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ABSTRACT 

 

A COMPARATIVE STUDY ON PRACTICAL MODELING OF STEEL I-

GIRDER BRIDGES CONSIDERING RESTRAINED WARPING 

BEHAVIOR 

 

 

 

Bulduk, Aynur Şeyma 

Master of Science, Civil Engineering 

Supervisor: Prof. Dr. Özgür Kurç 

 

 

September 2020, 94 pages 

 

 

Skewed and horizontally-curved steel I-girder bridges show complicated behavior 

due to the torsional action they exhibit under standard bridge loads, particularly 

during construction. The restrained warping response of girders can play a critical 

role in the analysis and design of these structures. In finite element analysis, the 

restrained warping behavior of girder can be considered through detailed 3D shell 

models or alternative methods such as utilizing an effective torsion constant in the 

analysis with conventional beam elements. However, there is still a need for an 

intermediate modeling approach for practical purposes, that is time-saving, reliable, 

and will provide specific analysis output parameters with sufficient accuracy. This 

study investigates different modeling approaches involving shell elements, beam 

elements with warping behavior, and the combination of shell-beam elements. Then, 

it evaluates to what extent a modeling approach that utilizes beam elements with an 

additional warping degree of freedom can produce accurate results compared to the 

other modeling approaches. For this purpose, a 3D frame analysis program is 

developed in MATLAB and different beam element formulations are implemented 
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into the program. Under construction loads, a straight I-girder, a horizontally-curved 

I-girder, and a horizontally-curved I-girder bridge are analyzed through the frame 

analysis program. Equivalent 3D shell models are constructed and analyzed in 

LARSA 4D finite element analysis software. The accuracy of twist angles, vertical 

deflections, major-axis and lateral bending moments, associated stresses, and cross-

frame forces are discussed in a comparative manner. The main conclusion drawn 

from this study is that the beam element with an additional warping degree of 

freedom is capable of producing essential analysis output parameters with sufficient 

accuracy. Moreover, using shell and beam elements for modeling the web and 

flanges of an I-section, respectively, can be considered as an alternative and practical 

way of modeling such bridges. 

Keywords: Constructibility, Curved Bridge, Finite Element Modeling, Restrained 

Warping, Steel I-girder 
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ÖZ 

 

ÇELİK I-KİRİŞLİ KÖPRÜLERİN SINIRLANDIRILMIŞ ÇARPILMA 

DAVRANIŞI DİKKATE ALINARAK PRATİK MODELLENMESİ 

ÜZERİNE KARŞILAŞTIRMALI BİR ÇALIŞMA 

 

 

 

Bulduk, Aynur Şeyma 

Yüksek Lisans, İnşaat Mühendisliği 

Tez Yöneticisi: Prof. Dr. Özgür Kurç 

 

 

Eylül 2020, 94 sayfa 

 

 

Eğik ve yatay kavisli çelik I-kiriş köprüler, özellikle inşaat sırasında standart köprü 

yükleri altında gösterdikleri burulma hareketi nedeniyle karmaşık bir davranışa 

sahiptirler. Kirişlerin sınırlandırılmış çarpılma tepkisi, bu yapıların analizi ve 

tasarımında kritik bir rol oynayabilir. Sonlu eleman analizinde, kirişin 

sınırlandırılmış çarpılma davranışı, detaylı üç boyutlu kabuk modelleri veya 

geleneksel kiriş elemanları ile birlikte analizde etkili bir burulma sabitinin 

kullanılması gibi alternatif yöntemlerle dikkate alınabilir. Bununla birlikte, pratik 

amaçlar için, zaman kazandıran, güvenilir ve belirli analiz çıktı parametrelerini 

yeterli doğrulukla sağlayacak bir ara modelleme yaklaşımına hala ihtiyaç vardır. Bu 

çalışma, kabuk elemanlarını, çarpılma davranışına sahip kiriş elemanlarını ve kabuk-

kiriş elemanlarının kombinasyonunu içeren farklı modelleme yaklaşımlarını 

incelemektedir. Ayrıca, ek bir çarpılma serbestlik derecesine sahip kiriş elemanlarını 

kullanan modelleme yaklaşımının, belirtilen diğer modelleme yaklaşımlarına kıyasla 

ne kadar doğru sonuçlar üretebileceğini de değerlendirmektedir. Bu amaçla 

MATLAB'da üç boyutlu bir çerçeve analiz programı geliştirilmiş ve programa çeşitli 
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kiriş eleman formülasyonları entegre edilmiştir. İnşaat yükleri altında, düz bir I-kiriş, 

yatay kavisli bir I-kiriş ve yatay kavisli bir I-kiriş köprü, çerçeve analiz programı 

aracılığıyla çözümlenmiştir. Bunlara ek olarak, eşdeğer üç boyutlu kabuk modelleri, 

LARSA 4D programında oluşturulup çözümlenmiştir. Gerçekleştirilen bütün 

çözümlemeler sonrasında burulma açılarının, dikey sapmaların, ana eksen ve yanal 

eğilme momentlerinin ve ilişkili gerilmelerin, çapraz çerçeve kuvvetlerinin 

doğruluğu karşılaştırılmıştır. Sonuç olarak, çarpılma serbestlik derecesine sahip kiriş 

elemanının gerekli çözümleme sonuçlarını yeterli doğrulukta üretebildiği 

görülmüştür. Buna ek olarak, bir I-kesitin gövde ve flanşlarını modellemek için 

sırasıyla kabuk ve kiriş elemanlarının kullanılması bu tür köprüleri modellemede 

alternatif ve pratik bir yol olarak düşünülebilir. 

Anahtar Kelimeler: Çelik I-kiriş, İnşa Edilebilirlik, Kavisli Köprü, Sınırlandırılmış 

Çarpılma, Sonlu Eleman Modellemesi 
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CHAPTER 1  

1 INTRODUCTION  

In highway bridge construction, skewed and horizontally-curved bridges are 

preferred options in the presence of geometric restrictions, especially in the urban 

areas. In addition, steel I-section girders are preferred by engineers due to their 

economic advantages and ease of erection. In spite of their extensive usage, the 

behavior of these types of bridges is still not completely understood. Compared to 

non-skewed straight bridges, such bridges have more complicated behavior, which 

results from the torsional action that they exhibit under standard bridge loads, 

particularly during construction. 

Under torsional loading, members with I-section warp in addition to twisting where 

warping takes place by lateral bending of the flanges. As shown in Figure 1-1, when 

the flanges of member ends are free to deform, the member undergoes homogeneous 

torsion, meaning that the applied torsion is entirely resisted by the St. Venant torsion. 

