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ABSTRACT

A COMPARATIVE STUDY ON PRACTICAL MODELING OF STEEL I-
GIRDER BRIDGES CONSIDERING RESTRAINED WARPING
BEHAVIOR

Bulduk, Aynur Seyma
Master of Science, Civil Engineering
Supervisor: Prof. Dr. Ozgiir Kurg

September 2020, 94 pages

Skewed and horizontally-curved steel I-girder bridges show complicated behavior
due to the torsional action they exhibit under standard bridge loads, particularly
during construction. The restrained warping response of girders can play a critical
role in the analysis and design of these structures. In finite element analysis, the
restrained warping behavior of girder can be considered through detailed 3D shell
models or alternative methods such as utilizing an effective torsion constant in the
analysis with conventional beam elements. However, there is still a need for an
intermediate modeling approach for practical purposes, that is time-saving, reliable,
and will provide specific analysis output parameters with sufficient accuracy. This
study investigates different modeling approaches involving shell elements, beam
elements with warping behavior, and the combination of shell-beam elements. Then,
it evaluates to what extent a modeling approach that utilizes beam elements with an
additional warping degree of freedom can produce accurate results compared to the
other modeling approaches. For this purpose, a 3D frame analysis program is

developed in MATLAB and different beam element formulations are implemented



into the program. Under construction loads, a straight I-girder, a horizontally-curved
I-girder, and a horizontally-curved I-girder bridge are analyzed through the frame
analysis program. Equivalent 3D shell models are constructed and analyzed in
LARSA 4D finite element analysis software. The accuracy of twist angles, vertical
deflections, major-axis and lateral bending moments, associated stresses, and cross-
frame forces are discussed in a comparative manner. The main conclusion drawn
from this study is that the beam element with an additional warping degree of
freedom is capable of producing essential analysis output parameters with sufficient
accuracy. Moreover, using shell and beam elements for modeling the web and
flanges of an I-section, respectively, can be considered as an alternative and practical

way of modeling such bridges.

Keywords: Constructibility, Curved Bridge, Finite Element Modeling, Restrained
Warping, Steel I-girder
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0z

CELIK I-KiRISLI KOPRULERIN SINIRLANDIRILMIS CARPILMA
DAVRANISI DIKKATE ALINARAK PRATIK MODELLENMESI
UZERINE KARSILASTIRMALI BiR CALISMA

Bulduk, Aynur Seyma
Yiiksek Lisans, Insaat Miihendisligi
Tez Yoneticisi: Prof. Dr. Ozgiir Kurg

Eyliil 2020, 94 sayfa

Egik ve yatay kavisli ¢elik I-kiris kopriiler, 6zellikle insaat sirasinda standart koprii
yiikleri altinda gosterdikleri burulma hareketi nedeniyle karmasik bir davranisa
sahiptirler. Kiriglerin sinirlandirilmis carpilma tepkisi, bu yapilarin analizi ve
tasariminda kritik bir rol oynayabilir. Sonlu eleman analizinde, kirisin
sinirlandirilmis carpilma davranisi, detayli ii¢ boyutlu kabuk modelleri veya
geleneksel kiris elemanlar1 ile birlikte analizde etkili bir burulma sabitinin
kullanilmas1 gibi alternatif yontemlerle dikkate alinabilir. Bununla birlikte, pratik
amaglar i¢in, zaman kazandiran, gilivenilir ve belirli analiz ¢ikti parametrelerini
yeterli dogrulukla saglayacak bir ara modelleme yaklagimina hala ihtiyag¢ vardir. Bu
caligma, kabuk elemanlarini, carpilma davranisina sahip kiris elemanlarini ve kabuk-
kiris elemanlarinin kombinasyonunu iceren farkli modelleme yaklasimlarin
incelemektedir. Ayrica, ek bir ¢arpilma serbestlik derecesine sahip kiris elemanlarin
kullanan modelleme yaklagiminin, belirtilen diger modelleme yaklasimlarina kiyasla
ne kadar dogru sonuglar iiretebilecegini de degerlendirmektedir. Bu amagla

MATLAB!'da ii¢ boyutlu bir ¢erceve analiz programi gelistirilmis ve programa cesitli

vii



kiris eleman formiilasyonlar1 entegre edilmistir. Insaat yiikleri altinda, diiz bir I-kiris,
yatay kavisli bir I-kiris ve yatay kavisli bir I-kiris koprii, ¢cerceve analiz programi
araciligryla ¢oziimlenmistir. Bunlara ek olarak, esdeger ti¢ boyutlu kabuk modelleri,
LARSA 4D programinda olusturulup c¢oziimlenmistir. Gergeklestirilen biitiin
coziimlemeler sonrasinda burulma agilarinin, dikey sapmalarin, ana eksen ve yanal
egilme momentlerinin ve iligkili gerilmelerin, capraz cerceve kuvvetlerinin
dogrulugu karsilastirilmistir. Sonug olarak, carpilma serbestlik derecesine sahip kirig
elemaninin  gerekli ¢oziimleme sonuglarmi yeterli dogrulukta {iretebildigi
goriilmiistiir. Buna ek olarak, bir I-kesitin gévde ve flanslarini modellemek icin
sirastyla kabuk ve kirig elemanlarinin kullanilmast bu tiir kopriileri modellemede

alternatif ve pratik bir yol olarak diisiiniilebilir.

Anahtar Kelimeler: Celik I-kiris, Insa Edilebilirlik, Kavisli Koprii, Stnirlandirilmis

Carpilma, Sonlu Eleman Modellemesi
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CHAPTER 1

INTRODUCTION

In highway bridge construction, skewed and horizontally-curved bridges are
preferred options in the presence of geometric restrictions, especially in the urban
areas. In addition, steel I-section girders are preferred by engineers due to their
economic advantages and ease of erection. In spite of their extensive usage, the
behavior of these types of bridges is still not completely understood. Compared to
non-skewed straight bridges, such bridges have more complicated behavior, which
results from the torsional action that they exhibit under standard bridge loads,

particularly during construction.

Under torsional loading, members with I-section warp in addition to twisting where
warping takes place by lateral bending of the flanges. As shown in Figure 1-1, when
the flanges of member ends are free to deform, the member undergoes homogeneous
torsion, meaning that the applied torsion is entirely resisted by the St. Venant torsion.
As shown in Figure 1-2, when the flanges of member ends are restrained, the member
undergoes non-homogeneous torsion, i.e., the applied torsion is not only resisted by
the St. Venant torsion but also by the warping torsion, implying that the additional

normal and shear stresses develop in the flanges due to bending.

Mx = Ms

Figure 1-1 Homogeneous torsion in members with I-section.



Mx = Ms + Mw

IS IS

n

Figure 1-2 Non-homogeneous torsion in members with I-section.

For skewed and horizontally-curved steel I-girder bridges, the warping torsion can
dominate the St. Venant torsion in the overall behavior of the structure. Besides, for
all types of steel I-girder bridges with a concrete deck, the warping stiffness of girder
can play a significant role in the torsional analysis of exterior girders under the

eccentric loads acting on overhang forming brackets.

1.1 Problem Statement

The girder warping can be critical for both the analysis and design aspects of steel I-
girder bridges. For skewed bridges, neglecting the girder warping stiffness limits the
load transfer from cross-frames to girders and causes the cross-frame forces to be
underestimated, which may lead to the insufficient design of cross-frame members.
For horizontally-curved bridges, since bending and torsional actions are coupled,
neglecting the girder warping stiffness may lead to errors in the prediction of major-
axis bending response and corresponding stresses used in the design of girders.
Likewise, in the torsional analysis of exterior girders, neglecting the girder warping
stiffness causes the girder rotation to be overestimated; hence, the rotation limitations
given by the design codes may not be satisfied. These are some of the examples
emphasizing the need for considering the girder warping stiffness in the analysis and

design of steel [-girder bridges.

In the finite element analysis of bridge superstructures, the effects of cross-section
warping can be included in the analysis output through a refined finite element model
by modeling the cross-section of I-girders with multiple shell elements. However,

constructing such a model and interpreting analysis results may require specialized



knowledge of finite element method, additional computational cost, and can be time-
consuming for practical purposes. Moreover, engineers are more familiar with the
conventional beam element formulations, can easily interpret the analysis result, and
directly use the analysis results in the design computations. Even though there are
several beam element formulations that consider warping deformations, the accuracy
and validity of such formulations are not well known, especially for steel I-girder
bridges. Thus, the main focus of this study is to construct different structural models
involving shell elements, beam elements with warping behavior, and the
combination of shell-beam elements, compare the results, and propose a reliable,
practical, and accurate way of considering the effect of warping for steel I-girder

bridges.

1.2 Literature Review

In 1961, Vlasov developed a torsion theory for open section thin-walled beams
considering the restrained warping. He introduced the concept of non-homogeneous
torsion, the theory of sectorial areas, warping constant, and bi-moment. In order to
consider the effect of restrained warping in the analysis and design, also to ease these
processes, different approaches to the torsion problem of I-section members arose
following the Vlasov’s beam theory. One of these approaches was converting the
torsion in the cross-section into a lateral force couple acting on the flanges and
analyzing the warping of [-section member flanges analogous to the flexure problem.
Based on the analytical solution, reduction factors for the obtained flange lateral
bending moments were developed and tabulated to be used in the design for the
simple, fixed and partial warping boundary conditions (Salmon, Johnson, & Malhas,

2009; Montoya-Vargas & Dario Aristizabal-Ochoa, 2019).

In finite element analysis through beam elements, the presence of an additional
degree of freedom (DOF), which is the warping DOF, was considered by several
researchers, and new element formulations with 14x14 stiffness matrices were

developed. Barsoum and Gallagher (1970) studied the torsional and torsional-



flexural instability by introducing elastic and geometric stiffness matrices with the
warping DOF. A polynomial approximation was used in the formulation. Waldron
(1986) derived a member stiffness matrix with the warping DOF by inverting the
appropriate member flexibility matrix and considering the equilibrium of member
ends. Yang and McGuire (1984) introduced the warping spring concept to analyze
partial warping restraint conditions. The stiffness matrix developed by Barsoum and
Gallagher (1970) was employed in the study and a static condensation procedure was
applied to eliminate the non-continuous warping DOF at the member ends with

restrained warping.

In Vlasov’s beam theory, the cross-section is assumed to be undeformable in its own
plane, and shear deformation effects are neglected. Benscoter (1954), on the other
hand, introduced a beam theory for thin-walled beams which incorporates shear
deformations and characterizes warping as an independent function rather than
considering it as the rate of change of twist angle. While the aforementioned element
formulations are based on Vlasov’s theory, there are other researchers in the
literature (Shakourzadeh, Guo, & Batoz, 1995) who formulated the beam elements

for both open and closed cross-sections based on Benscoter’s theory.

Another study that was conducted by Ahmed and Weisgerber (1996) accounts for
the warping of I-section members in the commercial software programs that employ
conventional beam element formulations with a 6Xx6 stiffness matrix for grid or
12x12 stiffness matrix for space frame structural models. The torsional stiffness
associated with homogeneous torsion was equated to the analytical torsional stiffness
associated with non-homogeneous torsion and an effective torsion constant was
developed. The effective torsion constant was defined for [-section members having
warping fixity at both ends, warping fixity at one end and free warping at the other
end, and partial warping restraint at both ends. The warping spring concept proposed
by Yang and McGuire (1984) was adopted to analyze the partial warping boundary

conditions.



