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ABSTRACT

EFFICIENT IMPLEMENTATION OF LATTICE-BASED SCHEMES

Bilgin, Yusuf Alper

Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Murat Cenk

September 2020, 72 pages

Quantum computing and quantum computers have been discussed for almost three
decades. However, they remain mainly in theory. Almost all big companies like
Google, IBM, and Microsoft have put their effort to build the most scalable quantum
computers in recent years. These computers can change the game in cryptography
since the known hard problems such as integer factorization and discrete logarithms
can be broken with a large-scale quantum computer. These computers would seri-
ously jeopardize the confidentiality and integrity of all digital communications. The
question of when large-scale quantum computers will be built is still an open ques-
tion. There are some educated predictions that sufficiently large quantum computers
will be built to break all public-key schemes currently in use within the next ten or
so years. That is why the National Institute of Standards and Technology (NIST) has
announced a standardization process in 2016 to prepare our information security sys-
tems to be able to resist in quantum computing. The first two rounds of this process
have been completed, and there are seven on-going candidates and eight alternate
candidates. Among these 15 schemes, seven of them are based on lattices.

In this thesis, we study the efficient implementation of lattice-based schemes. We
first propose an efficient and compact variant of NEWHOPE, one of the most effi-
cient second-round candidates of the NIST post-quantum standardization project. The
proposed algorithm NEWHOPE-COMPACT heavily uses recent advances on Number
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Theoretic Transform (NTT), so that transformation from one polynomial to another
is easy. To make it possible, we changed the definition of a component in component-
wise multiplication during polynomial multiplication and show that changing the se-
curity level only requires to change the size of the polynomial and the definition of
a component. Then, we present various optimizations for lattice-based KEMs using
the NTT on the popular ARM Cortex-M4 microcontroller. Improvements come in the
form of a faster code using more efficient modular reductions, optimized small-degree
polynomial multiplications, and more aggressive layer merging in the NTT, but also
in the form of reduced stack usage. We test our optimizations in software imple-
mentations of KYBER, one of the round three candidates in the NIST post-quantum
project, NEWHOPE, and NEWHOPE-COMPACT.

Keywords: Post-quantum cryptography, lattice-based cryptography, key encapsula-
tion mechanism, number theoretic transform, NTT, KEM, RLWE, MLWE, ARM
Cortex-M4, KYBER, NEWHOPE, NEWHOPE-COMPACT
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ÖZ

KAFES TABANLI ALGORİTMALARIN VERİMLİ GERÇEKLENMESİ

Bilgin, Yusuf Alper

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Murat Cenk

Eylül 2020, 72 sayfa

Kuantum bilgisayarlar neredeyse otuz yıldır tartışılmasına rağmen bu konuda araştır-
malar büyük ölçüde teoride kalmıştır. Son yıllarda, Google, IBM ve Microsoft gibi
tanınmış şirketler büyük ölçekli bir kuantum bilgisayar yapabilmek için çaba sarf
etmektedir. Bu bilgisayarlar ile çarpanlarına ayırma ve ayrık logaritmalar gibi zor bi-
linen problemler büyük ölçekli bir kuantum bilgisayar tarafından kırılabilecektir. Bu
yüzden, dijital iletişimin gizliliği ve bütünlüğü ciddi biçimde tehlikeye girecektir. Bü-
yük ölçekli kuantum bilgisayarların ne zaman yapılacağı sorusu hala açık bir sorudur.
Önümüzdeki 10 yıl içinde, hâlihazırda kullanımda olan tüm açık anahtar algoritma-
larını kırmak için yeterince büyük kuantum bilgisayarların inşa edileceği konusunda
bazı tahminler vardır. Bu nedenle, NIST, bilgi güvenlik sistemlerimizi kuantum bil-
gisayarlarına karşı koruyabilmek için 2016 yılında bir standartlaştırma süreci baş-
latmıştır. Bu sürecin ilk iki turu tamamlanmıştır ve yedi tane aday algoritma, sekiz
tane de alternatif algoritma seçilmiştir. Bu 15 algoritma içerisinden sekiz tanesi kafes
tabanlıdır.

Bu tez kapsamında kafes tabanlı algoritmaların verimli bir şekilde gerçeklenmesi
üzerine çalışılmıştır. İlk olarak, NIST kuantum sonrası standartlaştırma süreci ikinci
tur adayı olan NEWHOPE algoritmasının hızlı ve kompakt bir varyasyonu olan
NEWHOPE-COMPACT algoritması önerilmiştir. Önerilen bu algoritma sayı teorik dö-
nüşümünde (NTT) olan son gelişmeleri yoğun bir şekilde kullanmaktadır. Bunun için
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elemanlar arası çarpmada kullanılan her bir elemanın tanımı değiştirilmiştir. Güven-
lik seviyesini değiştirmek için sadece polinom boyutunu ve eleman tanımını değiş-
tirmenin yeterli olduğu gösterilmiştir. Daha sonra, NTT’yi kullanan kafes tabanlı al-
goritmalar için ARM Cortex-M4 üzerinde çeşitli optimizasyonlar sunulmuştur. Bu
optimizasyonlar ile daha verimili modüler indirgeme, optimize edilmiş küçük terimli
polinom çarpımı ve daha agresif NTT katmanı birleşimi kullanılarak daha hızlı bir uy-
gulama sunulmuştur. Gerçekleştirilen bu performans optimizasyonun yanında yığın
bellek kullanımı da azaltılmıştır. Bu optimizasyonlar, NIST kuantum sonrası stan-
dartlaşma sürecinde üçüntü tur adayı olan KYBER, ikinci tur adayı olan ve üçüncü
turda elenen NEWHOPE ve kendi önerdiğimiz NEWHOPE-COMPACT üzerinde test
edilmiştir.

Anahtar Kelimeler: Kuantum sonrası kriptografi, kafes tabanlı kriptografi, anahtar
kapsülleme mekanizması, sayı teorik dönüşüm
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CHAPTER 1

INTRODUCTION

Cryptography is the study or technique of securing all sorts of communications from

third party adversaries. The prefix "crypt" means hidden, and the postfix "graphy"

means writing. Cryptography is almost as old as the invention of writing, and it has

been in our life since then. The first known usage of cryptography dated back to

the ancient Egyptians. They communicate through hieroglyphs, which are somewhat

encrypted.

One of the most famous ancient cryptographic algorithms is Caeser Cipher. The Ro-

man empire Julius Caeser, who did not trust his messengers, used it to communicate

with his governers, officers, and generals. This cipher relies on shifting the letters of

a message by three-position ahead. This method was performed by using a pen and

paper. However, the technology is evolving, so does the cryptography. The invention

of complex mechanical and electromechanical machines in the early 20th century en-

ables more advanced encryption. The first modern example of this improvement is

the Enigma machine, which was used by Germans during World War II. It is followed

by Bombe, the British cryptanalysis machine to decipher Enigma.

Cryptography is mostly used to ensure the secrecy of communications for military or

politics up to the 70s. However, the groundbreaking discovery of Diffie and Hellman

[18] in 1976 changes this by introducing public-key cryptography, which broadens the

applications of cryptography. They solved the key distribution problem, which is one

of the fundamental and most challenging ones. One year later, Rivest, Shamir, and

Adleman introduced RSA [45] by solving the open problem left by [18], which was

finding a suitable one-way function. After these works, cryptographic algorithms are
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built based on mathematical problems that are easy to state but hard to solve. Today,

most of the public-key cryptosystems that we use rely on the difficulty of integer

factorization and discrete logarithm.

Although the field of cryptography is mostly dominated by mathematicians and com-

puter scientists, a physicist Richard Feynman changed this by publishing his game-

changer work [19] in 1982. He founded the field of quantum computing and also the

term quantum computers with this work. In digital computing, we have bits, which

are 0 or 1. On the other hand, quantum computing works on qubits that are 0, 1, or in

the state of quantum superposition [43,48]. In other words, a quantum computer with

n qubits can be in 2n different states at the same time, while a classical computer with

the same number of bits can be one of 2n different states at a time. Hence, we can

utilize a quantum computer to solve large scale problems such as analysis of chemi-

cal interactions, speeding up searches of a large database, challenging optimizations

problems, and cryptanalysis. Especially the last one attracts the attention of govern-

ments and big companies. We do not have large enough quantum computers yet to

solve such large scale problems, but the field is snowballing. Different parties, such

as government agencies, big companies like Google, Intel, IBM, Microsoft, Alibaba,

and researches, are racing each other to build the quantum computer with more qubits

and more power. Lately, Google announced that they reached the quantum supremacy

in [11]. They stated that the Sycamore quantum processor takes 200 seconds to sam-

ple one instance of a quantum circuit. Their estimation shows that an equivalent task

would take 10000 years for a classical supercomputer. However, [44] states that this

computation takes only two and a half days instead of 10000 years.

One of the applications that we can take advantage of quantum computers is crypt-

analysis. The security of the current public-key cryptosystems rests on the difficulty

of integer factorization and discrete logarithm. [48] introduced efficient randomized

algorithms for these two problems on a hypothetical quantum computer. By using

these algorithms, one can break all currently used public-key cryptographic systems

such as RSA, Digital Signature Algorithm (DSA) or Elliptic Curve Cryptography

(ECC) on the existence of a large scale quantum computer. The situation is also sim-

ilar to symmetric cryptography. The security of a symmetric algorithm such as the

Advanced Encryption System (AES) will be halved on a logarithmic scale by using

2



Grover’s algorithm [23] on a powerful enough quantum computer. We are not even

close to such quantum computers, and some are still suspicious about establishing

them. However, this does not mean that we are not able to build them. According

to Moore’s Law [41], the number of transistors in a dense integrated circuit doubles

about every two years. If this rule is valid for quantum computers, we might have

powerful enough quantum computers to decipher public-key schemes in about ten

years. In 2015, Michele Mosca said [42] that “I estimate a 1/7 chance of breaking

RSA-2048 by 2026 and a 1/2 chance by 2031". Therefore, a significant amount of

work has been devoted to the replacement of currently used public-key cryptography

with the algorithms that are resistant to attacks done by both classical and quantum

computers, called post-quantum cryptography. There are five types of problem fami-

lies. These are lattice-based, multivariate, hash-based, code-based, and supersingular

elliptic curve isogeny-based cryptography. There are plenty of public-key proposals

based on those systems. Some of them, such as lattice-based, have been studied for

more than 20 years, but some of them, like supersingular elliptic curve isogeny-based,

are relatively newer than the others.

The interest in post-quantum cryptography, i.e., cryptography resisting adversaries

equipped with both classical and quantum computers, has grown significantly among

the research community in the last few years. This growth is partially driven by the

National Institute of Standards and Technology (NIST) post-quantum standardiza-

tion project aiming to create a formal environment in which concrete instantiations

of several post-quantum techniques for signatures and key encapsulation can be an-

alyzed and compared to each other concerning several metrics. This standardization

project was started in 2016 [20, 39]. The first round of the project took place mainly

during 2018 and assessed different possible quantum-safe algorithms. As stated in

[2,20,40], “performance considerations will NOT play a major role in the early por-

tion of the evaluation process.”. Therefore, the performance was not the primary

consideration, but instead, NIST considered the security and cost as primary factors

in its decision. In early 2019, 26 out of the 69 initial algorithms advanced to the

second round of the project [2]. In this second round, as [38] stated that the candi-

dates’ practical performance played an essential role in the selection of a hypothetical

future standardization. The second round of evaluation was recently completed, and

3



NIST announced the third round candidates [1], which contain four key encapsula-

tion mechanisms (KEM) and three digital signature schemes. In addition, five KEMs

and three digital signature schemes were also advanced to the next round as alternate

candidate algorithms.

This thesis is organized as follows: Following this introduction chapter, Chapter 2

gives the notation and preliminaries information required to follow up with the up-

coming chapters. Chapter 3 presents a compact, simple, and efficient KEM whose

security relies on Ring-learning with errors (RLWE) problem. This scheme is a vari-

ant of NEWHOPE, one of the second round candidates of the NIST post-quantum

standardization project, and named as NEWHOPE-COMPACT. Chapter 4 proposes

various optimizations for lattice-based KEMs using the number theoretic transform

(NTT) on the popular ARM Cortex-M4 microcontroller. Chapter 5 concludes the

work.
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CHAPTER 2

PRELIMINARIES

In this chapter, we provide the necessary background and notation for understand-

ing the technical content of this thesis. We start with the notation. Then, we briefly

describe KEM and how one can use NTT to speed up polynomial multiplications.

We also describe a different NTT-based polynomial multiplication approach given by

[36], and recently used by [4, 12, 35]. We end this chapter by giving algorithm de-

scriptions for NEWHOPE and KYBER, two post-quantum standardization candidates.

2.1 Notation

Let q be a prime number, n be a power of two. The quotient ring Z/qZ is denoted as

Zq. R = Z[X]/(Xn + 1) be the ring of integer polynomials modulo Xn + 1. Then,

we defineRq = Zq[X]/(Xn + 1) as a special case ofR such that every coefficient is

reduced modulo q. Note that n and q are selected in such a way that performing an

efficient NTT of an element inRq is possible. For that reason, n is selected as a power

of two such that Xn + 1 is the 2n-th cyclotomic polynomial, and q is selected as a

prime allowing an efficient NTT implementation. We represent an element a ∈ Rq

as a =
∑n−1

i=0 aiX
i, where ai is in Zq. Moreover, bold lower-case letters such as v

denote a column vector, and bold upper-case letters such as A denote a matrix with

entries in Rq. The representations of polynomials, vectors, and matrices in the NTT

domain are denoted as â, v̂, and Â, respectively.
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2.2 Key Encapsulation Mechanism

A KEM is similar to the Diffie-Hellman key exchange scheme ([18]) in context. They

are both used to generate a shared secret. However, while both parties contribute

to the generation of the shared secret in the Diffie-Hellman scheme, only one party

generates the secret and shares it with the other in a KEM. This generated key is

encrypted before being shared. Hence, a public key encryption (PKE) scheme is

needed. We define these two primitives below:

Definition 2.1. A public key encryption scheme consists of three algorithms defined

as follows:

1. The key generation (KeyGen) is a probabilistic algorithm that outputs a pub-

lic/secret key pair (pk, sk).

2. The encryption (Enc) is a probabilistic algorithm that takes as input a message

(m) and a public key (pk) and returns a ciphertext (c).

3. The decryption (Dec) is a deterministic algorithm that takes as input a cipher-

text (c) and a secret key (sk) and returns a message (m) or failure.

Definition 2.2. A key encapsulation mechanism consists of three algorithms defined

as follows:

1. The key generation (KeyGen) is a probabilistic algorithm that outputs a pub-

lic/secret key pair (pk, sk).

2. The encapsulation (Encaps) is a probabilistic algorithm that takes as input a

public key (pk) and returns a shared secret (ss) and a ciphertext (c).

3. The decapsulation (Decaps) is a deterministic algorithm that takes as input a

ciphertext (c) and a secret key (sk) and returns a shared secret (ss′) or failure.

The decapsulation algorithm does not always output the shared secret successfully but

rather an incorrect shared secret or false for some constructions of key encapsulation

mechanisms. This error case is referred to as decryption or decapsulation failures. A

KEM is correct if all (pk, sk) ←KeyGen() and (c, ss) ←Encaps(pk), ss = ss′ for ss′

←Decaps(c, sk). A decapsulation failure is the case where Decaps function returns

failure.
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The security of a KEM is usually defined with indistinguishability under chosen plain-

text attack (IND-CPA) and chosen ciphertext attack (IND-CCA), which are defined

below:

Definition 2.3. IND-CPA is defined between a challenger and an adversary for a

KEM as follows:

1. The challenger generates a key pair (pk, sk) by running KeyGen.

2. The challenger runs (c, ss0)←Encaps, samples another shared secret ss1, se-

lects a bit b ∈ {0, 1} and publishes (pk, c, ssb) to the adversary.

