3.5 "Calculation of the thermodynamic functions from the Raman frequency

shifts close to the ε- δloc - δ phases transitions and Pippard relations in

nitrogen."

In this part, we calculated the thermodynamic quantities of the thermal expansion

(αp), isothermal compressibility (κT ) and the difference in the heat capacity (Cp-

Cv ) as a function of temperature close to the transitions of ε- δloc and δloc - δ by

examining the experimental Raman frequency shifts of the internal modes ν1 , ν2 and

ν22 in the solid nitrogen [23]. For this prediction, in addition to the observed Raman

frequency shifts data, observed volume data as a function of various pressures from

the literature were used for the ε- δloc - δ transitions [56, 94]. And also, the Pippard

relations are analyzed for the ε- δloc and δloc - δ, fluid-solid transition and melting
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curves in nitrogen.

Regarding the volume dependence of the vibrational frequency, the isobaric mode

Grüneisen parameter was calculated by using the Eq.3.60

γP = − (1/ν)(∂ν/∂T )P
(1/V )(∂V/∂T )P

(3.60)

where ν is the vibrational frequency and V is the crystal volume. To calculate the

thermal expansion with the definition αP ≡ (1/V )(∂V/∂T )P , Eq.3.60 was arranged

according to the frequency shifts of the Raman modes and their γP values expressed

as

αP = −(1/γP )(1/ν)(∂V/∂T )P (3.61)

In order to calculate the thermal expansion, observed Raman frequency was analyzed

by using quadratic function as a function of temperature,

ν(T ) = a0 + a1T + a2T
2 (3.62)

In Eq.3.62, the values of coefficients a0 , a1 and a2 were determined for ν1 , ν2 and ν22

in the ε, δloc and δ phases of solid nitrogen as given in Table 3.14 within the tempera-

ture intervals. For the calculation of thermal expansion ( Eq.3.61), we used a constant

γP value (-0.14) determined for the vibron ν2 in the δ phase of solid nitrogen in an

earlier study [100] for the ν1 , ν2 and ν22 in the ε, δloc and δ phases of solid nitrogen.

After calculating the thermal expansion, we calculated the isothermal compressibility

κT and the difference in the heat capacity Cp-Cv as function of temperature by using

Eqs.3.63 and 3.64 ,respectively,

αP/κT = dP/dT (3.63)

and

Cp = Cv + TV α2
P/κT (3.64)

For calculating the isothermal compressibility (Eq.3.63), we obtained dP/dT values

from the observed T-P data [23] due to

P = a+ bT + cT 2 (3.65)

where a,b and c are constants and given in Table 3.15 for the δ- δloc and δloc-ε transi-

tions in solid nitrogen [23]. Finally, we calculated the difference in the heat capacity
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Table 3.14: Values of the coefficients calculated according to the Eq.3.62 for the

vibrons indicated in solid nitrogen.

Raman modes Phases a0(cm
−1) a1(cm

−1/K) a2(cm
−1/K2) Temperature Interval(K)

ν1

ε 2320.32 0.46 −7.61× 10−4 298.9<T<325.5

δloc 2374.51 0.09 −7.6× 10−4 327.3<T<407.1

δ 2402.93 -0.06 5.20× 10−5 423.1<T<477.5

ν2

ε 2363.10 0.03 -5.32 301.3<T<323.6

δloc 2377.73 -0.06 9.39 332.6<T<413.6

δ 2366.06 0.01 -1.05 423.4<T<472.8

ν22

ε 2372.90 -0.02 3.98 301.6<T<325.2

δloc 2367.29 0.01 -1.20 331.3<T<411.78

per unit volume (Cp − Cv)/V (Eq.3.64) with regard to the αP and κT at 18 GPa for

the phases of ε, δloc and δ in solid nitrogen.

Table 3.15: Values of the coefficients calculated according to the Eq.3.65 for the

phase transitions indicated in solid nitrogen.

Transitions a(GPa) b× 10−2(GPa/K) c× 10−5(GPa/K2)

δ − δloc -3.7 3.57 4.09

δloc − ε 0.51 4.56 3.40

Fig.3.22-3.24 represent the calculated thermal expansion αP , the isothermal com-

pressibility κT and the difference in the molar heat capacity (Cp−Cv)/V in terms of

temperature for the internal modes ν1 ,ν2 and ν22 in the ε, δloc and δ phases of solid ni-

trogen. According to these figures, the αP (Fig.3.22),κT (Fig.3.23) and (Cp−Cv)/V
(Fig.3.24) for the vibron ν2 increase with increasing of temperature in the δloc phase

while they decrease with temperature in the ε and δ phases. However, the calculated

αP , κT and (Cp − Cv)/V for the ν22 mode decrease with increasing temperature in

the ε and δloc phases.

Considering the linear variations between the calculated thermodynamic quantities

αP , κT and (Cp − Cv)/V , we examined Pippard relations according to
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Figure 3.22: Temperature dependent thermal expansion calculated from Eq.3.61 for

the Raman modes of ν1 , ν2 and ν22 for the phases of ε, δloc and δ in solid nitrogen.
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Figure 3.23: Temperature dependent isothermal compressibility calculated from

Eq.3.63 for the Raman modes of ν1 , ν2 and ν22 for the phases of ε, δloc and δ in

solid nitrogen.

Cp = TV αP (dP/dT )T + T (dS/dT ) (3.66)
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Figure 3.24: Difference in the heat capacity calculated from Eq.3.64 for the Raman

modes of ν1 , ν2 and ν22 for the phases of ε, δloc and δ in solid nitrogen.

and

αP = κT (dP/dT )T + (1/V )(dV/dT ) (3.67)

We plotted (Cp − Cv)/V versus αPT (Fig.3.25) and αP versus κ (Fig.3.26) and we

obtained the slope values of dP/dT (Eqs.3.66 and 3.67) and the intercept (1/V)(dV/dT)

(Eq.3.67) as given in Table 3.16 at 18 GPa for the phases of ε, δloc and δ in solid

nitrogen [23].We also compared those dP/dT values with the values obtained from

the Eq.3.65 using the coefficients in Table 3.15 for the δ- δloc [101] and δloc- ε [102]

transitions.

Table 3.16: Calculated dP/dT values by using Eq.3.65 and the values of the slope

dP/dT and the intercept of (1/V)(dV/dT) (Eq.7) derived from the Pippard relations

(Eqs.3.66 and 3.67) for the vibrons of solid nitrogen.

Transitions Tc(K) dP/dT × 10−2(GPa/K) dP/dT × 10−2(GPa/K) (1/V )(dV/dT )× 10−8(K−1) Temperature
N2 Eq.(3.64) Eqs.(3.66) and (3.67) Eq.(3.67) Interval(K)

δ − δloc 419± 9 7.1± 0.1

6.8 4.86

332.62<T<472.83

ε− δloc (heating) 329± 3 680± 0.02
301.29<T<413.60

ε− δloc(cooling) 312± 3 6.68± 0.02

From linear variation of (Cp−Cv)/V with αP T (Fig.3.25) and αP with κT (Fig.3.26),

we obtained the same slope value of dP/dT (Table 3.17) as pointed in Figs.3.25 and
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Figure 3.25: (Cp−Cv)/V versus αPT for the phases of ε, δloc and δ in solid nitrogen

according to the Pippard relation (Eq.3.66).
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Figure 3.26: Thermal expansion (αp) versus the isothermal compressibility (κT ) for

the phases of ε, δloc and δ in solid nitrogen according to the Pippard relation (Eq.3.67).

3.26 for the vibrons ν1 , ν2 and ν22 in the ε, δloc and δ phases of solid nitrogen.

By means of the pressure dependence of the isothermal compressibility κT , thermal

expansion αP and heat capacity Cpwhich were calculated, we examined the Pippard
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relations (Eqs.3.66 and 3.67) for the fluid-solid transitions [55] and melting curves

[94] in nitrogen. First of all, we analyzed the pressure dependence volume data to

calculate the isothermal compressibility as a function of pressure

V = b0 + b1P + b2P
2 (3.68)

Here, the values of coefficients b0 ,b1 and b2 were obtained by fitting Eq.3.68 to the ob-

served volume data [56] as given in Table 3.17. Then, we calculated the isothermal

Table 3.17: Values of the fitted parameters according to Eq.3.68 for the fluid-solid

transition[53] in nitrogen.