In the literature, several other researchers have investigated the behavior of steel I-
girder bridges through finite element analysis by modeling girders as beam elements.
Either the element formulations with warping effects, some discussed in the
preceding paragraphs, were employed or warping effects were included in the
analysis by approximate methods. Zhang, Huang, and Wang (2005) conducted a
parametric study to investigate the live load distribution of horizontally-curved I-
girder bridges and developed equations for the live load distribution factors. The
bridges were modeled as a generalized grillage beam system and thin-walled curved
beam elements considering warping torsion were utilized in modeling girders. The
generalized grillage model was compared with a detailed 3D finite element model
for verification. Linzell and Shura (2010) worked on a large radius, horizontally-
curved steel I-girder bridge, and presented the comparison of construction field data
with the results of finite element grillage models simulating the actual construction
sequence. The goal of the study was to assess the limitations of standard analysis
methods that are extensively used by practicing engineers. Therefore, the
conventional frame elements were employed to model girders and cross-frames, and
the warping stresses were estimated by an approximate method, namely the V-load
method. It was reported that the grillage models of the study combined with the V-
load method produced poor results against the field data. Chang and White (2008)
assessed the qualities and limitations of a number of finite element modeling
considerations for composite curved steel I-girder bridges. The modeling
requirements were emphasized for the composite section in which the deck slab
either modeled by beam or shell elements, and girders modeled by beam elements
considering the warping as an additional DOF. For modeling purposes, the
commercial finite element analysis packages were used such as ABAQUS. It was
concluded that the detailed 3D shell element models and 3D grid models with girder
elements having warping DOF are the most accurate representations of the structural

response.

Sanchez and White (2017) discussed the qualities and limitations of various finite

element analysis methods for curved and skewed I-girder bridges as a part of efforts



under Project NCHRP 12-79 (White et al., 2012). The focus of the study was non-
composite response during construction, emphasizing inaccuracies in the analysis
through traditional 2D-grid models, and improvements were proposed to eliminate
these inaccuracies. The approximate method suggested to include warping effects in

the analysis was the use of effective torsion constants developed by Ahmed and

Weisgerber (1996).

1.3 Objective and Scope

The main objective of this study is to compare the torsional responses of different
modeling approaches used for modeling straight or curved steel I-girder bridges in
terms of the accuracy of these approaches, their practical use, and feasibility of use
in conventional finite element analysis software. A two-node warping beam element
having seven DOF at each node will be developed by combining the stiffness matrix
of the conventional two-node Timoshenko beam element with the 4X4 torsional
stiffness matrix derived based on the Vlasov’s beam theory. The element will be
implemented into a frame analysis program, namely the 3D Frame Analysis
Program, that will be coded in MATLAB, using the direct stiffness method for the
analysis of frames in three-dimensional space. In addition to this element,
conventional beam elements and the effective torsion concept proposed by Ahmed
and Weisgerber (1996) will be included in the program. In all formulations, only
linear elastic behavior will be considered. In addition to the finite element models
constructed by beam elements, refined finite element models with shell elements and
the combination of beam and shell elements will also be constructed and analyzed
utilizing LARSA 4D finite element analysis software. Then, the results obtained
from all structural models, which account for warping effects, will be compared with

the analytical solution for validation purposes.

Case studies will be conducted by analyzing straight and curved girder models, and
a horizontally-curved bridge model with girders and cross-frames. The case studies

will focus on the non-composite response of girders under construction loads and



important design parameters such as major-axis bending stress and flange lateral

bending stress. Only the results of the linear static analysis will be compared.






CHAPTER 2

BEAM ELEMENT FORMULATIONS AND IMPLEMENTATION OF 3D
FRAME ANALYSIS PROGRAM

A new 3D Frame Analysis Program has been developed in MATLAB to analyze the
structures that were investigated in this study using different beam formulations. The
elements available in this program are the space truss, 6 DOF conventional beam, 6
DOF beam with effective torsion constant to consider warping effects, and a 7 DOF
warping beam element, including warping behavior as an additional degree of
freedom. The program can analyze members in which the cross-section’s shear
center and centroid coincide. In this study, the program was used to analyze such

members with doubly-symmetric I-sections.

This chapter provides a theoretical background for the torsional analysis of steel I-
section members, including the derivation of a 4X4 torsional stiffness matrix, and
outlines the implementation of the program. All expressions given in derivation of

the 4x4 torsional stiffness matrix are based on linear elastic behavior assumption.

2.1 Torsional Analysis of Steel I-Section Members

When members having a solid circular cross-section are subjected to torsion, twisting
occurs about the member’s longitudinal axis, and the cross-sections initially plane
remain plane after twisting. On the contrary, when members having a non-circular
cross-section are subjected to torsion, the applied torsion is resisted by both twisting
and warping of the cross-section, and the cross-sections initially plane do not remain

plane after deformations take place.



In the case of members with I-section, the applied torsion is resisted by the twisting
of the whole cross-section and the warping of the flanges. For such members, the
member internal torsion can be divided into two parts: the St. Venant torsion and the
warping torsion. When flanges at the member ends are allowed to deform freely, the
member undergoes homogeneous torsion, i.e., the applied torsion is entirely resisted
by the St. Venant torsion. When flanges of the member ends are restrained, the
member undergoes non-homogeneous torsion, i.e., the applied torsion is resisted by
the St. Venant torsion and warping torsion. Thus, the torsional analysis of such

sections should consider the warping torsion as well as the St. Venant torsion.

2.1.1 Sources of torsion

The torsion in the cross-section can either result from an externally applied torsional
moment or an eccentrically applied transverse force. While the eccentricity of
longitudinal forces causing flexural moments are measured relative to the geometric
centroid of the cross-section, the eccentricity of transverse forces creating torsion is
measured relative to the shear center of the cross-section. The shear center is a point
in the cross-section through which the applied transverse forces do not produce
torsion. As shown in Figure 2-1(a), for a single-symmetric I-section, the shear center
lies on the axis of symmetry but does not coincide with the centroid. As shown in
Figure 2-1(b), for a doubly-symmetric I-section, the shear center coincides with the

centroid of the cross-section.
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Figure 2-1 The centroid and shear center of an I-section: (a) Single-symmetric I-
section; (b) Doubly-symmetric I-section.

2.1.2 St. Venant torsion, Ms

The St. Venant torsion (or pure torsion) component of the member internal torsion

is calculated in the same way as the torsion of circular bars by assuming the member

ends free to warp (Figure 2-2).

O
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Figure 2-2 The St. Venant torsion (pure torsion).
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Similar to the flexural curvature, the torsional curvature (or the rate of change of the
angle of twist) is expressed as the moment divided by the torsional rigidity. The St.

Venant torsion, Mg, is given by

do,
Ms =G =~ (2-1)

Where 6, is the angle of twist, G is the shear modulus, and J is the torsion constant.

2.13 Warping torsion, Mw

When I-section members are subjected to torsion, the warping of the cross-section
takes place through opposite in-plane flange rotations. In other words, the cross-
section does not remain plane due to the lateral bending of flanges in opposite

directions.

In the presence of a warping restraint, the normal stresses and shear stresses develop
in the flanges, and the warping torsion component of the member internal torsion
arises. Vlasov’s theory considers restrained warping of thin-walled members by
neglecting shear deformation effects and assuming that the web remains plane during
twisting (Vlasov, 1961). In the torsional analysis of I-section members, the effect of
secondary shear stresses on warping is negligible because these members have small
torsional rigidity and exhibit large amounts of warping. Besides that, girders having
thin webs are generally provided with stiffeners. Therefore, the assumptions of
Vlasov’s theory is admissible for practical purposes. Under the same premises, the
expression for the warping torsion can be obtained by analyzing the lateral bending

of the flanges.

Since the resulting action is torsion, the normal and shear stress developing in the
flanges will be self-equilibrating. As shown in Figure 2-3, the flange lateral bending
moments form a couple called bi-moment and associated flange shears in opposite

directions form a couple which resists the applied torsion.
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Figure 2-3 The warping torsion.

For small values of twist angle, the lateral displacement of one of the flanges is,

h

where /4 is the distance between flange centroids.
The moment-curvature relationship for one flange is,

2
7w My (2-3)
dx? EIf

where Mg is the lateral bending moment, E is the modulus of elasticity, and I¢is the

associated moment of inertia for one flange.

Differentiating Equation 2-2 two times and inserting into Equation 2-3, the following

relationship is obtained,

2
_ My (ﬁ) d"6x (2-4)
Elf 2/ dx?

Multiplying Equation 2-4 by the distance between flange centroids and rearranging

the terms, the expression for the bi-moment, B, is obtained as
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h?\|d?6, d?o,
B=Mh=—E|l|= =—ECy——p 2
rh If<2)ldx2 Y dx? &3)
where C,, is the warping constant and equals to If h? /2 for an I-section.
The shear force, Vy, in each flange is given by,
dM;
™ dx

Differentiating Equation 2-3 and inserting Equation 2-6 into Equation 2-3, then

differentiating Equation 2-2 three times, the following relationship is obtained:

3 3
d’us E B (h)d 0, 2-7)

dx3 ~  El;  \2) dx3

Finally, the expression for the warping torsion, M,,, is obtained by rearranging the

terms of Equation 2-7:

h?\1d30, d30,
M, =Vih= —E [If <7>l 5 = ~ECy—= (2-8)
2.14 Governing differential equation for torsional deformation

The governing differential equation for the torsional deformation can be written as
the sum of the St. Venant torsion (Equation 2-1) and warping torsion (Equation 2-
8),
deé d3e
M, = Mg+ M,, = G]d—x" — EC,, —= (2-9)

dx3

where M, is the total torsional moment.
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2.1.5 Stiffness matrix

In the construction of the stiffness matrix for torsional analysis of I-section members
with restrained warping, the Principle of Virtual Work was applied. For the St.

Venant torsion, the virtual work of the internal forces is given by

Ld(ae,) Ld@ae,) . d(6y) (2-10)
6Wint,s— .[(-) TMS dx—J(; dx G] dx dx

Likewise, the virtual work for the warping torsion can be computed by

Ld?(ouy) L d2(06,) hEC,, d*(6,)
a]/Vint,w = ZJ;) dx? Mf dx = 2_]- dx2 E h  dx?
bd(a6',) d(9'y) (2-11)
6Wint,w —jo dx ECW dx dx

The external work done by the applied forces is equal to
OWexe = [00,]{M,} + [aelx]{B} (2-12)

Then, the torsional deformations can be applied by approximating the displacement

field by the appropriate shape functions, [N] = [N1 N2 N3 Ny]:

aI/Vint,s + aI/Vint,w = OWext

[06,] [ j L[N']TGJ[N']dx] (0.3 + [06',] [ f NG, [N"]dx] ')
0 0

' 2-13
= [06,1{M,} + [06',1{B} (2-13)
The corresponding stiffness matrix can be expressed as follows:
L L (2-14)
k] = f INTTGJ N dx + f IN'TTEC,, [N""]dx
0 0
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Similar to the flexure problem, the displacement field was approximated by shape
functions that provide C! interelement continuity, the simplest shape functions which

satisfy the continuity of displacement and slope: Hermitian cubic shape functions.

Therefore, with Hermitian cubic shape functions, the stiffness matrix can be

computed as:

6G/L>  6G/L>  GJI}  GJL?
5E SE  10E  10E
6G/L>  GJI*  GJI?
k] = E SE 10E  10E
Il 2G/L*  GJL*
. 15E 30
26 L*
15E

12C,, —12C, 6C,L  6C,L

£ 12C,, —6C,L —6C,L
R

Sym. 4C, L2 2C, L2

4C, 17 |

2.2 Implementation of the Analysis Program

The program consists of a MATLAB code that performs the structural analysis and
two Microsoft Excel workbooks that are used to take inputs and write outputs. The
input spreadsheets are organized to take information regarding the joints, members,
support, and loading conditions of the analysis model. The output spreadsheets are
organized to report joint displacements, member forces, and support reactions. The
format of input and output spreadsheets and detailed explanations of input and output

data are provided in Appendix B.

In the subsequent sections, the algorithm of the program and the formulation of the

element stiffness matrices available in the program are summarized.
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2.2.1 Algorithm of the program

The main structure of the algorithm is shown in Figure 2-4. The program starts by
reading input data and storing data of each input spreadsheet in matrix form. Next,
the analysis model’s active degrees of freedom are labeled according to the support
conditions. Then, the global structural stiffness matrix is assembled after
constructing the element stiffness matrix and transforming it from local coordinates

to global coordinates for each element.

In 3D coordinate transformation, the warping DOF for the rate of twist is treated as
a scalar quantity associated with the cross-sectional deformation; therefore, it is not

transformed (Damkilde, 1999).

Following the assembly of the structural stiffness matrix, the force vector is formed
by combining the nodal forces with fixed end forces obtained from the member loads
available in the program. In the element force recovery, the uniform torsion load is
directly distributed to nodes as concentrated torques, and the bi-moment is only

treated as a nodal load imposed in the direction of warping DOF.