As shown in Figure 1-2, when the flanges of member ends are restrained, the member 

undergoes non-homogeneous torsion, i.e., the applied torsion is not only resisted by 

the St. Venant torsion but also by the warping torsion, implying that the additional 

normal and shear stresses develop in the flanges due to bending. 

 

Figure 1-1 Homogeneous torsion in members with I-section. 
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Figure 1-2 Non-homogeneous torsion in members with I-section. 

For skewed and horizontally-curved steel I-girder bridges, the warping torsion can 

dominate the St. Venant torsion in the overall behavior of the structure. Besides, for 

all types of steel I-girder bridges with a concrete deck, the warping stiffness of girder 

can play a significant role in the torsional analysis of exterior girders under the 

eccentric loads acting on overhang forming brackets. 

1.1 Problem Statement 

The girder warping can be critical for both the analysis and design aspects of steel I-

girder bridges. For skewed bridges, neglecting the girder warping stiffness limits the 

load transfer from cross-frames to girders and causes the cross-frame forces to be 

underestimated, which may lead to the insufficient design of cross-frame members. 

For horizontally-curved bridges, since bending and torsional actions are coupled, 

neglecting the girder warping stiffness may lead to errors in the prediction of major-

axis bending response and corresponding stresses used in the design of girders. 

Likewise, in the torsional analysis of exterior girders, neglecting the girder warping 

stiffness causes the girder rotation to be overestimated; hence, the rotation limitations 

given by the design codes may not be satisfied. These are some of the examples 

emphasizing the need for considering the girder warping stiffness in the analysis and 

design of steel I-girder bridges. 

In the finite element analysis of bridge superstructures, the effects of cross-section 

warping can be included in the analysis output through a refined finite element model 

by modeling the cross-section of I-girders with multiple shell elements. However, 

constructing such a model and interpreting analysis results may require specialized 
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knowledge of finite element method, additional computational cost, and can be time-

consuming for practical purposes. Moreover, engineers are more familiar with the 

conventional beam element formulations, can easily interpret the analysis result, and 

directly use the analysis results in the design computations. Even though there are 

several beam element formulations that consider warping deformations, the accuracy 

and validity of such formulations are not well known, especially for steel I-girder 

bridges. Thus, the main focus of this study is to construct different structural models 

involving shell elements, beam elements with warping behavior, and the 

combination of shell-beam elements, compare the results, and propose a reliable, 

practical, and accurate way of considering the effect of warping for steel I-girder 

bridges.  

1.2 Literature Review 

In 1961, Vlasov developed a torsion theory for open section thin-walled beams 

considering the restrained warping. He introduced the concept of non-homogeneous 

torsion, the theory of sectorial areas, warping constant, and bi-moment. In order to 

consider the effect of restrained warping in the analysis and design, also to ease these 

processes, different approaches to the torsion problem of I-section members arose 

following the Vlasov’s beam theory. One of these approaches was converting the 

torsion in the cross-section into a lateral force couple acting on the flanges and 

analyzing the warping of I-section member flanges analogous to the flexure problem. 

Based on the analytical solution, reduction factors for the obtained flange lateral 

bending moments were developed and tabulated to be used in the design for the 

simple, fixed and partial warping boundary conditions (Salmon, Johnson, & Malhas, 

2009; Montoya-Vargas & Dario Aristizabal-Ochoa, 2019). 

In finite element analysis through beam elements, the presence of an additional 

degree of freedom (DOF), which is the warping DOF, was considered by several 

researchers, and new element formulations with 14×14 stiffness matrices were 

developed. Barsoum and Gallagher (1970) studied the torsional and torsional-
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flexural instability by introducing elastic and geometric stiffness matrices with the 

warping DOF. A polynomial approximation was used in the formulation. Waldron 

(1986) derived a member stiffness matrix with the warping DOF by inverting the 

appropriate member flexibility matrix and considering the equilibrium of member 

ends. Yang and McGuire (1984) introduced the warping spring concept to analyze 

partial warping restraint conditions. The stiffness matrix developed by Barsoum and 

Gallagher (1970) was employed in the study and a static condensation procedure was 

applied to eliminate the non-continuous warping DOF at the member ends with 

restrained warping. 

In Vlasov’s beam theory, the cross-section is assumed to be undeformable in its own 

plane, and shear deformation effects are neglected. Benscoter (1954), on the other 

hand, introduced a beam theory for thin-walled beams which incorporates shear 

deformations and characterizes warping as an independent function rather than 

considering it as the rate of change of twist angle. While the aforementioned element 

formulations are based on Vlasov’s theory, there are other researchers in the 

literature (Shakourzadeh, Guo, & Batoz, 1995) who formulated the beam elements 

for both open and closed cross-sections based on Benscoter’s theory. 

Another study that was conducted by Ahmed and Weisgerber (1996) accounts for 

the warping of I-section members in the commercial software programs that employ 

conventional beam element formulations with a 6×6 stiffness matrix for grid or 

12×12 stiffness matrix for space frame structural models. The torsional stiffness 

associated with homogeneous torsion was equated to the analytical torsional stiffness 

associated with non-homogeneous torsion and an effective torsion constant was 

developed. The effective torsion constant was defined for I-section members having 

warping fixity at both ends, warping fixity at one end and free warping at the other 

end, and partial warping restraint at both ends. The warping spring concept proposed 

by Yang and McGuire (1984) was adopted to analyze the partial warping boundary 

conditions. 
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In the literature, several other researchers have investigated the behavior of steel I-

girder bridges through finite element analysis by modeling girders as beam elements. 

Either the element formulations with warping effects, some discussed in the 

preceding paragraphs, were employed or warping effects were included in the 

analysis by approximate methods. Zhang, Huang, and Wang (2005) conducted a 

parametric study to investigate the live load distribution of horizontally-curved I-

girder bridges and developed equations for the live load distribution factors. The 

bridges were modeled as a generalized grillage beam system and thin-walled curved 

beam elements considering warping torsion were utilized  in modeling girders. The 

generalized grillage model was compared with a detailed 3D finite element model 

for verification. Linzell and Shura (2010) worked on a large radius, horizontally-

curved steel I-girder bridge, and presented the comparison of construction field data 

with the results of finite element grillage models simulating the actual construction 

sequence. The goal of the study was to assess the limitations of standard analysis 

methods that are extensively used by practicing engineers. Therefore, the 

conventional frame elements were employed to model girders and cross-frames, and 

the warping stresses were estimated by an approximate method, namely the V-load 

method. It was reported that the grillage models of the study combined with the V-

load method produced poor results against the field data. Chang and White (2008) 

assessed the qualities and limitations of a number of finite element modeling 

considerations for composite curved steel I-girder bridges. The modeling 

requirements were emphasized for the composite section in which the deck slab 

either modeled by beam or shell elements, and girders modeled by beam elements 

considering the warping as an additional DOF. For modeling purposes, the 

commercial finite element analysis packages were used such as ABAQUS. It was 

concluded that the detailed 3D shell element models and 3D grid models with girder 

elements having warping DOF are the most accurate representations of the structural 

response. 