V-P b0Å
3
/atom) b1Å

3
(/atom.GPa) b2 × 10−4(Å

3
/atom.GPa2) Pressure range (GPa)

Eq.3.68 12.41 -0.105 5.29 18.63<P<80.23

compressibility with the definition

κT = − 1

V

∂V

∂P T
(3.69)

close to the fluid-solid phase transition in nitrogen. Fig.3.27 represents the isothermal

compressibility as a function of pressure for the two different observed V-P data [55,

56] for solid nitrogen. The thermal expansion αP was calculated via the calculated

isothermal compressibility κT through Eq.3.63. In this relation, the value of dP/dT

was obtained from the observed P-T phase diagrams [55, 94] for nitrogen.

We analyzed the P-T phase diagrams by the quadratic functions expressed as

f(T, P ) = T − α1 + α2P + α3P
2 = 0 (3.70)

Table 3.18: Values of the fitted parameters according to Eq.3.70 for the fluid-solid

transition[53] and melting curve[92] in nitrogen.
f(T,P) α1(K) α2 × 10−2(K/GPa) α3 × 10−5(K/GPa2) Pressure Interval(GPa)

Fluid-Solid transition 265.12 39.99 -0.27 15.9<P<74.3

Melting curve 200.98 3599.0 - 0.2<P<49.7

where α1 , α2 and α3 are constants. By fitting this equation to the two observed T-P

data [55, 94], the values of coefficients α1 , α2 and α3 were obtained for the fluid

solid transition as given in Table 3.18. For melting curves in nitrogen, because of the
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Figure 3.27: Isothermal compressibility (κT ) at various pressures calculated accord-

ing to Eq.3.69 for the two different observed V-P data (circle[53] and square[54]).

Table 3.19: Values of the dP/dT and the (1/V)(dV/dT) according to the Pippard rela-

tions (Eqs.3.66 and3.67) for the fluid-solid transition in nitrogen.

Transitions dP/dT × 10−3(GPa/K) Pressure Interval dP/dT × 10−3(GPa/K) (1/V )(dV/dT )× 10−4(K−1) Pressure Interval
N2 Eq.(3.63) (GPa) (Eq.3.67) (Eq.3.67) (GPa)

Fluid-Solid 36 15.85<P<74.26
18 -19.0 24.3<P<48.79

(Calculated) 34 -1.18 52.64<P<74.26

Melting curve 28.6 0.17<P<49.72 36 0 0.17<P<49.72
(Observed[2])

linear relationship between temperature and pressure, we found α3 as zero when we

calculated dP/dT value as pointed in Table 3.18. We depicted pressure dependence of

thermal expansion αP according to Eq.3.63 by using observed T-P data of the fluid-

solid transition [55] and melting curve [94] in Fig.3.28. Then by using Eq.3.64, we

predicted the difference in the heat capacity Cp −Cv as a function of pressure for the

fluid-solid transition as given in Fig.3.29. when the κ (Fig.3.27), αP (Fig.3.28) and

Cp −Cv (Fig.3.29) .We find that they decrease with increasing pressure. As obtained

above, we also obtained linear variation (Cp − Cv)/V with αPT (Fig.3.30) and αP

with κT (Fig.3.31) for the fluid-solid transition. Table 3.19 gives the values of dP/dT

obtained from Pippard relations (Figs.3.30 and 3.31) and the experimental values for

the fluid-solid transition [94]. When our calculated slope values were compared (
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Figure 3.28: Thermal expansion (αP ) at various pressures calculated according to

Eq.3.63 for the two different observed T-P data (circle[92] and square[53]).
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Figure 3.29: Difference in the heat capacity at various pressures calculated according

to Eq.(3.64) for the fluid-solid transition in nitrogen.

36× 10−3GPa/K) with the experimental data(34× 10−2 GPa/K) (52.64<P<74.26),

we nearly obtained the same value for the fluid-solid transition [55]. For the melt-

ing curve, it can also be compared with the observed value of 28.6 GPa/K in the
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Figure 3.30: (Cp-Cv) versus VαP as a function of pressures according to the Pippard

relation (Eq.3.66).
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Figure 3.31: Thermal expansion (αP ) versus isothermal compressibility (κT ) as a

function of pressures according to the Pippard relation (Eq.3.67) at two different pres-

sure interval.

pressure interval of 0<P<50 GPa [94]. In the pressure interval 49.72<P<71 GPa ,the

slope is negative that can be explained with the denser liquid phase than the under-
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lying solid [94]. This sharp change of the slope can be evidence of a first order

liquid-liquid polymer transition and transition of molecular nitrogen into a chainlike

polymeric form [94].

3.6 "Calculation of the Raman frequency and linewidth of vibrons using an-

harmonic self energy model for the ε- δloc - δ phases in nitrogen."

In this study, we analyzed the Raman frequency shifts and linewidth (FWHM) of

the vibrons ν1,ν2 and ν22 with respect to temperature (P=18 GPa) and also frequency

difference (ν1-ν2) at constant pressures of 13.2, 14.95,18.5 and 21.2 GPa by the an-

harmonic self energy model in the ε, δloc (localized δ) and δ phases of solid nitrogen.

According to anharmonic self energy, energy shifts can be expressed as a complex ,

as pointed out in Chapter 2

~∆ω(λ) = ~∆(λ)− i~Γ(λ) (3.71)

for a mode λwith a particular wavevector and polarization [87,88].So that the temper-

ature dependence of frequency shift and linewidth of vibrons can be calculated close

the phase transitions by using this expression (Eq.3.71).Regarding to Raman frequen-

cies of vibrons ν1,ν2 and ν22 , Eq.2.46 was fitted to experimental data [23], for the

ν1 , ν2 and ν22 at various temperatures (P=18 GPa) and also the frequency difference

(ν1-ν2) at constant pressures indicated above for the phases of ε, δloc and δ in solid

nitrogen. We plot temperature dependence of Raman shift calculated for the vibrons

ν1(Fig.3.32) and ν2 and ν22 (Fig.3.33) with the observed data [23]. Fig.3.34gives the

frequency shifts (ν1-ν2) of the Raman vibrons as a function of temperature for the

ν1 and ν2 in Fig.(3.34) for the phases of ε, δloc and δ at constant pressures (13.2,

14.95,18.5 and 21.2). Table 3.20 and Table 3.21 represent the fitted parameters of

Eq.2.46 ( ω0, ω1and ω2) for the vibrons ν1 , ν2, ν22 and for the frequency difference

(ν1-ν2), respectively, in the phases of ε, δloc and δ in solid nitrogen.

As observed experimentally [23], we found decrease of the Raman frequency of

vibron ν1 with increasing temperature at 18.5 GPa in the phases of ε, δloc and δ

(Fig.3.32). The Raman frequency of vibrons ν2 and ν22 increase with the increas-
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Figure 3.32: Temperature dependence of the Raman frequency for the vibron ν1 as

a function of temperature (P=18.5 GPa) according to Eq.2.46 which was fitted to the

experimental data [23] for the phases of ε, δloc and δ in the solid nitrogen.
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Figure 3.33: Temperature dependence of the Raman frequency for the vibrons ν2 and

ν22 as a function of temperature (P=18.5 GPa) according to Eq.2.46 which was fitted

to the experimental data [23] for the phases of ε, δloc and δ in the solid nitrogen.

ing temperature in the δ phase while they are independent of the temperature in the ε

phase as shown in Fig.3.33. Similar behavior of decreasing ν1 with increasing tem-
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Table 3.20: Values of the parameters for the Raman frequencies of the vibrons ν1 , ν2

and ν22 according to Eq.2.46 by using the observed data [23] within the temperature

intervals indicated for the phases of ε, δloc and δ (P=18 GPa) in solid nitrogen.

Vibron modes Phases ω1(cm
−1) ω2(cm

−1) ω0(cm
−1) Temperature Interval(K)

ν1

ε 2393.61 -0.80 55.03 298.9<T<325.5

δloc 2388.76 -1912.74 2732.47 327.3<T<407.1

δ 2392.48 -0.05 3.20 423.1<T<477.5

ν2

ε 2367.99 -18.62 1777.37 301.3<T<323.6

δloc 2365.35 0.13 15.05 332.6<T<413.6

δ 2368.52 0.003 1.95 423.4<T<472.8

ν22
ε 2368.99 -0.01 25.6 301.6<T<325.2

δloc 2368.97 0.04 17.57 331.3<T<411.78

Table 3.21: Values of the parameters for the frequency difference (ν1-ν2) of the Ra-

man internal modes ν1 and ν2 according to Eq.2.46 by using the observed data [23]

within the temperature intervals at constant pressures indicated for the phases of ε,

δloc and δ in the solid nitrogen.