After obtaining the structural stiffness matrix, K, and corresponding force vector, F,
the program solves the stiffness relationship given by Equation 2-15 to determine the

joint displacement vector, d:
[F] = [K][d] (2-15)

The program continues with post-processing joint displacements to compute member
end forces and support reactions. As a final step, the outputs of the program are

written to an Excel workbook in separate spreadsheets.
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Figure 2-4 Algorithm of the program.
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2.2.2 Truss element
In order to model axial-load carrying members, a standard two-node space truss

element is implemented into the program. The stiffness matrix for the element is

provided in Appendix A.
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2.2.3 6 DOF beam element

The conventional two-node Timoshenko beam element having six DOF per node is
implemented into the program. The stiffness matrix for the element is provided in

Appendix A.

2.24 6 DOF beam element with the effective torsion constant, Jesr

This element is an extension of the 6 DOF Beam Element. The element formulation
includes an effective torsion constant to take into account warping deformation
effects in I-section members. Two effective torsion constants are implemented into
the program: one for the members having warping fixity at each end, another one for
the members having warping fixity at one end and warping free boundary condition
at the other end. The expressions for the corresponding effective torsion constants
were derived by employing these boundary conditions in the general equation of

torsional rotation, Equation 2-9 (Ahmed and Weisgerber, 1996).

The effective torsion constant for the element with warping fixity at both ends is

calculated by

sinh(kL,) [cosh(kLy,) — 1]21_1 (2-16)

Jerr = [1_ kL, | Kkipsinh (kL,)

whereas the effective torsion constant for the element with warping fixity at one end

and warping free boundary condition at the other end is calculated by

. -1
sinh(kLj) l (2-17)

Jerr =1 [1 ~ kLycosh (kLp)

where k = /GJ/EC,,, and L, is the unbraced length corresponding to the distance

between warping boundaries.

The stiffness matrix for this element is same as the 6 DOF Beam Element, except

that the torsion constant is replaced by the effective torsion constant.
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2.2.5 7 DOF warping beam element

This element is a two-node beam element, including warping behavior as an
additional DOF and having seven DOF per node. The element formulated by
Barsoum and Gallagher (1970) is employed in this study with the modified flexural
stiffness terms to account for flexural shear deformations. The axial and flexural
stiffness terms of the element stiffness matrix are same as the conventional
Timoshenko beam element. The torsional stiffness terms of the element stiffness
matrix are same as terms of the 4xX4 stiffness matrix derived in Section 2.1.5. In
parallel to the assumptions employed in the derivation of the 4X4 torsional stiffness
matrix, the element neglects web distortion and the effect of shear deformations on

warping. The complete stiffness matrix for the element is provided in Appendix A.
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CHAPTER 3

VALIDATION OF DIFFERENT MODELING APPROACHES UNDER
TORSION

In this chapter, different modeling approaches are validated by investigating the
torsional response of a steel I-section member subjected to concentrated torsional
moment. The member is analyzed under torsionally fixed-free and fixed-fixed

boundary conditions through two verification problems.

The verification problems are analyzed in 3D Frame Analysis Program utilizing
beam elements that account for warping effects. These are the 6 DOF conventional
Timoshenko beam element with effective torsion constant and 7 DOF warping beam
element. The verification problems are also modeled in LARSA 4D finite element
analysis software with flat shell elements. In addition to refined full-shell finite
element models in which multiple shell elements constitute the cross-section of the
member, an alternative modeling approach is considered by modeling the web of the

cross-section with shell elements and its flanges with beam elements.

The results obtained from refined models and beam models are compared with the
analytical solution. The mesh size and shell element type of the validated shell model
to be used in case studies are presented. The key output parameters used for verifying
the analysis results are the twist angle 8, rate of twist 8',, St.Venant torsion M,

warping torsion M,,,, and bi-moment B.

3.1 Section and Material Properties

The cross-sectional dimensions of the example doubly-symmetric I-section are
shown in Figure 3-1, and sectional and material properties used in the analysis of

verification problems are presented in Table 3-1.
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Figure 3-1 Cross-sectional dimensions of the example section.

Table 3-1 Sectional and material properties of the example section.

Cross-Sectional Properties

Area (A) 66.87 in?
Moment of inertia about the z-axis (1) 14811.6 in*
Moment of inertia about the y-axis (Iy) 939.43 in*
Torsion constant (J) 27.196 in*
Warping constant (Cy) 281210 in®
Material Properties

Modulus of elasticity (E) 29000 kst
Shear modulus (G) 11200 ksi

3.2 Verification Problem 1: Torsionally Fixed-Free Beam

The 15 ft long member having torsionally fixed-free boundary conditions was
subjected to T = 100 kip-in concentrated torsional moment at the tip (Figure 3-2).

The results of beam and shell models were compared with the analytical solution.
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T = 100 kip-in

Figure 3-2 Geometry of Verification Problem 1.
3.2.1 Analytical solution

The boundary conditions of Verification Problem 1 dictate that the beam is not able

to twist or warp at end I and free to warp at end J:

0,(x)=0atx =0 (3-1)
', (x)=0atx=0 (3-2)
B(x)=0o0r0",(x) =0 atx =1L (3-3)

Solving the governing differential equation for torsional deformation, Equation 2-9,

for this particular case results in:

T
—— [tanh kL * (cosh kx — 1) — sinh kx + kx] (3-4)

O GJk

where k = /GJ/EC,,. The parameters M;, M,,, and B are obtained by taking
derivatives of 6, and inserting into expressions given by Equations 2-1, 2-8, 2-5,

respectively.

3.2.2 Beam models

The verification problem was solved in 3D Frame Analysis Program by utilizing the

6 DOF beam elements with Jesr and 7 DOF warping beam elements.
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Since the effective torsion constant is defined just for torsionally fixed-free and
fixed-fixed connections for an element, a single beam element with Jesr was used to
model the verification problem. The twist angle is the output parameter included in

the reported results.

The twist angle, rate of twist, total torsion, and bi-moment are direct outputs of the
program for the warping beam element. The St. Venant torsion is obtained using the
rate of twist, and the warping torsion is obtained by subtracting the St.Venant torsion

from the total torsion.

The results of the analytical solution and 3D Frame Analysis Program presented in
Table 3-2 show that both beam formulations are capable of capturing the analytical

solution even with a single beam element.

Table 3-2 Analysis results at the member ends.

1B 10 Warpi
Analytical eam’ 1 Warping arping
) Element with Beam
Solution Beam Element

Jetr Elements

O« (rad)atx =L 0.01609 0.01609 0.01608 0.01609
M; (kip-in) at x =L 40.07 - 40.01 40.07
M,, (kip-in) atx =L 59.93 - 59.99 59.93
B (kip-in®) at x =0 -13099 - -13104 -13099

Figure 3-3 to Figure 3-6 show the variation of displacements and forces along the
member for the analytical solution and warping beam elements. The analysis results
extracted from intermediate elements are also in line with the analytical solution. At
the fixed end, the total torsion is entirely carried by the warping torsion, and the bi-
moment is at its maximum. Both warping torsion and bi-moment decrease towards
the warping-free end of the member. At x = L, while the total torsion is shared by

the St.Venant torsion, the bi-moment reaches zero.
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Figure 3-3 Verification Problem 1: Twist angle along the member.
" St. Venant Torsion Along the Member
40 /__/____m
/
— 30 —
£ 20
s — . :
Analytical Solution

10 /
/ B 1Element

10 El t

0 ements
13.5 15.0

0.0 1.5 3.0 4.5 6.0 7.5 9.0 105  12.0
X (ft)

Figure 3-4 Verification Problem 1: St. Venant torsion along the member.
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Figure 3-5 Verification Problem 1: Warping torsion along the member.
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Figure 3-6 Verification Problem 1: Bi-moment along the member.
3.23 Shell models

The verification problem was modeled in LARSA 4D program with flat shell
elements. First, full-shell models with different mesh sizes are constructed and
analyzed. Then, the twist angles obtained from shell models are compared with the
analytical solution. Next, the mesh size, element type, and detailed analysis results
of the refined full-shell model, which is found adequate in producing accurate results,
are presented together with the analytical solution. Finally, the detailed analysis
results associated with the alternative modeling approach, in which the web of the
cross-section is modeled with shell elements and its flanges with beam elements, are

reported together with the analytical solution.

The thin plate element is employed in models, together with drilling and
incompatible membranes. The details of the plate and membrane element

formulations are as follows:

o Thin plate: The plate element based on Kirchoff Plate Theory, which assumes

no transverse shear deformations through the element thickness. (Batoz &

Tahar, 1982)
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e [ncompatible membrane: The membrane element with incompatible modes,
which have a higher-order displacement definition to avoid shear locking that
exists in the bilinear membrane. (Cook et al., 2001)

o Drilling membrane: The membrane element with quadratic displacement
field definition and a rotational degree of freedom, which is defined from the
displacement of the mid-points of the edges. (Ibrahimbegovic, Taylor, &
Wilson, 1990)

3.23.1 Mesh size and loading

Three different full-shell models were created to be analyzed with thin-incompatible
and thin-drilling shell elements (Figure 3-7 to Figure 3-9). Table 3-3 shows the
dimensions of shell elements employed for the web and flanges. For the web,
dimensions are given along the longitudinal and elevation axis of the member. For
flanges, dimensions are given along the longitudinal and transverse axis of the
member. The torsional load of 100 kip-in was modeled by a force couple applied to

the flange nodes at the tip.

Table 3-3 Mesh sizes used in full-shell models.

Web (in) Flanges (in)

Along Length Along Depth Along Length Along Width

Shell Model 1 20 17.32 20 8.235
Shell Model 2 10 8.66 10 8.235
Shell Model 3 5 4.33 5 4.1175
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Figure 3-9 Shell Model 3: 576 elements.

3.2.3.2 Twist angles of full-shell models

The rotation-X values at the end of the member were extracted from the nodes of
shell models defined at the centroid of the cross-section and compared with the

analytical solution that was found to be 0.01609 radians, as shown in Table 3-4.
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Table 3-4 Twist angle at the centroid (0x at x = L), in radians.

Shell Model 1 Shell Model 2 Shell Model 3
Thin - Incompatible 0.01879 (15.5%) 0.01887 (15.9%) 0.01889 (16.0%)
Thin - Drilling 0.01873 (15.2%) 0.01881 (15.6%) 0.01888 (16.0%)

Note: The values in brackets are percentage differences between the analytical solution
and shell model.

Since the Vlasov’s theory assumes the cross-section to be undeformable in its own
plane and neglects shear deformation effects, the twist angle values extracted from
the shell models are larger than the twist angle value obtained from the analytical
solution. While the Vlasov’s theory assumes that the web remains straight during
twisting, the previous research has shown that the web distorts during twisting as

predicted by the refined finite-element analysis (Pezeshky, 2017).

In order to investigate the effect of these assumptions on the results, two more sets
of analysis results were obtained by adding rigid link elements and flexurally rigid
elements to the member end along the web depth. The rigid link elements introduce
a rigid connection between the element’s nodes in all directions, i.e., it does not
deform but allows the relative rigid body movement of the nodes it connects. Hence,
these elements restrain the shear deformations resulting from the bending (or
warping) of flanges and the web distortion. This way, the member is enforced to
behave in a similar manner as the assumption of Vlasov’s theory. The flexurally rigid
elements are conventional Timoshenko beam elements with a very large shear area
and moment of inertia quantities. Therefore, these elements only restrain web

distortion.

The updated results were reported in Table 3-5 and Table 3-6 for models with rigid
links and flexurally rigid elements, respectively. Although the results of thin-
incompatible shell models reported in both tables are in good agreement with the
analytical solution, the thin-drilling shell models show stiffer behavior when used in
combination with the rigid links. The main reason for this lies in the formulation of

drilling DOF. In this element, the drilling rotation at a node is calculated from the
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mid-edge displacements of the neighbor edges. When rigid links restrain the drilling
rotations of nodes at the flange-web intersections, they also restrain the translation
of the mid-edge displacements of the elements connecting to the node. This causes
an additional stiffening effect for the bending of flanges caused by warping. That’s
why as the size of elements is reduced, this stiffening effect diminishes, and the
results approach the analytical result.