Sanchez and White (2017) discussed the qualities and limitations of various finite 

element analysis methods for curved and skewed I-girder bridges as a part of efforts 
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under Project NCHRP 12-79 (White et al., 2012). The focus of the study was non-

composite response during construction, emphasizing inaccuracies in the analysis 

through traditional 2D-grid models, and improvements were proposed to eliminate 

these inaccuracies. The approximate method suggested to include warping effects in 

the analysis was the use of effective torsion constants developed by Ahmed and 

Weisgerber (1996). 

1.3 Objective and Scope 

The main objective of this study is to compare the torsional responses of different 

modeling approaches used for modeling straight or curved steel I-girder bridges in 

terms of the accuracy of these approaches, their practical use, and feasibility of use 

in conventional finite element analysis software. A two-node warping beam element 

having seven DOF at each node will be developed by combining the stiffness matrix 

of the conventional two-node Timoshenko beam element with the 4×4 torsional 

stiffness matrix derived based on the Vlasov’s beam theory. The element will be 

implemented into a frame analysis program, namely the 3D Frame Analysis 

Program, that will be coded in MATLAB, using the direct stiffness method for the 

analysis of frames in three-dimensional space. In addition to this element, 

conventional beam elements and the effective torsion concept proposed by Ahmed 

and Weisgerber (1996) will be included in the program. In all formulations, only 

linear elastic behavior will be considered. In addition to the finite element models 

constructed by beam elements, refined finite element models with shell elements and 

the combination of beam and shell elements will also be constructed and analyzed 

utilizing LARSA 4D finite element analysis software. Then, the results obtained 

from all structural models, which account for warping effects, will be compared with 

the analytical solution for validation purposes. 

Case studies will be conducted by analyzing straight and curved girder models, and 

a horizontally-curved bridge model with girders and cross-frames. The case studies 

will focus on the non-composite response of girders under construction loads and 
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important design parameters such as major-axis bending stress and flange lateral 

bending stress. Only the results of the linear static analysis will be compared. 
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CHAPTER 2  

2 BEAM ELEMENT FORMULATIONS AND IMPLEMENTATION OF 3D 

FRAME ANALYSIS PROGRAM 

A new 3D Frame Analysis Program has been developed in MATLAB to analyze the 

structures that were investigated in this study using different beam formulations. The 

elements available in this program are the space truss, 6 DOF conventional beam, 6 

DOF beam with effective torsion constant to consider warping effects, and a 7 DOF 

warping beam element, including warping behavior as an additional degree of 

freedom. The program can analyze members in which the cross-section’s shear 

center and centroid coincide. In this study, the program was used to analyze such 

members with doubly-symmetric I-sections. 

This chapter provides a theoretical background for the torsional analysis of steel I-

section members, including the derivation of a 4×4 torsional stiffness matrix, and 

outlines the implementation of the program. All expressions given in derivation of 

the 4×4 torsional stiffness matrix are based on linear elastic behavior assumption. 

2.1 Torsional Analysis of Steel I-Section Members 

When members having a solid circular cross-section are subjected to torsion, twisting 

occurs about the member’s longitudinal axis, and the cross-sections initially plane 

remain plane after twisting. On the contrary, when members having a non-circular 

cross-section are subjected to torsion, the applied torsion is resisted by both twisting 

and warping of the cross-section, and the cross-sections initially plane do not remain 

plane after deformations take place. 
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In the case of members with I-section, the applied torsion is resisted by the twisting 

of the whole cross-section and the warping of the flanges. For such members, the 

member internal torsion can be divided into two parts: the St. Venant torsion and the 

warping torsion. When flanges at the member ends are allowed to deform freely, the 

member undergoes homogeneous torsion, i.e., the applied torsion is entirely resisted 

by the St. Venant torsion. When flanges of the member ends are restrained, the 

member undergoes non-homogeneous torsion, i.e., the applied torsion is resisted by 

the St. Venant torsion and warping torsion. Thus, the torsional analysis of such 

sections should consider the warping torsion as well as the St. Venant torsion. 

2.1.1 Sources of torsion 

The torsion in the cross-section can either result from an externally applied torsional 

moment or an eccentrically applied transverse force. While the eccentricity of 

longitudinal forces causing flexural moments are measured relative to the geometric 

centroid of the cross-section, the eccentricity of transverse forces creating torsion is 

measured relative to the shear center of the cross-section. The shear center is a point 

in the cross-section through which the applied transverse forces do not produce 

torsion. As shown in Figure 2-1(a), for a single-symmetric I-section, the shear center 

lies on the axis of symmetry but does not coincide with the centroid. As shown in 

Figure 2-1(b), for a doubly-symmetric I-section, the shear center coincides with the 

centroid of the cross-section.  



 

 

11 

 

Figure 2-1 The centroid and shear center of an I-section: (a) Single-symmetric I-

section; (b) Doubly-symmetric I-section. 

2.1.2 St. Venant torsion, Ms 

The St. Venant torsion (or pure torsion) component of the member internal torsion 

is calculated in the same way as the torsion of circular bars by assuming the member 

ends free to warp (Figure 2-2). 

 

Figure 2-2 The St. Venant torsion (pure torsion). 
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Similar to the flexural curvature, the torsional curvature (or the rate of change of the 

angle of twist) is expressed as the moment divided by the torsional rigidity. The St. 

Venant torsion, 𝑀𝑠, is given by 

𝑀𝑠 = 𝐺𝐽
𝑑𝜃𝑥

𝑑𝑥
 (2-1) 

Where 𝜃𝑥 is the angle of twist, 𝐺 is the shear modulus, and 𝐽 is the torsion constant. 

2.1.3 Warping torsion, Mw 

When I-section members are subjected to torsion, the warping of the cross-section 

takes place through opposite in-plane flange rotations. In other words, the cross-

section does not remain plane due to the lateral bending of flanges in opposite 

directions. 