Pressures Phases ω1(cm
−1) −ω2(cm

−1) ω0(cm
−1) Temperature Interval(K)

13.2
δ 18.56 0.04 2.88 342.06<T<384.71

δloc 30.08 0.10 2.08 300.88<T<333.24

14.95
δ 21.09 0.08 4.83 367.06<T<442.06

δloc 30.03 0.08 1.98 304.56<T<358.97

18.5

δ 24.70 0.08 4.13 425.15<T<472.20

δloc 32.74 0.08 2.20 321.47<T<425.15

ε 21.91 4282.16 2919.59 300.15<T<323.68

21.2

δ 29.66 0.09 3.70 459.71<T<489.85

δloc 36.18 0.09 2.42 352.35<T<451.62

ε 24.14 142.20 1790.64 302.35<T<371.47

perature, was observed in the frequency difference (ν1-ν2) at constant pressures (13.2,

14.95, 18.5 and 21.2 GPa) (Fig.3.34) since frequency of the vibron ν2 is constant in

the phases of ε and δ in solid nitrogen. It has been indicated that when the pressure

increases in the ε, δloc and δ phases of solid nitrogen, the magnitude of the frequency

difference (ν1-ν2) increases with increasing temperature (Fig.3.34). As a second or-
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der transition associated with changes in the orientational behavior of N2 molecules

from a free rotation into orientationally located mode, it has been stated that an ab-

normal behavior of the vibration frequency shift occurs with decreasing temperature

in the δ phase of nitrogen [23]. This anomalous behavior can give softening of some

of the intermolecular vibrations [49, 92] that can be either caused by the weakening

of intramolecular bonding or increased vibrational coupling [41]. On the basis of in-

creasing intermolecular interactions, vibrational splitting can occur as observed for

the internal mode ν2 which splits into a ν22 internal mode in the ε and δloc phases

of solid nitrogen (Fig.3.33). Our calculations for the temperature dependent Raman

frequencies follow the same trend as observed values except the change of Raman

frequencies of the ν1 vibron between the δloc and ε phases at 18.5 GPa (Fig.3.32).

The nitrogen molecules are orientated in the ordered ε phase when compared to the

partially ordered δloc and disordered δ phases. Hence, this unexpected behavior of the

ν1 vibron between the δloc and ε phases at 18.5 GPa may occur due to the orientation-

vibron coupling. On this basis, the anharmonic self energy model is insufficient with

strong orientation-vibron coupling for the ν1 internal mode in the ε phase in N2.

By using anhormanic self energy model, the temperature dependence of linewidths

(FWHM) Γ(λ) was calculated for the ν1 , ν2 and ν22 vibrons and also for the ν1-ν2 of

the modes ν1 and ν2 of the phases ε, δloc and δ in N2. For this calculation, Eq.2.47

was fitted to the experimental FWHM data taken from the literature [23]. The value

of coefficients (Γ1(λ), Γ2(λ) and ω′ ) (Eq.2.47) are represented for the ν1 , ν2 and ν22

vibrons at 18 GPa and frequency difference (ν1-ν2) at constant pressures (13.2, 14.95,

18.5 and 21.2 GPa) in Table3.22 and Table3.23, respectively, within the temperature

intervals.

We give our calculated FWHM values as a function of temperature according to

Eq.2.47 in Fig.3.35 for the vibrons ν1 , ν2 and ν22 (P=18.5GPa) and in Fig.3.36 for

the frequency difference (ν1-ν2) (P= 13.2, 14.95, 18.5 and 21.2 GPa) with the ob-

served data [23] for the phases of ε, δloc and δ in solid nitrogen. FWHM of the ν1

internal mode increases as the temperature increase in the phases of ε, δloc and δ and

also the same behavior is observed for the ν1 vibron in ε, δloc phases except the ν2 in

the δ phase where the FWHM decreases with the increasing temperature as shown in

Fig.3.35. In the case of the ν22 , its FWHM increases in δloc while it remains nearly

constant in the ε phase of solid nitrogen. As shown in Fig.3.36 , we obtained the same
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Figure 3.34: Temperature dependence of the Raman frequency shifts (ν1-ν2) for the

Raman internal modes ν1 and ν2 as a function of temperature at constant pressures

according to Eq.2.46 which was fitted to the experimental data [23] for the phases of

ε, δloc and δ in the solid nitrogen.

Table 3.22: Values of the parameters for the linewidths, of the vibrons ν1, ν2 and ν22

according to Eq.2.47 by using the observed data [23] within the temperature intervals

indicated for the phases of ε, δloc and δ (P= 18 GPa) in solid nitrogen.

Vibron modes Phases Γ1(λ)(cm−1) Γ2(λ)(cm−1) ω′(cm−1) Temperature Interval(K)

ν1

ε -0.17 0.01 4.33 298.9<T<325.5

δloc -1.61 0.01 1.06 327.3<T<407.1

δ -1.41 0.08 9.38 423.1<T<477.5

ν2

ε -0.26 0.01 2.43 301.3<T<323.6

δloc -0.32 0.01 2.43 332.6<T<413.6

δ 1.83 -0.03 23.59 423.4<T<472.8

ν22

ε 0.62 -0.01 10.10 301.6<T<325.2

δloc - - - -

δ - - - -

picture for the FWHM of the ν1 mode for the FWHM of the frequency difference (ν1-

ν2) of the ν1 and ν2 at constant pressures in the ε, δloc and δ phases. Its magnitude

increases as the pressure increases. There is a good agreement between our fits and
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Table 3.23: Values of the parameters for the linewidths, of the frequency difference

(ν1-ν2) of the Raman internal modes ν1 and ν2 according to Eq.2.47 by using the

observed data [23] within the temperature intervals at constant pressures indicated

for the phases of ε, δloc and δ in the solid nitrogen.

Pressures Phases Γ1(λ)(cm−1) Γ2(λ)(cm−1) ω′(cm−1) Temperature Interval(K)

13.2
δ 0.12 2.38× 10−3 3.11 342.06<T<384.71

δloc -2.02 3.35× 10−3 0.47 300.88<T<333.24

14.95
δ -1.40 0.013 2.35 367.06<T<442.06

δloc -1.10 1.92 226.1 304.56<T<358.97

18.5

δ 0.07 4.57× 10−5 526.0 425.15<T<472.20

δloc -2.21 -2.04 -1538.94 321.47<T<425.15

ε -2.09 16.92 423.73 300.15<T<323.68

21.2

δ 0.66 0.94 729.2 459.71<T<489.85

δloc -0.24 0.92 477.68 352.35<T<451.62

ε -0.24 1.57× 10−5 0.01 302.35<T<371.47
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Figure 3.35: Temperature dependence of the linewidths for vibrons ν1, ν2 and ν22 as

a function of temperature (P=18.5 GPa) according to Eq.2.47 which was fitted to the

experimental data [23] for the phases of ε, δloc and δ in the solid nitrogen.

the experimental linewidth at constant pressures [23]. However, in Figs.3.35 and 3.36,

our fits were not compatible for the difference in FWHM of the corresponding fre-
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Figure 3.36: Temperature dependence of the difference in the linewidths for the cor-

responding to the frequency difference (ν1-ν2) of vibrons ν1 and ν2 as a function of

temperature at four constant pressures indicated according to Eq.2.47 which was fitted

to experimental data [23] for the phases of ε, δloc and δ in the solid nitrogen.

quency difference (ν1-ν2) of the ν1 and ν2 internal modes at 18.5 GPa in the δ phase

of solid nitrogen.

3.7 "Calculation of the inverse relaxation time and the activation energy as a

function of temperature for the Raman modes close to the phase transitions

in solid nitrogen."