3. The adversary may call the polynomial number of Encaps operation.

4. The adversary finally selects a bit b′ ∈ {0, 1}. If b = b′, the attack is successful.

A KEM is IND-CPA secure when every polynomial-time adversary has only a negli-

gible advantage over random guessing.

Definition 2.4. IND-CCA is defined between a challenger and an adversary for a

KEM as follows:

1. The challenger generates a key pair (pk, sk) by running KeyGen.

2. The challenger runs (c, ss0)←Encaps, samples another shared secret ss1, se-

lects a bit b ∈ {0, 1} and publishes (pk, c, ssb) to the adversary.

3. The adversary may call the polynomial number of Encaps or Decaps operation.

However, it may not submit c to the Decaps.

4. The adversary finally selects a bit b′ ∈ {0, 1}. If b = b′, the attack is successful.

A KEM is IND-CCA secure when every polynomial-time adversary has only a negli-

gible advantage over random guessing.

2.3 Utilizing NTT for Polynomial Multiplication

Let a, b, and c ∈ Rq. If the parameters n and q are selected such that q ≡ 1 mod 2n,

the multiplication of c = a ·b mod (Xn+1) can be calculated efficiently by utilizing

NTT. The reason for the condition q ≡ 1 mod 2n is that a primitive n-th root of
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unity ω exists. This multiplication can be written as c = NTT−1(NTT(a) ◦ NTT(b))

where NTT−1 denotes inverse NTT, ◦ denotes coefficient-wise multiplication. NTT

and NTT−1 formulae are written as follows:

NTT(a) = â =
n−1∑
i=0

âiX
i, where âi =

n−1∑
j=0

ajω
ij mod q,

NTT−1(â) = a =
n−1∑
i=0

aiX
i, where ai =

(
n−1

n−1∑
j=0

âjω
−ij) mod q.

The multiplication of c = a · b includes 2 forward NTTs, one inverse NTT, and

n coefficient-wise multiplications. There are two different approaches to calculate

forward NTT and inverse NTT efficiently. These are the Fast Fourier Transform (FFT)

Trick and the Twisted FFT Trick, which are given below and well explained in [27].

2.3.1 The FFT Trick

This trick leads to the Cooley-Tukey butterfly ([17]) in forward NTT and Gentleman-

Sande butterfly ([22]) in inverse NTT.

Note that we are working on Rq and the parameters n and q are chosen as q ≡
1 mod 2n, so that a primitive n-th root of unity ω and its square root γ =

√
ω

mod q exists. The observation of Xn + 1 = Xn − γn leads to the following Chinese

Remainder Theorem (CRT) map:

Rq = Zq[X] /(Xn − γn)→ Zq[X] /(Xn/2 − γn/2)× Zq[X] /(Xn/2 + γn/2).

Let f ∈ Rq. Then, in order to get the coefficients after the above CRT map, we need

to calculate

g = f mod (Xn/2 − γn/2),

h = f mod (Xn/2 + γn/2).

Therefore, we have two separate polynomials g ∈ Zq[X] /(Xn/2 − γn/2) and h ∈
Zq[X] /(Xn/2 + γn/2) now. The calculations of any parameters of g and h are given
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below:

gi = fi + γn/2 · fi+n/2,

hi = fi − γn/2 · fi+n/2,

where 0 ≤ i < n/2. These operations are called as Cooley-Tukey butterfly. As can be

seen, these butterflies take n/2 additions, n/2 subtractions, and n/2 multiplications

by γn/2 in total.

In order to get the NTT representation of a ring of polynomial, the above CRT map

should be fully split. The split of g is easy. However, in order to split h, the first trick

should be applied again by observing that Xn/2 + γn/2 = Xn/2− γn+n/2. Finally, we

get n coefficients the form

a2i = ci mod (X − γbrv(n/2+i)),

a2i+1 = ci mod (X + γbrv(n/2+i)),

where ci’s are the polynomials calculated from the previous CRT map for 0 ≤ i <

n/2 and brv is the bit-reversal operation that is defined as

brv(v) =

log2(n)−1∑
i=0

(((v >> i)&1) << (log2(n)− 1− i)).

Note that the CRT map splits k = log2 n times in order to get NTT representation of

a polynomial inRq. From now on, let us call each of these splits as level. Therefore,

an n-point NTT has k = log2 n levels, and it is called as k level NTT.

The inverse of this NTT transformation is computed by using Gentleman-Sande but-

terflies. Let us illustrate the final level.

fi = (gi + hi)/2,

fi+n/2 = (gi − hi)/(2× γn/2),

where 0 ≤ i < n/2. As it can be seen, these butterflies take n/2 additions, n/2 sub-

tractions, and n/2 multiplications as the Cooley-Tukey butterflies. Note that dividing

by two can be postponed to the end instead of doing it on each butterfly. This yields a

multiplication with every coefficient by n−1 at the end. In fact, to reduce the number
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of multiplications at the end, half of these multiplications can be performed together

with the multiplications by γ−n/2 at the last level.

2.3.2 The Twisted FFT Trick

This trick leads to Gentleman-Sande butterfly in both forward and inverse NTTs.

There exist a primitive n-th root of unity ω and its square root γ =
√
ω mod q as in

the FFT trick. The twisted FFT trick starts with the following isomorphism

X → γX : Rq = Zq[X] /(Xn + 1)→ Zq[X] /(Xn − 1).

Then, the CRT map at the first level can be computed as

Zq[X] /(Xn − 1)→ Zq[X] /(Xn/2 − 1)× Zq[X] /(Xn/2 + 1).

Let f ∈ Rq be the polynomial after the isomorphism of X → γX . Then, in order to

get the coefficients after the first level, we need to calculate

g = f mod (Xn/2 − 1),

h = f mod (Xn/2 + 1).

Therefore, we have two separate polynomials g ∈ Zq[X] /(Xn/2 − 1) and h ∈
Zq[X] /(Xn/2 + 1) now. The calculations of any parameters of g and h are given

below.

gi = fi + fi+n/2,

hi = (fi − fi+n/2)× γ0,

where 0 ≤ i < n/2. These operations are called as Gentleman-Sande butterfly. As it

can be seen, these butterflies take n/2 additions, n/2 subtractions, and n/2 multipli-

cations by γ0. After applying these butterflies iteratively for k levels, we can get the

representation of our polynomial in the NTT domain. During these computations, the

corresponding bit-reversed power of γ is used. For the first level, we only need one γ

value for our butterflies which is γbrv[0] = γ0 where brv corresponds to bit-reversal.

At the ith level, we have 2i polynomials requiring 2i−1 γ values, which are γbrv[j]
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where 0 ≤ j < 2i−1.

The inverse NTT can be computed with the same algorithm by following a little trick.

Gentleman-Sande butterflies accept inputs in bit-reversed order, and it gives the result

in standard order. Therefore, by applying the bit-reversal permutation before forward

and inverse NTTs, we can utilize the same algorithm for both operations. Note that

the powers of γ will be different. The inverse of the first isomorphism should also be

taken at the end by multiplying each coefficient with the corresponding power of γ−1.

These multiplications can be hidden by multiplications with n−1.

As mentioned before, the FFT Trick leads to Cooley-Tukey butterfly in forward NTT

and Gentleman-Sande butterfly in NTT−1. On the other hand, the Twisted FFT Trick

leads to Gentleman-Sande butterfly in both NTT and NTT−1. This work focuses on

the former choice due to the use of signed integers, which leads to faster implemen-

tation. The pseudocode for NTT based on the Cooley-Tukey butterfly and NTT−1

based on the Gentleman-Sande butterfly are given in Algorithm 1 and Algorithm 2,

respectively.

2.3.3 A Different Polynomial Multiplication Approach

The standard polynomial multiplication utilizing NTT is c = NTT−1(NTT(a) ◦
NTT(b)) where a, b, and c ∈ Rq. This NTTs contain k = log2 n levels where n− 1 is

the degree of polynomials. Although this polynomial multiplication is very efficient,

it is interesting to see that if one stops at the (k− 1)-th level or even the (k− 2)-th or

(k−3)-th levels instead of applying all k levels, the multiplication of two polynomials

might be faster. This is an important observation firstly made by [36].

KYBER: The round 2 submission of the KYBER scheme includes an update in the

definition of NTT. This update corresponds to stop NTT at 7-th level instead of

applying a full NTT, which is 8-level. Algorithm 1 and Algorithm 2 can still be

used with only minor modifications. The modification in Algorithm 1 is that (` ≥ 1)

condition at line 3 is replaced with (` ≥ 2) while in Algorithm 2 (` ← 1) at line 3 is

replaced with (`← 2), and n at lines 14 and 15 is replaced with n/2. These changes

also affect the coefficient-wise multiplications while multiplying two polynomials in
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Algorithm 1 NTT based on the Cooley-Tukey butterfly
Input: A polynomial a ∈ Rq where i-th coefficient of a is denoted as a[i], 0 ≤
i < n, and a precomputed table of Γ which stores Γ[i] = γbrv(i) where brv(i) =∑log2(n)−1

j=0 (((i >> j)&1) << (log2(n)− 1− i)), 0 ≤ i < n.

Output: â← NTT(a) in bit-reversed ordering.

1: function NTT(a)

2: i← 1

3: for `← n/2; ` ≥ 1; `← `/2 do

4: for s← 0; s < n; s← s+ ` do

5: g ← Γ[i]

6: for j ← s; j < s+ `; j ← j + 1 do

7: t← g · a[j + `] (mod q)

8: a[j + `]← a[j]− t (mod q)

9: a[j]← a[j] + t (mod q)

10: end for

11: i← i+ 1

12: end for

13: end for

14: â← a

15: return â

16: end function
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Algorithm 2 NTT−1 based on the Gentleman-Sande butterfly
Input: A polynomial ĉ ∈ Rq in bit-reversed ordering where i-th coefficient of ĉ is

denoted as ĉ[i], 0 ≤ i < n, and a precomputed table of Γ−1 which stores Γ−1[i] =

γ−(brv(i)+1) where brv(i) =
∑log2(n)−1

l=0 (((i >> l)&1) << (log2(n) − 1 − i)), 0 ≤
i < n.

Output: c← NTT−1(ĉ) in standard ordering.

1: function NTT−1(ĉ)

2: i← 0

3: for `← 1; ` < n; `← 2 · ` do

4: for s← 0; s < n; s← j + ` do

5: g ← Γ−1[i]

6: for j ← s; j < s+ `; j ← j + 1 do

7: t← ĉ[j]

8: ĉ[j]← t+ ĉ[j + `] (mod q)

9: ĉ[j + `]← g · (t− ĉ[j + `]) (mod q)

10: end for

11: i← i+ 1

12: end for

13: end for

14: for j ← 0; j < n; j ← j + 1 do

15: c[j]← ĉ[j]/n

16: end for

17: return c

18: end function
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Rq such that they are performed on small polynomials in Zq/(X2 − r) instead of

integer coefficients. The schoolbook multiplication method to multiply two elements

in Zq/(X2 − r) is given in Algorithm 3.

Algorithm 3 Multiplication of polynomials in Zq/(X2 − r)
Input: a and b ∈ Zq/(X2−r) where r is a power of γ. i-th coefficient of a is denoted

as a[i] where 0 ≤ i < 2.

Output: c ∈ Zq/(X2 − r).

1: function basemul(a, b)

2: c[0]← a[1] · b[1]

3: c[0]← c[0] · r . · for modular reduction

4: c[0]← c[0] + (a[0] · b[0]) . + for modular reduction

5: c[1]← a[0] · b[1]

6: c[1]← c[1] + (a[1] · b[0])

7: return c

8: end function

A NTT-based polynomial multiplication consists of two forward NTT and one inverse

NTT. By using the new approach, one can save three levels of NTT in total, two

forward, and one inverse. The total cost of each NTT level is n/2 additions, n/2

subtractions, and n/2 multiplications. Therefore, the total saving is 3n/2 additions,

3n/2 subtractions, and 3n/2 multiplications. However, apart from NTT calculations,

there is also coefficient-wise multiplications or polynomial multiplications according

to the approach used. The standard approach has n coefficient-wise multiplications,

while the new approach has polynomial multiplications which contain n/2 additions,

n/2 subtractions, and 5n/2 multiplications. Although the multiplication counts are

the same in total (5n/2 for both), the new approach has n additions, and n subtractions

less than the standard approach. Besides this advantage, it has a more important

advantage hidden in the definition of NTT. In order to have a ring allowing fast

multiplication using NTT, schemes based on the RLWE problem usually select n as

a power of two such that n = 2k. In order to have a primitive n-th root of unity, the

prime q is selected, such that q ≡ 1 mod 2n. Therefore, it can be fully split, and k

level NTT can be calculated efficiently. However, the new approach does not require

k level NTT. Instead, k − 1 level is enough for polynomial multiplication in Rq.
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Therefore, n/2-th root of unity is sufficient for the calculation, and q can be selected,

such that q ≡ 1 mod n. If one decides to stop at another level ` instead of k − 1,

then the selection of q should satisfy q ≡ 1 mod (n/2k−`−1). The degrees of the

resulting polynomials after NTT will be 2k−`. Therefore, these polynomials will be

represented in Zq[X]/(X2k−` ± γbrv[i]+1) where brv is defined as below:

brv(v) =
`−1∑
i=0

(((v >> i)&1) << (`− 1− i)).

Then, the polynomial multiplication is performed in Zq[X]/(X2k−` ± γbrv[i]+1). Fi-

nally, by taking ` level NTT−1, one can get the result of the multiplication of two

polynomials inRq.

Two recent studies use this polynomial multiplication approach apart from KYBER

[12]. One of the similar approaches is [51]. It first represents the input degree n

polynomial as two degree n/2 polynomials. Then, it applies k − 1 level NTT to both

of them. The multiplication of two polynomials in their NTT domain representation

is similar to the method described above. Finally, the inverse NTTs of two degree n/2

polynomials are taken separately. Although the approach is similar, their results are

not as fast as KYBER. Their performance is even slower than the standard NTT-based

multiplication approach. Another scheme that uses a similar approach is [35]. Their

ring structure, Z7681[X] /(X768 −X384 + 1), is different. It is observed that this ring

can be split up toX3±r. Therefore, 8 level NTT can be applied to the polynomials in

this ring. Then, the multiplication can be performed in Z7681[X] /(X3 ± r). Finally,

by taking 8 level inverse NTT, one can get the result. Note that all of these approaches

are given by [36] as "The Mixed Basis FFT Multiplication Algorithm" for n = 2k · `,
where the cases ` = 1, 3, 5, or 7 are considered. However, if ` is chosen a small

multiple of 2, it will be faster than the standard NTT-based multiplication approach

according to their complexity analysis.