In the presence of a warping restraint, the normal stresses and shear stresses develop 

in the flanges, and the warping torsion component of the member internal torsion 

arises. Vlasov’s theory considers restrained warping of thin-walled members by 

neglecting shear deformation effects and assuming that the web remains plane during 

twisting (Vlasov, 1961). In the torsional analysis of I-section members, the effect of 

secondary shear stresses on warping is negligible because these members have small 

torsional rigidity and exhibit large amounts of warping. Besides that, girders having 

thin webs are generally provided with stiffeners. Therefore, the assumptions of 

Vlasov’s theory is admissible for practical purposes. Under the same premises, the 

expression for the warping torsion can be obtained by analyzing the lateral bending 

of the flanges. 

Since the resulting action is torsion, the normal and shear stress developing in the 

flanges will be self-equilibrating. As shown in Figure 2-3, the flange lateral bending 

moments form a couple called bi-moment and associated flange shears in opposite 

directions form a couple which resists the applied torsion. 
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Figure 2-3 The warping torsion. 

For small values of twist angle, the lateral displacement of one of the flanges is, 

𝑢𝑓 = 𝜃𝑥

ℎ

2
 (2-2) 

where h is the distance between flange centroids. 

The moment-curvature relationship for one flange is, 

𝑑2𝑢𝑓

𝑑𝑥2
= −

𝑀𝑓

𝐸𝐼𝑓
 (2-3) 

where 𝑀𝑓 is the lateral bending moment, 𝐸 is the modulus of elasticity, and 𝐼𝑓is the 

associated moment of inertia for one flange. 

Differentiating Equation 2-2 two times and inserting into Equation 2-3, the following 

relationship is obtained, 

−
𝑀𝑓

𝐸𝐼𝑓
= (

ℎ

2
)
𝑑2𝜃𝑥

𝑑𝑥2
 (2-4) 

Multiplying Equation 2-4 by the distance between flange centroids and rearranging 

the terms, the expression for the bi-moment, 𝐵, is obtained as 
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𝐵 = 𝑀𝑓ℎ = − 𝐸 [𝐼𝑓 (
ℎ2

2
)]

𝑑2𝜃𝑥

𝑑𝑥2
= −𝐸𝐶𝑤

𝑑2𝜃𝑥

𝑑𝑥2
 (2-5) 

where 𝐶𝑤 is the warping constant and equals to 𝐼𝑓ℎ
2 2⁄  for an I-section. 

The shear force, 𝑉𝑓, in each flange is given by, 

𝑉𝑓 =
𝑑𝑀𝑓

𝑑𝑥
 (2-6) 

Differentiating Equation 2-3 and inserting Equation 2-6 into Equation 2-3, then 

differentiating Equation 2-2 three times, the following relationship is obtained: 

𝑑3𝑢𝑓

𝑑𝑥3
= −

𝑉𝑓

𝐸𝐼𝑓
= (

ℎ

2
)
𝑑3𝜃𝑥

𝑑𝑥3
 (2-7) 

Finally, the expression for the warping torsion, 𝑀𝑤, is obtained by rearranging the 

terms of Equation 2-7: 

𝑀𝑤 = 𝑉𝑓ℎ =  −𝐸 [𝐼𝑓 (
ℎ2

2
)]

𝑑3𝜃𝑥

𝑑𝑥3
= −𝐸𝐶𝑤

𝑑3𝜃𝑥

𝑑𝑥3
 (2-8) 

2.1.4 Governing differential equation for torsional deformation 

The governing differential equation for the torsional deformation can be written as 

the sum of the St. Venant torsion (Equation 2-1) and warping torsion (Equation 2-

8), 

𝑀𝑥 =  𝑀𝑠 + 𝑀𝑤 = 𝐺𝐽
𝑑𝜃𝑥

𝑑𝑥
− 𝐸𝐶𝑤

𝑑3𝜃𝑥

𝑑𝑥3
 (2-9) 

where 𝑀𝑥 is the total torsional moment. 
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2.1.5 Stiffness matrix 

In the construction of the stiffness matrix for torsional analysis of I-section members 

with restrained warping, the Principle of Virtual Work was applied. For the St. 

Venant torsion, the virtual work of the internal forces is given by 

𝜕𝑊𝑖𝑛𝑡,𝑠 = ∫
𝑑(𝜕𝜃𝑥)

𝑑𝑥
𝑀𝑠 𝑑𝑥

𝐿

0

= ∫
𝑑(𝜕𝜃𝑥)

𝑑𝑥
𝐺𝐽

𝑑(𝜃𝑥)

𝑑𝑥
 𝑑𝑥

𝐿

0

 
(2-10) 

Likewise, the virtual work for the warping torsion can be computed by 

𝜕𝑊𝑖𝑛𝑡,𝑤 =  2∫
𝑑2(𝜕𝑢𝑓)

𝑑𝑥2
𝑀𝑓 𝑑𝑥

𝐿

0

=  2∫
𝑑2(𝜕𝜃𝑥)

𝑑𝑥2

ℎ

2

𝐸𝐶𝑤

ℎ

𝑑2(𝜃𝑥)

𝑑𝑥2
 𝑑𝑥

𝐿

0

 

𝜕𝑊𝑖𝑛𝑡,𝑤 = ∫
𝑑(𝜕𝜃′𝑥)

𝑑𝑥
𝐸𝐶𝑤

𝑑(𝜃′𝑥)

𝑑𝑥
 𝑑𝑥

𝐿

0

 
(2-11) 

The external work done by the applied forces is equal to 

𝜕𝑊𝑒𝑥𝑡 = [𝜕𝜃𝑥]{𝑀𝑥} + [𝜕𝜃′𝑥]{𝐵} (2-12) 

Then, the torsional deformations can be applied by approximating the displacement 

field by the appropriate shape functions, [N] = [N1 N2 N3 N4]: 

𝜕𝑊𝑖𝑛𝑡,𝑠 + 𝜕𝑊𝑖𝑛𝑡,𝑤 = 𝜕𝑊𝑒𝑥𝑡 
 

[𝜕𝜃𝑥] [∫ [𝑁′]𝑇𝐺𝐽[𝑁′]𝑑𝑥
𝐿

0

] {𝜃𝑥} + [𝜕𝜃′𝑥] [∫ [𝑁′′]𝑇𝐸𝐶𝑤[𝑁′′]𝑑𝑥
𝐿

0

] {𝜃′𝑥} 

= [𝜕𝜃𝑥]{𝑀𝑥} + [𝜕𝜃′𝑥]{𝐵} (2-13) 

The corresponding stiffness matrix can be expressed as follows: 

[𝑘] =  [∫ [𝑁′]𝑇𝐺𝐽[𝑁′]𝑑𝑥 +
𝐿

0

∫ [𝑁′′]𝑇𝐸𝐶𝑤[𝑁′′]𝑑𝑥
𝐿

0

] 
(2-14) 
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Similar to the flexure problem, the displacement field was approximated by shape 

functions that provide C1 interelement continuity, the simplest shape functions which 

satisfy the continuity of displacement and slope: Hermitian cubic shape functions. 