The inverse relaxation time τ−1 as a function of temperature was calculated for the α-

β transition (P=0) and ε-δloc-δ transitions at constant pressures in solid nitrogen. On

that basis, we used the observed data from the literature for the Raman frequencies

and linewidths for the Eg librational mode (α-β) [88] and the ν1 and ν2 vibrons (ε-

δloc-δ) in the nitrogen [23]. The inverse relaxation time was able to be calculated via

the Eq.3.72 expressed as

τ−1 = ν2/Γ (3.72)

where ν is the frequency and Γ is the linewidths of a vibrational mode. Fig.3.37

and Fig.3.38 gives the inverse relaxation time as a function of temperature for the

librational Eg mode (P=0) in the α phase and the internal modes ν1 and ν2 (P=18

GPa) in the phases of ε, δloc and δ , respectively. We also predicted also activation

energy Ea by using calculated relaxation time for the Eg librational mode [88] and

the ν1 and ν2 vibrons [23] in solid nitrogen. For this calculation, the relaxation time
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was investigated through the Arrhenious law (in the logarithmic form) defined as

lnτ = lnτ0 − Ea/kBT (3.73)

Here,τ0 is the attempt relaxation time and kB is the Boltzmann constant. We extracted

the values of the activation energy from Eq.3.73 by taking the linear fit of the −lnτ
vs. 1/T for the Eg mode in the α phase (Fig.3.39) and for the Raman modes ν1 and

ν2 (P=18GPa) (Fig.3.40) in the phases of ε, δloc and δ. The values of the attempt

relaxation time τ0 and kB are given in Table3.24 for the Eg mode and Table 3.25 for

the internal modes ν1 and ν2 in solid nitrogen. We also predicted inverse relaxation

time (τ−1) by using observed Raman frequency and damping constant (linewidth) via

the Eq.3.72 for the frequency difference (ν1 - ν2) of the internal modes ν1 and ν2 at

constant pressures ( 13.2, 14.95 and 21.2 GPa) in solid nitrogen [28]. We gave the

inverse relaxation time as a function of temperature for the frequency differences ν1 -

ν2 in Figs.3.41(a) (P=13.2 GPa) ,3.41(b) (P=14.95 GPa) and 3.41(c)(P=21.2 GPa) in

the phases of ε, δloc and δ in solid nitrogen. As before, the time dependent activation

energyEa was obtained by the means of Eq.3.73 for the ν1 - ν2 within the temperature

interval. The values of Ea and τ0( attempt relaxation time) due to the ν1 - ν2 of the

internal modes ν1 and ν2 which were obtained from the linear fit of the -lnτ vs (1/T)

(Fig.3.42) are given in Table 3.26. The inverse relaxation time τ−1 decreases in a

smooth manner with the temperature for the Eg mode in the α phase at P=0 (Fig.1)

however, there is a sharp decrease in τ−1towards ε phase to δloc phase at 18 GPa for

the internal modes ν1 and ν2 (Fig.3.38) which represents the order-disorder transition

in N2. From Fig.3.38, this sharp decrease softens in the δloc phase even in δ phase

and the τ−1 is nearly independent of the temperature at P=18 GPa. In the case of τ−1

of the frequency differences (ν1 - ν2), while at 13.2 GPa and 14.95 GPa, it decreases

with the increasing temperature for δloc and δ phases, in the ε phase the τ−1 increases

with the temperature, then remains almost constant in the phases of δloc and δ phases

at 21.2 GPa (Fig.3.41) in solid nitrogen.

We are able to approximate damping constant (FWHM) as a function of temperature

by

Γ(FWHM) = A+BT + Cexp(−Ea/kBT ) (3.74)

where A,B and C are the coefficients. The coefficient A depends on the structural and

compositional defects, the linear BT term represents the influence of phonon-phonon
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Table 3.24: Values of the activation energy (Ea) and the attempt relaxation time (τ0),

which were extracted from Eq.3.73 for the Eg librational mode [86] in the solid ni-

trogen (P=0).

Raman mode τ0(s) Ea × 10−21(J/mol) Ea × 10−4(eV/mol) Temperature Interval(K)

Eg 5.61 1.03 64.4 5.01<P<38.57

Table 3.25: Values of the activation energy (Ea) and the attempt relaxation time (τ0),

which were extracted from Eq.3.73 for the internal modes of ν1, ν2 and ν22 in the

solid nitrogen (P=18 GPa).
Raman modes Phases τ0(s) Ea × 10−21(J/mol) Ea × 10−4(eV/mol) Temperature Interval(K)

ν1

ε 3.62 5.65 353.1 298.92<T<325.47

δloc 16.2 8.89 555.6 338.40<T<418.38

δ 14.8 8.26 516.2 423.06<T<443.06

ν2

ε 2.50 4.63 289.4 298.87<T<325.44

δloc 4.47 4.04 252.5 327.30<T<407.07

δ 1.36 -3.56 -222.5 427.36<T<475.70

ν22 ε 0.025 -0.14 -8.75 300.35<T<323.75

Figure 3.37: Temperature dependence of the inverse relaxation time (τ−1 ) calculated

according to Eq.3.72 for the Eg mode of solid nitrogen (α phase, P=0) by using the

observed data [86].
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Figure 3.38: The temperature dependence of the inverse relaxation time (τ−1) calcu-

lated according to Eq.3.72 for the ν1and ν2 modes for the ε , δloc and δphases in N2

(P=18 GPa) by using the observed data [23]. Vertical lines denote the phase bound-

aries (at Tc) between the two phases.
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Figure 3.39: Relaxation time (logarithmic ) as a function of the inverse temperature

for the Eg mode according to Eq.3.73 in the solid nitrogen(α phase, P=0). Solid line

represents the best fit (Eq.3.73) to the values given.
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Figure 3.40: Relaxation time (logaritmic) as a function of the inverse temperature for

the ν1 and ν2 modes according to Eq.3.73 in the N2 ( ε , δloc and δ phases, P=18 GPa).

Vertical lines denote the phase boundaries (at Tc) between the two phases.

anharmonic interactions and the exponential term with the coefficient C describes

the thermally activated reorientational processes. We predicted the coefficient A,B,C

and the activation energy Ea by fitting Eq.(3.74) to the observed data for the Eg

mode [88] in the α phase and ν1, ν2 and ν22 modes (18 GPa) in the ε, δloc and δ

phases [23] in the solid nitrogen. Table 3.27 gives the estimated values of A,B,C

and the Ea within the temperature intervals indicated in solid nitrogen. The values

of A,B,C and the Ea are given in Table 3.28 for the (ν1 - ν2) at constant pressures (

13.2 ,14.95 and 21.2 GPa) in the ε, δloc and δ phases in N2. We plot the linewidth

data with respect to temperatures through Eq.3.74 for the Eg mode at P=0 (Fig.3.43),

for the ν1, ν2 and ν22 vibrons at 18 GPa (Fig.3.44) and for the frequency differences

(ν1 - ν2) at the pressures of 13.2 ,14.95 and 21.2 GPa (Fig.3.45) in solid nitrogen.

Corresponding to the temperature dependent damping constant (linewidth), as

expected, calculated linewidth Γ increases as the temperature increases for the Eg

mode in the α phase (Fig.3.43), for the ν1 and ν2 modes P= 18 GPa and for the

for the ν1 - ν2 at the pressures of 13.2, 14.95 and 21.2 GPa with the exception of

the ν2 mode at 18 Gpa(Fig.3.44) and the frequency difference ν1 - ν2 at 21.2 GPa

(Fig.3.45) in the δ phase. Linewidths decrease with temperature in solid nitrogen
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Figure 3.41: Temperature dependence of the inverse relaxation time (τ−1 ) calculated

according to Eq. (3.73) for the frequency shifts ν1- ν2 of the internal modes ν1 and ν2

by using the observed Raman frequency and FWHM data[23] at constant pressures

indicated in the solid nitrogen. In the ε phase (c), solid line is the best fit (Eq.3.72)

to the τ−1 values. Vertical lines denote the phase boundaries (at Tc) between the two

phases.
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Figure 3.42: Relaxation time (logarithmic) as a function of the inverse temperature

for the difference in the frequency shifts ( ν1- ν2) of the internal modes ν1 and ν2 by

using the observed Raman frequency and FWHM data [23] according to Eq.(3.73)

at constant pressures indicated in the solid nitrogen. Solid lines represent the best fit

(Eq.3.74) to the values. Vertical lines denote the phase boundaries (at Tc) between the

two phases.
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Table 3.26: Values of the activation energy (Ea) and the attempt relaxation time (τ0),

which were extracted from Eq.3.74 for the difference in the frequency shifts (ν1- ν2 )

of the Raman internal modes ν1 and ν2 within the temperature intervals for the phases

at constant pressures indicated in N2 by using the observed frequency and linewidth

data [23].
Pressures (ν1-ν2) τ0 ×−3 (s) Ea × 10−21(J/mol) Ea × 10−4(eV/mol) Temperature Interval(K)

13.2
δloc 10170 0.41 25.6 295.60<T<331.49

δ 9.4 7.28 455.0 340.85<T<386.10

14.95
δloc 570 0.27 16.9 315.09<T<362.95

δ 440 0.37 23.1 371.86<T<430.13

21.2

ε 1.93 9.94 621.2 315.13<T<361.26

δloc 15.1 0.14 8.75 365.34<T<431.23

δ 0.93 8.19 511.9 455.53<T<480.26

Table 3.27: Values of the activation energy (Ea) with the coefficients A,B and C

which were extracted by fitting (Eq.3.74) to the observed FWHM for the Eg mode

at P=0 [86] and for the internal modes of ν1, ν2 and ν22 at P=18 GPa [23] within the

temperature intervals indicated in the solid nitrogen.