Table 3-5 Twist angle at the centroid (0« at x = L) for restrained web distortion and
shear deformation, in radians.

Shell Model 1 Shell Model 2 Shell Model 3
Thin - Incompatible 0.01613 (0.2%) 0.01631 (1.4%) 0.01641 (2.0%)
Thin - Drilling 0.01301 (21.2%) 0.01470 (9.0%) 0.01549 (3.8%)

Note: The values in brackets are percentage differences between the analytical solution
and shell model.

Table 3-6 Twist angle at the centroid (0« at x = L) for restrained web distortion, in

radians.
Shell Model 1 Shell Model 2 Shell Model 3
Thin - Incompatible 0.01637 (1.7%) 0.01655 (2.8%) 0.01665 (3.4%)
Thin - Drilling 0.01635 (1.6%) 0.01649 (2.5%) 0.01663 (3.3%)

Note: The values in brackets are percentage differences between the analytical solution
and shell model.

Considering Table 3-5 and Table 3-6, it can be concluded that the differences
between the analytical solution and results reported in Table 3-4 are mainly due to
the web distortion. Figure 3-10, which is a plot of lateral web displacements at the
end of the member with and without the rigid links, was obtained from the
displacements of Shell Model 3 with thin-incompatible shell element type. This
figure shows that the web does not remain straight during twisting, as opposed to the

assumption of Vlasov’s theory.
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Figure 3-10 Shell Model 3: Lateral displacements along the web.

As a result, when no rigid links or flexurally rigid elements exist in the model, both
thin-incompatible and thin-drilling shell elements produce similar results that are

close to the actual behavior under torsional loading.

3.2.3.3 Refined model with shell elements

The element size of the Shell Model 2 and thin-incompatible shell type has been
found adequate in producing accurate results and will be taken as a reference in the
second verification problem, also in the case studies. The results along the length of
the member were extracted from Shell Model 2 for thin-incompatible shell type with
and without rigid links and compared with the analytical results. The rotation-X
values of centroid nodes were extracted from the model, and variation of twist angle
along the length of the member is presented in Figure 3-11. In order to obtain the
variation of St.Venant Torsion presented in Figure 3-12, the rotation-Z values of

flange middle nodes, i.e., in-plane flange mid-line rotations, were extracted from the
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model and substituted into Equation 3-5, which can be derived by integrating
Equation 2-4 and inserting into Equation 2-1.

6,

My = GJ (h) (3-5)

2

where G is the shear modulus, J is the torsion constant, 8, is the in-plane flange mid-

line rotation, and h is the distance between flange centroids.

In order to obtain the variation of warping torsion presented in Figure 3-13, the total
torsion at the centroid of the cross-section was extracted from the model, and the
St.Venant torsion was subtracted from the total torsion. The Compound Element
Forces Tool of LARSA 4D program, which reports the combined forces and
moments of a group of elements about their combined centroid, was utilized to

extract the total torsion from the model.

Twist Angle Along the Member

0.020
0.015
E=)
£ 0.010
®X
0.005 Analytical Solution
No Rigid Links
¢ With Rigid Links
0.000

0.0 15 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0
x (ft)

Figure 3-11 Refined Model: Twist angle along the member.
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Figure 3-12 Refined Model: St. Venant torsion along the member.
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Figure 3-13 Refined Model: Warping torsion along the member.

In the presence of rigid links, the member behaves as assumed in Vlasov’s theory,
and the variation of results along the member length is in-line with the analytical
solution. In Figure 3-12, the last value is zero at the member end because the rigid
link elements at this location restrained the in-plane flange mid-line rotation that was
used to compute the St.Venant torsion. Consequently, in Figure 3-13, the warping
torsion at the end of the member is equal to the total torsion at the end of the member.
Moreover, without rigid links, the jump seen in the force graphs at the end of the
member is due to the applied force and reduces by smaller mesh size; therefore, it is

neglected.
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3.2.3.4  Alternative modeling: web with shell, flanges with beam elements

In the finite element analysis of steel I-section members, modeling the web of the
cross-section with shell elements and flanges with beam elements is an alternative
and practical modeling approach compared to full-shell models (Figure 3-14). In
order to apply this approach, the flanges of I-beam were modeled with beam
elements instead of a mesh of shell elements. The variation of twist angle and internal
torsional moments along the member are reported from Figure 3-15 to Figure 3-17
for the alternative modeling approach, together with the results of the refined model.
As can be seen from the figures, the alternative modeling approach is also capable
of capturing the torsional response of the example structure and gives very similar

results to the refined full-shell model.

Figure 3-14 Shell Model 2: Alternative modeling.
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Figure 3-15 Alternative Modeling: Twist angle along the member.
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Figure 3-16 Alternative Modeling: St.Venant torsion along the member.
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Figure 3-17 Alternative Modeling: Warping torsion along the member.
3.3  Verification Problem 2: Torsionally Fixed-Fixed Beam

The 15 ft long member having torsionally fixed boundary conditions at the ends, was
subjected to T = 1000 kip-in concentrated torsional moment at the mid-span (Figure

3-18). The results of beam and shell models were compared with the analytical

solution.
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T = 1000 kip-in

Figure 3-18 Geometry of Verification Problem 2.

3.3.1 Analytical solution
The boundary conditions of Verification Problem 2 dictate that the beam is not able
to twist or warp at both ends:

O,(x)=0atx =0andx =L (3-6)
' (x)=0atx=0and x =L (3-7)
The solution of the general equation of torsional rotation, Equation 2-9, for this

particular case is given by Equations 3-8 and 3-9 (Seaburg & Carter, 2003).

ForO0<x<L/2

kL
0 4 H LRy ¥
= — * —_
*TH+ 1) *GJk sinhkL T > 2 T tanh kL
kL costh—L _ (3-8)
+ smh7 e + — [coshkx — 1] — sinh kx + kx
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ForL/2 <x <L

(costh—L - 1) (costh—L — cosh kL + kL * sinh kL)

0, = . + .
* (1 + %) ¥ Gl H * sinh kL sinh kL

(1 — cosh %) (1 — coshkz—L * cosh kL)

+ cosh kx + H * tanh kL + sinh kL

(costh—L — 1)

inh k
+ sinh kx * H

kL
+ cosh7 — kx (3-9)

where k = /GJ/EC,, and

(1 — cosh kZ—L) (costh—L — 1)

. kL kL
anhkl ¥~ smhkL ~ TSinhm -7
H = (3-10)
cosh kL + coshk—L * cosh kL — coshk—L -1
2 2 _kL _ on kL
sinh kL 2 S

The parameters Mg, M,,,, and B are obtained by taking derivatives of 8, and inserting

into expressions given by Equations 2-1, 2-8, 2-5, respectively.

3.3.2 Beam models

The verification problem was solved in 3D Frame Analysis Program by utilizing 6
DOF beam elements with Jetrand 7 DOF warping beam elements. In order to analyze
the mid-span loading, the verification problem was modeled utilizing two beam
elements with Jefr. Since the warping boundary conditions are known only at the ends
of the structure, the effective torsion constant was computed for the full member
length of 15 ft, assuming the fixed-fixed boundary condition and used for both beam

elements. The twist angle is the output parameter included in the reported results.

37



The results of the analytical solution and 3D Frame Analysis Program are presented

in Table 3-7.

Table 3-7 Analysis results at L/2 and L/5.

2 Beam 2 Warping 10 Warping

Asnil);t'lcal Elements Beam Beam

otution with Jegr Elements Elements

O« (rad) at x =L/2 0.00362 0.01329 0.00362 0.00362
M; (kip-in) at x = L/5 17.60 - - 17.60
My (kip-in) at x = L/5 482.40 - - 482.40
B (kip-in?) at x = L/2 21949 - 21949 21949

According to the results shown in Table 3-6, the warping beam formulation gives
exactly the same results with the analytical solution. The use of the same Jesr for the
elements between known warping boundary conditions is an approximation, and it

did not produce an acceptable solution.

From Figure 3-19 to Figure 3-22, the variation of displacements and forces along the
member were plotted on the same graph for the analytical solution and warping beam
elements. As can be seen from the figures, the analysis results extracted from the
intermediate elements are also in line with the analytical solution. At the fixed ends
and loaded mid-span, the total torsion is entirely carried by the warping torsion, and
the bi-moment is at its maximum. Both warping torsion and bi-moment decrease
towards the quarter span from both ends. However, even at the point where the St.
Venant torsion is maximum, i.e., at 3.75 ft, the ratio of St.Venant torsion to warping

torsion is only 3.6%.
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Figure 3-19 Verification Problem 2: Twist angle along the member.
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Figure 3-20 Verification Problem 2: St. Venant torsion along the member.
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Figure 3-21 Verification Problem 2: Warping torsion along the member.
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Figure 3-22 Verification Problem 2: Bi-moment along the member.

3.3.3 Shell models

The same problem was modeled with shell elements by using the same mesh size
and element type as the refined model of Verification Problem 1 (Shell Model 2,
Figure 3-8). The fully-fixed boundary conditions were assigned to the nodes at both
ends, and the torsional load of 1000 kip-in was modeled by a force couple applied to

the flange nodes at the mid-span.

Since Vlasov’s theory neglects web distortion and shear deformation effects, the
twist angle values of the refined full-shell model are expected to be larger than the
analytical solution. Similar to the Verification Problem 1, additional models were
created to investigate the effect of these assumptions by adding rigid link elements
restraining the shear deformations and web distortion, and flexurally rigid elements
restraining only the web distortion, to the model. Different from Verification
Problem 1, where the rigid elements were defined only at the beam end, these
elements were defined in Verification Problem 2 throughout the beam. The twist
angle values at the mid-span were extracted from the nodes of shell models defined
at the centroid of the cross-section and compared with the analytical solution, that

was found to be 0.0036 radians, as shown in Table 3-8.
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Table 3-8 Twist angle at the mid-span (6x at x = L./2), in radians.

No Rigid Element With Flexurally Rigid Elements With Rigid Link Elements

0.0043 (17.7%) 0.0039 (8.0%) 0.0037 (2.7%)

Note: The values in brackets are percentage differences between the analytical solution
and shell model.

The percentage differences between the analytical solution and shell models show
the same trend as the previous verification problem (Table 3-4 to Table 3-6). For
both verification problems, when there are no rigid elements in the model, the
percentage difference between the analytical solution and the shell model is around
16-17%. While the contribution of shear deformation effects to the percentage
difference is more pronounced in the current verification problem, the differences
between the analytical solution and extracted results are found to be mainly due to

the web distortion, similar to the previous verification problem.

The variation of twist angle values extracted from the centroid nodes along the
member is presented in Figure 3-23. The variation of St.Venant torsion and warping
torsion, which are obtained based on the in-plane flange mid-line rotations, are
presented in Figure 3-24 and Figure 3-25. In Figure 3-23, the twist angle values
extracted from the full-shell model with rigid link elements are included. Results of
the alternative modeling approach, in which flanges of the cross-section are modeled

with beam elements, are also presented in these graphs.

In the presence of rigid links, the member behaves as assumed in Vlasov’s theory,
and the variation of twist angle along the member length is in-line with the analytical
solution. Unlike the twist angle, it was observed that the variation of St. Venant
torsion and warping torsion are not affected by the assumptions of Vlasov’s theory.
In addition, the alternative modeling approach is found to be capable of capturing
the torsional response of the example structure as it produces the results similar to

the refined full-shell model.
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Figure 3-23 Shell Models: Twist angle along the member.
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Figure 3-25 Shell Models: Warping torsion along the member.
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CHAPTER 4

CASE STUDIES

During the construction of steel I-girder bridges, exterior girders are subjected to
torsional moments that are produced by the eccentric loads acting on the overhang
forming brackets. The loads include the weight of deck overhang concrete, deck
form, screed rail, and finishing machine. In the analysis and design of exterior
girders, it is necessary to consider the flange lateral bending moments and stresses
resulting from these torsional loads. In addition to the eccentric overhang bracket
loads, the girders of horizontally-curved steel I-girder bridges are subjected to torsion
under vertical construction loads. The flange lateral bending moments and stresses
due to curvature should also be considered in the analysis and design of these

bridges.