Therefore, with Hermitian cubic shape functions, the stiffness matrix can be 

computed as: 

[𝑘] =  
𝐸

𝐿3

[
 
 
 
 
 
 
 
 
6𝐺𝐽𝐿2

5𝐸
−

6𝐺𝐽𝐿2

5𝐸

𝐺𝐽𝐿3

10𝐸

𝐺𝐽𝐿3

10𝐸

 
6𝐺𝐽𝐿2

5𝐸
−

𝐺𝐽𝐿3

10𝐸
−

𝐺𝐽𝐿3

10𝐸

𝑆𝑦𝑚.  
2𝐺𝐽𝐿4

15𝐸
−

𝐺𝐽𝐿4

30𝐸

   
2𝐺𝐽𝐿4

15𝐸

  

]
 
 
 
 
 
 
 
 

 

+
𝐸

𝐿3

[
 
 
 
 
 
 
12𝐶𝑤 −12𝐶𝑤 6𝐶𝑤𝐿 6𝐶𝑤𝐿

 12𝐶𝑤 −6𝐶𝑤𝐿 −6𝐶𝑤𝐿

𝑆𝑦𝑚.  4𝐶𝑤𝐿2 2𝐶𝑤𝐿2

   4𝐶𝑤𝐿2

  

]
 
 
 
 
 
 

 

2.2 Implementation of the Analysis Program 

The program consists of a MATLAB code that performs the structural analysis and 

two Microsoft Excel workbooks that are used to take inputs and write outputs. The 

input spreadsheets are organized to take information regarding the joints, members, 

support, and loading conditions of the analysis model. The output spreadsheets are 

organized to report joint displacements, member forces, and support reactions. The 

format of input and output spreadsheets and detailed explanations of input and output 

data are provided in Appendix B. 

In the subsequent sections, the algorithm of the program and the formulation of the 

element stiffness matrices available in the program are summarized. 
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2.2.1 Algorithm of the program 

The main structure of the algorithm is shown in Figure 2-4. The program starts by 

reading input data and storing data of each input spreadsheet in matrix form. Next, 

the analysis model’s active degrees of freedom are labeled according to the support 

conditions. Then, the global structural stiffness matrix is assembled after 

constructing the element stiffness matrix and transforming it from local coordinates 

to global coordinates for each element.  

In 3D coordinate transformation, the warping DOF for the rate of twist is treated as 

a scalar quantity associated with the cross-sectional deformation; therefore, it is not 

transformed (Damkilde, 1999). 

Following the assembly of the structural stiffness matrix, the force vector is formed 

by combining the nodal forces with fixed end forces obtained from the member loads 

available in the program. In the element force recovery, the uniform torsion load is 

directly distributed to nodes as concentrated torques, and the bi-moment is only 

treated as a nodal load imposed in the direction of warping DOF. 

After obtaining the structural stiffness matrix, 𝐾, and corresponding force vector, 𝐹, 

the program solves the stiffness relationship given by Equation 2-15 to determine the 

joint displacement vector, 𝑑: 

[𝐹] =  [𝐾][𝑑] (2-15) 

The program continues with post-processing joint displacements to compute member 

end forces and support reactions. As a final step, the outputs of the program are 

written to an Excel workbook in separate spreadsheets. 
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Figure 2-4 Algorithm of the program. 

2.2.2 Truss element 

In order to model axial-load carrying members, a standard two-node space truss 

element is implemented into the program. The stiffness matrix for the element is 

provided in Appendix A. 
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2.2.3 6 DOF beam element 

The conventional two-node Timoshenko beam element having six DOF per node is 

implemented into the program. The stiffness matrix for the element is provided in 

Appendix A. 

2.2.4 6 DOF beam element with the effective torsion constant, Jeff 

This element is an extension of the 6 DOF Beam Element. The element formulation 

includes an effective torsion constant to take into account warping deformation 

effects in I-section members. Two effective torsion constants are implemented into 

the program: one for the members having warping fixity at each end, another one for 

the members having warping fixity at one end and warping free boundary condition 

at the other end. The expressions for the corresponding effective torsion constants 

were derived by employing these boundary conditions in the general equation of 

torsional rotation, Equation 2-9 (Ahmed and Weisgerber, 1996). 

The effective torsion constant for the element with warping fixity at both ends is 

calculated by 

𝐽𝑒𝑓𝑓 =  𝐽 [1 −
sinh(𝑘𝐿𝑏)

𝑘𝐿𝑏
+

[cosh(𝑘𝐿𝑏) − 1]2

𝑘𝐿𝑏sinh (𝑘𝐿𝑏)
]

−1

 (2-16) 

whereas the effective torsion constant for the element with warping fixity at one end 

and warping free boundary condition at the other end is calculated by 

𝐽𝑒𝑓𝑓 =  𝐽 [1 −
sinh(𝑘𝐿𝑏)

𝑘𝐿𝑏cosh (𝑘𝐿𝑏)
]

−1

 (2-17) 

where 𝑘 =  √𝐺𝐽 𝐸𝐶𝑤⁄ , and 𝐿𝑏 is the unbraced length corresponding to the distance 

between warping boundaries. 

The stiffness matrix for this element is same as the 6 DOF Beam Element, except 

that the torsion constant is replaced by the effective torsion constant. 
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2.2.5 7 DOF warping beam element 

This element is a two-node beam element, including warping behavior as an 

additional DOF and having seven DOF per node. The element formulated by 

Barsoum and Gallagher (1970) is employed in this study with the modified flexural 

stiffness terms to account for flexural shear deformations. The axial and flexural 

stiffness terms of the element stiffness matrix are same as the conventional 

Timoshenko beam element. The torsional stiffness terms of the element stiffness 

matrix are same as terms of the 4×4 stiffness matrix derived in Section 2.1.5. In 

parallel to the assumptions employed in the derivation of the 4×4 torsional stiffness 

matrix, the element neglects web distortion and the effect of shear deformations on 

warping. The complete stiffness matrix for the element is provided in Appendix A. 
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CHAPTER 3  

3 VALIDATION OF DIFFERENT MODELING APPROACHES UNDER 

TORSION 

In this chapter, different modeling approaches are validated by investigating the 

torsional response of a steel I-section member subjected to concentrated torsional 

moment. The member is analyzed under torsionally fixed-free and fixed-fixed 

boundary conditions through two verification problems. 