2.4 NEWHOPE

NEWHOPE [3, 7] was one of the NIST post-quantum standardization candidates

whose security is based on the hardness of solving the RLWE problem [33, 34]. This
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Algorithm 4 NEWHOPE-CPA-PKE key
generation

Output: public key pk = (b̂′, ρ)

Output: secret key sk = ŝ

1: seed
$← {0, · · · , 255}32

2: ρ, σ ← SHAKE256(64, seed)

3: â← GenA(ρ)

4: s← Sample(σ, 0)

5: e← Sample(σ, 1)

6: b̂← â ◦ NTT(s) + NTT(e)

7: return pk = (b̂, ρ), sk = ŝ

Algorithm 6 NEWHOPE-CPA-PKE de-
cryption
Input: ciphertext c = (û, h)

Input: secret key sk = ŝ

Output: message µ ∈ {0, · · · , 255}32

1: v′ ← Decompress(h)

2: return µ = Decode(v′ − NTT−1(û ◦
ŝ))

Algorithm 5 NEWHOPE-CPA-PKE en-
cryption

Input: public key pk = (b̂, ρ)

Input: message µ encoded inRq

Input: seed coin ∈ {0, · · · , 255}32
Output: ciphertext (û′, h)

1: â← GenA(ρ)

2: s′ ← Sample(coin, 0)

3: e′ ← Sample(coin, 1)

4: e′′ ← Sample(coin, 2)

5: t̂← NTT(s′)

6: û← â ◦ t̂+ NTT(e′)

7: v′ ← NTT−1(b̂ ◦ t̂) + e′′ + µ

8: return c = (û,Compress(v′))

cryptosystem includes both an adaptive CPA-secure KEM, referred to as NEWHOPE-

CPA-KEM, and an adaptive CCA-secure KEM, referred to as NEWHOPE-CCA-

KEM. Both versions are based on the previously proposed NEWHOPE-SIMPLE [6]

scheme, which was designed as a semantically secure PKE scheme and referred

to as NEWHOPE-CPA-PKE. Key generation, encryption, and decryption functions

of NEWHOPE-CPA-PKE are presented in Algorithm 4, Algorithm 5, and Algo-

rithm 6. The constructions of NEWHOPE-CPA-KEM and NEWHOPE-CCA-KEM

using NEWHOPE-CPA-PKE are out of the scope of this work; we refer to [3, Alg.

16-21] for more information.

Typically, the most time-consuming part of all Learning With Errors (LWE) variant

cryptosystems is the hashing used for the randomness generation. This randomness

is required inside the GenA and the Sample functions. Moreover, both CPA and CCA

secure versions of KEM constructions also require hashing. Note that the encode, de-

code, compress, and decompress functions perform bit/byte-level manipulation, thus
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Table 2.1: Parameters of NEWHOPE512 and NEWHOPE1024 and derived high-level
properties [3].

Parameter Set NEWHOPE512 NEWHOPE1024

Dimension n 512 1024

Modulus q 12289 12289

Noise Parameter k 8 8

NTT parameter γ 10968 7

Decryption error probability 2−213 2−216

Claimed post-quantum bit security 101 233

NIST Security Strength Category 1 5

making them relatively inexpensive. Apart from hashing, the main cost of NEWHOPE

is multiplication inRq. NEWHOPE selects its parameters n and q to enable fast poly-

nomial multiplication in Rq by utilizing the NTT. The parameter sets are provided

in Table 2.1. The modulus q is selected such that q ≡ 1 (mod 2n), ensuring the

existence of the n-th root of unity ω and the 2n-th root of unity γ =
√
ω, which is a

prerequisite for the NTT.

Polynomial multiplication utilizing the NTT: A forward NTT is performed to trans-

form all of the coefficients to the NTT domain, and the inverse of this operation,

NTT−1, is performed to carry all coefficients to the normal domain again. The for-

mulae for these two operations are given as follows:

NTT(a) = â =
n−1∑
i=0

âiX
i, where âi =

n−1∑
j=0

ajω
ij mod q,

NTT−1(â) = a =
n−1∑
i=0

aiX
i, where ai =

(
n−1

n−1∑
j=0

âjω
−ij) mod q.

The multiplication of a, b ∈ Rq can be computed as ab = NTT−1(NTT(a)◦NTT(b)),

where ◦ denotes the coefficient-wise multiplication. To perform the NTT and the

NTT−1 operations faster, the KYBER and NEWHOPE reference implementations used

two different approaches. KYBER makes use of the Cooley-Tukey butterfly [17] in

the NTT and the Gentleman-Sande butterfly [22] in the NTT−1, while NEWHOPE uti-

lizes the Gentleman-Sande butterfly in both cases. The main reason that NEWHOPE

selects the second one is that it allows more aggressive lazy reductions when unsigned
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Algorithm 7 KYBER.CPAPKE key
generation

Output: public key pk = (b̂, ρ)

Output: secret key sk = ŝ

1: seed
$← {0, · · · , 255}32

2: ρ, σ ← SHAKE256(64, seed)

3: Â← GenMatrixA(ρ)

4: s← SampleVec(σ, 0)

5: e← SampleVec(σ, 1)

6: b̂← Â ◦ NTT(s) + NTT(e)

7: return pk = (b̂, ρ), sk = ŝ

Algorithm 9 KYBER.CPAPKE decryp-
tion
Input: ciphertext c = (u′, h)

Input: secret key sk = ŝ

Output: message µ ∈ Rq

1: u← Decompress(u′)

2: v′ ← Decompress(h)

3: return µ = v′−NTT−1(ŝT ◦NTT(u))

Algorithm 8 KYBER.CPAPKE encryp-
tion
Input: public key pk = (b̂, ρ)

Input: message µ ∈ Rq

Input: seed coin ∈ {0, · · · , 255}32
Output: ciphertext (u′, h)

1: Â← GenMatrixA(ρ)

2: s′ ← SampleVec(coin, 0)

3: e′ ← SampleVec(coin, 1)

4: e′′ ← SampleVec(coin, 2)

5: t̂← NTT(s′)

6: u← NTT−1(ÂT ◦ t̂) + e′

7: v′ ← NTT−1((b̂T ◦ t̂) + e′′ + µ

8: return (Compress(u),Compress(v′))

integers are used in the implementation. However, the NEWHOPE reference imple-

mentation requires both input and output of the NTT−1 to be in the normal order,

hence requiring an extra bitreversal.

2.5 KYBER

KYBER [12, 14] is a post-quantum KEM whose security relies on the hardness of the

Module Learning With Errors (MLWE) problem [31]. KYBER constructs a CCA-

secure KEM KYBER.CCAKEM by using a CPA-secure PKE, which is referred to

as KYBER.CPAPKE, using a variant of the Fujisaki-Okamoto transform [21]. We

refer to [12, Alg. 7-9] for a description of KYBER.CCAKEM. The key generation,

encryption, and decryption functions of KYBER.CPAPKE are presented in Algo-

rithm 7, Algorithm 8, and Algorithm 9, respectively.

Similar to other LWE-based systems, such as NEWHOPE, the most time-consuming
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part of KYBER is the hashing used for randomness generation. Aside from that, the

most costly operation is the multiplication in Rq. KYBER also utilizes the NTT to

speed up this operation. The modulus q and the dimension n are selected as q = 3329

and n = 256 for all parameter sets of KYBER. This enables a 7-level NTT with

the parameter γ = 17. After performing the 7-level NTT, there are 128 degree-

one polynomials. Therefore, coefficient-wise multiplications are performed on these

degree-one polynomials modulo (X2 − r), where r is a power of γ, by using the

schoolbook method.
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CHAPTER 3

COMPACT AND SIMPLE RLWE KEY EXCHANGE

MECHANISM

This chapter is based on the publication "Compact and Simple RLWE Key Exchange

Mechanism" [4].

This chapter starts with an introduction. Section 3.2 discusses the complexity of

the revisited NTT-based polynomial multiplication algorithm that is given in Sec-

tion 2.3.3. Then, Section 3.3 provides our implementation details and parameter sets

for the proposed KEM, a variant of NEWHOPE and named as NEWHOPE-COMPACT.

Finally, our performance results for NEWHOPE-COMPACT and a comparison with

reference (non-optimized) implementations of NEWHOPE and KYBER are presented

in Section 3.4.

3.1 Introduction

Among all second round candidates, 8 out of 17 KEMs and 3 out of 9 digital signature

schemes are based on structured lattices. Therefore, their performances depend heav-

ily on polynomial arithmetic in a ring of integer polynomials modulo an irreducible

polynomial over the rationals denoted as Zq/(f(x)). In other words, polynomial

arithmetic is one of the most important parts of structured lattice-based post-quantum

safe algorithms since the main mathematical elements of such algorithms are polyno-

mials. The most complex and time-consuming polynomial arithmetic is polynomial

multiplication for such schemes. Although standard polynomial multiplication is very

trivial, it consumes a lot of CPU cycles due to their quadratic complexity. There
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are many efficient algorithms to handle polynomial multiplication efficiently such as

NTT, Karatsuba or Tom-Cook multiplications. NTT, which is a special case of FFT

over finite fields, has been shown to be a powerful algorithm in order to perform the

polynomial multiplication over finite fields for some type of lattice-based cryptogra-

phy [3, 12, 24, 32, 47]. NTT transform does not require any extra memory space, and

it is highly vectorizable. That is why some of the lattice-based cryptographic prim-

itives prefer to use it. Another reason for choosing NTT multiplication over other

multiplication methods is that the random polynomials can be directly sampled in

the NTT domain so that one can save the cost of some forward NTTs. NEWHOPE

and KYBER are two important NIST post-quantum standardization project candidates

utilizing NTT to handle polynomial arithmetic efficiently.

Implementing lattice-based schemes by using Single Input Multiple Data (SIMD)

instructions are quite popular since NTT is easily vectorizable in this setting.

NEWHOPE is one of the fastest NTT implementations by using floating-point in-

structions. However, these instructions work on 64 bit double values, although the

coefficients of NEWHOPE are only 14 bits. In [47], Seiler introduced the use of inte-

ger instructions with a modification of the original Montgomery reduction algorithm

[37]. The integer instructions can work on 16-bit values. This is much more efficient

than the floating-point instructions because one 256-bit AVX2 register can hold 16

coefficients instead of just four coefficients. This approach can significantly speed up

AVX2 implementation of NEWHOPE. Moreover, the latest results of [12,35,51] show

that with a little modification in NTT transformation during polynomial multiplica-

tion, one can reduce the size of the prime. This modification is to not carry out the full

NTT, but rather stop it before reaching the level of base field arithmetic. Hence, the

congruence condition on the prime modulus is relaxed, and a smaller prime is possi-

ble. This also means that the coefficient-wise multiplications in NTT domain are done

on polynomials instead of integer coefficients. These polynomial multiplications are

performed with schoolbook or Karatsuba methods.

Availability of the software: All of the software described in this chapter avail-

able online at https://github.com/erdemalkim/NewHopeCompact and

https://github.com/alperbilgin/NewHopeCompact.
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Figure 3.1: Cooley-Tukey Butterfly
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Figure 3.2: Gentleman-Sande Butterfly

3.2 A Complexity Analysis of Polynomial Multiplication Methods

3.2.1 Standard Multiplication Utilizing NTT

n-term polynomial multiplication utilizing NTT consists of two forward NTT, one

inverse NTT, and n coefficient-wise multiplications. Although this is not always the

case, we assume that Cooley-Tukey, Figure 3.1, and Gentleman Sande, Figure 3.2,

butterflies are used for forward and inverse NTT, respectively.

Let us start with the computation cost of the Cooley-Tukey butterfly. As can be seen

in Figure 3.1, a 2-term butterfly costs one multiplication, one addition, and one sub-

traction. Let’s calculate subtraction as addition for simplicity, since a − b can be

written as a + (−b). Therefore, the cost of 2-term 1-level NTT is one multiplication

and two additions. The cost of 4-term 2-level NTT is two times of 2-term 1-level

NTT, two multiplications, and four additions.

Proposition 3.1. The cost of n-term NTT can be computed with the following recur-

rence relation:

T (n) = 2 · T
(n

2

)
+
n

2
·M + n · A,

where T (1) = 0, M and A stand for multiplication and addition and n is the number

of coefficients, which is a power of two.

Proof. Let n = 2k. The computation cost of each NTT level is n/2 multiplica-

tions and n additions. If we divide this polynomial as two n/2-term polynomials,

k−1-level NTT is possible and each NTT levels of these polynomials costs n/4 mul-

tiplications and n/2 additions since there are n/2 terms. Therefore, the sum of the

computation costs for each NTT levels of two n/2-term polynomials is equal to the

cost of each NTT levels of n-term polynomial. Consequently, k-level NTT is consti-

tuted of two (n/2)-term (k − 1)-level NTTs plus the last level which includes n/2
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multiplications and n additions like all other levels.

The recursion given in Proposition 3.1 yields

T (n) =
k

2
· n ·M + k · n · A,

where k = log2 n.

The cost of the Gentleman-Sande butterfly is equal to the cost of the Cooley-Tukey

butterfly since the same number of operations are required for both of them, as it

can be seen from Figure 3.1 and Figure 3.2. Therefore, the total computation cost of

multiplying two n-term polynomials inRq is

PM(n) = 3 · T (n) + n ·M,

=
3k + 2

2
· n ·M + 3k · n · A.

3.2.2 An Analysis of k − 1 Level NTT then Schoolbook Multiplication

This method is described in Section 2.3.3. It requires two forward and one inverse

NTTs as in the previous method. However, this time NTTs have k−1 levels. Note that

2 · T (n/2) operations are already performed up to the last level. This method stops

there and leaves the calculations required for the last level, which are n/2 ·M +n ·A.

Therefore, we need to use 2 · T (n/2) instead of T (n) in our calculations for the cost

of NTT.

Proposition 3.2. The multiplication of two polynomials in modulo Zq[X]/(X2 − r)
costs five multiplications and two additions including modular reduction in modulo

(X2 − r).

Proof. This multiplication algorithm is given in Algorithm 18. One multiplies two

polynomials in modulo Zq[X]/(X2 − r) with (22 = 4) multiplications and one ad-

dition (computed with the formula given by [26]). The modular reduction also needs

one more multiplication with r and one addition. Hence, in total, it costs five multi-

plications and two additions.
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The result of the multiplication of two small polynomials in modulo Zq[X]/(X2− r)
gives us two coefficients, as can be seen in Algorithm 18. Therefore, the total cost

can be written as

Hybrid-SM1(n) = 3 · 2 · T
(n

2

)
+

1

2

(
5n ·M + 2n · A

)
,

=
3k − 3

2
· n ·M + 3 · n · (k − 1) · A+

5n

2
·M + n · A,

=
3k + 2

2
· n ·M + (3k − 2) · n · A.

3.2.3 An Analysis of k − 2 Level NTT then Schoolbook Multiplication

This method stops at the k − 2 level of the NTT. Then, we have small polynomials

in modulo (X4 − r). The schoolbook method is used for the multiplication of these

small polynomials.

Proposition 3.3. To multiply two polynomials in modulo Zq[X]/(X4 − r) using

schoolbook multiplication, we need to perform 19 multiplications and 12 additions,

including modular reductions in modulo (X4 − r).

Proof. This multiplication algorithm is given in Algorithm 10. The multiplication of

two 4 coefficients polynomial requires 42 = 16 multiplications and 32 = 9 additions.

Moreover, the modular reduction in modulo (X4 − r) costs three multiplications and

three additions as can be seen from Algorithm 10. Therefore, the multiplication of two

small polynomials in modulo (X4 − r) requires 19 multiplications and 12 additions.

After the multiplication in modulo (X4−r), we end up with four coefficients. There-

fore, the total cost can be written as

Hybrid-SM2(n) = 3 · 4 · T
(n

4

)
+

1

4

(
19n ·M + 12n · A

)
,

=
3k − 6

2
· n ·M + 3 · n · (k − 2) · A+

19n

4
·M + 3 · n · A,

=
6k + 7

4
· n ·M + (3k − 3) · n · A.
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Algorithm 10 Multiplication of polynomials in Zq/(X4 − r)
Input: a and b ∈ Zq/(X4−r) where r is a power of γ. i-th coefficient of a is denoted

as a[i] where 0 ≤ i < 4.

Output: c ∈ Zq/(X4 − r).