As an example of the design code requirement, the effects of eccentric overhang
bracket loads acting on the non-composite exterior I-girders should be investigated
at the Constructibility Limit State per AASHTO LRFD Bridge Design
Specifications, Article 6.10.3.4 — Deck Placement (American Association of State
Highway and Transportation Officials, 2017). In the commentary section of this
article, two equations are suggested to estimate the maximum flange lateral bending
moments, M;,¢, under the loadings mentioned in the preceding paragraph, and the
equations are to be used in the absence of a more refined analysis. Both equations
are based on the assumption that adjacent unbraced lengths have approximate
symmetry conditions, and hence torsionally fixed boundary conditions exist at the
ends of the unbraced length. Equation 4-1 is suggested for the case of the eccentric
overhang loading assumed to be applied as uniformly distributed lateral loads, F,;,

to the flanges.
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Fiat * Lp*
Migr =~ (4-1)

where L, is the unbraced length.

Per AASHTO LRFD Bridge Design Specifications, Article 6.10.3.2 — Flexure, the
flange lateral bending effects due to curvature must always be considered in
discretely braced flanges during construction. In the commentary section of Article
4.6.1.2.4b — I-Girders, the specification provides an approximate equation (Equation
4-2) to be used for determining the lateral bending moment due to curvature. The
equation is based on the V-Load Method (Fiecht, Fenves, & Frank, 1987), which
assumes the presence of a cross-frame at the point under consideration to resist the
torsional action due to curvature by sets of shears developed within the cross-frames.
The method also assumes the uniform cross-frame spacing and constant major-axis

bending moment, M, within the unbraced length, L.

Mige = 7 (42)

where R is the girder radius, D is the web depth, and N is a constant taken as 10 or

12.

In addition to the stresses resulting from the major-axis bending effects, the flange
lateral bending stresses resulting from the curvature for curved girders as well as the
flange lateral bending stresses resulting from the overhang bracket loads for exterior
girders are considered when checking the flexural resistance of discretely braced
flanges at the Constructibility Limit State, per AASHTO LRFD Bridge Design
Specifications, Article 6.10.3.2 — Flexure.

Furthermore, excessive rotation of exterior girders under the overhang bracket loads
may cause a considerable amount of deck thickness loss leading to overstress in the
girders, and such problems may also be encountered during the deck placement. In
order to limit the girder rotation, it is necessary to predict the twist angle of the

exterior girder accurately. For example, the Illinois Department of Transportation
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(IDOT) limits the maximum vertical displacement of the overhang tip to 3/16 inches,
and the exterior girder rotation corresponding to that displacement can be treated as

the limit (Ashiquzzaman et al., 2016).

Apart from these, the steel girders are cambered during the fabrication to compensate
for the dead load deflections and match the designed profile in the final state. In case
the finite element method is used for the analysis and estimating the camber
information, it is essential to capture girder vertical deflections precisely. Since the
horizontally-curved girders are under the coupled action of major-axis bending and
torsion for the dead load effects, the torsional modeling has a significant effect on

vertical deflection values.

In order to understand what extend the beam element formulations with warping,
refined, and alternative modeling approaches can produce accurate analysis results
and to qualify the usability of the proposed modeling approaches in the current
bridge engineering practice, three case studies are conducted by focusing on the
specified load effects and design parameters. As a first case study, a straight exterior
I-girder is analyzed under deck overhang loads. As a second case study, a single
horizontally-curved I-girder is analyzed under deck weight loading. As a third case
study, a single span horizontally-curved I-girder bridge superstructure is analyzed

under deck weight loading.

A comparative study is performed for all case studies. The 3D full-shell models and
alternative shell models, in which flanges of the cross-section are modeled with beam
elements, are constructed and analyzed in LARSA 4D program. Beam models are
constructed and analyzed in 3D Frame Analysis Program by utilizing 6 DOF
conventional beam elements, 6 DOF beam elements with an effective torsion
constant (Jerr), and 7 DOF warping beam elements, for the girder. The results of
different modeling approaches are compared by taking the 3D full-shell model as a
reference. For all case studies, the existing bridge geometries were considered in the

generation of analysis models.
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4.1 Case Study #1: Straight Exterior I-Girder Under Overhang Loads

A 130 ft long simply supported straight I-girder was modeled as an isolated exterior
girder by using flat shell and beam elements. The cross-sectional dimensions of the
girder are shown in Figure 4-1. The sectional and material properties used in the

analysis are given in Table 4-1.

Depth (d) = 59.5 in
Width (b) = 16.0 in
Flange Thickness (tf) = 1.25 in

d=59.5 Web Thickness (tw]} = 0.65 in

Figure 4-1 Straight Exterior Girder: Cross-sectional dimensions.

Table 4-1 Straight Exterior Girder: Properties.

Cross-Sectional Properties

Area (A) 77.05 in?
Moment of inertia about the z-axis (I,) 43967.12 in*
Moment of inertia about the y-axis (Iy) 854.6378 in*
Torsion constant (J) 26.56 in*
Warping constant (Cy) 723740 in®
Material Properties

Modulus of elasticity (E) 29000 ksi
Shear modulus (G) 11200 ksi
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4.1.1 Deck overhang loads

The overhang width and the average deck thickness in the overhang were taken as
3.25 ft and 9 inches, respectively. The unit weight of concrete used in the self-weight
computation is 150 Ib/ft>. The total deck overhang weight was calculated as 366 Ib/ft.
The half of deck overhang weight was assumed to be resisted by overhang brackets
and the other half by the girder. The weight of deck forms and screed rail included
in overhang bracket loads is 185 Ib/ft. The analyzed loads are summarized in Figure
4-2. While the loads were analyzed as uniform member loads in beam models, they

were analyzed as nodal loads in shell models.

183 Ib/ft 368 1b/ft 551 1b/ft
325 ft L 551 Ib/ft
— == —= 2521b/ft —t—
A
4.75 ft 4.75 ft
1196 Ib-ft/ft
T L=l —=—— 2521b/ft
Shell Model Beam Model

Figure 4-2 Deck overhang loads.

4.1.2 Analysis models

The sample exterior girder was modeled in LARSA 4D finite element analysis
software with flat shell elements. In addition to full-shell models, flanges of I-girder
were modeled with beam elements, and the results of this alternative modeling
approach were included in the comparison. The same problem was solved in 3D
Frame Analysis Program by utilizing the different beam elements available in the
program. The laterally supporting cross-frames were not modeled explicitly. Instead,

the torsional restraints were provided in beam models, and the lateral restraints were
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provided in shell models. The assumed eight cross-frame locations, including the

start and end of the girder, are shown in Figure 4-3.

i 175 20.83 ft | 20.83 ft i 20.83 ft i 20.83 ft | 20.83 ft 833 ft;
[ I I T l I I 1
L ! ! ! ! 1

-3 £ T < BT R e Ll
XY, Z Y Y,Z

Figure 4-3 Side View: Cross-frame locations.

In shell models, the simple supports at girder ends were defined at the bottom flange
nodes. As stated in Chapter 3, the thin-incompatible shell-type was utilized in all
case studies. The dimensions of shell elements employed for the web is 10 inches X
9.7 inches along the longitudinal and elevation axis of the girder, respectively. The
dimensions of shell elements employed for flanges are 10 inches X 8 inches along

the longitudinal and transverse axis of the girder, respectively.

In beam models, each unbraced length was divided into four beam elements, except
for the 8.33 ft long last segment, which was divided into two elements. The simple

supports at girder ends were defined at the centroid.

All the analysis models of the first case study are summarized in Table 4-2.
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Table 4-2 Analysis models of the first case study.

Analysis Models

Shell Model 1 (SM1): Full-shell (reference) model. Web distortion is prevented at
cross-frame locations with rigid members.

Shell Model 2 (SM2): The web is modeled as shell elements, flanges are modeled
as beam elements. Web distortion is prevented at cross-
frame locations with rigid members.

Shell Model 3 (SM3): Full-shell model. Connection plates are modeled at cross-
frame locations.

Shell Model 4 (SM4): The web is modeled as shell elements, flanges are modeled
as beam elements. Connection plates are modeled at cross-
frame locations as beam elements.

Beam Model 1 (BM1): Beam model with 7 DOF warping beam elements.

Beam Model 2 (BM2): Beam model with 6 DOF beam elements and Jegr.

Beam Model 3 (BM3): Beam model with conventional 6 DOF beam elements.

When setting up the BM2 model, assumptions were made regarding warping
deformations. The warping was assumed to be free at the simply supported ends of
the girder and restrained at cross-frame locations except for the last cross-frame
location considering that the length of each span is same or close to each other except
the last span. For the first six members, the effective torsion constant was computed
using the member’s unbraced length and boundary conditions as either free or fixed.
Since there is a significant difference between the lengths of the last two members,
the effective torsion constant (Jefr) was not computed in a similar manner. Instead,
the torsion constant of the girder cross-section given in Table 4-1 was utilized in the

analysis.

The full-shell model SM1 was taken as the reference model for comparisons. While
generating SM1 and SM2 models, flexurally rigid members were added along the
web depth at cross-frame locations assuming that the connection plates at these
locations prevent the web distortion. The models SM3 and SM4 were created
additionally to test the effect of the flexible connection plate. The 0.65 inches

thickness full-depth connection plate was modeled on single-side of the exterior
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girder except for the girder ends, which have double-sided plates to represent the

bearing stiffeners, as shown in Figure 4-4.

4]

Figure 4-4 Analysis models SM3 and SM4 with connection plates.

4.1.3 Major-axis bending

For the major-axis bending response, all analysis models produced the same results.
The mid-span deflection was obtained as 2.81 inches in the downward direction. At
support locations, the magnitude of equal and opposite rotations was 0.0057 rad

about the transverse axis of the girder.

4.14 Twist angle

In Figure 4-5, the twist angle values obtained from the shell models SM1, SM2, and
warping beam model BM1 are plotted on the same graph. The shell model SM2,
where the flanges of the girder were modeled with beam elements, produced the
same results as the reference full-shell model, SM1. The twist angle values within
the unbraced length of shell models are larger than the warping beam model, which
shows that the web distortion is effective within the unbraced length of the girder.
Since the web distortion was prevented at cross-frame locations, the zero twist angle
computed at the beam ends in the warping beam model is also seen in the shell

models.
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Figure 4-5 Twist angle along the girder for models SM1, SM2, and BM1.

The results obtained from beam models BM2 and BM3 are plotted separately in
Figure 4-6, together with the results of the reference model SM1. While the use of
Jer in the analysis of beam model BM2 improves the results, considering the twist
angle values in the middle of each unbraced length, it can be seen that the results of
the BM2 model are three to eight times larger than the reference model SM1. This is
because the Jefr is computed based on the assumptions made regarding warping
deformations at the ends of each unbraced length, and the same Jefr value is employed
for intermediate elements since the warping boundary conditions within the
unbraced length are unknown. For the BM3 model, the twist angle goes up to thirty
to fifty times the reference model as a result of neglecting the warping effects.
Another factor contributing to these differences is that the beam elements of BM2
and BM3 models are not capable of capturing the web distortion effects, similar to

the beam elements of the BM1 model.
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Figure 4-6 Twist angle along the girder for models SM1, BM2, and BM3.

In Figure 4-7, the results obtained from shell models SM3 and SM4 are plotted
together with the results of reference model SM1. Modeling of the flexible
connection plates did not make a significant difference in the results when compared
to the reference model in which the web distortion is fully prevented at the cross-
frame locations. The difference at the intermediate cross-frame locations is due to
the eccentricity between single-sided connection plates and the vertical loads applied
on top flange along the centroidal axes of the girder. The effect of additional torsion
induced by this eccentricity is seen in the twist angle results. The largest difference

is seen at the fourth cross-frame location, i.e., 59.16 ft, and it is equal to 0.0001

radians.
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Figure 4-7 Twist angle along the girder for models SM1, SM3, and SM4.
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For the 3.25 ft overhang width of the present case study, the 3/16 inches maximum
vertical deflection limit for the overhang tip suggested by IDOT is equivalent to
0.0048 rad rotation limit for the girder. Considering Table 4-3, it is apparent that the
twist angle values obtained from the models with conventional 6 DOF beam element
and beam element with Jefr cannot be used to evaluate the beam rotation against the
recommended limit, as it is overestimated. Whereas, the analysis model with warping

beam elements produced reliable results.