The verification problems are analyzed in 3D Frame Analysis Program utilizing 

beam elements that account for warping effects. These are the 6 DOF conventional 

Timoshenko beam element with effective torsion constant and 7 DOF warping beam 

element. The verification problems are also modeled in LARSA 4D finite element 

analysis software with flat shell elements. In addition to refined full-shell finite 

element models in which multiple shell elements constitute the cross-section of the 

member, an alternative modeling approach is considered by modeling the web of the 

cross-section with shell elements and its flanges with beam elements. 

The results obtained from refined models and beam models are compared with the 

analytical solution. The mesh size and shell element type of the validated shell model 

to be used in case studies are presented. The key output parameters used for verifying 

the analysis results are the twist angle 𝜃𝑥, rate of twist 𝜃′𝑥, St.Venant torsion 𝑀𝑠, 

warping torsion 𝑀𝑤 , and bi-moment 𝐵. 

3.1 Section and Material Properties 

The cross-sectional dimensions of the example doubly-symmetric I-section are 

shown in Figure 3-1, and sectional and material properties used in the analysis of 

verification problems are presented in Table 3-1. 
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Figure 3-1 Cross-sectional dimensions of the example section. 

 

Table 3-1 Sectional and material properties of the example section. 

Cross-Sectional Properties 

Area (A)  66.87 in2 

Moment of inertia about the z-axis (Iz) 14811.6 in4 

Moment of inertia about the y-axis (Iy) 939.43 in4 

Torsion constant (J)  27.196 in4 

Warping constant (Cw) 281210 in6 

Material Properties 

Modulus of elasticity (E) 29000 ksi 

Shear modulus (G) 11200 ksi 

3.2 Verification Problem 1: Torsionally Fixed-Free Beam 

The 15 ft long member having torsionally fixed-free boundary conditions was 

subjected to 𝑇 = 100 kip-in concentrated torsional moment at the tip (Figure 3-2). 

The results of beam and shell models were compared with the analytical solution. 
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Figure 3-2 Geometry of Verification Problem 1. 

3.2.1 Analytical solution 

The boundary conditions of Verification Problem 1 dictate that the beam is not able 

to twist or warp at end I and free to warp at end J: 

𝜃𝑥(𝑥) = 0 at 𝑥 = 0 (3-1) 

𝜃′𝑥(𝑥) = 0 at 𝑥 = 0 (3-2) 

𝐵(𝑥) = 0 or 𝜃′′𝑥(𝑥) = 0  at 𝑥 = 𝐿 (3-3) 

Solving the governing differential equation for torsional deformation, Equation 2-9, 

for this particular case results in: 

𝜃𝑥 =
𝑇

𝐺𝐽𝑘
[tanh𝑘𝐿 ∗ (cosh 𝑘𝑥 − 1) − sinh 𝑘𝑥 + 𝑘𝑥] (3-4) 

where 𝑘 =  √𝐺𝐽 𝐸𝐶𝑤⁄ . The parameters 𝑀𝑠, 𝑀𝑤, and 𝐵 are obtained by taking 

derivatives of 𝜃𝑥 and inserting into expressions given by Equations 2-1, 2-8, 2-5, 

respectively. 

3.2.2 Beam models 

The verification problem was solved in 3D Frame Analysis Program by utilizing the 

6 DOF beam elements with Jeff and 7 DOF warping beam elements. 
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Since the effective torsion constant is defined just for torsionally fixed-free and 

fixed-fixed connections for an element, a single beam element with Jeff was used to 

model the verification problem. The twist angle is the output parameter included in 

the reported results. 

The twist angle, rate of twist, total torsion, and bi-moment are direct outputs of the 

program for the warping beam element. The St. Venant torsion is obtained using the 

rate of twist, and the warping torsion is obtained by subtracting the St.Venant torsion 

from the total torsion. 

The results of the analytical solution and 3D Frame Analysis Program presented in 

Table 3-2 show that both beam formulations are capable of capturing the analytical 

solution even with a single beam element. 

Table 3-2 Analysis results at the member ends. 

 
Analytical 

Solution 

1 Beam 

Element with 

Jeff 

1 Warping 

Beam Element 

10 Warping 

Beam 

Elements 

θx (rad) at x = L 0.01609 0.01609 0.01608 0.01609 

Ms (kip-in) at x = L 40.07 - 40.01 40.07 

Mw (kip-in) at x = L 59.93 - 59.99 59.93 

B (kip-in2) at x = 0 -13099 - -13104 -13099 

 

Figure 3-3 to Figure 3-6 show the variation of displacements and forces along the 

member for the analytical solution and warping beam elements. The analysis results 

extracted from intermediate elements are also in line with the analytical solution. At 

the fixed end, the total torsion is entirely carried by the warping torsion, and the bi-

moment is at its maximum. Both warping torsion and bi-moment decrease towards 

the warping-free end of the member. At 𝑥 = 𝐿, while the total torsion is shared by 

the St.Venant torsion, the bi-moment reaches zero. 
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Figure 3-3 Verification Problem 1: Twist angle along the member. 

 

Figure 3-4 Verification Problem 1: St. Venant torsion along the member. 

 

Figure 3-5 Verification Problem 1: Warping torsion along the member. 
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Figure 3-6 Verification Problem 1: Bi-moment along the member. 

3.2.3 Shell models 

The verification problem was modeled in LARSA 4D program with flat shell 

elements. First, full-shell models with different mesh sizes are constructed and 

analyzed. Then, the twist angles obtained from shell models are compared with the 

analytical solution. Next, the mesh size, element type, and detailed analysis results 

of the refined full-shell model, which is found adequate in producing accurate results, 

are presented together with the analytical solution. Finally, the detailed analysis 

results associated with the alternative modeling approach, in which the web of the 

cross-section is modeled with shell elements and its flanges with beam elements, are 

reported together with the analytical solution. 

The thin plate element is employed in models, together with drilling and 

incompatible membranes. The details of the plate and membrane element 

formulations are as follows: 

• Thin plate: The plate element based on Kirchoff Plate Theory, which assumes 

no transverse shear deformations through the element thickness. (Batoz & 

Tahar, 1982) 
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• Incompatible membrane: The membrane element with incompatible modes, 

which have a higher-order displacement definition to avoid shear locking that 

exists in the bilinear membrane. (Cook et al., 2001) 

• Drilling membrane: The membrane element with quadratic displacement 

field definition and a rotational degree of freedom, which is defined from the 

displacement of the mid-points of the edges. (Ibrahimbegovic, Taylor, & 

Wilson, 1990) 

3.2.3.1 Mesh size and loading 

Three different full-shell models were created to be analyzed with thin-incompatible 

and thin-drilling shell elements (Figure 3-7 to Figure 3-9). Table 3-3 shows the 

dimensions of shell elements employed for the web and flanges. For the web, 

dimensions are given along the longitudinal and elevation axis of the member. For 

flanges, dimensions are given along the longitudinal and transverse axis of the 

member. The torsional load of 100 kip-in was modeled by a force couple applied to 

the flange nodes at the tip. 