1: function basemul(a, b)

2: c[0]← (a[1] · b[3]) + (a[2] · b[2]) + (a[3] · b[1])

3: c[0]← c[0] · r . · for modular reduction

4: c[0]← c[0] + (a[0] · b[0]) .+ for modular reduction

5: c[1]← (a[2] · b[3]) + (a[3] · b[2])

6: c[1]← c[1] · r . · for modular reduction

7: c[1]← c[1] + (a[0] · b[1]) + (a[1] · b[0]) .+ for modular reduction

8: c[2]← a[3] · b[3]

9: c[2]← c[2] · r . · for modular reduction

10: c[2]← c[2] + (a[0] · b[2]) + (a[1] · b[1]) + (a[2] · b[0]) .+ for modular

reduction

11: c[3]← (a[0] · b[3]) + (a[1] · b[2]) + (a[2] · b[1]) + (a[3] · b[0])

12: return c

13: end function
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3.2.4 An Analysis of k − 2 Level NTT then One-Iteration Karatsuba Multipli-

cation

It is also possible to multiply two polynomials in modulo Zq[X]/(X4 − r) by using

one-iteration Karatsuba multiplication given by [50]. It requires ten multiplications

and 27 additions without modular reduction. The multiplication of two polynomials

in Zq[X]/(X4 − r) is given in Algorithm 11.

Algorithm 11 Multiplication of polynomials in Zq/(X4 − r)
Input: a and b ∈ Zq/(X4−r) where r is a power of γ. i-th coefficient of a is denoted

as a[i] where 0 ≤ i < 2.

Output: c ∈ Zq/(X4 − r).

1: function basemul(a, b)

2: d ← Apply Algorithm 2 of [50] to get d = a · b where d is a degree 2n − 2

polynomial

3: c[0]← d[0] + d[4] · r .+ and · for modular reduction

4: c[1]← d[1] + d[5] · r .+ and · for modular reduction

5: c[2]← d[2] + d[6] · r .+ and · for modular reduction

6: c[3]← d[3]

7: return c

8: end function

Modular reduction requires three multiplications and three additions, as in the previ-

ous method and as shown in Algorithm 11. Hence, it requires 13 multiplications and

30 additions, including modular reductions in modulo (X4− r). Then, the total costs

of this approach can be written as

Hybrid-KM2(n) = 3 · 4 · T
(n

4

)
+

1

4

(
13n ·M + 30n · A

)
,

=
3k − 6

2
· n ·M + 3 · n · (k − 2) · A+

13n

4
·M +

30n

4
· A,

=
6k + 1

4
· n ·M +

(
3k +

3

2

)
· n · A.
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3.2.5 An Analysis of k − 3 Level NTT then Schoolbook Multiplication

Proposition 3.4. The multiplication in modulo Zq[X]/(X8− r) is performed with 71

multiplications and 56 additions including modular reductions in modulo (X8 − r).

Proof. The multiplication of two degree seven polynomials require 82 = 64 multipli-

cations and 72 = 49 additions. The modular reduction in modulo (X8−r) takes seven

multiplications with r and seven additions. Therefore, in total, this multiplication is

performed with 71 multiplications and 56 additions.

After the multiplication in modulo Zq[X]/(X8− r), we get eight coefficients. There-

fore, the total cost is

Hybrid-SM3(n) = 3 · 8 · T
(n

8

)
+

1

8

(
71n ·M + 56n · A

)
,

=
3k − 9

2
· n ·M + 3 · n · (k − 3) · A+

71n

8
·M + 7 · n · A,

=
12k + 35

8
· n ·M + (3k − 2) · n · A.

3.2.6 An Analysis of k − 3 Level NTT then One-Iteration Karatsuba Multipli-

cation

The multiplication of two degree seven polynomials costs 36 multiplications and 133

additions without modular reductions by using one-iteration Karatsuba multiplication

of [50]. The modular reduction in modulo (X8 − r) of the multiplication of two

degree seven polynomials requires seven multiplications and seven additions as in

the previous method. Altogether it costs 43 multiplications and 140 additions with

the modular reduction in modulo (X8 − r). After the multiplication, we get eight

coefficients. Therefore, the total cost for this implementation is

Hybrid-KM3(n) = 3 · 8 · T
(n

8

)
+

1

8

(
43n ·M + 140n · A

)
,

=
3k − 9

2
· n ·M + 3 · n · (k − 3) · A+

43n

8
·M +

140n

8
· A,

=
(12k + 7

8

)
· n ·M +

(
3k +

17

2

)
· n · A.
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The summary of all methods can be found on Table 3.1. Although this is not directly

seen from Table 3.1, multiplication counts are more important than addition. Because

if one uses integer words in implementation with a Montgomery reduction is needed

after every multiplication, the Barrett reduction might be omitted after an addition.

These omitted reductions are called as lazy reductions. The number of possible joint

lazy reductions increases as q decreases from the next computer word. As mentioned

before, the bounds on q are looser when fewer NTT levels are applied. On the other

hand, the operation counts increase when the applied NTT level number decreases.

Therefore, there is a trade-off between the two. We decided to move on with k − 2

level for (n = 512) and k − 3 level for (n = 1024) since this enables the same

q selection for both of them. Moreover, Karatsuba multiplication is preferred for

NEWHOPE-COMPACT.

Table 3.1: The computation costs of different polynomial multiplication algorithms.
The total number of multiplication and addition numbers to multiply two polynomials
inRq.

aaaaaaaaaaaaaaa

Multiplication
Methods

Operations

Multiplications Additions

NTT-based
Multiplication

12k + 8

8
· n 3k · n

Hybrid Schoolbook-1
Multiplication

12k + 8

8
· n (3k − 2) · n

Hybrid Schoolbook-2
Multiplication

12k + 14

8
· n (3k − 3) · n

Hybrid Karatsuba-2
Multiplication

12k + 2

8
· n

(
3k +

3

2

)
· n

Hybrid Schoolbook-3
Multiplication

12k + 35

8
· n (3k − 2) · n

Hybrid Karatsuba-3
Multiplication

12k + 7

8
· n

(
3k +

17

2

)
· n

Note that applying these multiplication methods to KYBER give different computa-

tion costs, since the elements are represented as vectors or matrices of polynomials
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instead of just polynomials. Their polynomials are smaller. However, vector or matrix

representation removes this advantage and adds extra complexity.

3.3 Implementation Details

Let us recall some important parts of the NEWHOPE algorithm first. Refer to [3] for

full explanations.

Sampling: The secret and error terms are sampled by using the centered binomial

distribution ψ8. Sampling from ψ8 is computed with the formula
∑7

i=0 bi − b′i where

the bi, b
′
i ∈ {0, 1} are uniform independent bits. These bits are generated with

SHAKE256, which generates 128 bytes of random on each call. These 128 bytes are

used to construct 64 coefficients since each of them needs 16 random bits (2 bytes)

to be computed. In order to generate all coefficients of a polynomial, SHAKE256

should be called 8 or 16 times for NEWHOPE512 or NEWHOPE1024 respectively.

NTT and NTT−1: NEWHOPE follows the Twisted FFT Trick. Meaning that it uses

Gentleman-Sande butterflies for both forward and inverse NTTs. After a full level

forward NTT, which is 9 for NEWHOPE512 and 10 for NEWHOPE1024, coefficient-

wise multiplication is performed. This is the standard NTT-based polynomial multi-

plication, and it is described in Section 2.3.

GenA: The public parameter a is generated by using this function. It takes 32 bytes

random seed and generates a by expanding this seed with SHAKE128. This is one

of the most time-consuming parts of the algorithm.

Encoding and decoding of the secret and public key: The coefficients of secret and

public key polynomials are encoded into a byte array. Each coefficient consists of 14

bits due to the size of the selected prime. Therefore, all coefficients can be mapped

to 896 bytes (NEWHOPE512) or 1792 bytes (NEWHOPE1024). The public key also

includes 32 bytes seed to generate the public parameter a, for a total of 928 bytes

(NEWHOPE512) or 1824 bytes (NEWHOPE1024). Decoding is the reverse of this

operation, mapping a byte array to a polynomial.

Encoding and decoding of the ciphertext: The 32-byte message is encoded into a
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polynomial in Rq. Each bit of the message is encoded into bn/256c coefficients to

allow robustness against errors. Then, this polynomial is encrypted. The encryption

result has two polynomials in Rq, the public key polynomial u, and another polyno-

mial v′. u is encoded in the same way with the public key a. On the other hand,

v′ is compressed by performing a modulus switching between modulus q and modu-

lus 8. The total size of the ciphertext, containing u and v′, after these encoding and

compression is 1088 bytes (NEWHOPE512) or 2176 bytes (NEWHOPE1024).

The parameter sets of NEWHOPE are given on Table 3.2.

Table 3.2: Parameters of NEWHOPE512 and NEWHOPE1024 and derived high level
properties [3]

Parameter Set NEWHOPE512 NEWHOPE1024

Dimension n 512 1024

Modulus q 12289 12289

Noise Parameter k 8 8

NTT parameter γ 10968 7

Decryption error probability 2−213 2−216

Claimed post-quantum bit security 101 233

NIST Security Strength Category 1 5

Our first design decision is to use the FFT Trick so that the Cooley-Tukey butterfly

in forward NTT and Gentleman Sande butterfly in reverse NTT are used and keep

the level number of NTTs at 7 and the same for all n values so that the parameters

modulus q, noise parameter k, and NTT parameter γ remain unchanged. This pro-

vides simplicity, and less functions are affected when the ring is changed. This makes

switching from one parameter set to another and changing the security level easy.

The only changing part is the multiplication of coefficients in NTT representation.

NTT and NTT−1 functions are exactly the same for both (n = 512) and (n = 1024).

In consequence, the precomputed powers of γ and γ−1 are the same for both and

only 256 bytes in total, unlike the original NTT implementation for NEWHOPE ring

which requires at least 1536 bytes for (n = 512) and totally different 3072 bytes for

(n = 1024). There is also no need for a bit-reversal table which costs 1024 bytes

(n = 512) or 2048 bytes (n = 1024) unlike the original NEWHOPE. In other words,

the new implementation requires at least 2560 bytes memory less in total, which can
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be very important for constrained devices. This also enables having both security lev-

els together at the same device without a memory penalty. Our level choice for NTT

is 7, as mentioned before. This implies k− 2 level NTT approach (n = 512) or k− 3

level NTT approach (n = 1024), since the total level number is 9 or 10 respectively.

Therefore, the coefficients after 7 level NTT is, in fact, a term of a polynomial in

Zq[X] /(X4 ± r) for (n = 512) and Zq[X] /(X8 ± r) for (n = 1024) where r is a

power of γ. Moreover, in order to keep NTT and NTT−1 functions the same for both

(n = 512) and (n = 1024) we reorder the coefficients of input polynomials in such

a way that 128-point NTT can be performed. Implementing 512-point or 1024-point

NTT and stopping at 7-th level requires different implementations for (n = 512) and

(n = 1024) since it requires two coefficients with different lengths at each butter-

flies. In other words, at the first level u0 and u256 are needed for the first butterfly for

(n = 512), on the other hand u0 and u512 are required for (n = 1024) where u ∈ Rq.

The reordering starts with dividing input polynomial in 4 (n = 512) or 8 (n = 1024)

equivalent parts. Each parts contains exactly 128 coefficients. Let u ∈ Zq/(X512 +1)

and v ∈ Zq/(X1024 + 1). They are divided as

ua = (u0, u4, u8, · · · , u512−4),

ub = (u1, u5, u9, · · · , u512−3),

uc = (u2, u6, u10, · · · , u512−2),

ud = (u3, u7, u11, · · · , u512−1),

va = (v0, v8, v16, · · · , v1024−8),

vb = (v1, v9, v17, · · · , v1024−7),

vc = (v2, v10, v18, · · · , v1024−6),

vd = (v3, v11, v19, · · · , v1024−5),

ve = (v4, v12, v20, · · · , v1024−4),

vf = (v5, v13, v21, · · · , v1024−3),

vg = (v6, v14, v22, · · · , v1024−2),

vh = (v7, v15, v23, · · · , v1024−1).

After this reordering process, one can see that applying 7 level 512-point NTT to u is

equivalent to applying 7 level 128-point NTT to ua, ub, uc and ud. However, the result

of the latter is not equivalent to the result of the former. Instead, it is reordered, just

like the input. As a result, the small polynomials in the NTT domain are constructed
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as follows:

x̂ =
(
x̂0 = ua(0) + ub(0) ·X + uc(0) ·X2 + ud(0) ·X3,

x̂1 = ua(1) + ub(1) ·X + uc(1) ·X2 + ud(1) ·X3

·

·

·

x̂126 = ua(126) + ub(126) ·X + uc(126) ·X2 + ud(126) ·X3

x̂127 = ua(127) + ub(127) ·X + uc(127) ·X2 + ud(127) ·X3
)
,

where xi ∈ Zq[X] /(X4 ± r) for 0 ≤ i < 128. A similar strategy is followed for

(n = 1024). The reordering process does not cost anything because all inputs are

randomly generated or distributed so one can assume that they are already reordered.

Furthermore, a better vectorization is possible for AVX2 implementation by applying

reordering.

Moreover, as discussed in Section 2.3.3, we can now select our q such that it satisfies

q ≡ 1 mod (512/2k−(k−2)−1) (n = 1024) or q ≡ 1 mod (1024/2k−(k−3)−1) (n =

512) which both are equal to q ≡ 1 mod 256. The smallest q that satisfies this

equality is 3329. In result, we have selected our parameters as shown on Table 3.3. To

analyze the failure probability for our parameters, we follow the approach from [12].

Moreover, the post-quantum bit security of the NEWHOPE-COMPACT parameter set

is estimated by using the "PQSecurity.py" script provided by NEWHOPE. The result

of the script is given in Table 3.4.

The new parameter sets speed up the sampling of secret and noise polynomials.

They are sampled from ψ2 now. Sampling from ψ2 is computed with the for-

mula
∑1

i=0 bi − b′i. As mentioned before, the random bits are generated by using

SHAKE256 which generates 128 bytes of random on each call. Different from the

NEWHOPE sampling function, which samples 64 coefficients on each call, we can

now sample 256 coefficients at a time.

The new coefficients are composed of 12 bits instead of 14 bits, since q is reduced to

3329 from 12289. Therefore, all coefficients of the secret key can now be encoded as
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Table 3.3: Parameters of NEWHOPE-COMPACT512 and NEWHOPE-COMPACT1024
and derived high level properties

Parameter Set NH-COMPACT512 NH-COMPACT1024

Dimension n 512 1024

Modulus q 3329 3329

Noise Parameter k 2 2

NTT parameter γ 17 17

Decryption error probability 2−256 2−181

Claimed post-quantum bit security 100 230

NIST Security Strength Category 1 5

Table 3.4: Core hardness of NEWHOPE-COMPACT512 and NEWHOPE-
COMPACT1024

Attack m b Known
Classical

Known
Quantum

Best
Plausible

NEWHOPE-COMPACT512: q = 3329, n = 512, ς =
√

2

Primal 462 381 111 101 79

Dual 465 380 111 100 78
NEWHOPE-COMPACT1024: q = 3329, n = 1024, ς =

√
2

Primal 841 873 255 231 181

Dual 862 868 253 230 180

1632 bytes (n = 512) or 3168 bytes (n = 1024). The public key which also includes

32 bytes seed is represented with 800 bytes (n = 512) or 1568 bytes (n = 1024).

Moreover, the total size of the ciphertext decreases to 992 bytes (n = 512) or 2080

bytes (n = 1024). All of these mentioned sizes are summarized on Table 3.5.