Table 4-3 Maximum rotation 6x obtained from analysis models.

Analysis Model Maximum Rotation 0y (rad)
SM1-SM4 0.0009
BMI1 0.0008
BM2 0.0069
BM3 0.0314

4.1.5 Lateral bending

The lateral bending moments were extracted from the individual flanges of girder
shell models and reported separately for the top and bottom flanges. While the 6
DOF beam elements do not give any output regarding the flanges, the 7 DOF
warping beam element produces bi-moments as a component of member forces. The
equal and opposite flange lateral bending moments for the torsional action were
obtained by dividing the bi-moment output of the warping beam element by the
distance between flange centroids. The results were plotted in Figure 4-8 and Figure
4-9, together with the results of shell models SM1 and SM2. As can be seen from
these figures, the warping beam model BM1 and the shell model SM2, which uses
an alternative modeling approach for the flanges, are able to capture the response of

the reference model, SM1.

53



Additionally, it is observed that modeling of flexible connection plates has a

negligible effect on the flange lateral bending moments, as can be seen in Figure

4-10 and Figure 4-11.
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Figure 4-8 Top flange lateral bending moment. Models SM1, SM2, and BM1.

Bottom Flange Lateral Bending Moment Along the Girder
3

120
+ % $ $
80 At ol P& o 73 $
$ & ¢ & ¢ & AR ¢ < 4%
40 ¢ < $ o o & $ & F o< $ %
E ¢ R % ¢ s & <§> Q& 4 ?B
"_3_ 0 4+ <& ko3 & o) & & & o3 4 Rosfe
A S A T A T A S S T S
& -40 %Q <§ % & % & '%> & % & % <§$
= b4 ¥ o k4 ¥ g
-80
‘ SM1 ¢ SM2 + BM1 ‘
-120
0 10 20 30 40 50 60 70 80 90 100 110 120 130
x (ft)

Figure 4-9 Bottom flange lateral bending moment. Models SM1, SM2, and BM1
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Figure 4-10 Top flange lateral bending moment. Models SM1, SM3, and SM4.
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Figure 4-11 Bottom flange lateral bending moment. Models SM1, SM3, and SM4.

In Table 4-4, maximum absolute flange lateral bending moment values
corresponding to 17.5 ft-long first segment, 20.83 ft-long intermediate segments, and
8.33 ft-long last segment are summarized together with the maximum moment values
calculated by the approximate equation (Equation 4-1) suggested by AASHTO
LRFD Bridge Design Specifications. When compared to the reference model SM1,
all other analysis models produced close results. Since the approximate equation

assumes torsionally fixed boundary conditions at the ends of unbraced length, it

should not be used for the end segments.
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Table 4-4 Maximum flange lateral bending moment within the unbraced length, in

kip-in.
AASHTO LRFD
Ly C6.103.4.1-2 SM1 SM2 SM3 SM4 BMI1
17.50 ft 77.2 107.9 107.8 107.6  107.6 101.3
20.83 ft 109.4 112.0 111.9 111.6  111.7 105.2
8.33 ft 17.5 79.2 79.1 79.1 79.0 73.0

4.1.6 Cross-frame forces

The laterally supporting cross-frames were represented by torsional restraints in

beam models and by lateral restraints in shell models. To compare the lateral forces

at the top and bottom chord of the cross-frames, the lateral support reactions were

directly taken from the shell models, and the torsional support reactions obtained

from the beam models were divided by the distance between flange centroids. The

comparison of the results can be seen in Figure 4-12 and Figure 4-13.
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Figure 4-12 Lateral cross-frame forces at the top chord.
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Lateral Cross-Frame Forces at the Bottom Chord
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Figure 4-13 Lateral cross-frame forces at the bottom chord.

While reporting results, the results of all shell models and the results of beam models
with 6 DOF were grouped together because they gave the same results. In all shell
models, equal and opposite lateral forces developed in the top and bottom chord
against the torsional action. The warping beam model, BM1, was able to capture the
distribution of forces as shell models. The absence of a warping degree of freedom
in the 6 DOF beam elements caused the torsional restraints in beam models BM2
and BM3 to develop reaction forces as in the case of warping-fixed boundary

conditions defined together with torsional restraints.

4.2 Case Study #2: Horizontally Curved I-Girder Under Deck Weight
Loading

A 150.5 ft long simply supported horizontally curved I-girder with 425 ft radius was
modeled as an isolated interior girder by using flat shell and beam elements. The
cross-sectional dimensions of the girder are shown in Figure 4-14. The sectional and

material properties used in the analysis are given in Table 4-5.
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1 Depth (d) = 85.25 in
Width (b) = 22.0 in
Flange Thickness (if) = 1.25in

Web thickness (tw) = 0.675 in

d=85.25

tw=0.675n{

Figure 4-14 Curved Interior Girder: Cross-sectional dimensions.

Table 4-5 Curved Interior Girder: Properties.

Cross-Sectional Properties

Area (A) 110.86 in?
Moment of inertia about the z-axis (1) 128900.43 in*
Moment of inertia about the y-axis (Iy) 2220.45 in*
Torsion constant (J) 38.97 in*
Warping constant (Cy) 3912900 in®
Material Properties

Modulus of elasticity (E) 29000 kst
Shear modulus (G) 11200 ksi

4.2.1 Deck weight loading

The deck thickness, including integral wearing surface and the tributary deck width,
were taken as 9.5 inches and 8 ft, respectively. The unit weight of concrete used in
the self-weight computation is 150 Ib/ft>. The deck weight was calculated as 950 Ib/ft
and applied as uniform member loads in beam models. In shell models, the loading

was applied as nodal loads on top of girders.
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4.2.2 Analysis models

The sample interior girder was modeled and analyzed in LARSA 4D finite element
analysis software, also in 3D Frame Analysis Program, following similar procedures
as the previous case study. The laterally supporting cross-frames were not modeled
explicitly. Instead, the torsional restraints along the girder longitudinal axis were
defined in beam models, and the lateral restraints along the girder transverse axis
were provided in shell models. As shown in Figure 4-15, cross frames were assumed
equally spaced at 21.5 ft along the girder, including the start and end of the girder.
The girder was restrained in all translational directions at the start, in girder

transverse and elevation axes at the end.

~ 5k
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0ft —~—~Tp~—_"—, 2s5g
e -_=_7~_.'._'"j_"f""*-f——??'s_f‘__f 215 ft 215 ft
ge—s X T
I —
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Figure 4-15 Plan View: Cross-frame locations.

In shell models, the pin supports at girder ends were defined at the bottom flange
nodes. The dimensions of the shell elements employed for the web is 10.75 inches
and 8.4 inches along the longitudinal and elevation axis of the girder, respectively.
The dimensions of shell elements used for the flanges are 10.75 inches and 11 inches

along the longitudinal and transverse axis of the girder, respectively.

In beam models, each unbraced length was divided into ten beam elements. The

simple supports at girder ends were defined at the centroid.

All the analysis models of the second case study are summarized in Table 4-6.
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Table 4-6 Analysis models of the second case study.

Analysis Models

Shell Model 1 (SM1):

Shell Model 2 (SM2):

Beam Model 1 (BM1):
Beam Model 2 (BM2):
Beam Model 3 (BM3):

Full-shell (reference) model. Web distortion is prevented at
cross-frame locations using rigid members.

The web is modeled as shell elements, flanges are modeled
as beam elements. Web distortion is prevented at cross-
frame locations using rigid members.

Beam model with 7 DOF warping beam elements.
Beam model with 6 DOF beam elements and Jesr.

Beam model with conventional 6 DOF beam elements.

When setting up the BM2 model, the warping condition was assumed to be free at

the simply supported ends of the girder and restrained at the cross-frame locations.

The effective torsion constant was computed for each unbraced length and applied

to all beam elements within the unbraced length.

The full-shell model SM1 (Figure 4-16) was taken as the reference model in

comparisons. Similar to the previous case study, flexurally rigid members were

added along the web depth at the cross-frame locations. Since the effect of modeling

flexible connection plates was found to be negligible in the previous case study, there

is no additional analysis model created to consider this effect in the present case

study.

Figure 4-16 3D View: The full-shell model.

60



4.2.3 Major-axis bending

For the major-axis bending response, all analysis models produced almost the same
results except the BM3 model with conventional 6 DOF beam elements. In Figure
4-17 and Figure 4-18, the vertical displacement and rotation about the girder

transverse axis are plotted along the girder.

Vertical Displacements Along the Girder
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Figure 4-17 Vertical displacements along the girder.

Rotation About the Girder Transverse Axis
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0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
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Figure 4-18 Rotation about the girder transverse axis.

As can be seen from the figures, neglecting the warping stiffness of the girder in the
BM3 model causes a significant overestimation, almost 4 times larger vertical

displacements at the center of the girder deflections. Thus, using conventional 6 DOF
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beam elements to model curved I-beams under the bridge’s self-weight would cause

unrealistic cambering of such beams.

4.2.4 Twist angle

In contrast to beam models that do not take into account the web distortion and
produce a single twist angle value at the centroid of the girder, the twist angle varies
along the web depth in shell models. Since significant web distortions were observed
within the unbraced segments of shell models, there is no comparison made between

the shell and beam models of this case study in terms of the twist angle.

The plots of lateral displacement and twist angle along the web can be seen in Figure

4-19 for the middle of first and last unbraced segments, and for the mid-span.
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Figure 4-19 Lateral displacements and twist angle along the web.
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4.2.5 Lateral bending

The lateral bending moments were extracted from the individual flanges of the girder
from the shell models and reported separately for the top and bottom flange. The
equal and opposite flange lateral bending moments were obtained by dividing the bi-
moment output of the warping beam element by the distance between flange
centroids. Additionally, the major-axis bending moment values obtained from the
reference SM1 model were used in Equation 4-2, which is the approximate equation
provided by AASHTO LRFD Bridge Design Specifications, and the lateral bending
moment values due to curvature were calculated. (The constant N was taken as 12 in

Equation 4-2.)

The results were plotted in Figure 4-20 and Figure 4-21. As can be seen from these
figures, the warping beam model BM1 and the shell model SM2, which uses an
alternative modeling approach for the flanges, are able to capture the response of the
reference model, SM1. The approximate equation provides an upper bound for the
flange lateral bending moments and captures the response of the reference model at
the cross-frame locations. This is because the V-Load Method assumes the presence

of a cross-frame at the point under consideration.
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Figure 4-20 Top flange lateral bending moment along the girder.
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Bottom Flange Lateral Bending Moment Along the Girder
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Figure 4-21 Bottom flange lateral bending moment along the girder.
4.2.6 Cross-frame forces

The equal and opposite lateral forces were obtained in the top and bottom chord of
the cross-frames. The absence of a warping degree of freedom in the 6 DOF beam
elements caused the cross-frame forces to differ from other analysis models as the
warping boundary conditions could not be modeled accurately. Since the differences

were negligible, the comparison of the results was not reported.

4.3  Case Study #3: Single Span Horizontally Curved I-Girder Bridge
Under Deck Weight Loading

The bridge that is subject to this case study is a single span horizontally curved I-
girder bridge, the dimensions of which are selected by taking the dimensions of the
example bridge Bridge NISCR2, examined under Project NCHRP 12-79 (White et
al., 2012), as a reference. The span length is 150.5 ft along the centerline, and the
radius of curvature is 425 ft at the centerline. The cross-section of the bridge consists
of four I-girders having the same cross-sectional and material properties which were
used in the previous case study (Figure 4-14 and Table 4-5). The study bridge
consists of the superstructure with idealized supports at the ends. The simple support

conditions of the previous case study were utilized at the ends of each girder.
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As shown in Figure 4-22, the uniform girder and cross-frame spacings are 8 ft and
21.5 ft, respectively. The cross-frames are full depth X-type cross-frame with top
and bottom chords that can be seen through the 3D view of the bridge, in Figure

4-23.
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Figure 4-23 3D view of the bridge.