Table 3-3 Mesh sizes used in full-shell models. 

 Web (in) Flanges (in) 

 Along Length Along Depth Along Length Along Width 

Shell Model 1 20 17.32 20 8.235 

Shell Model 2 10 8.66 10 8.235 

Shell Model 3 5 4.33 5 4.1175 
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Figure 3-7 Shell Model 1: 54 elements. 

 

Figure 3-8 Shell Model 2: 144 elements. 

 

Figure 3-9 Shell Model 3: 576 elements. 

3.2.3.2 Twist angles of full-shell models 

The rotation-X values at the end of the member were extracted from the nodes of 

shell models defined at the centroid of the cross-section and compared with the 

analytical solution that was found to be 0.01609 radians, as shown in Table 3-4. 



 

 

29 

Table 3-4 Twist angle at the centroid (θx at x = L), in radians. 

 Shell Model 1 Shell Model 2 Shell Model 3 

Thin - Incompatible  0.01879 (15.5%) 0.01887 (15.9%) 0.01889 (16.0%) 

Thin - Drilling 0.01873 (15.2%) 0.01881 (15.6%) 0.01888 (16.0%) 

Note: The values in brackets are percentage differences between the analytical solution 

and shell model. 

Since the Vlasov’s theory assumes the cross-section to be undeformable in its own 

plane and neglects shear deformation effects, the twist angle values extracted from 

the shell models are larger than the twist angle value obtained from the analytical 

solution. While the Vlasov’s theory assumes that the web remains straight during 

twisting, the previous research has shown that the web distorts during twisting as 

predicted by the refined finite-element analysis (Pezeshky, 2017). 

In order to investigate the effect of these assumptions on the results, two more sets 

of analysis results were obtained by adding rigid link elements and flexurally rigid 

elements to the member end along the web depth. The rigid link elements introduce 

a rigid connection between the element’s nodes in all directions, i.e., it does not 

deform but allows the relative rigid body movement of the nodes it connects. Hence, 

these elements restrain the shear deformations resulting from the bending (or 

warping) of flanges and the web distortion. This way, the member is enforced to 

behave in a similar manner as the assumption of Vlasov’s theory. The flexurally rigid 

elements are conventional Timoshenko beam elements with a very large shear area 

and moment of inertia quantities. Therefore, these elements only restrain web 

distortion. 

The updated results were reported in Table 3-5 and Table 3-6 for models with rigid 

links and flexurally rigid elements, respectively. Although the results of thin-

incompatible shell models reported in both tables are in good agreement with the 

analytical solution, the thin-drilling shell models show stiffer behavior when used in 

combination with the rigid links. The main reason for this lies in the formulation of 

drilling DOF. In this element, the drilling rotation at a node is calculated from the 
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mid-edge displacements of the neighbor edges. When rigid links restrain the drilling 

rotations of nodes at the flange-web intersections, they also restrain the translation 

of the mid-edge displacements of the elements connecting to the node. This causes 

an additional stiffening effect for the bending of flanges caused by warping. That’s 

why as the size of elements is reduced, this stiffening effect diminishes, and the 

results approach the analytical result. 

Table 3-5 Twist angle at the centroid (θx at x = L) for restrained web distortion and 

shear deformation, in radians. 

 Shell Model 1 Shell Model 2 Shell Model 3 

Thin - Incompatible 0.01613 (0.2%) 0.01631 (1.4%) 0.01641 (2.0%) 

Thin - Drilling 0.01301 (21.2%) 0.01470 (9.0%) 0.01549 (3.8%) 

Note: The values in brackets are percentage differences between the analytical solution 

and shell model. 

 

Table 3-6 Twist angle at the centroid (θx at x = L) for restrained web distortion, in 

radians. 

 Shell Model 1 Shell Model 2 Shell Model 3 

Thin - Incompatible 0.01637 (1.7%) 0.01655 (2.8%) 0.01665 (3.4%) 

Thin - Drilling 0.01635 (1.6%) 0.01649 (2.5%) 0.01663 (3.3%) 

Note: The values in brackets are percentage differences between the analytical solution 

and shell model. 

Considering Table 3-5 and Table 3-6, it can be concluded that the differences 

between the analytical solution and results reported in Table 3-4 are mainly due to 

the web distortion. Figure 3-10, which is a plot of lateral web displacements at the 

end of the member with and without the rigid links, was obtained from the 

displacements of Shell Model 3 with thin-incompatible shell element type. This 

figure shows that the web does not remain straight during twisting, as opposed to the 

assumption of Vlasov’s theory. 
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Figure 3-10 Shell Model 3: Lateral displacements along the web. 

As a result, when no rigid links or flexurally rigid elements exist in the model, both 

thin-incompatible and thin-drilling shell elements produce similar results that are 

close to the actual behavior under torsional loading. 

3.2.3.3 Refined model with shell elements 

The element size of the Shell Model 2 and thin-incompatible shell type has been 

found adequate in producing accurate results and will be taken as a reference in the 

second verification problem, also in the case studies. The results along the length of 

the member were extracted from Shell Model 2 for thin-incompatible shell type with 

and without rigid links and compared with the analytical results. The rotation-X 
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along the length of the member is presented in Figure 3-11. In order to obtain the 

variation of St.Venant Torsion presented in Figure 3-12, the rotation-Z values of 
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0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

-0.30 -0.15 0.00 0.15 0.30

W
eb

 D
ep

th
 (

in
)

Translation Y (in)

Lateral Displacements Along the Web

No Rigid Links

With Rigid Links



 

 

32 

model and substituted into Equation 3-5, which can be derived by integrating 

Equation 2-4 and inserting into Equation 2-1. 

𝑀𝑠 = 𝐺𝐽
𝜃𝑧

(
ℎ
2)

 
(3-5) 

where 𝐺 is the shear modulus, 𝐽 is the torsion constant, 𝜃𝑧 is the in-plane flange mid-

line rotation, and  ℎ is the distance between flange centroids. 

In order to obtain the variation of warping torsion presented in Figure 3-13, the total 

torsion at the centroid of the cross-section was extracted from the model, and the 

St.Venant torsion was subtracted from the total torsion. The Compound Element 

Forces Tool of LARSA 4D program, which reports the combined forces and 

moments of a group of elements about their combined centroid, was utilized to 

extract the total torsion from the model. 