Raman Pressures Phases A B×10−2 C Ea × 10−21 Ea × 10−4 Temperature
modes (GPa) (cm−1) (cm−1/K) (cm−1) (J/mol) (eV/mol) Interval(K)

Eg 0 α -0.27 6.0 121.58 1.46 91.2 5.01<T<38.57

ν1 18

ε -0.65 -4.0 34.21 4.15 259.4 298.92<T<325.47

δloc -1.04 0.3 6.22 6.93 433.1 338.40<T<418.38

δ -1.40 1.0 1.28 6.68 417.5 423.06<T<443.06

ν2 18

ε 0.04 -2.0 15.89 4.38 273.2 298.87<T<325.44

δloc 1.41 2.0 -13.53 3.70 237.2 327.30<T<407.07

δ 0.18 -0.4 5.27 -3.05 -190.6 427.36<T<475.70

ν22 18 ε 3.03 -0.06 -2.62 -0.18 -11.2 300.35<T<323.75

similar anamolous decreasing of τ−1 (Fig.3.38), FWHM increases drastically for the

for the ν1 and ν2internal modes at 18 GPa (Fig.3.44) from the ε to the δloc phase in

nitrogen. As stated above, we deduced activation energy Ea by using Eq.3.73 for the

Eg mode (Table 3.24), for the ν1 and ν2 vibrons (Table3.25) and by using Eq.3.74 as

given in Table 3.27. When compared the these two Ea values, there is a inconsistent

between the two results as expected, and theEa values extracted from Eq.3.74 is more

reliable because there is a phonon-phonon anharmonic interactions (BT term) on the

basis of Eq.3.74 and it also depends on the structural and compositional defects (A
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Table 3.28: Values of the activation energy Ea with the coefficients A,B and C which

were extracted from Eq.3.74 by fitting to the observed FWHM data [23] for the dif-

ference in the frequency shifts (ν1- ν2 ) of the Raman internal modes ν1 and ν2 at

constant pressures within the temperature intervals indicated in the solid nitrogen.

Pressures Phases A B×10−2 C Ea × 10−21 Ea × 10−4 Temperature
(GPa) (cm−1) (cm−1/K) (cm−1) (J/mol) (eV/mol) Interval(K)

13.2
δloc 27.10 4.0 -55.28 1.27 79.4 295.60<T<331.49

δ 0.82 -0.5 6.27 7.51 469.4 340.85<T<386.10

14.95
δloc 2.22 0.5 -3.59 0.24 15.0 315.09<T<362.95

δ 2.58 0.6 -4.54 0.36 22.5 371.86<T<430.13

21.2

ε 18.80 -12.0 139.74 8.85 553.1 315.13<T<361.26

δloc 2.42 0.2 -2.96 0.12 7.5 365.34<T<431.23

δ 8.73 -7.0 81.31 8.06 503.7 455.53<T<480.26

term) as pointed out above. Similarly, Table 3.26 and Table3.28 gave the estimated

Ea values via the Eqs.3.73 and 3.74, respectively, for the frequency difference ν1 -

ν2 at constant pressures within the temperature intervals in the ε, δloc and δ phases of

N2. When we examined the values of the activation energy Ea in the phase transition,

Ea values of the ν1 ( ν2) increase (decrease) at the transitions from the ordered to

the disordered phases (ε-δloc-δ) for the internal modes ν1 and ν2 even Ea of the ν2

gets negative value in the δ phase (Table 3.25 and 3.27). Also the Ea values of the

frequency difference ν1 - ν2 for the transitions of δloc-δ increase at 13.2 and 14.95

GPa except the order-disorder transition at 21.2 GPa (Table 3.26). This is correlated

with the behavior of the inverse relaxation time τ−1 that decreases for the ν1 and ν2

modes as the temperature increases at 18 GPa (Fig.3.38) and also for the ν1 - ν2 at

the pressures of 13.2 and 14.95 GPa ( for the δloc-δ transition) except the ε phase

at 21.2 GPa (Fig.3.41). For the Eg mode, increasing damping constant (FWHM) is

accompanied with the decreasing of the τ−1 in the α phase of solid nitrogen.
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Figure 3.43: Temperature dependence of the linewidth of the Eg line of the α phase

(P=0) in N2. Solid line represents best fit (Eq.3.74) to the experimental data [86].
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Figure 3.44: Temperature dependence of the FWHM of the internal modes of the

ν1 and ν2 for the phases of ε , δloc and δ (P=18 GPa) in N2. Solid lines represent

best fit (Eq.3.74) to the observed FWHM data [23]. Vertical lines denote the phase

boundaries (at Tc) between the two phases.
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Figure 3.45: Temperature dependence of the FWHM of the ν1 - ν2 of the internal

modes of the ν1 and ν2 for the phases of ε , δloc and δ at constant pressures indicated

in N2. Solid lines represent best fit (Eq.3.74) to the observed FWHM data [23].

Vertical lines denote the phase boundaries (at Tc) between the two phases.

76



3.8 "Calculations of the temperature and pressure dependence of the thermo-

dynamic quantities and analysis of the dielectric properties by using the

Raman frequencies of cubic gauche nitrogen."

In this study, the pressure and temperature dependence of the thermodynamic quan-

tities of cubic gauche nitrogen (cg-N) that is a kind of polymeric nitrogen, was pre-

dicted by using the observed volume [48,103] and thermodynamic data [28] from the

literature.In this part of study, we also investigated the vibrational frequencies, dielec-

tric and elastic properties of cubic gauche solid nitrogen. We started to calculate the

temperature dependence of the thermodynamic quantities with the thermal expansion

αP through its definition given by

αP = (1/V )(∂V ∂T )P (3.75)

For this calculation, assuming the variation of volume with the temperature quadrat-

ically, we fitted the observed volume data (P=0) according to Eq.3.76 expressed as

V (T ) = V0 + αT + βT 2 (3.76)

The values of fitted parameters of Eq.3.76 are given in Table3.29.We then analyzed

the bulk modulus B that is the inverse isothermal compressibility κT (=1/B) as a

function of temperature by using

B(T ) = κ0 + α′T + β′T 2 (3.77)

where κ0,α′,β′ are constant and determided as given in Table 3.30 in the cg-N phase.

We also analyzed the CV (T ) data [28] at P=0 according to Eq.3.78

Table 3.29: Values of the coefficients V0 , α and β (Eq.3.75) at the pressures indicated

for the cubic gauche solid nitrogen.

V(T) −V0(Å
3
) α× 10−6(Å

3
/K) −β × 10−7(Å

3
/K2)

Eq. 52.47 4.73 7.63

We also analyzed the CV (T ) data [28] at P=0 according to Eq.3.78

CV (T ) = e0 + e1T + e2T
2 (3.78)
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Figure 3.46: Temperature dependence of volume at various pressures (0,35,125 and

250 GPa) for the cubic gauche solid nitrogen.
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Figure 3.47: Time dependence thermal expansion (αP ) calculated through Eq.3.75 at

various pressures for the cg-N.

where e0,e1,e2 are constants. Values of coefficients of 3.78 are given in Table 3.31

at constant pressures in the cg-N phase by fitting Eq. 3.78 to the observed data

[28].There is a linear relation between isothermal compressibility and thermal ex-
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pansion with the slope of P-T phase diagram (dP/dT) defined as

dP/dT = αP/κT (3.79)

This provided us to determine the slope value of dP/dT in the P-T phase diagram of

the cg-N phase by using the values of αP and B at P=0, T=295 K. The values of the

thermal expansion αP , bulk modulus B and the dP/dT value at T=295 K (P=0) are

given in 3.30.

Table 3.30: Values of the fitted parameters for the the temperature dependence of the

isothermal compressibility κT=(1/B) (Eq.3.77) with the thermal expansion αP at 295

K and the slope dP/dT of the transition line in the P-T phase diagram for the cubic

gauche nitrogen.