4.3.1 Deck weight loading

The bridge has 3 ft long overhang at both sides. The deck thickness, including
integral wearing surface, was taken as 9.5 inches, and the unit weight of concrete
used in the self-weight computation is 150 1b/ft>. The deck weight acting on the

interior and exterior girders were calculated as 950 1b/ft and 831.3 1b/ft, respectively.
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In beam models, the loading was applied as uniform member loads. In shell models,

the loading was applied as nodal loads on top of girders.

4.3.2 Analysis models

The sample bridge was modeled and analyzed in LARSA 4D finite element analysis
software, also in 3D Frame Analysis Program following similar procedures as the
previous case studies except that the cross-frames were modeled explicitly by truss

elements and connected to nodes at the intersection of flanges and the web.

The dimensions of shell elements employed for the web and flanges in shell models,
the number of elements employed for modeling girders in beam models, also the
assumptions made regarding the warping conditions of the beam model with Jesr are
same as the previous case study (Section 4.2.2). In beam models, the cross-frames
were connected to the girder centroid through rigid connection members, which are
6 DOF conventional beam elements with large cross-sectional and material
properties. Figure 4-24 shows the graphical illustration of these models with the

corresponding elements.

Rigid Beam (6 DOF)

Truss , C—
B

Figure 4-24 Beam models of the third case study.

66



All the analysis models of the present case study are summarized in Table 4-7.

Table 4-7 Analysis models of the third case study.

Analysis Models

Shell Model 1 (SM1):

Shell Model 2 (SM2):

Beam Model 1 (BM1):

Beam Model 2 (BM2):

Beam Model 3 (BM3):

Girders are modeled as full-shell elements. Web distortion
is prevented at cross-frame locations with rigid members.

The web is modeled as shell elements, flanges are modeled
as beam elements. Web distortion is prevented at cross-
frame locations with rigid members.

Girders are modeled as 7 DOF warping beam elements.
Conventional 6 DOF rigid beams connect cross-frames and
girders.

Girders are modeled as 6 DOF beam elements with Jeg.
Conventional 6 DOF rigid beams connect cross-frames and
girders.

Girders and rigid connection members between girders and
cross-frames are modeled as conventional 6 DOF beam
elements.

The SM1 model was taken as the reference model in comparisons. While reporting

results, girders were numbered starting from the outside of the curve. The outermost

girder corresponds to Girder 1, and the inside girder corresponds to Girder 4.

4.3.3 Major-axis bending

Similar to the previous case study, which analyzes an isolated curved girder, all

analysis models produced similar results for the vertical displacements except the

BM3 model with conventional 6 DOF beam elements. In Table 4-8, vertical

displacements at the mid-span of girders were reported. As can be seen from the

table, neglecting the warping stiffness of girders in the BM3 model causes the girder

vertical deflections to be overestimated.
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Table 4-8 Vertical displacements at the mid-span, in inches.

Girder  SMI SM2 BM1 BM2 BM3
Gl 6.87  -6.87(0.0%) -6.82(-0.7%) -6.63(-3.5%)  -18.42(168.1%)
G2 5.06  -5.06(0.0%) -5.03(-0.6%) -4.95(-22%)  -13.63 (169.4%)
G3 328 -327(-03%) -3.25(-0.9%) -3.30(0.6%)  -8.85 (169.8%)
G4 2150 -1.50 (0.0%) -1.49(-0.7%) -1.66 (10.7%)  -4.08 (172.0%)

Note: The values in brackets are percentage errors with reference to the SM1 model.

In addition to the vertical displacements, the major-axis bending moments were
extracted from the analysis models, and the major-axis bending stresses were
computed relative to the elastic neutral axis, which is at the girder centroid. The stress

values at the mid-span of girders were reported in Table 4-9.

Table 4-9 Bottom flange major-axis bending stresses at the mid-span, in ksi.

Girder  SMI SM2 BM1 BM2 BM3
Gl 18.81  18.81(0.0%) 18.80(-0.1%)  17.8(-5.4%)  18.63 (-1.0%)
G2 1329 1329(0.0%) 13.29 (0.0%)  12.94 (-2.6%) 13.25(-0.3%)
G3 7.41 741(0.0%)  7.41(0.0%)  7.73(43%)  7.47 (0.8%)
G4 1.07 1.07 (0.0%)  1.07(0.0%)  2.11(97.2%)  1.22 (14.0%)

Note: The values in brackets are percentage errors with reference to the SM1 model.

As can be seen from the table, stresses obtained from the shell model, SM2, and
warping beam model, BM1 was identical to the stresses obtained from the reference
model. While the BM3 model produced erroneous results for the vertical
displacements, it produced similar results for the major-axis bending stresses as the
reference model, meaning that the major-axis bending stresses were not much

affected by the warping contributions.
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Regarding the BM2 model, the assumption of warping fixity at the intermediate

cross-frame locations caused the bridge torsional stiffness to be overestimated as a

system, and less load was transferred from the inner girders to the outside girder

when compared with the results of the reference model. The effect of this assumption

was not apparent in vertical displacements (Table 4-8), also in the major-axis

bending stresses of Girder 1 to 3 (Table 4-9). However, the BM2 model

overestimates the major-axis bending moments and stresses significantly for Girder

4, as shown in Figure 4-25 and Figure 4-26.
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Figure 4-25 Major-axis bending moment along Girder 4.
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Figure 4-26 Bottom flange major-axis bending stresses along Girder 4.
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4.3.4 Twist angle

Figure 4-27 and Figure 4-28 shows the comparison of the twist angles along exterior
girders obtained from the BM3 model and the reference SM1 model. As seen in the
figures, the twist angle values of the BM3 model are larger than the reference model
as a consequence of neglecting the warping effects. The twist angle values at the
mid-span of Girder 1 and Girder 4 are almost eleven times and three times greater
than the reference model, respectively. The twist angle values obtained from all other

analysis models were close to each other.
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Figure 4-27 Twist angle along Girder 1 for models SM1 and BM3.
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Figure 4-28 Twist angle along Girder 4 for models SM1 and BM3.
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In Figure 4-29 and Figure 4-30, twist angle values along the exterior girders are
plotted for BM1 and BM2 models together with the reference model. Since the SM 1

and SM2 models produced identical results, they are grouped together.

The twist angle values within the unbraced length of shell models are larger than the
warping beam model BM1 due to Vlasov’s assumption of no web distortion during
twisting. As the web distortion decreases from Girder 1 to Girder 4 (Figure 4-31),

the results become closer.

Compared to the reference model, the BM2 model produces close results by
approximating the torsional stiffness with the effective torsion constant, based on the

assumption of warping fixity at the cross-frame locations.
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Figure 4-29 Twist angle along Girder 1 for models SM1, SM2, BM1, and BM2.
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Figure 4-30 Twist angle along Girder 4 for models SM1, SM2, BM1, and BM2.
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Lateral Displacements Along the Web
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Figure 4-31 Lateral displacements along the web, at the mid-span of Girder 1 and
Girder 4.

4.3.5 Lateral bending

The lateral bending moments were extracted from the individual flanges of shell
models’ girders. The equal and opposite flange lateral bending moments were
obtained by dividing the bi-moment output of the warping beam element by the
distance between the flange centroids. Additionally, the major-axis bending moment
values obtained from the reference SM1 model were used in Equation 4-2, which is
the approximate equation provided by AASHTO LRFD Bridge Design
Specifications, and the lateral bending moment values due to curvature were

calculated. (The constant N was taken as 12 in Equation 4-2.)

The obtained lateral bending moments were then divided by the section modulus of

the flanges, and the lateral bending stresses were computed. For all girders, the

72



warping beam model BM1 and the shell model SM2, which uses an alternative
modeling approach for the flanges, were able to capture the response of the reference
model, SM1. For Girder 1 to Girder 3, the approximate equation produced
conservative flange lateral bending stresses throughout the length of the girder;
however, it produced unconservative results within the unbraced lengths of Girder
4. From Figure 4-32 to Figure 4-35, lateral bending stresses along Girder 2 and
Girder 4 are plotted separately for the top and bottom flange.
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Figure 4-32 Top flange lateral bending stresses along Girder 2.
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Figure 4-33 Bottom flange lateral bending stresses along Girder 2.
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As seen in the figures, the approximate equation produced reasonable results at
cross-frame locations as the V-Load Method assumes the presence of a cross-frame
at the point under consideration. However, different from the previous case study,
the results do not perfectly match with the other reported results at the cross-frame
locations. As an example, the top flange lateral bending stress of Girder 2 produced
by the approximate equation at the fifth cross-frame location, i.e., 86 ft, is 17%
greater than the stress obtained from the reference model. The reason for that is the
V-Load Method analyzes flange as a continuous beam rigidly supported at the cross-
frame locations. Since the cross-frames were represented by lateral restraints in the
previous case study, the approximate equation produced exact results at these
locations. In the current case study, the cross-frames are explicitly modeled, and
flanges are not rigidly supported at these locations. Therefore, the results obtained
from the approximate equation show deviations at the cross frame locations, and the
approximate equation produces unconservative results for Girder 4. At the mid-span
of Girder 4, i.e., 75.25 ft, the top flange lateral bending stress produced by the

approximate equation is 60% less than the stress obtained from the reference model.
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Figure 4-34 Top flange lateral bending stresses along Girder 4.
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Bottom Flange Lateral Bending Stresses Along Girder 4
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Figure 4-35 Bottom flange lateral bending stresses along Girder 4.
4.3.6 Support reactions and cross-frame forces

Under uniform deck weight loading, the reactions obtained at the start and end of
girders were equal. In all analysis models, the distribution of reactions was similar,
as shown in Table 4-10. Since the bridge is under torsional action due to its curved
geometry, reactions are larger at the outer girder and smaller at the inner girder as

expected.

Table 4-10 Vertical support reactions at the start and end of girders, in kips.

Girder SM1 SM2 BM1 BM2 BM3
Gl 114.1 114.1 112.5 113.3 113.1
G2 82.7 82.7 83.8 81.9 82.9
G3 51.2 51.3 54.0 55.2 53.9
G4 20.1 20.1 17.9 17.7 18.2

Note: The values are identical for the start and end of girders. Duplicates are not shown.

Regarding the cross-frame forces, discrepancies are observed between shell and

beam models for the first and last cross-frames due to the difference in modeling
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support conditions. For the intermediate cross-frames, all analysis models produced

close results.

From Figure 4-36 to Figure 4-38, the axial forces in one of the diagonals were plotted
for analysis models SM1, BM1, and BM2, relative to the cross frame numbers shown
in Figure 4-23. There were slight differences between the results of SM1 and SM2
models, also between the results of BM1 and BM3 models. Since the differences

were not visible in the graphs, the results of SM2 and BM3 models are not shown

for clarity.

The cross-frame forces of the BM2 model deviate from the reference model as a

result of the warping fixity assumption at the intermediate cross-frame locations.
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Figure 4-36 Forces in diagonal (between the top of G1 and the bottom of G2).
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G2-G3 Cross-Frame Forces in Diagonal
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Figure 4-37 Forces in diagonal (between the top of G2 and the bottom of G3).
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Figure 4-38 Forces in diagonal (between the top of G3 and the bottom of G4).
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CHAPTER 5

SUMMARY AND CONCLUSIONS

In finite element analysis of steel I-girder bridges, the restrained warping behavior
of girder can be considered through detailed 3D shell models or alternative methods
such as utilizing an effective torsion constant in the analysis with conventional beam
elements. For practical purposes, there is still a need for an intermediate modeling
approach that is time-saving, reliable, and will provide specific analysis output

parameters with sufficient accuracy.

In this study, a practical finite element modeling approach is investigated by utilizing
7 DOF beam elements that consider restrained warping behavior as an additional
degree of freedom for girders. A comparative study was performed by assessing the
results of various shell models and beam models, from the analysis and design
aspects. The beam models of the study were analyzed in the 3D Frame Analysis
Program, which was developed in MATLAB. The space truss element, 6 DOF
conventional beam element, 6 DOF conventional beam element that uses an effective
torsion constant (Jefr) to consider warping effects, and 7 DOF warping beam element
were implemented into the program. The shell models of the study were analyzed in
LARSA 4D program through thin-Drilling and thin-incompatible shell elements
available in the program. In addition to full-shell finite element models in which
multiple shell elements constitute the cross-section of the member, an alternative
modeling approach is considered by modeling the web of the cross-section with shell

elements and its flanges with beam elements.