Table 3.5: Sizes of public keys, secret keys and ciphertexts of NEWHOPE (denoted
as [3]) and NEWHOPE-COMPACT (denoted as Ours) in bytes

Parameter Set
|pk| |sk| |ciphertext|

[3] Ours [3] Ours [3] Ours

512-CCA-KEM 928 800 1888 1632 1120 992

1024-CCA-KEM 1824 1568 3680 3168 2208 2080
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3.4 Results and Comparision

Benchmark tests for all implementations are performed on an Intel Core i7-6500U

Skylake processor running at 2500 MHz with Turbo Boost and Hyperthreading dis-

abled. The operating system is Ubuntu 18.04.2 LTS with Linux Kernel 4.15.0, and

all software are compiled with gcc-7.3.0. For comparisons, we have taken C ref-

erence (non-optimized) implementations of NEWHOPE from https://github.

com/newhopecrypto/newhope and KYBER from https://github.com/

pq-cystals/kyber. We report the median of 10000 executions of the corre-

sponding function for cycle counts.

The benchmark results for reference (non-optimized) C implementations of KYBER,

NEWHOPE and NEWHOPE-COMPACT for security level 1 and 5 are given on Ta-

ble 3.6. Our CCA-KEM implementations are 1.21 times (n = 512) or 1.13 times

(n = 1024) faster, and 1.17 times (n = 512) or 1.26 times (n = 1024) faster than

the corresponding implementations of [3] and [12] respectively. We have used one-

iteration Karatsuba multiplication, which is mentioned in Section 3.2 as the base mul-

tiplication method in our reference C implementations. The main reason for getting a

faster implementation than NEWHOPE is the size of q. Since the size of q is reduced

by two bits, we can get more benefits from lazy reductions. In fact, for forward NTT,

we do not need any modular reduction after addition or subtraction, while NEWHOPE

requires a modular reduction after addition at each odd level. On the other hand, KY-

BER uses the same prime. Therefore, we do not get any benefit from lazy reductions.

The difference in the cycle counts between this work and KYBER is due to the gener-

ation of the public parameter a and the difference in the constructions of the schemes.

Note that an optimized avx2 implementation of NEWHOPE-COMPACT would be

more precise to compare performance results with other schemes.

Thanks to its structure, KYBER is offering a parameter set for NIST security level

3. However, the NEWHOPE ring needs to be changed for a similar security level.
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Table 3.6: Cycle counts of KYBER, NEWHOPE and NEWHOPE-COMPACT C refer-
ence (non-optimized) implementations.

Operations
CCA-KEM-512 CCA-KEM-1024

KYBER

[12]
NEWHOPE

[3]
This work

KYBER

[12]
NEWHOPE

[3]
This work

GEN 121 586 119 163 89 286 324 614 237 791 186 438

ENCAPS 163 996 180 193 147 045 381 360 365 240 320 787

DECAPS 197 532 203 440 176 098 431 408 417 448 394 910

Total 483 114 502 796 412 429 1 137 382 1 020 479 902 135

Proposed NTT implementation can be easily adopted such rings, see Section 3.5.

3.5 An Implementation for n=768

NEWHOPE does not offer a parameter set for NIST security level 3. However, a recent

observation by [35] made it possible by offering a new ring structure Zq/(X768 −
X384 + 1). They start with splitting this polynomial into two polynomials of the form

Xn/2 − ζ1 and Xn/2 − ζ2 such that ζ1 and ζ2 are two primitive sixth root of unity and

ζ1 + ζ2 = 1, ζ1 · ζ2 = 1. The CRT map of this ring is as follows:

Rq = Zq[X] /(X768 −X384 + 1)→

Zq[X] /(X384 − ζ1)× Zq[X] /(X384 − ζ2)

Let f ∈ Rq. Then, in order to get the coefficients after the first level, we need to

compute:

g = f mod (Xn/2 − ζ1), h = f mod (Xn/2 − ζ2)

We know that ζ2 = 1− ζ1. Therefore, instead of computing h = f mod (Xn/2− ζ2)
we can compute h = f mod (Xn/2+1−ζ1). Therefore, the burden of multiplication

with ζ2 to perform the modular reduction is removed. We can benefit from the already

computed product with ζ1. After this trick is applied, it turns out that a standard NTT

can be performed. We have 7-level NTT left. We know that ζ61 ≡ 1 mod q. To

be able to perform 7-level NTT by using ζ1, γ128 ≡ ζ1 mod q is needed. Then, q

needs to satisfy q ≡ 1 mod 768. The smallest q that satisfies this condition is 7681.

That’s why, [35] selects q as 7681 and γ such that it satisfies γ128 ≡ ζ1 mod 7681.
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This also implies that γ640 ≡ ζ2 mod 7681, since ζ51 = ζ2. After NTT, there are 256

polynomials of degree 3 in Zq[X]/(X3 ± r).

In order to keep our total NTT level the same for all of our implementations, we

changed the parameters of [35]. Our algorithm for n = 512 and n = 1024 has 7-level

NTT. Therefore, in order to use 7-level NTT q needs to satisfy q ≡ 1 mod 384 so

that γ64 ≡ ζ1 mod q exits. We cannot use 3329, since 3329 6= 1 mod 384. The

smallest such q is 3457. However, 3457 cannot be used for other rings Zq/(X512 + 1)

and Zq/(X1024+1), because 256-th root of unity does not exits (3457 6= 1 mod 256)

so there is no γ such that γ256 = 1 and 7-level NTT is not possible. Therefore, we

have selected our parameters for n = 768 as q = 3457, noise parameter k = 2.

By using the "PQSecurity.py" script provided by NEWHOPE, the post-quantum bit-

security is estimated as 163. The result of this script is given in Table 3.7. Therefore,

it achieves NIST security level 3.

Table 3.7: Core hardness of NEWHOPE-COMPACT768

Attack m b Known
Classical

Known
Quantum

Best
Plausible

NEWHOPE-COMPACT768: q = 3457, n = 768, ς =
√

2

Primal 655 620 181 164 128

Dual 667 617 180 163 128

Although there are different approaches like [25] to analyze the failure probability

for our parameters, we follow the approach from [12]. But because the underlying

ring has a trinomial quotient, each coefficient of the result of multiplication becomes

a sum of n
2

multiplication of elements in the form of ab+ b′(a+ a′), where a, a′, b, b′

from ψ2. Although some coefficients of the result are of the form ab + ab′ in their

sum, we use the first form for simplicity, which is also suggested in [35]. Thus, the

result is a sum of n
2

multiplication of the form of ab + b′(a + a′). This computation

gave us 2−170 failure probability for n = 768.

The sizes of the public key, the secret key, and the ciphertext when q is selected as

3457 are 1184 bytes, 2400 bytes, and 1568 bytes, respectively.

Benchmark results for our C implementation can be found on Table 3.8. It is 1.18

times faster than non-optimized reference implementation of KYBER.
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Table 3.8: Cycle counts of KYBER and NEWHOPE C reference (non-optimized) im-
plementation

Operations
CCA-KEM-768

KYBER

[12]
NEWHOPE

[3]
This work

GEN 208 826 - 137 960

ENCAPS 254 838 - 228 976

DECAPS 294 748 - 277 814

Total 758 412 - 644 750
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CHAPTER 4

CORTEX-M4 OPTIMIZATIONS FOR {R,M}LWE SCHEMES

This chapter is based on the publication "Cortex-M4 optimizations for {R,M}LWE

schemes" [5].

Section 4.2 describes algorithms most commonly used for efficient and constant-time

implementations of modular reductions inside the NTT. Section 4.3 provides details

of our implementation and optimizations to achieve a better performance while us-

ing an as small as possible stack space. It also gives a trade-off between secret-key

size and speed. Our performance results for NEWHOPE, NEWHOPE-COMPACT, and

KYBER as well as a comparison with previous implementations of those schemes are

presented in Section 4.4. Finally, in Section 4.5, we conclude this chapter.

4.1 Introduction

While most of the candidates already have optimized versions of their code targeting

large CPUs, which often feature vector extensions such as AVX2, implementations

for such architectures usually do not consider the memory usage or code size as a bot-

tleneck. Instead, they usually are solely optimized for computation time. However,

small embedded devices can be greatly impacted by the switch toward a post-quantum

paradigm. They often offer less memory, low computing power, and even have the

drawback to be more susceptible to side-channel attacks. Hence, in recent papers, re-

searchers focused more and more on small devices, e.g., based on the popular ARM

Cortex-M4 processor, to assess the performance on embedded platforms. This micro-

controller has the advantage of having large enough memory to support public-key

39



algorithms while being still reasonably small and cheap in the grand scheme of com-

puting. Its popularity led to the development of pqm4 [29], a library aiming to offer a

common framework for benchmarking implementations of post-quantum algorithms

on this platform.

Availability of the software: All source code is available at https://github.

com/erdemalkim/NewHope-Compact-M4. The source code of KYBER and

NEWHOPE have already been pushed to pqm4.

4.2 Preliminaries

In this section, we provide the required background that is necessary for understand-

ing the remainder of this chapter.

NewHope-Compact: Alkim, Bilgin, and Cenk proposed a compact and fast instan-

tiation of NEWHOPE called NEWHOPE-COMPACT [4]. They presented three new

parameter sets, which are shown in Table 4.1. As can be seen from the new parame-

ter sets, they reduced the modulus q from 12289 to 3329 while preserving the same

security level by the adjustment of the noise parameter k. Due to the change in q, the

2n-th root of unity γ does not exist anymore, i.e., q 6≡ 1 (mod 2n). However, even

in this situation, recent results [4,12,35,51] show that a fast NTT is still possible. The

use of the NTT in this situation is achieved in [4] by selecting γ as the 256-th root of

unity so that a 7-level NTT is possible. Then, at the end, instead of having n = 512 or

1024 integer coefficients, i.e., degree zero polynomials, NEWHOPE-COMPACT has

128 degree three or degree seven polynomials, respectively. Then, coefficient-wise

multiplications in the NTT domain are performed on small-degree polynomials mod-

ulo (X4 − r) for n = 512 or (X8 − r) for n = 1024, where r is a power of γ, instead

of multiplication of integer coefficients. They used a one-iteration Karatsuba method

[50] for the multiplication of small-degree polynomials. The pseudocode of this step

can be found in [4, Alg. 5]. Note that the only parts changed from NEWHOPE to

NEWHOPE-COMPACT are the definition of the NTT and the coefficient-wise multi-

plication. Therefore, one can still refer to Algorithm 4, Algorithm 5, and Algorithm 6

for the definition of key generation, encryption, and decryption, respectively, since
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Table 4.1: Parameters of NEWHOPE-COMPACT512, NEWHOPE-COMPACT768 and
NEWHOPE-COMPACT1024 and derived high-level properties [4].

Parameter Set NH-COMPACT512 NH-COMPACT768 NH-COMPACT1024

Dimension n 512 768 1024

Modulus q 3329 3457 3329

Noise Parameter k 2 2 2

NTT parameter γ 17 55 17

Decryption error
probability

2−256 2−170 2−181

Claimed post-quantum
bit security

100 163 230

NIST Security
Strength Category

1 3 5

these algorithms are written from a high-level perspective and the mentioned changes

are hidden inside internal functions.

Another contribution of [4], as can be seen in Table 4.1, is the proposal of a new

security level for NEWHOPE, which is referred to as NEWHOPE-COMPACT768. This

new security level is made possible by using a different ring structure Zq[X]/(X768−
x384 + 1), first proposed by [35]. NEWHOPE-COMPACT selects q as 3457, which

allows a similar implementation with other parameter sets. They applied a trick at

the first level of the NTT to switch the regular ring structure Rq and a similar one

at the last level of the NTT−1. This trick uses the factorization of (X2 − X + 1)

as (X − ζ1) and (X − ζ2), where ζ1 and ζ2 are both sixth roots of unity. We refer

to [4, Appendix A] and [35, Sec. 4.1] for more details. In the end, the one-iteration

Karatsuba method is applied to perform coefficient-wise multiplications for the small-

degree polynomials modulo (X6 − r), where r is a power of γ.

4.2.1 FFT Trick

In this work, we used what is known in the recent literature as the FFT trick [47]. The

idea is to map the ring

Zq[X]/〈Xn − γn〉

to

Zq[X]/〈Xn/2 − γn/2〉 × Zq[X]/〈Xn/2 + γn/2〉
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Figure 4.1: Cooley-Tukey Butterfly

pi

pi+n/2

pi − ζ · pi+n/2

pi + ζ · pi+n/2

by computing the straightforward CRT map

p 7→ (p mod Xn/2 − γn/2, p mod Xn/2 + γn/2).

Since Xn/2 + γn/2 = Xn/2 − γn+n/2, the same map can be computed again on both

components until reaching a product of rings in which the multiplication is cheap.

The core operation is to reduce a polynomial p modulo both Xn/2 ± ζ (where ζ

is an arbitrary power of γ) is called a butterfly and is depicted in Figure 4.1. The

computation of the NTT consists of applying n/2 butterflies to pairs of coefficients

of the whole polynomial iteratively between 1 and log2 n times, each iteration being

referred to as a layer. Figure 4.2 depicts a full NTT consisting of 9 layers mapping

the ring Zq[X]/〈X512 + 1〉 to a product of rings of the form Zq[X]/〈X − ζ〉. In

NEWHOPE-COMPACT and KYBER, the NTT is stopped earlier because Zq does not

offer enough high-order roots of unity to compute all the layers. This means that

the NTT itself is less expensive, but the base operation in the product of rings is

more costly. This base operation is a polynomial multiplication in rings of the form

Zq[X]/〈Xa − r〉 for a in {2, 4, 6, 8} depending on the algorithm and parameter set

used.

4.2.2 Montgomery and Barrett Reductions

Montgomery [37] and Barrett [13] reductions are beneficial for efficient and constant-

time implementations of reductions in Rq. Efficient versions for signed integers of

these reduction algorithms were presented in [47, Alg. 3, 5], and they are recalled

in Algorithm 12 and Algorithm 13. Moreover, assembly implementations of these

reduction algorithms on the Cortex-M4 are provided in Algorithm 14, [16, Alg. 7],

and Algorithm 15. There are two important things to consider when using these

efficient reduction algorithms: Firstly, while the Montgomery reduction gives outputs
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(X512 + 1)
∏1

i=0(X
256 + f1(ζ, i))

∏127
i=0(X

4 + f7(ζ, i))
∏255

i=0(X
2 + f8(ζ, i))

∏511
i=0(X + f9(ζ, i))

...
...

...
...

...

...
...

...
...

. . .p259 p̂259

. . .p258 p̂258

. . .p257 p̂257

. . .p256 p̂256

. . .p3 p̂3

. . .p2 p̂2

. . .p1 p̂1

. . .p0 p̂0

Figure 4.2: Full NTT on a degree 511 polynomial. The function fj(ζ, i) = ζbrv(2
j−1+i)

selects the correct root to compute the isomorphism. All those roots are usually pre-
computed and correctly ordered in a table. Techniques to reduce q skip some levels:
for example, using q = 3329 as in NEWHOPE-COMPACT requires to skip the last two
layers (grey).

between−q and q, the Barrett reduction gives outputs between 0 and q. Secondly, the

Montgomery reduction cannot handle all signed words. It accepts inputs in the range

of −β
2
q to β

2
q, where β is selected as 216 for efficient implementations.

4.2.3 ARM Cortex-M4

Our target platform is the STM32F4DISCOVERY [49] development board featuring a

32-bit ARM Cortex-M4 [10], which is the selected platform by NIST to evaluate post-

quantum candidates on microcontrollers. The Cortex-M4 implements the ARMv7E-

M instruction set and provides special Digital Signal Processing (DSP) instructions.