B(T) κ0 −α′ × 10−3 −β′ × 10−5 cg-N αP × 10−5 B (dP/dT )× 10−3 γ
(GPa) (GPa) (GPa/K) (GPa/K2) (K−1) (GPa) (GPa/K)

Eq.3.77 298.28 9.1 1.3 T=295K 0.81 294.46 2.385 3.35
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Figure 3.48: Temperature dependence of the isothermal compressibility κT calculated

(3.79) at the pressures indicated for the cubic gauche nitrogen.

By using the dP/dT value at 295 K (P=0) with the temperature dependence of V(T)

(Eq.3.77) and the Cv(T ) data analyzed through the Eq.3.78 (Table 3.31), we obtained
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Figure 3.49: Temperature dependence of the bulk modulus B(T) according to

B(T)=1/κT (Eq.3.79) at the pressures indicated for the cubic gauche nitrogen.

Table 3.31: Values of the coefficients e0,e1,e2 at constant pressures indicated

(Eq.3.78) for cubic gauche solid nitrogen.

P(GPa) −e0(J/mol.K) e1(J/mol.K
2) −e2 × 10−5(J/mol.K3)

0 18.72 0.16 5.77

35 18.41 0.18 7.72

125 19.06 0.21 10.3

250 16.59 0.22 11.9

the macroscopic Grüneisen parameter γ defined as

γ = (V/Cv)(αP/κT ) (3.80)

as a functions of temperature at P=0 in the cubic gauche phase.We analyzed here the

volume at various pressures according to relation

V (P ) = b0 + b1P + b2P
2 (3.81)

where b0, b1 and b2 are constants, as given in Table 3.32.At constant pressures of 35,

125 and 250 GPa, we were also able to evaluate the γ values (Eq.3.80) by using the
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Figure 3.50: Heat capacity (CP ) as a function of temperature by using the calculated

V(T) and Cv data[28] through Eq.3.82 at the pressures indicated for the cubic gauche

nitrogen.

V(P) [48] and the CV data [28] with a constant dP/dT value(Table 3.30 ). For this

calculation, we analyzed the CV data [28] according to Eq.(3.78) for the pressures

considered with the coefficients of e0,e1 and e2 determined , as given in Table 3.31.

By means of the γ values determined, we then calculated the temperature dependence

of the volume V(T) using the CV data [28] with the constant dP/dT (Table 3.30) at the

pressures of 0, 35, 125 and 250 GPa, as plotted in Fig.3.46. Values of the coefficients

for V(T) for constant pressures studied according to Eq.(3.76), are given in Table 3.33

Table 3.32: Values of the coefficients b0, b1 and b2 (Eq.3.81) and b′0, b
′
1 and b′2

(Eq.3.83) for various pressures for the cubic gauche solid nitrogen.

κT b′0 −b′1 × 10−4 b′2 × 10−6
V(P)

b0 −b1 × 10−2 b2 × 10−5

(GPa−1) (GPa−1) (GPa−2) (GPa−3) (Å
3
) (Å

3
/GPa) (Å

3
/GPa−1)

Eq.3.83 0.99 7.4 1.06 Eq.3.81 6.76 2.21 7.35

Then,by using the coeffcients of b0,b1 and b2 at constant pressures, (Table3.33), we

obtained the thermal expansion as a function of temperature at constant pressures as

illustrated in Fig.3.47. As seen in Fig.3.47, there is a sharp drop up to about 400
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Table 3.33: Values of the coefficients V0 , α and β (Eq.3.75) at the pressures indicated

for the cubic gauche solid nitrogen.

P(GPa) −V0(Å) α× 10−2(Å
3
/K) −β × 10−5(Å

3
/K2)

0 6.28 5.21 1.90

35 4.01 3.89 1.68

125 3.18 3.46 1.72

250 2.54 3.28 1.83

GPa and αP shows temperature independent behavior for the cubic gauche solid ni-

trogen.This also gave us the temperature dependence of the isothermal compressibil-

ity κT (3.79) where dP/dT value (Table3.30) was used, and the bulk modulus B(T)

(=1/κT ) at constant pressures considered as plotted in Figs.3.48 and 3.49 respec-

tively.The isothermal comprassibility represents same behaviour for the cubic gauche

nitrogen.Since we have the values of V, αP ,κT and specific heat Cv, we calculated

the heat capacity CP via the thermodynamic relation,

CP = Cv + TV (α2
P/κT ) (3.82)

Fig.3.50 gives the variation of heat capacity with the temperature at constant pres-

sures (P=0,35,125 and 250 GPa). Unlike isothermal expansion, the heat capacity

increases with increasing temperature (3.50). Regarding the pressure dependence of

the thermodynamic quantities for the cubic gauche nitrogen, we calculated the pres-

sure dependence of the thermal expansion αP by analyzing the compressibility (κT )

of the cubic gauche structure by using the a/a0 lattice parameter data [28] at 295 K

by means of the expression,

κT/κ0 = b′0 + b′1P + b′2P
2 (3.83)

where b′0, b
′
1 and b′2 are constants. The values of coefficients of Eq.3.83 are given in

Table 3.32 as also given in our previous work [104]. In Figs.3.51 and 3.52, we plot the

κT/κ0 and the thermal expansion aP as a function of pressure (Eq.3.79) with the def-

inition of κT ≡ ((−1)/V )(∂V )/(∂P )T at 295 K and the constant dP/dT value (3.30)

for cg-N,respectively.As expected, αP decreases almost linearly with the increasing
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pressure (Fig.3.52) and κT exhibits similar critical behavior for the cubic gauche ni-

trogen . By having V(P), αP and κT (P )at T=295 K, the heat capacity CP was also

evaluated as a function of pressure according to Eq.(3.82) for cg-N. For this calcula-

tion, values of V (Eq.3.81), κT [28] and αP (Eq.3.79) through the dP/dT value (Table

3.30) at constant pressures of P=0, 35,125 and 250 GPa were determined and by us-

ing the Cv data at those pressures [28]. We were then able to calculate CP (Eq.3.82)

and γ(Eq 3.80) at T=295K in the cg-N phase, as plotted in Figs. (3.53) and (3.54),

respectively. Owing to the inverse relation between thermal expansion αP (Eq.3.79),

CP increases as the pressure increases (Fig.3.52) at 295 K.
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Figure 3.51: Thermal expansion κT/κ0 as a function of pressure (T=295 K), which

was calculated according to Eq.3.79 for cubic gauche solid nitrogen.

In this part, the vibrational frequencies were estimated with the volume change through

the mode Grüneisen parameter. For this calculation, we used the isothermal mode

Grüneisen parameter (Eq.3.84) to analyze the relation between the Raman frequency

shift and the volume change in the cubic gauche nitrogen,

γT (P ) =
V (P )(∂ν/∂P )T
ν(P )(∂V/∂P )T

(3.84)

In order to analyze the Raman frequencies of various modes and the volume as a

function of pressure, expressions,

νT (P ) = a0 + a1P + b2a
2 (3.85)
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Figure 3.52: Thermal expansion αP as a function of pressure (T=295 K), which was

calculated according to Eq.3.79 for cubic gauche solid nitrogen.
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Figure 3.53: Heat capacity as a function of pressure (T=295 K) which was calculated

according to Eq.3.82 for cg-N.

and

VT (P ) = b0 + b1P + b2P
2 (3.86)
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Figure 3.54: Grüneisen parameter γ as a function of pressure, which was calculated

according to Eq.3.80 for the cubic gauche solid nitrogen.

were used, where a0 , a1, a2 and b0 , b1 , b2 are constants. We fitted the Eqs.3.85 and

3.86 to the observed Raman and infrared frequency data for the optic modes of A,

E and the translational modes of T(TO) and T(LO) at the center (Γ point) [28] with

volume data within the 0-140 GPa pressure interval (295 K) [48] for the structure

of cubic gauche nitrogen. The values of fitted parameters (a0 , a1, a2 and b0 , b1 ,

b2) are given in Table3.34 for the optical (A,E) and the translational (T(T0), T(L0))

modes [28] and in Table 3.35 for the observed V-P data at 295 K [48]. Then, with

the isothermal mode Grüneisen parameter determined by using the constants (Table

3.34 and Table3.35) through Eq.3.84 , we obtained the pressure dependence Raman

frequency for the cg-N phase via

νT (P ) = A(P ) + ν0exp[−γT (P )ln

(
VT (P )

V0

)
] (3.87)

In Eq.3.87, ν0 and V0 are the frequency and volume values at ambient conditions

(P=0, T=295 K), respectively. A(P) is the additional term and it was determined by

fitting Eq.3.87 to the observed frequency data for the cg-N with the relation

A(P ) = c0 + c1P + c2P
2 (3.88)

where c0 , c1 and c2 are constants and their values are given in Table 3.34. Figs.3.55

and 3.56 give the pressure dependence of isothermal mode Grüneisen parameter (γT
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(Eq.3.84) and calculated frequencies of the Raman and optic modes (Eq.3.87) indi-

cated [28, 44] with the observed A mode only [47], respectively. There is a good

relation between the calculated frequency values for the optical modes in the zone

center of cg-N structure [28, 44]. As stated by Caracas [28], when the pressure in-

creases, all the modes harden with a nonlinear behavior (Fig.3.56).