Different modeling approaches were validated under torsional loading by comparing
the analysis results with the analytical solution. The analytical solution for torsion
and formulation of 7 DOF warping beam element was based on Vlasov’s theory,

which neglects shear deformation effects on warping and assumes that the web
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remains straight during twisting. Since the I-section members have small torsional
rigidity and exhibit large amounts of warping, also the girders having thin webs are
generally provided with stiffeners, the assumptions of Vlasov’s theory were
considered admissible for practical purposes. The results obtained from beam models
utilizing 7 DOF warping beam elements were capable of capturing the analytical
solution for an I-section member under torsionally fixed-free and fixed-fixed
boundary conditions. When multiple 6 DOF beam elements with Jeir were employed
to model the member, larger twist angle values were obtained from the
corresponding beam models compared to the analytical solution and other analysis
models. While the variation of torsional moments and bi-moment obtained from
analytical solution and shell models were similar, slight differences were observed
in twist angle values. The differences were found to be mainly due to the no web
distortion assumption of Vlasov’s theory during twisting. In case the web distortion
is prevented in shell models by means of rigid members, the twist angle values were
also in line with the analytical solution. During the validation process, it was found
out that the thin-drilling shell models show stiff behavior in the presence of rigid

members.

Three case studies were conducted to understand to what extend the 7 DOF warping
beam element can produce accurate analysis results and to qualify the usability of
this element in the current bridge engineering practice. Case studies focused on the
non-composite response of girders under construction loads and important design
parameters such as major-axis and flange lateral bending stresses. The results of
different modeling approaches were compared by taking the 3D full-shell model as
areference. In the analysis with Jefr, the warping was assumed to be free at the simply
supported ends of the girder and restrained at cross-frame locations. There is no such
assumption required in the analysis with 7 DOF warping beam elements. The
conclusions drawn from these case studies are summarized in the following

paragraphs.

For curved I-girders in which the bending and torsional actions are coupled,

neglecting girder warping stiffness by using the 6 DOF conventional beam elements
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in bridge superstructure modeling causes unrealistic cambering because the girder
vertical deflections are significantly overestimated under the bridge’s self-weight. In
addition, this element overestimates the girder twist both for straight and curved I-
girders. Therefore, the associated rotations should not be used to evaluate girder
rotation limits or overhang vertical deflection limits given by the design
specifications. Besides that, the element produced major-axis bending moments and
cross-frame forces with sufficient accuracy for the example structures analyzed in

this study.

When compared to the beam elements neglecting the girder warping stiffness, beam
elements that incorporate the girder warping stiffness by means of an effective
torsion constant provide a significant improvement in the analysis of steel I-girder
bridges in terms of girder twist and vertical deflections. However, depending on the
torsional stiffness of the bridge, the warping fixity assumed at the cross-frame
locations to compute the effective torsion constant may yield incorrect analysis
results for curved bridges. As in the case of the third case study, this assumption can
cause the bridge torsional stiffness to be overestimated, and less load is transferred
from the inner girders to the outside girder. As a result, the major-axis bending

moments and stresses are overestimated for the inside girder.

The modeling approach, which uses the 7 DOF warping beam elements, and the
alternative refined modeling approach, which uses the combination of shell-beam
elements for steel I-girders, are both capable of producing all of the analysis output
parameters considered in this study with sufficient accuracy. The only exception is
that, since the 7 DOF warping beam elements neglect web distortion effects, this
element can produce inaccurate twist angle results in cases where the web distortion

1s effective.

In conclusion, the modeling approach, which utilizes 7 DOF warping beam elements
for steel I-girders, was found adequate in producing essential analysis output
parameters with sufficient accuracy and can be used for practical purposes to

consider the restrained warping behavior.
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APPENDIX A - Element Stiffness Matrices
The stiffness matrix for Truss Element:
2 5
/- .
L /

1 - 4
3 [

AL 0 0 —-AL*> 0 0
00 0 00
E 0 0 0 0
L3|Sym. A2 0 0
0 0
0

The stiffness matrix for 6 DOF Beam Element:

I a
b ", .

kk, 0 0 0 0 0 k., O 0 0 0
k, 0 0 0 kyg O kyg O 0 0

ks 0 kss O 0 0 ks O  ksqy

ky, 0 0 0 0 0 ke O

ks 0 0 0 kso 0  ksqy

E ke 0 keg O 0 0
I3 k, 0 0 0 0
ke 0 0 0

kq 0 ko1y

Sym. k1o 0

ki1
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k]. = k7 = _k1_7 = ALZ

P 121,

2 8 2—8 (1 +(py)
k,_.=k = —ke_q=—k _ Ol

2—-6 — 2—-12 — 6—8 — 8—-12 — (1 + (py)
Ky = ko= —ky = o

N G
k k ke_o=—k = 6Ll

3—-5 — 3—-11 — 5-9 — 9-11 — (1 + (pz)
k, =kyy = —k _gr

4 — 110 — 4-10 — E

4 4+ @)1
ke = kyy = (4 + @)L,
1+ ¢,)

k — (2 - ¢2)L21y

ST 1+

4 4+ @)1
ke = kyy = 4+ 9y)L°L,
1+ ey)

k _ (2 - (py)LZIz

6—-12 —(1 T qoy)

The stiffness matrix for 7 DOF Warping Beam Element:

|12
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k, 0 0 O 0 0 0 kg O
ky 0 0 0 kyg O 0 ko
k3 0 k3_5 0 0 0 0
k, 0 0 kyy O 0
ks 0 0 0 0
ke 0 0 ke
E k, 0 0
L3 kg 0
kq
Sym.
ki =kg=—ki_g= AL?
k, = kg = —k = 121,
2 = Ko = 2_9_(1+<Py)
6LI,
ky¢= ky13= —ke_9g=—kog_13 = m
y
121y
ks = kio= —ksz_10= m
k k k K 6L1y
3-5 3-12 5-10 10-12 1+ )
ky=ky; =—k —6G]L2+12C
4 = K11 = 4-11 7 “op w
G]L3
ko7=ky 14=—ks_11=—ki1_14a= 10E + 6C,, L

4+ (pZ)LZIy

ke =k, =
S C !
k — (2 - ¢Z)L21y
T 1+ 9y)
4 + L2
k6=k13=( PyILL,
1+ ey)
k _ (2 - (py)LZIz
6-13 —(1 n <Py)
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2GJL*

k, = ki, = ——+4C,, L?
7 14 15E + 4Cy,
GJL* ,
kr-14= =555 + 26l
Where;
_ 12El,
Oy = Ga, 2
12E1,
Y2 =Ga,12

L: element length, E: modulus of elasticity, G: shear modulus, J: torsion constant,

C,,: warping constant,

A: cross-sectional area, I,: the moment of inertia about member local z-axis, I, : the
moment of inertia about member local y-axis, A, : shear area in member local y-axis,

and A,: shear area in member local z-axis.

All stiffness matrices are symmetric.
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APPENDIX B - Inputs and Outputs of the 3D Frame Analysis Program

Inputs of the Program

The inputs of the program are entered either relative to the local coordinate system
of elements or the global coordinate system. The local coordinate system of an
element is defined such that the x-axis of element directed along the member’s
centroidal axis from the start of the member to the end. For a horizontal member
lying on the global X-axis, the member local-y and local-z axes coincide with the

system global-Y and global-Z axes, respectively.

Input Spreadsheet: Properties

Fropert Shear Shear
'I:’D E (ksi) | & (ksi) | A(in?) || 1z (in%) | Iy (in®) |Areain [|Areain | (in*) [|Cw (inf)
v [in®) || z {in®)

Properties: The input sheet for the material and cross-sectional properties. The
material properties include modulus of elasticity (E), shear modulus (G), torsion
constant (J), and warping constant (Cy). The cross-sectional properties include the
section area (A), moments of inertia about member local z- and y- axes (I, and Iy,
respectively), the shear areas for transverse shear. All properties are entered in

member local axes.

Input Spreadsheet: Nodes

X Y Fi
Neode ID ||Coordinate | Coordinate | Coordinate

(in) (in) (in)

Nodes: The input sheet for the coordinates of element nodes, in other words, for the
joint locations. The locations are entered as x-, y- and z-coordinates in the global

coordinate system.
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Input Spreadsheet: Elements

Warpin Lb for
EIE::EM :i«:'dl NE::E Pro|l:=ner|'y Type for BI:ur?ﬂ Beam with
with Jeff Jeff (in)
Truss
Beam
Beam with Jeff
Warping Beam|

Truzs

BEeam
Eieam with Jeff

Elements: The input sheet for the element properties. These properties include
connectivity of members defined by the start and end nodes of the element, the
material and cross-sectional properties specified by the ID of property entered into
Properties sheet, the type of element which can be one of Truss, Beam, Beam with
Jef, Warping Beam. Two properties for warping boundary conditions and unbraced
length are only applicable to elements with type Beam with J.;. Warping boundary
conditions can be one of Fixed-Fixed and Fixed-Free. For intermediate elements
defined between these boundaries, the two inputs should be the same. The unbraced

length corresponds to the distance between warping boundaries.

Input Spreadsheet: Restraints

Support ID| Node ID Tx Ty Tz Rx Ry Rz

Fixed -

Free

Restraints: The input sheet for the restraints or support conditions. The support

conditions are specified as Fixed or Free for the available seven degrees of
freedom with respect to the global coordinate system. The corresponding degrees

of freedom are translation and rotation in X, y, z directions, and the warping DOF.
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Input Spreadsheet: Nodal Loads

- - - Mx M Mz B
Load ID | Node ID | Fx (kips) (| Fy (kips) || Fz (kips) [kips-in] [kip:in] (kips-in) [ (kips-in?)

Nodal Loads: The input sheet for concentrated loads to be applied to nodes of the
analysis model. The loads are specified with respect to the global coordinate
system. The loads corresponding to the available degrees of freedom are

translational forces and moments in x, y, z directions, and bi-moment.

Input Spreadsheet: Member Loads

Uniform Load |[Uniform Torsion
Load ID Member ID in Local z in Local x

(kips/in) (kips-in/in)

Member Loads: The input sheet for uniformly distributed loads to be applied to
members of the analysis model. The loads are assumed to act on the member
centroidal axis and specified with respect to member local axes. The member loads

available in the program are uniform load in member local-z direction and uniform

torsion in member local-x direction.

Outputs of the Program

Output Spreadsheet: Joint Displacements

Joint Tx (in) | Ty (in) Tz (in) || Rx (rad) | Ry (rad) || Rz (rad) [W (rad/in)

Joint Displacements: The output sheet that reports joint displacements in global

coordinates.
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Output Spreadsheet: Member End Displacements

START NODE

END NO

DE

Tx (in)

Ty (in)

Tz (in)

Rx (rad)

Ry (rad)

Rz (rad)

W (rad/in)

Tx (in)

Ty (in)

Tz (in)

Rx (rad)

Ry (rad)

Rz (rad)

W (rad/in)

Member End Displacements: The output sheet that reports element end

displacements in element local coordinates.

Output Spreadsheet: Member End Forces

START NODE END NODE
Fx Fy Fz Mx My Mz B Fx Fy Fz Mx My Mz B
(kips) || (kips) [ (kips) [(kips-in)|(kips-in)|(kips-in)((kips-in?)| (kips) | (kips) [ (kips) [(kips-in)|(kips-in)|(kips-in)|(kips-in?)

Member End Forces (Local/Global): Two output sheets reporting element end forces

in element local coordinates and global coordinates.

Output Spreadsheet: Support Reactions

Joint

Fx (kips)

Fy (kips)

Fz (kips)

Mx
(kips-in)

My
(kips-in)

Mz

(kips-in)

(kips-in2)

Support Reactions: The output sheet that reports support reactions at the restrained

DOFs, in global coordinates.
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