These DSP extensions offer SIMD instructions that can perform arithmetic operations

on two halfwords or four bytes in parallel. These instructions have been shown to

be very beneficial to speed up post-quantum algorithms [9, 15, 16, 28–30, 46]. This

architecture comes with the restriction of a limited number of registers, which is 16
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Algorithm 12 Signed Montgomery reduction [47] using Montgomery factor β = 216.
Input: odd q where 0 < q < β

2
, and a where −β

2
q ≤ a = a1β + a0 <

β
2
q and 0 <

a0 < β

Output: r′ where r′ = β−1a (mod q), and −q < r′ < q

1: m← a0q
−1 (mod± β) . signed low product, q−1 precomputed

2: t1 ←
⌊
mq
β

⌋
. signed high product

3: r′ ← a1 − t1

Algorithm 13 Signed Barrett reduction [47] using β = 216.
Input: odd q where 0 < q < β

2
, and a where −β

2
≤ a < β

2

Output: r where r = a (mod q), and 0 ≤ r ≤ q

1: v ←
⌊
2log(q)−1·β

q

⌉
. precomputed

2: t←
⌊

av
2log(q)−1·β

⌋
. signed high product and arithmetic right shift

3: t← tq mod β . signed low product

4: r ← a− t

Algorithm 14 Signed Montgomery reduction [16] using Montgomery factor β = 216.
Input: a where −β

2
q ≤ a < β

2
q

Output: reduced a→ r′ where r′ = β−1a (mod q), and −q < r′ < q

1: smulbb t, a, q−1 . t← (a mod β) · q−1

2: smulbb t, t, q . t← (t mod β) · q
3: usub16 a, a, t . atop ←

⌊
a
216

⌋
−
⌊

t
216

⌋
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general-purpose 32-bit registers, out of which only 14 are available for the developer.

The Cortex-M4 is also used by the benchmarking and testing framework pqm4 [29].

4.3 Implementation Details

This section first describes our optimizations to speed-up the computation of the poly-

nomial multiplication in Rq. This includes both the computation of the NTT and the

NTT−1 as well as coefficient-wise multiplication of polynomials modulo (Xd − r)

where d = 1 in NEWHOPE, d = 2 in KYBER, and d = 4, 6, and 8 in NEWHOPE-

COMPACT for n = 512, 768, and 1024, respectively. Then, we present our imple-

mentation techniques that decrease the stack usage of NEWHOPE and NEWHOPE-

COMPACT. We use the on-the-fly generation of â during arithmetic operations in the

NTT domain proposed by [16] for KYBER. We also introduce a new method for key

generation, which adds the error polynomial in the normal domain instead of in the

NTT domain. Finally, we provide a trade-off between the size of the secret key and

the performance.

4.3.1 Optimization of Polynomial Multiplication for Speed

Polynomial multiplication in Rq is one of the most time-consuming parts of KEMs

whose security relies on RLWE/Ring Learning With Rounding (RLWR) or MLWE/-

Module Learning With Rounding (MLWR) problems. Some of them, specifically

NEWHOPE and KYBER, utilize the NTT for ring arithmetic in order to have a fast and

efficient implementation. We present an optimized assembly implementation of poly-

nomial multiplication on the Cortex-M4, which can be used by all RLWE/RLWR-

MLWE/MLWR schemes utilizing the NTT for the ring arithmetic and have a modulus

smaller than 215. Although some of the techniques described in this section are spe-

cific to the rings used by NEWHOPE, NEWHOPE-COMPACT, or KYBER, adapting an

implementation of one to another with some minor changes is possible. We indicate

such points when appropriate.

Representation of polynomials and packing: Similar to [16], we represent poly-

nomials in Rq as an array composed of signed 16-bit integers. This representation
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was first introduced in an AVX2 implementation of KYBER by [47]. In their refer-

ence implementations, KYBER and NEWHOPE-COMPACT are already implemented

by using signed halfword integers. However, [9] preferred using unsigned values for

NEWHOPE on the Cortex-M4. As discussed previously in Section 2.4, NEWHOPE

utilizes the Gentleman-Sande butterfly in both the NTT and the NTT−1, while the

other two schemes use the Cooley-Tukey butterfly in the NTT and the Gentleman-

Sande butterfly in the NTT−1. We decided to follow the approach used by KYBER

and NEWHOPE-COMPACT since it has been shown in [47] that using this approach

is more efficient when the coefficients of the polynomials are represented as signed

halfwords. Moreover, the Cortex-M4 is a 32-bit architecture, while the polynomial

coefficients are below 16 bits. Therefore, in order to fully utilize the properties of

the Cortex-M4 platform, we packed two coefficients into one register. Thereby, we

can utilize SIMD instructions and perform addition/subtraction on two halfwords in

parallel by using uadd16 or usub16. Moreover, similar to [16], we implement a

double butterfly, which takes a packed register as input and returns a packed butterfly

result.

Montgomery, Barrett, and lazy reductions: The Montgomery reduction, which is

given in Algorithm 14, is implemented by [16] in three clock cycles. In this work,

we optimize the implementation of the Montgomery reduction such that it can be

performed in only two clock cycles. We achieve this by storing −q−1 instead of q−1

and using the smlabb instruction, which multiplies two halfwords and adds the 32-

bit result to another 32-bit value in one clock cycle. This implementation is given

in Algorithm 16. The KYBER implementation of [16] performs 3200 Montgomery

reductions (1792 in the two NTT, 896 in NTT−1, 512 in base multiplication) in a full

polynomial multiplication (NTT−1(NTT(a)◦NTT(b))). Therefore, this change saves

3200 clock cycles for a full polynomial multiplication inRq.

Similarly to [16], we used the Barrett reduction given by [47, Alg. 5]. The assembly

implementation of this reduction on a packed argument is given in Algorithm 15. It

requires nine clock cycles on our Cortex-M4 microcontroller. We also implemented

a Montgomery reduction on a packed argument (Algorithm 17). It needs eight clock

cycles, which is slightly faster than the Barrett reduction. Each halfword of the input

of Algorithm 17 is multiplied by β to be able to get the same result as the Barrett
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Algorithm 15 Barrett reduction on packed argument using β = 216.
Input: a (32 bit signed integer where atop and abottom contains two different coeffi-

cients)

Output: r = rtop | rbottom where rtop ≡ atop (mod q), rbottom ≡ abottom (mod q),

0 ≤ rtop, rbottom ≤ q and 0 ≤ q < 215

1: movw v, const . v← const where const=
⌊
2blog(q)c−1·2β

q

⌉
and precomputed

2: smulbb t1, a, v . t1 ← abottom · v
3: smultb t2, a, v . t2 ← atop · v
4: asr t1, t1, #(log(β) + blog(q)c − 1) . t1 ← t1 >> (log(β) + blog(q)c − 1)

5: asr t2, t2, #(log(β) + blog(q)c − 1) . t2 ← t2 >> (log(β) + blog(q)c − 1)

6: smulbb t1, t1, q . t1 ← t1 · q
7: smulbb t2, t2, q . t2 ← t2 · q
8: pkhbt t, t1, t2, lsl#16 . t← (t1&0xFFFFu)|(t2 << 16)

9: usub16 r, a, t . rtop ← atop − ttop and rbottom ← abottom − tbottom

Algorithm 16 Signed Montgomery reduction using Montgomery factor β = 216.
Input: a where −β

2
q ≤ a < β

2
q

Output: reduced a→ r′ where r′ = β−1a (mod q), and −q < r′ < q

1: smulbb t, a,−q−1 . t← (a mod β) · (−q−1)
2: smlabb a, t, q, a . atop ←

⌊ (t mod β)·q+a
216

⌋
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reduction. Note that their outputs are not in the same range. Hence, after the last

layer of the NTT and the NTT−1, where we need our output to be between 0 and q,

we use the Barrett reduction. In other cases, we use the faster Montgomery reduction.

Algorithm 17 Signed Montgomery reduction on packed argument using Montgomery

factor β = 216.
Input: a (32 bit signed integer where atop and abottom contains two different coeffi-

cients)

Output: r = rtop | rbottom where rtop ≡ atop (mod q), rbottom ≡ abottom (mod q)

1: movw v, const . v ← const where const=β (mod q) and precomputed

2: smulbb t1, a, v

3: smulbb r1, t1,−q−1 . r1 ← (t1 mod β) · (−q−1)
4: smlabb r1, r1, q, t1 . r1top ←

⌊ (r1 mod β)·q+t1
216

⌋
5: smultb t2, a, v

6: smulbb r2, t2,−q−1 . r2 ← (t2 mod β) · (−q−1)
7: smlabb r2, r2, q, t2 . r2top ←

⌊ (r2 mod β)·q+t2
216

⌋
8: pkhtb r, r2, r1, asr #16 . r ← (r2top|(r1top >> 16))

Depending on the size of the modulus and the register size of the underlying architec-

ture, it is not always necessary to reduce the results after an addition or subtraction.

Skipping unnecessary reductions is called lazy reduction. It is common that opti-

mized NTT implementations heavily use this technique to speed-up the code. How-

ever, those lazy reductions are mostly performed after an addition or subtraction, as

stated before. In this work, we also perform lazy reductions during component-wise

multiplications, also referred to as base multiplications, for moduli 3329 and 3457

used in KYBER and NEWHOPE-COMPACT.

The base multiplication for KYBER is given in Algorithm 18. Each (mod q)

in Algorithm 18 corresponds to a Montgomery reduction. As we can see, five

Montgomery reductions are needed in each base multiplication. We noticed that

if both of the coefficients that are multiplied are already reduced modulo q, then

the result is much lower than the value that the Montgomery reduction can han-

dle, i.e., 215 · q (see Proposition 4.1). Thus, we can sum up the results of several

multiplications before performing a Montgomery reduction, e.g., we can compute
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(c[0]← ((a[0] · b[0]) + ((a[1] · b[1]) mod q) · r) mod q) instead of applying line 2 of

Algorithm 18. Therefore, we save one Montgomery reduction per coefficient, i.e.,

two per base multiplication. In total, there are 128 base multiplications in a polyno-

mial multiplication inRq. Thus, we save 256 Montgomery reductions, i.e., 768 clock

cycles for the implementation of [16] and 512 clock cycles for our implementation

for a polynomial multiplication of KYBER.

Moreover, we can use this lazy-reduction technique for NEWHOPE-COMPACT. The

base multiplications for NEWHOPE-COMPACT512, NEWHOPE-COMPACT768, and

NEWHOPE-COMPACT1024 require 4, 6, and 8 sequential additions of the multipli-

cation results, which can be handled as shown in Proposition 4.1. Therefore, we can

skip 3, 5, or 7 Montgomery reductions per coefficient, which sums up to 1536, 3840,

or 7168 Montgomery reductions in total for NEWHOPE-COMPACT512, NEWHOPE-

COMPACT768, or NEWHOPE-COMPACT1024, respectively. Note that we can also

omit the Montgomery reductions after the multiplications in the first layer of the

Cooley-Tukey butterflies, where the inputs are polynomials with small coefficients

that are sampled from the centered binomial distribution. The results of the first mul-

tiplications can only grow up to±2q for KYBER and NEWHOPE-COMPACT and up to

±q for NEWHOPE. However, this technique cannot be used if the input polynomial is

not a polynomial having small coefficients, i.e., not sampled from the centered bino-

mial distribution. We have such cases in KYBER by design because of the ciphertext

compression. We also cause this case in NEWHOPE and NEWHOPE-COMPACT with

the stack-usage optimization explained in Section 4.3.2.

Algorithm 18 Multiplication of polynomials in Zq[X]/(X2 − r) for KYBER.
Input: a and b ∈ Zq[X]/(X2 − r) where r is a power of γ.

Output: c ∈ Zq[X]/(X2 − r).

1: function basemul(a, b)

2: c[0]← (a[0] · b[0]) mod q + ((a[1] · b[1]) mod q) · r) mod q

3: c[1]← (a[0] · b[1]) mod q + (a[1] · b[0]) mod q

4: return c

5: end function

Proposition 4.1. Let −3329 < ai, bi < 3329 where 0 ≤ i ≤ 8, and c =
∑8

i=0 ai · bi.
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c is in the range of (−215 · 3329) to (215 · 3329)

Proof. Let ai = 3328 and bi = 3328 for 0 ≤ i ≤ 8 be the maximum allowed

values. Then,
∑8

i=0 ai · bi = 99680256. This is very close to 215 · 3329 which is the

maximum value for the input of the Montgomery reduction. In fact, adding another

multiplication of coefficients to the sum, i.e., 33282 + 99680256 = 110755840, will

exceed 215 · 3329 = 109084672.

Merging NTT layers: Merging multiple NTT layers reduces the number of load and

store instructions and gives a noticeable performance improvement on the Cortex-M4

[9, 16]. While [9] uses eight registers for eight coefficients and performs three layers

of the NTT, [16] uses only four registers for eight coefficients and performs two layers

of the NTT without storing and reloading. Both use the remaining registers to store

the constants required in the Montgomery and Barrett reductions as well as the loop

counter. In this work, we use eight registers to keep 16 coefficients and perform three

or four layers of the NTT, depending on the distance between the coefficients being

used in the same butterfly on the next layer. In other words, we load coefficients into

these eight registers in such a way that a maximum of NTT layers can be performed

before storing the results. Thanks to the structure of the NTT used in NEWHOPE

and NEWHOPE-COMPACT, we can merge four layers, since at some point, we need

coefficients with distance one, and loading consecutive coefficients from memory is

free with the ldr instruction.

Moreover, KYBER uses seven layers of a 256-point NTT, which is different from

NEWHOPE-COMPACT, having seven layers of a 128-point NTT. Consequently, while

NEWHOPE-COMPACT has distance one coefficients on the last layer, KYBER requires

distance two coefficients. Thus, the last four layers cannot be merged. Therefore, we

merged seven layers as 3+3+1 for KYBER.

Although eight registers are used to store coefficients, we can still spare some registers

to store the constants required for the Montgomery reductions, specifically q and

−q−1. However, we have to reload the Barrett constant (line 1 of Algorithm 15) or

the Montgomery constant (line 1 of Algorithm 17) at every use, but note that we do

not need them heavily thanks to lazy reductions. We follow a different approach for
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the loop counter, which will be described in the loop unrolling paragraph. Hence, we

save more than we lose, i.e., loading more coefficients and performing more layers in

every loop is better than loading the Barrett constant only once and keeping it in the

register to be used for all Barrett reductions.

Precomputation of twiddle factors: The powers of the NTT constant γ are often

referred to as twiddle factors. It is a common approach to precompute all of these

twiddle factors in the Montgomery domain and store them in flash memory. In this

work, we use the Montgomery factor β = 216, similar to [16, 47]. We reorder these

constants before storing them in the flash memory to have them appearing in memory

in the same order as they are used during the computation. Hence, we can easily load

the next one without computing its address. The load instruction on the Cortex-M4

has the ability to move the pointer to the next twiddle factor while fetching the current

value from memory. Thus, moving to the next factor has no extra cost. Since the first

Montgomery reduction for NEWHOPE and NEWHOPE-COMPACT can be skipped, as

mentioned before, the first twiddle factor for these two schemes should not be stored

in the Montgomery domain when this optimization is used. Moreover, since we use

the Gentleman-Sande butterfly for the NTT−1, we perform the division with n on half

of the coefficients during the last butterfly by just multiplying the twiddle factor(s)

for the last layer with n−1.

Unrolling: We unroll the outer loop of the NTT and iterate over the layers as usual.

[9, 16] spare one register for the loop counter. While [9] uses this loop counter both

to check the number of iterations remaining in the loop and to decide which precom-

puted twiddle factor to use, [16] uses it only to detect when to end the loop. We

decided not to spare a register for this loop counter and instead use this freed register

to load more coefficients in every loop and merge more NTT layers. Then, we can

naively use the .rept precompiler directive instead of this loop counter. However,

since the .rept only repeats the same code, it increases the code size dramatically.