Table 3.34: Values of coefficientsa0 , a1, a2 for the Raman and infrared modes in

the phases indicated according to Eq.(3.85) and the coefficients of the additional term

A(P) which were determined by fitting Eq.(3.88) to the observed frequency data[28]

for the cubic gauche solid nitrogen.

Raman and IR a0(= ν0) a1 −a2 × 10−2 −C0 C1 −C2

modes (cm−1) (cm−1/GPa) (cm−1/GPa2) (cm−1) (cm−1/GPa) (cm−1/GPa2)

A 628.01 2.29 2.99 1031.17 30.72 0.21

T(LO) 806.98 1.72 2.65 573.74 17.18 0.12

T(TO) 842.41 1.59 2.45 523.54 15.68 0.11

E 985.58 3.52 5.04 1438.59 42.91 0.29

T(LO) 1257.35 2.19 2.55 891.43 26.67 0.19

Table 3.35: Values of the coefficients b0 , b1 and b2 by using the volume-pressure

(V-P) data [46] according to Eq.(3.86) within the pressure range indicated for cubic

gauche solid nitrogen.

V (Å
3
) b0(= V0)(Å

3
) −b1 × 10−2(Å

3
/GPa) b2 × 10−5(Å

3
/GPa2) Pressure Interval(GPa)

Cg −N2 6.67 2.21 7.35 0<P<140

Table 3.36: Values of coefficients a0 , a1, a2 for the frequencies of zone-center phonon

modes according to Eq.(3.85) by using the observed data [42].

Raman and IR modes a0(cm
−1) a1(cm

−1/GPa) −a2 × 10−3(cm−1/GPa2)

600 cm−1 (1xRaman) 586.54 2.03 2.28

900 cm−1 (2xRaman) 941.94 3.53 4.19

900 cm−1 (3xRaman) 802.19 1.52 1.91

1200 cm−1 (3xRaman) 1234.46 2.40 2.68

In an another analysis, we used the Raman frequencies (1xRaman, 2xRaman and
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Figure 3.55: Isothermal mode Grüneisen parameter γT as a function of pressure which

was calculated using Eq.3.84 for the optic modes indicated in cg-N.
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Figure 3.56: Calculated frequencies of the optic modes as a function of pressure

through Eq.3.87 with the observed data only [45] for the cg-N.

3xRaman) which were obtained by density functional theory [44] within the 0<P<360

GPa pressure interval. Then, we investigated the Raman frequencies for the phases

of zone center phonon modes for cg-N according to Eq.3.85 and V-P data [103] in
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Table 3.37: Values of the coefficients b0 , b1 and b2 using the volume-pressure (V-

P) data [101] according to Eq.(3.86) with V0 within the pressure range indicated for

cubic gauche solid nitrogen.

V0(Å) b0(Å) b1 × 10−2(Å
3
/GPa) b2 × 10−5(Å

3
/GPa2) Pressure Interval(GPa)

cg −N 6.86 -2.22 7.93 0<P<100

the pressure interval of 0-100 GPa according to Eq.3.86. The values of the coeffi-

cients of Eq.3.85 (a0 , a1 and a2) (Table 3.36) and of Eq.3.86 (b0 , b1 and b2) (Ta-

ble 3.37) were determined. By the correlation of the Raman frequency and volume

data, we predicted the isothermal mode Grüneisen parameter as a function of pres-

sure through Eq.3.84 as plotted in Fig.3.57 for the Raman modes of the zone-center

phonon modes [44] in cubic gauche nitrogen. According to Fig.3.57, γT remains

nearly constant first in the pressure interval 0 to 40 GPa, then it increases with the

pressure increase, as expected. In order to understand the anharmonic properties
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Figure 3.57: Static frequency dielectric constant as a function of frequency for the

pressure dependent optic modes [28] in the cg-N.

of the cg-N, we analyzed the relation between the vibrational frequency (ν) and the

elastic modulus (cij) which can be expressed as

ν2 = a+ bcij (3.89)
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Figure 3.58: The Raman frequencies (ν2) [45] as a function of the elastic

anisotropy(A) [12] due to the elastic constant c11 , c12 and c44 in the pressure range of

0-360 GPa (a) and 0-100 GPa (b).

where a and b are constants. The variation of Raman frequency(squared) with the

elastic constants (cij) was examined by using the pressure dependence of the Ra-

man frequencies [44] and the elastic constants (c11, c12 and c44) within the pressure

interval of 0-360 GPa [105]. We plot the Raman frequencies (ν2) against the elastic

anisotropy (A) which is the ratio of the two shear modulu c44 and (c11−c12)/2 [12] in

(3.58a). We also obtained Raman frequencies (ν2) [44] with the pressure dependence

of elastic constants c11, c12 and c44) in the range of 0-100 GPa [12] in Fig.(3.58b). As

seen in Figs.(3.58a) and (3.58b), ν2 decreases as the pressure increases and there is a

good agreement between the variation of the Raman frequency (ν2) with the elastic

anisotropy (A) in the two pressure intervals of 0-360 GPa (3.58a) [105] and 0-100

GPa (3.58b) [12].According to the elastic constants,the cg phase is the most stable

one among the polymeric phases of nitrogen [105] which agrees with the other stud-

ies up to 170 GPa [27, 106, 107]. Regarding the investigation of the relation between

the Raman frequency and the elastic modulu (cij), we plot the Raman frequency shifts

(1/ν)(∂ν/ ∂P ) against the elastic anisotropy (A) in Fig.3.59. We obtained nearly in-

creasing trend for the Raman frequency shift as a function of the elastic anisotropy as

shown in Fig.3.59.

We also investigated dielectric properties of cubic gauche solid nitrogen by using

the real and imaginary parts of the complex dielctric permittivity. Materials contain

permanent dipoles and they are randomly oriented in polar materials. When the elec-

tric field is applied, these dipoles reoriented towards the direction of electromagnetic
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Figure 3.59: Static frequency dielectric constant as a function of Variation of the

frequency shifts (1/ν)(∂ν/ ∂P) as derived from the Raman frequencies as a function

of elastic anisotropy (A) for the Raman frequencies of the zone-center phonon modes

in cubic gauche nitrogen. for the pressure dependent optic modes [28] in the cg-N.

field. And when electric field is turned off, the time is required in order to turn back

to a random distribution dipoles and the delay occurs on molecular polarization that

is called dielectric relaxation. When the electric field is exerted to a polar dielectric,

the polarization builds up expressed as

P (t) = P∞

(
1− e−

t
τ

)
(3.90)

P(t) is polarization at time t , τ is relaxation time and is a function of temperature

[108].By taking the derivation of Eq.3.90, the rate of polarization building is obtained

as
dP (t)

dt
=
−P∞e−

t
τ

τ
(3.91)

Then, by putting Eq.3.90 into Eq.3.91 and assuming the total polarization due to

dipoles expressed as
dP (t)

dt
∼=
Pµ − P (t)

τ
(3.92)

where Pµ is the orientational polarization.By neglecting atomic polarization, the total

polarization PT (t) is got

PT (t) = Pµ(t) + Pe (3.93)
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with

PT = ε0(εs − 1)E (3.94)

and

Pe = ε0(ε∞ − 1)E (3.95)

where εs and ε∞ are the electric constants under voltage and at infinity frequency

respectively and E is the electric field. Then by substituting Eqs.3.94 and 3.95 in

Eq.3.93 and simplifiying it, we obtain

Pµ = ε0(εs − ε∞)E (3.96)

we get Eq.3.97 by solving Eq.3.92 via the solution of first-order diffrential equation

with the alternating electric field (E = Emaxe
iwt) as

P (t) = ε0
(εs − ε∞)Eme

iwt

(1 + iwτ)
(3.97)

We get total polarization by using Eq.3.96 and Eq.3.97

P (t) =

[
ε∞ − 1 +

(εs − ε∞)

1 + iwτ

]
ε0Eme

iwt (3.98)

The value of flux density can be defined as

D(t) = ε0ε
∗Eme

iwt (3.99)

and

D(t) = ε0Eme
iwt + P (t) (3.100)

Hence, by equating these two flux density functions (Eqs.(3.99, 3.100) to each other,

we get

(ε′ − iε′′) = 1 +

[
ε∞ − 1 +

(εs − ε∞)

1 + iwτ

]
(3.101)

The imaginary and real parts of permitivity are obtained as

ε′(ω) =
ε0 − ε∞
1 + ω2τ 2

+ ε∞ (3.102)

and

ε′′(ω) = −ωτ(ε0 − ε∞)

1 + ω2τ 2
(3.103)

where ε0 and ε∞ are the static and high-frequency dielectric constants respectively

[108]. The frequency dependence of ε′(ω) and ε′′(ω) was predicted according to

91



Eqs.3.102 and 3.103 by using the pressure dependence of optical modes A,E,T(TO)

and T(LO) in the zone center of cubic gauche structure with the values of ε0 and ε∞

at the pressures of 35,75, 125,175 and 250 GPa as taken from literature [28].The pre-

dicted values of the frequency dependence of real ε′(ω) and imaginary parts ε′′(ω)of

the complex dielectric permittivity, are given in Figs.3.60 and 3.61 respectively for

the optic modes studied at various pressures [28]. Finally, we gave the relation be-

tween the ε′(ω) and the dielectric loss ε′′(ω) in terms of the cole- cole plot for the

optic modes of A,E, T(TO) and T(LO) at various pressures for the cg-N as shown in

Fig.3.62.
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Figure 3.60: Static frequency dielectric constant as a function of the frequency for the

pressure dependent optic modes [28] in the cg-N.Solid lines represent the best fits to

the values given.
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Figure 3.61: High frequency dielectric constant as a function of the frequency for the

pressure dependent optic modes [28] in the cg-N.Solid lines represent the best fits to

the values given.
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Figure 3.62: Colo-cole plot of the optic modes at various pressures [28] for the cg-

N.Solid lines represent the best fits to the values given.
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CHAPTER 4

CONCLUSIONS

In this thesis, the thermodynamic and the spectroscopic properties of solid nitrogen

in the vicinity of the phase transitions was investigated. By means of using vari-

ous models and methods, we analyzed the experimental and theoretical data which

were taken from the literature in order to explain the observed behavior of thermo-

dynamical quantities and dynamical properties of solid nitrogen at high temperatures

and pressures. The dynamical properties of solid nitrogen were studied by using the

Raman frequencies that vary with the pressures and temperatures close to the phase

transitions and solid nitrogen is one of the most convenient molecular structures to

analyze these properties since it has a fundamental pressure and temperature induced

phase transitions. The pressure dependence of the Raman and IR frequencies of solid

nitrogen was predicted by using observed volume and frequency data up to 160 GPa

at the room temperatures. For this calculation, the isothermal mode Grüneisen pa-

rameter as a function of pressure was calculated for the lattice and internal modes of

the solid nitrogen and then it was used to predict the Raman and IR frequencies of

Raman modes studied at high pressures for solid nitrogen. Our calculated the Ra-

man and IR frequencies are in good agreement with the observed frequency data for

the vibrons and lattice modes of solid nitrogen as expected that they increase as the

pressure increases except the vibron ν2 that decreases with the increasing pressure

at the 80-160 GPa pressure interval. Hence, our results shows that this methods is

adequate the calculate Raman frequencies of solid nitrogen and it can be used for

other molecular crystals. The phase diagram of nitrogen was calculated for the fluid-

solid and solid- solid (ε-δloc-δ) by using the mean field model at high pressures. By

using the free energy expanded in terms of order parameter, the phase line equation

was derived and it was fitted the observed data. Temperature and pressure dependent
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coefficients of free energy were determined and used to calculate the phase diagram

of solid nitrogen for the fluid-solid ,the δ-δloc and the δloc -ε transitions. Also, by

using free energy, we predicted thermodynamic quantities of the order parameter,

inverse susceptibility, entropy, heat capacity thermal expansion and the isothermal

compressibility as a function of temperature. Again, observed P-T data was used to

calculate thermodynamic quantities. According to our results, while order parame-

ter and inverse susceptibility decrease with increasing temperature and pressure, the

entropy, heat capacity, thermal expansion and isothermal compressibility increase as

the temperature increasing and they represent abnormal behavior near the phase tran-

sition region. The mean field model can be an applicable model to calculate phase

diagram (P-T or X-T) and thermodynamic quantities of molecular crystals close to

the phase transitions. As an another calculation ,the temperature dependence of the

Raman bandwidths (linewidths) of Eg librational mode (P=0) and the internal modes

of ν1 and ν2 (P=18 GPa) was calculated by using pseudospin-phonon coupling (PS)

and energy fluctuation (EF) models. First of all, the temperature dependence of the

Raman frequency as assumed the order parameter was calculated from the molec-

ular field theory by analyzing the experimental frequency data from the literature.

By using these calculated frequencies, Linewidth (FWHM) was predicted at various

temperature via the PS and EF models for the Eg mode, ν1 and ν2 internal modes

and the difference in the frequency (ν1-ν2) at constant pressures. As observed ex-

perimentally, our calculated linewidth values increase as the temperature increases

at constant pressures. Hence, Our results indicate that pseudospin-phonon coupling

and energy fluctuation model can be used to describe the observed behavior of the

Raman bandwidth of the molecular crystals. Regarding to thermodynamic proper-

ties of solid nitrogen, we calculated the thermodynamic functions of the isothermal

compressibility, the difference of heat capacity and the thermal expansion in terms of

temperature and pressure from the Raman frequency of the internal modes ν1,ν2 and

ν22 close to the phase transition of ε,δloc and δ in solid nitrogen. The observed volume

data was also used to predict the thermodynamic functions. After calculations of the

thermodynamic functions, the Pippard relations were employed in order to investi-

gate linear relations between the heat capacity with the thermal expansion and the

isothermal compressibility with the thermal expansion. By using this linear relation,

we obtained dP/dT values for the fluid solid and ε-δloc- δ transitions for solid nitrogen
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and compared the previous values obtained by Mukherjee et al. for melting curve

of solid nitrogen [94]. The method of calculating thermodynamic functions from the

Raman frequency shift and volume data can be applicable for the other molecular

crystals as shown in our results. We calculated in section 3.6 the Raman frequency

and Raman bandwidth by means of the anharmonic self energy model at various tem-

perature for the vibrons ν1, ν2 in the phases of ε,δloc and δ(P=18.5 GPa) of solid

nitrogen. The anharmonic self energy model was also caried out for the calculation

of the Raman frequency and linewidth of the ν1- ν2 as a function of temperature at

constant pressure (P= 13.2 ,14.95, 18.5 and 21.2 GPa). when compared our results

to the observed values, there is some inconsistency between them, as expected since

the anharmonic self energy model does not work well at high temperatures. Values

of the inverse relaxation time and activation energy was obtained by consulting the

power law formula for the liberational Eg mode (α-β), the vibrons ν1, ν2 (ε-δloc-

δ) and also the frequency difference (ν1- ν2 )in the nitrogen. The activation energy

were derived from the temperature dependence of inverse relaxation time close the

phase transitions studied. The inverse relaxation time decreases when the tempera-

ture increase as we expected from the mechanism of the order-disorder transition (

α-β and (ε-δloc- δ) in the solid nitrogen. As stated in our results, the values of ac-

tivation energy are too large compared to those obtained for some other molecular

solids. As a last part of this thesis work, we investigated the thermodynamic func-

tions at various temperatures and pressures and analyzed the dielectric properties of

cubic gauche solid nitrogen(cg-N).By analyzing temperature dependence of volume

, we obtained the thermal expansion and the isothermal compressibility as a function

of temperature. The values of heat capacity were also predicted by using the observed

volume data, calculated thermal expansion and the isothermal compressibility for cu-

bic gauche nitrogen. The pressure dependence of thermodynamic functions was also

calculated with the observed volume data as a function of pressure. The vibrational

frequencies of cg-N were predicted by applying the correlation between the Raman

frequency and volume change established by the mode Grüneisen parameter. These

predictions of the vibrational frequencies were used the investigate the dielectric and

elastic properties of solid nitrogen and also the anharmonic properties of cg-N.
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