Hence, we went back to the loop counter idea again. However, instead of keeping it in

a register, we spill it to the stack. Consequently, the code size stays reasonable while

we can still load more coefficients in every loop. As an obvious observation, using

the .rept directive is slightly faster. Hence, it might be useful for some applications

where there is plenty of empty memory for storing the code.
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Link-time optimization: Link-time optimization is an important option to control

optimization, although it may increase the code size. The usual approach without

link-time optimization is that each source file is compiled with some optimization

level to generate different object files. Then, these optimized object files are linked

together to compose an executable file. Although this approach does a good job opti-

mizing source code, it turns out that the linker can perform even better optimization

when link-time optimization (-flto) is enabled. This option can give a performance

boost of around 10%. The critical performance gain is achieved from cross-module

function inlining, which is not directly possible without -flto. This will tend to

increase the code size since inlining functions across source files introduces code

duplication. However, it should also be noted that link-time optimization is more

effective at identifying unused code or code that has no impact on the output.

The pqm4 platform does not use -flto as a default option since it increases stack

consumption or results in a slower computation of some schemes while improving

the performance of KYBER [16]. Therefore, we have also tested the effect of -flto

on performance for our implementations of KYBER, NEWHOPE, and NEWHOPE-

COMPACT and realized that they all benefit from it and have a performance boost.

However, since assembly-optimized polynomial multiplication was already imple-

mented carefully by inlining all necessary functions such as modular reductions,

adding -flto has no effect on its performance.

4.3.2 Optimization of NEWHOPE and NEWHOPE-COMPACT for Stack Usage

On embedded devices, RAM usage is often a significant bottleneck. Outside of real-

time systems, one can always wait for a slow algorithm, but if the algorithm needs

more memory than available on the device, it cannot be used. While the Cortex-M4

on our board offers quite a large amount of memory, we decided to optimize for stack

usage as well.

Our goal was to reduce the minimum amount of stack space required to compute the

cipher while keeping performance mostly unaffected. While it is possible to follow

a more aggressive approach to reduce stack usage, such implementations would be

considerably slower than ours. The three main metrics regarding implementation are
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speed, stack usage, and code size. The one to optimize depends on the context in

which the cipher will be used. In our work, we tried to optimize the first two while

keeping the last one reasonable.

Key generation: The core of the key generation (Algorithm 4) is the computation of

b̂← â ◦ NTT(s) + NTT(e). Since each coefficient of the output of the NTT depends

on all coefficients of the input, all coefficients of s and e must have been generated

before proceeding to the addition. Hence, at least two full polynomials should be

stored in memory. To reduce the memory usage, we used the observation that poly-

nomial multiplication can be performed on-the-fly in the NTT domain and, likewise,

adding an error to a polynomial can be performed on-the-fly in the normal domain.

Indeed, the operation ◦ works sequentially on parts of its inputs (one coefficient at

the time for NEWHOPE and four, six, or eight for NEWHOPE-COMPACT depending

on the parameter set used) and does not need all of them in memory at the same time.

Similarly, each coefficient of the error polynomial can be computed and added sepa-

rately, but only if the addition considered is in the normal domain. This is why instead

of computing

b̂← â ◦ NTT(s) + NTT(e),

we compute

b̂← NTT(NTT−1(â ◦ NTT(s)) + e)

and perform the multiplication and the addition on-the-fly. This requires one more

NTT−1 but allows to store only one polynomial in memory, containing s and b̂ sub-

sequently. This approach reduces stack usage significantly and since our benchmarks

show that computing one extra optimized NTT−1 only increases the key generation

time by around 5%, we believe that this is a good trade-off. This trick can be similarly

applied to KYBER. Note that the small relative cost of this technique is specific to our

context and is mainly due to the fact that hashing is the main performance bottleneck.

This issue will be discussed in more detail in Section 4.4. If a faster hash function

is used, the decrease in performance will be higher than 5%. That being said, the

absolute cost of the trick is always the same as one NTT−1.

Encryption: The encryption procedure (Algorithm 5) is mainly driven by the follow-

ing computations:
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1. t̂← NTT(s′)

2. û← â ◦ t̂+ NTT(e′)

3. v′ ← NTT−1(DecodePoly(b̂′) ◦ t̂) + e′′ + Encode(µ)

The first two yield a situation similar to the key generation but unfortunately require

two polynomials on the stack frame. Indeed, since t̂ appears in the second and the last

computation, the result of â ◦ t̂ cannot be stored in the same memory space as t̂ (and

since it would need to go through a NTT−1, it does need to be fully stored). Once û is

computed, it can be packed in the ciphertext and free one of the two polynomials. The

last computation is quite friendly for stack usage. Since both the base multiplication

and the addition operate on small portions of the polynomial, e′′ + Encode(µ) can

be computed coefficient-wise and b̂ can be partially unpacked from the inputs. Thus,

Line 3 could technically be computed with one polynomial plus a small overhead in

the stack frame. Since two polynomials were already allocated previously and only

maximal stack usage is relevant, we actually fully unpack b̂. Finally, the stack usage

is bigger than the one of the key generation because of the extra polynomial stored.

Decryption: The decryption of NEWHOPE (Algorithm 6) is quite lightweight in

terms of stack usage. Unfortunately, the algorithms introduced in the preliminar-

ies are the CPA version of the cipher. Since the CCA transform runs the encryption

procedure during decryption, the stack usage is essentially the same as for encryption.

4.3.3 Trade-offs Between Secret Key Size and Speed

There are different trade-offs between the secret key size and the performance of the

scheme. [12, 14] proposed to store the seed used for all randomness in the key gen-

eration if the size of the secret key is critical. However, this requires to perform key

generation again during decapsulation and gives a significant performance penalty.

As also stated by [12, 14], another optimization could be storing the secret key in

the normal domain instead of the NTT domain. Hence, each coefficient can be com-

pressed to 3 bits, since their possible values are in between −2 and 2. Note that

our NTT implementation is fast on the Cortex-M4, so we decided that such opti-

mizations are good trade-offs for this platform. We also observed that sampling the
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secret polynomial s is fast enough, although it is one of the most time-consuming

parts of such algorithms is the hashing used for the randomness generation. Note

that sampling the secret key from the centered binomial distribution is lightweight

in comparison to the generation of the public parameter a since we can extract two

coefficients from only one byte by using the centered binomial distribution, while

uniform sampling needs two bytes to extract only one coefficient. Hence, we decided

to store only the 32-byte secret-key seed. Then, the secret key is sampled and trans-

formed into the NTT domain again during decapsulation. These operations reduce

the secret key size by 736 bytes for KYBER512 and NEWHOPE-COMPACT512, 864

bytes for NEWHOPE512, 1120 bytes for KYBER768 and NEWHOPE-COMPACT768,

1504 bytes for KYBER1024 and NEWHOPE-COMPACT1024, and 1760 bytes for

NEWHOPE1024. However, they increase the decapsulation time by around 7% for

KYBER, 9% for NEWHOPE-COMPACT, and 18% for NEWHOPE, while decreasing

the key generation time slightly.

4.4 Results and Comparison

Our optimizations were implemented in the three sibling schemes NEWHOPE,

NEWHOPE-COMPACT, and KYBER. Comparing different schemes across parame-

ter sets is often complicated because performance is always strongly correlated with

the targeted security level. Most of the implemented schemes propose parameter sets

for NIST security levels 1, 3, and 5, which correspond to 128, 192, and 256 bits of

security. Fortunately, since all the schemes involved in our tests are similar and based

on {R,M}LWE, the dimension of the underlying lattice problem can be roughly trans-

lated into NIST security levels. Hence, we compare them for dimensions 512, 768 (if

available), and 1024, which correspond to the three aforementioned security levels.

4.4.1 Speed Comparison

The results of our benchmarks in terms of speed can be found in Table 4.2. The code

was compiled and run in the same conditions as the schemes benchmarked in pqm4

[29]. We use arm-none-eabi-gcc release (version 9.2.1). We compare the two
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candidates NEWHOPE and KYBER against their previous Cortex-M4 optimized im-

plementations available in pqm4 and also add the newcomer NEWHOPE-COMPACT.

One can see that NEWHOPE and KYBER perform around 10% better with our op-

timizations while using less stack space (see Table 4.3). Furthermore, NEWHOPE-

COMPACT is more than 40% faster compared to NEWHOPE and more than 25% faster

compared to KYBER for all security levels. This is explained by the two following

observations:

• NEWHOPE-COMPACT is a variant of NEWHOPE using a smaller modulus and

distribution, which means an increased performance during polynomial multi-

plication because of lazy reductions and less hashing needed to sample from

the error distribution.

• NEWHOPE-COMPACT is based on RLWE, while KYBER is based on MLWE.

Hence, even though they share similar parameter sets, the inherent performance

penalty of using the less structured version of LWE hurts KYBER.

Moreover, some design decisions affect the performance or the stack usage of the

scheme. These design decisions are unrolling NTT loops by using the .rept di-

rective instead of the loop counter (Section 4.3.1), optimizing the stack usage (Sec-

tion 4.3.2), and the trade-off between the size of the secret key and performance

(Section 4.3.3). These three decisions can be easily enabled or disabled. The effects

of the last two choices on the performance and the stack usage are given in Table 4.2.

Using the .rept directive instead of the loop counter decreases the cycle count by

n per NTT call, where n is the degree of the polynomial for the selected parameters.

However, the code size increases by a factor of 10 to 50. Optimizing the stack usage

decreases the memory used by key generation while increasing the cycle count of the

same function. Finally, applying the method described in Section 4.3.3 to reduce the

size of the secret key increases the cycle count of the decapsulation while decreasing

it for the key generation.

4.4.2 Dominance of Hashing

The speed difference shown in Table 4.2 might look slim at first sight. This is due to

the fact that, as pointed out by previous works, those schemes have been optimized so
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much that the bottleneck is now the generation of random numbers through hashing

instead of the polynomial multiplication procedure. Table 4.4 shows the time spent

hashing for all algorithms and parameter sets. As we can see, with a minimum of 66%

for the decapsulation of NEWHOPE-COMPACT, all the algorithms are severely dom-

inated by hashing. Even if polynomial multiplications were somehow instantaneous,

the results of Table 4.2 would be somewhat similar.

4.4.3 Comparing Polynomial Multiplications

The reader might wonder why to bother optimizing polynomial multiplications fur-

ther if it is not the bottleneck anymore. The reason is twofold: First, Keccak

(SHA-3) is used to expand the seed in every scheme implemented. However, the

choice of the seed expansion algorithm is somewhat orthogonal to the scheme and

does not affect post-quantum assumptions. Hence, using a faster hash function would

reduce the impact of hashing on the performance. Furthermore, it might be unnec-

essary to use a cryptographic hash function to generate the public parameters. For

instance, [15] uses a faster, non-cryptographic RNG to speed-up a scheme based on

LWE. Second, even if Keccak is used since its usage will likely grow in all fu-

ture cryptographic applications, we might eventually see hardware acceleration for

it on a lot of architectures. This would naturally drastically decrease the time spent

hashing in our schemes and make the polynomial multiplication the most important

optimization target again. Recall that, as stated in Section 4.3.2, this would increase

the relative cost of the reduced stack usage trick used in the key generation. Neverthe-

less, we think that outside of unrealistically fast polynomial generation, the trade-off

can still be useful.

Since our work is the first Cortex-M4 implementation of NEWHOPE-COMPACT, we

do not have any point of comparison for our technique for this scheme. Table 4.5

shows the speed-up for the dimension of the NTT used in all parameter sets of

NEWHOPE and KYBER and the cycle count of all subroutines of the polynomial mul-

tiplication for each algorithm and dimension. The total cost of multiplication opera-

tions for each scheme is presented in Table 4.6. This table was obtained by summing

all the time spent in the three multiplication subroutines: NTT, NTT−1, and ◦. Note
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that the stack optimized version of our implementation is used in this table to show

its actual impact on the performance. It can be seen that KYBER and NEWHOPE-

COMPACT have similar performance, while NEWHOPE is slower. This is mainly due

to the extra layers of the NTT and the increased number of reductions caused by the

larger modulus. Note that our NTT−1 cycles do not include any bitreversal opera-

tion because we need NTT−1 to output a bitreversed order for the stack optimization

(Section 4.3.2). To be able to verify test vectors with the reference implementation of

NEWHOPE, we have implemented a separate bitreversal operation that takes roughly

4n-cycle for the selected parameter set, which is not included in the NTT−1. It can be

seen that our implementation of the NEWHOPE NTT is slightly slower compared to

the implementation from [29], while we have noticeably better performance for the

NTT−1. Table 4.6 shows that even though we have a slower NTT, the total number of

cycles spent in polynomial operations is reduced compared to [29].

4.5 Conclusion

In this chapter, we proposed several optimizations for {R,M}LWE schemes on the

Cortex-M4. Among them, some are direct improvements over the current literature,

while others are trade-offs that are up to the user of the scheme to deem needed or

not. The core speed optimizations are due to a more aggressive layer-merging strat-

egy and a minimization of the number of reductions in the base multiplication. Our

implementation has already been integrated into the pqm4 library. We also provide a

comparison of the proposed trade-offs. The code is written in a modular fashion that

allows the user to switch between versions easily.

Our results show that all optimization techniques have advantages and disadvantages

and might be useful for different applications. Note that our default option includes

only the stack usage optimization since our goal is having a fast implementation while

using a stack space as small as possible. One interesting point is that our NTT im-

plementation for NEWHOPE has slightly slower performance than the one reported in

[29], suggesting that there is still room for improvement.

The time spent during polynomial operations has two main bottlenecks, namely mod-
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ular reduction and memory access operations among layers of the NTT. This chapter

solves these bottlenecks by proposing a 2-cycle implementation of the Montgomery

modular reduction and by increasing the number of merged layers. While this chap-

ter focuses on this strategy, keeping coefficients in 16-bit signed integers requires

performing modular reduction regularly. It would be interesting to see if using 32-bit

signed integers with proper modular reduction can improve the performance. This

approach would require to store one coefficient per register, which means that fewer

layers can be merged. However, the number of modular reductions might be reduced

since lazy reduction can be applied more aggressively. Such an implementation was

recently proposed for the RISC-V architecture [8]. The authors propose an imple-

mentation which uses the Barrett reduction after both addition/subtraction and mul-

tiplication. Their reduction implementation can reduce 32-bit numbers, so it allows

more aggressive use of lazy reduction at the cost of using more registers. The Cortex-

M4 has a 32-bit multiplier. Hence, it might be interesting to evaluate the performance

of that implementation on the Cortex-M4.
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Table 4.2: Cycle count comparison for the {R,M}LWE schemes improved by our
work. G: key generation, E: encapsulation, D: decapsulation.

Scheme Previous work
This work

Speed
This work
Stack Opt.

This work
Short sk

NEWHOPE

512
G: 588 683 a

E: 918 558 a

D: 904 800 a

G: 561 161

E: 865 243

D: 820 130

G: 578 850

E: 865 856

D: 820 742

G: 555 625

E: 865 018

D: 968 961

1024
G: 1 161 112 a

E: 1 777 918 a

D: 1 760 470 a

G: 1 117 398

E: 1 687 272

D: 1 612 960

G: 1 157 331

E: 1 689 375

D: 1 614 804

G: 1 106 350

E: 1 686 964

D: 1 918 747

NH-CMPCT

512 -
G: 335 991

E: 531 453

D: 484 416

G: 349 692

E: 532 423

D: 484 945

G: 330 826

E: 531 282

D: 526 805

768 -
G: 501 885

E: 782 315

D: 717 250

G: 524 181

E: 784 117

D: 718 950

G: 494 364

E: 782 471

D: 786 664

1024 -
G: 658 581

E: 1 022 903

D: 940 023

G: 686 225

E: 1 025 503

D: 941 076

G: 648 206

E: 1 022 773

D: 1 030 809

KYBER

512
G: 514 291 b

E: 652 769 b

D: 621 245 b

G: 452 919

E: 586 380

D: 542 576

G: 461 693

E: 586 754

D: 543 332

G: 446 876

E: 586 403

D: 579 594

768
G: 976 757 b

E: 1 146 556 b

D: 1 094 849 b

G: 860 227

E: 1 031 603

D: 967 124

G: 872 140

E: 1 030 764

D: 966 848

G: 850 228

E: 1 030 679

D: 1 021 439

1024
G: 1 575 052 b

E: 1 779 848 b

D: 1 709 348 b

G: 1 394 148

E: 1 603 776

D: 1 522 900

G: 1 410 591

E: 1 603 988

D: 1 523 175

G: 1 381 514

E: 1 603 772

D: 1 595 530
a

[29], https://github.com/mupq/pqm4/, commit be0c421.
b

[16]
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Table 4.3: Stack usage comparison for the {R,M}LWE schemes improved by our
work. G: key generation, E: encapsulation, D: decapsulation.

Scheme NEWHOPE

(This work)
NEWHOPE

[29]a
NH-CMPCT

(This work)
KYBER

(This work)
KYBER

[16]

512
G: 2 056

E: 2 864

D: 2 880

G: 5 960

E: 9 168

D: 10 296

G: 2 160

E: 2 984

D: 2 984

G: 2 392

E: 2 344

D: 2 360

G: 2 952

E: 2 552

D: 2 560

768 - -
G: 2 600

E: 3 936

D: 3 936

G: 3 240

E: 2 856

D: 2 864

G: 3 848

E: 3 128

D: 3 072

1024
G: 3 072

E: 4 904

D: 4 920

G: 11 080

E: 17 360

D: 19 576

G: 3 176

E: 5 024

D: 5 024

G: 3 776

E: 3 744

D: 3 760

G: 4 360

E: 3 584

D: 3 592
a
https://github.com/mupq/pqm4/, commit be0c421.

Table 4.4: Time spent hashing. G: key generation, E: encapsulation, D: decapsula-
tion.

Scheme Dimension 512 Dimension 768 Dimension 1024

NEWHOPE

G: 75%
E: 80%
D: 72%

-
G: 73%
E: 78%
D: 71%

NEWHOPE-COMPACT

G: 75%
E: 78%
D: 67%

G: 72%
E: 77%
D: 66%

G: 73%
E: 77%
D: 66%

KYBER

G: 76%
E: 80%
D: 69%

G: 77%
E: 80%
D: 72%

G: 78%
E: 80%
D: 73%

Table 4.5: Comparison of the polynomial multiplication functions of all the schemes.
Kyber actually uses the exact same NTT code for all dimensions.

Scheme Dimension NTT NTT−1 ◦

NEWHOPE

512 28662 22836 4736
512 ([29]a) 29767 35813 5459

1024 63387 49880 9396
1024 ([29]a) 59752 71942 10836
1024 ([9]) 86769 97340 14977

NEWHOPE-COMPACT

512 12799 13052 7052
768 19647 21226 12749

1024 25536 26039 18510

KYBER
256 6847 6975 2317

256 ([16]) 7754 9377 3076
a
https://github.com/mupq/pqm4/, commit be0c421.
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Table 4.6: Total time spent in polynomial multiplication subroutines (NTT, NTT−1,
and ◦).

Scheme Dimension KeyGen Encaps Decaps

NEWHOPE

512 84896 89632 117204
512 ([29]a) 64993 106265 147537

1024 186050 195446 254722
1024 ([29]a) 130340 213118 295896

NEWHOPE-COMPACT

512 45702 52754 72858
768 73269 86018 119993

1024 95621 114131 158680

KYBER

512 50606 48521 73824
512 ([16]) 43320 62095 93132

768 82860 76245 110712
768 ([16]) 74208 97682 139549

1024 119748 108603 152234
1024 ([16]) 111248 139421 192118

a
https://github.com/mupq/pqm4/, commit be0c421.
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CHAPTER 5

CONCLUSION

NIST initiated a post-quantum standardization project in 2017 in order to protect our

information against adversaries equipped with quantum computers. This standard-

ization includes both KEM and digital signatures. In this thesis, we have focused on

the efficient implementation of post-quantum secure lattice-based KEMs, specifically

NEWHOPE and KYBER.

The contributions of this thesis can be summarized as follows:

Chapter 3 presents a fast, compact and simple variant of NEWHOPE called as

NEWHOPE-COMPACT. It makes use of the advantages of both NEWHOPE and KY-

BER. The prime of NEWHOPE is reduced to 3329 from 12289 by following the

techniques used by [12, 35, 51]. Therefore, while the sizes of secret and public keys

are almost as small as KYBER’s, the security is based on the hardness of solving the

RLWE problem instead of the MLWE problem. Consequently, instead of working

with matrices or vectors of polynomials, we only deal with polynomials. Moreover,

NEWHOPE has 1280 bytes (n = 512) or 2560 bytes (n = 1024) precomputed values,

and these values are different while NEWHOPE-COMPACT has only 256 bytes in total

and they are the same for both (n = 512) and (n = 1024). There is also no need for

a bit-reversal table as in NEWHOPE whose size is 512 bytes (n = 512) or 1024 bytes

(n = 1024). Therefore, even for constrained devices switching the security level is

easy.

Chapter 4 describes an optimized Cortex-M4 implementation of NEWHOPE, KYBER,

and a recently proposed variant of those schemes called NEWHOPE-COMPACT. We
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present various optimizations, mainly in terms of speed and stack usage on the ARM

microcontroller. Since those schemes share structural similarities, general improve-

ments are applicable to all of them. Our implementation outperforms the current

state-of-the-art for KYBER and NEWHOPE while giving a unified framework to com-

pare the three schemes, as they use the same level of optimization, which was not the

case in previous works [29]. Chapter 4 contributions are listed as follows:

• We propose a 2-cycle modular reduction implementation for the Montgomery

arithmetic, which translates subtraction to addition to allow the use of special

instructions.

• We show that small-degree polynomial multiplications can be implemented ef-

ficiently by using lazy-reduction techniques. Hence, we show that early termi-

nation of the NTT can be implemented more efficiently when the base multi-

plication has a degree higher than 2.

• We show that even though the target architecture has only 14 usable registers, 16

coefficients can be used during the butterfly layers. This allowed us to merge up

to four layers of the NTT and reduce the number of load and store instructions.

• We give several trade-offs between speed and other metrics. We show that the

stack usage of key generation can be reduced by adding the error vector on-the-

fly at the cost of an extra NTT computation. We also implement a well-known

idea to store the secret key as a seed and re-expand it during decapsulation.
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[26] M. B. İlter and M. Cenk, Efficient big integer multiplication in cryptography,
International Journal of Information Security Science, 6(4), pp. 70–78, 2017.

[27] D. J. Bernstein, Multidigit multiplication for mathematicians, Advances in Ap-
plied Mathematics, pp. 1–19, 09 2001.

[28] M. J. Kannwischer, J. Rijneveld, and P. Schwabe, Faster multiplication in Z2m [x]

on cortex-M4 to speed up NIST PQC candidates, in R. H. Deng, V. Gauthier-
Umaña, M. Ochoa, and M. Yung, editors, ACNS 19: 17th International Confer-
ence on Applied Cryptography and Network Security, volume 11464 of Lecture
Notes in Computer Science, pp. 281–301, Springer, Heidelberg, Germany, Bo-
gota, Colombia, June 5–7 2019.

[29] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, PQM4: Post-
quantum crypto library for the ARM Cortex-M4, https://github.com/
mupq/pqm4.

[30] A. Karmakar, J. M. B. Mera, S. S. Roy, and I. Verbauwhede, Saber on ARM cca-
secure module lattice-based key encapsulation on ARM, IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2018(3), pp. 243–266, 2018.

[31] A. Langlois and D. Stehlé, Worst-case to average-case reductions for module
lattices, Des. Codes Cryptogr., 75(3), pp. 565–599, 2015.

[32] P. Longa and M. Naehrig, Speeding up the number theoretic transform for faster
ideal lattice-based cryptography, in S. Foresti and G. Persiano, editors, Cryptol-
ogy and Network Security - 15th International Conference, CANS 2016, Milan,
Italy, November 14-16, 2016, Proceedings, volume 10052 of Lecture Notes in
Computer Science, pp. 124–139, 2016.

[33] V. Lyubashevsky, C. Peikert, and O. Regev, On ideal lattices and learning with
errors over rings, in H. Gilbert, editor, Advances in Cryptology - EUROCRYPT
2010, 29th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Monaco / French Riviera, May 30 - June 3, 2010.
Proceedings, volume 6110 of Lecture Notes in Computer Science, pp. 1–23,
Springer, 2010.

[34] V. Lyubashevsky, C. Peikert, and O. Regev, On ideal lattices and learning with
errors over rings, J. ACM, 60(6), pp. 43:1–43:35, 2013.

[35] V. Lyubashevsky and G. Seiler, NTTRU: Truly fast ntru using NTT, IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2019(3), pp.
180–201, 2019.

68

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4


[36] R. T. Moenck, Practical fast polynomial multiplication, in Proceedings of the
Third ACM Symposium on Symbolic and Algebraic Computation, SYMSAC
’76, pp. 136–148, 1976.

[37] P. L. Montgomery, Modular multiplication without trial division, Mathematics
of Computation, 44(170), pp. 519–521, 1985.

[38] D. Moody, The 2nd round of the NIST PQC standardization pro-
cess, The 2nd NIST PQC Standardization Workshop, August 2019,
https://csrc.nist.gov/CSRC/media/Presentations/
the-2nd-round-of-the-nist-pqc-standardization-proc/
images-media/moody-opening-remarks.pdf.

[39] D. Moody, Post-quantum cryptography: NIST’s plan for the future,
PQCrypto 2016 Conference, 23-26 February 2016, Fukuoka, Japan,
February 2016, https://pqcrypto2016.jp/data/pqc2016_nist_
announcement.pdf.

[40] D. Moody, Round 2 of the NIST PQC “competition” what was NIST think-
ing?, PQCrypto 2019 Conference, 8-10 May 2019, Chongqing, China, May
2019, https://csrc.nist.gov/CSRC/media/Presentations/
Round-2-of-the-NIST-PQC-Competition-What-was-NIST/
images-media/pqcrypto-may2019-moody.pdf.

[41] G. E. Moore, Progress in digital integrated electronics [technical literaiture,
copyright 1975 ieee. reprinted, with permission. technical digest. international
electron devices meeting, ieee, 1975, pp. 11-13.], IEEE Solid-State Circuits So-
ciety Newsletter, 11(3), pp. 36–37, 2006.

[42] M. Mosca, Cybersecurity in an era with quantum computers: Will we be ready?,
IEEE Security Privacy, 16(5), pp. 38–41, 2018.

[43] M. A. Nielsen and I. L. Chuang, Introduction and overview, p. 13–13, Cam-
bridge University Press, 2010.

[44] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, and R. Wisnieff, Leverag-
ing secondary storage to simulate deep 54-qubit sycamore circuits, 2019.

[45] R. L. Rivest, A. Shamir, and L. M. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Commun. ACM, 21(2), pp. 120–126,
1978.

[46] M. O. Saarinen, S. Bhattacharya, Ó. García-Morchón, R. Rietman, L. Tol-
huizen, and Z. Zhang, Shorter messages and faster post-quantum encryption
with round5 on cortex M, in B. Bilgin and J. Fischer, editors, Smart Card Re-
search and Advanced Applications, 17th International Conference, CARDIS
2018, Montpellier, France, November 12-14, 2018, Revised Selected Papers.,

69

https://csrc.nist.gov/CSRC/media/Presentations/the-2nd-round-of-the-nist-pqc-standardization-proc/images-media/moody-opening-remarks.pdf
https://csrc.nist.gov/CSRC/media/Presentations/the-2nd-round-of-the-nist-pqc-standardization-proc/images-media/moody-opening-remarks.pdf
https://csrc.nist.gov/CSRC/media/Presentations/the-2nd-round-of-the-nist-pqc-standardization-proc/images-media/moody-opening-remarks.pdf
https://pqcrypto2016.jp/data/pqc2016_nist_announcement.pdf
https://pqcrypto2016.jp/data/pqc2016_nist_announcement.pdf
https://csrc.nist.gov/CSRC/media/Presentations/Round-2-of-the-NIST-PQC-Competition-What-was-NIST/images-media/pqcrypto-may2019-moody.pdf
https://csrc.nist.gov/CSRC/media/Presentations/Round-2-of-the-NIST-PQC-Competition-What-was-NIST/images-media/pqcrypto-may2019-moody.pdf
https://csrc.nist.gov/CSRC/media/Presentations/Round-2-of-the-NIST-PQC-Competition-What-was-NIST/images-media/pqcrypto-may2019-moody.pdf


volume 11389 of Lecture Notes in Computer Science, pp. 95–110, Springer,
2018.

[47] G. Seiler, Faster AVX2 optimized NTT multiplication for ring-LWE lattice
cryptography, Cryptology ePrint Archive, Report 2018/039, 2018, https:
//eprint.iacr.org/2018/039.

[48] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer, SIAM J. Comput., 26(5), pp. 1484–1509, 1997.

[49] STMicroelectronics, STM32F4DISCOVERY kit, https://www.st.com/
en/evaluation-tools/stm32f4discovery.html.

[50] A. Weimerskirch and C. Paar, Generalizations of the karatsuba algorithm for
efficient implementations, IACR Cryptology ePrint Archive, 2006, p. 224, 2006,
http://eprint.iacr.org/2006/224.

[51] S. Zhou, H. Xue, D. Zhang, K. Wang, X. Lu, B. Li, and J. He, Preprocess-then-
ntt technique and its applications to kyber and newhope, in F. Guo, X. Huang,
and M. Yung, editors, Information Security and Cryptology - 14th International
Conference, Inscrypt 2018, Fuzhou, China, December 14-17, 2018, Revised
Selected Papers, volume 11449 of Lecture Notes in Computer Science, pp. 117–
137, Springer, 2018.

70

https://eprint.iacr.org/2018/039
https://eprint.iacr.org/2018/039
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
http://eprint.iacr.org/2006/224


CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Bilgin, Yusuf Alper

Nationality: Turkish

Date of Birth: 30.01.1990

e-mail: y.alperbilgin@gmail.com

EDUCATION

Degree Institution Year of Graduation

M.S. METU - Electrical & Electronics Engineering 2016

B.S. METU - Electrical & Electronics Engineering 2012

PROFESSIONAL EXPERIENCE

Year Place Enrollment

06.2015- Aselsan Inc. Software Engineer

10.2012-06.2015 Anketek Inc. R&D Engineer

PUBLICATIONS

• Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard. Cortex-

M4 optimizations for {R,M}LWE schemes. IACR Transactions on Crypto-

graphic Hardware and Embedded Systems — TCHES, 2020(3):336–357, 2020.

https://doi.org/10.13154/tches.v2020.i3.336-357.

71

mailto:y.alperbilgin@gmail.com
https://doi.org/10.13154/tches.v2020.i3.336-357


• Erdem Alkim, Yusuf Alper Bilgin, and Murat Cenk. Compact and simple

RLWE based key encapsulation mechanism. In Peter Schwabe and Nicolas

Thériault, editors, Progress in Cryptology – LATINCRYPT 2019: 6th Inter-

national Conference on Cryptology and Information Security in Latin Amer-

ica, volume 11774 of Lecture Notes in Computer Science, pages 237–256,

Santiago de Chile, Chile, 2019. Springer, Heidelberg, Germany. https:

//doi.org/10.1007/978-3-030-30530-7_12.

• Berkin Aksoy, Yusuf Alper Bilgin, Murat Cenk, Murat Burhan İlter, Neşe
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