 

Figure 3-11 Refined Model: Twist angle along the member. 
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Figure 3-12 Refined Model: St. Venant torsion along the member. 

 

Figure 3-13 Refined Model: Warping torsion along the member. 

 

In the presence of rigid links, the member behaves as assumed in Vlasov’s theory, 

and the variation of results along the member length is in-line with the analytical 

solution. In Figure 3-12, the last value is zero at the member end because the rigid 

link elements at this location restrained the in-plane flange mid-line rotation that was 

used to compute the St.Venant torsion. Consequently, in Figure 3-13, the warping 

torsion at the end of the member is equal to the total torsion at the end of the member. 

Moreover, without rigid links, the jump seen in the force graphs at the end of the 

member is due to the applied force and reduces by smaller mesh size; therefore, it is 

neglected. 
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3.2.3.4 Alternative modeling: web with shell, flanges with beam elements 

In the finite element analysis of steel I-section members, modeling the web of the 

cross-section with shell elements and flanges with beam elements is an alternative 

and practical modeling approach compared to full-shell models (Figure 3-14). In 

order to apply this approach, the flanges of I-beam were modeled with beam 

elements instead of a mesh of shell elements. The variation of twist angle and internal 

torsional moments along the member are reported from Figure 3-15 to Figure 3-17 

for the alternative modeling approach, together with the results of the refined model. 

As can be seen from the figures, the alternative modeling approach is also capable 

of capturing the torsional response of the example structure and gives very similar 

results to the refined full-shell model. 

 

Figure 3-14 Shell Model 2: Alternative modeling. 

 

Figure 3-15 Alternative Modeling: Twist angle along the member. 
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Figure 3-16 Alternative Modeling: St.Venant torsion along the member. 

 

Figure 3-17 Alternative Modeling: Warping torsion along the member. 
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subjected to 𝑇 = 1000 kip-in concentrated torsional moment at the mid-span (Figure 
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Figure 3-18 Geometry of Verification Problem 2. 

 

3.3.1 Analytical solution 

The boundary conditions of Verification Problem 2 dictate that the beam is not able 

to twist or warp at both ends: 

𝜃𝑥(𝑥) = 0 at 𝑥 = 0 and 𝑥 = 𝐿 (3-6) 

𝜃′𝑥(𝑥) = 0 at 𝑥 = 0 and 𝑥 = 𝐿 (3-7) 

The solution of the general equation of torsional rotation, Equation 2-9, for this 

particular case is given by Equations 3-8 and 3-9 (Seaburg & Carter, 2003). 

For 0 ≤ 𝑥 ≤ 𝐿 2⁄  

    𝜃𝑥 =
𝑇

(𝐻 + 1) ∗ 𝐺𝐽𝑘
{[𝐻 ∗ (

1

sinh𝑘𝐿
+ sinh

𝑘𝐿

2
−

cosh
𝑘𝐿
2

tanh 𝑘𝐿
) 

 

   +(sinh
𝑘𝐿

2
−

cosh
𝑘𝐿
2

tanh 𝑘𝐿
+

1

tanh𝑘𝐿
)] [cosh 𝑘𝑥 − 1] − sinh𝑘𝑥 + 𝑘𝑥} 

(3-8)  
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For 𝐿 2 ≤ 𝑥 ≤ 𝐿⁄  

𝜃𝑥 =
𝑇

(1 + 
1
𝐻) ∗ 𝐺𝐽𝑘

{[
(cosh

𝑘𝐿
2 − 1)

𝐻 ∗ sinh𝑘𝐿
+

(cosh
𝑘𝐿
2 − cosh 𝑘𝐿 + 𝑘𝐿 ∗ sinh𝑘𝐿)

sinh𝑘𝐿
] 

      + cosh 𝑘𝑥 ∗ [
(1 − cosh

𝑘𝐿
2 )

𝐻 ∗ tanh𝑘𝐿
+

(1 − cosh
𝑘𝐿
2 ∗ cosh 𝑘𝐿)

sinh𝑘𝐿
]  

      + sinh 𝑘𝑥 ∗ [
(cosh

𝑘𝐿
2 − 1)

𝐻
+ cosh

𝑘𝐿

2
] − 𝑘𝑥} (3-9) 

where 𝑘 =  √𝐺𝐽 𝐸𝐶𝑤⁄  and 

  𝐻 =  

[
(1 − cosh

𝑘𝐿
2 )

tanh𝑘𝐿
+

(cosh
𝑘𝐿
2 − 1)

sinh 𝑘𝐿
+ sinh

𝑘𝐿
2 −

𝑘𝐿
2 ]

[
(cosh 𝑘𝐿 + cosh

𝑘𝐿
2 ∗ cosh 𝑘𝐿 − cosh

𝑘𝐿
2 − 1)

sinh𝑘𝐿
−

𝑘𝐿
2 − sinh

𝑘𝐿
2 ]

 (3-10) 

The parameters 𝑀𝑠, 𝑀𝑤, and 𝐵 are obtained by taking derivatives of 𝜃𝑥 and inserting 

into expressions given by Equations 2-1, 2-8, 2-5, respectively. 

3.3.2 Beam models 

The verification problem was solved in 3D Frame Analysis Program by utilizing 6 

DOF beam elements with Jeff and 7 DOF warping beam elements. In order to analyze 

the mid-span loading, the verification problem was modeled utilizing two beam 

elements with Jeff. Since the warping boundary conditions are known only at the ends 

of the structure, the effective torsion constant was computed for the full member 

length of 15 ft, assuming the fixed-fixed boundary condition and used for both beam 

elements. The twist angle is the output parameter included in the reported results. 
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The results of the analytical solution and 3D Frame Analysis Program are presented 

in Table 3-7.  

Table 3-7 Analysis results at L/2 and L/5. 

 
Analytical 

Solution 

2 Beam 

Elements 

with Jeff 

2 Warping 

Beam 

Elements 

10 Warping 

Beam 

Elements 

θx (rad) at x = L/2 0.00362 0.01329 0.00362 0.00362 

Ms (kip-in) at x = L/5 17.60 - - 17.60 

Mw (kip-in) at x = L/5 482.40 - - 482.40 

B (kip-in2) at x = L/2 21949 - 21949 21949 

 

According to the results shown in Table 3-6, the warping beam formulation gives 

exactly the same results with the analytical solution. The use of the same Jeff for the 

elements between known warping boundary conditions is an approximation, and it 

did not produce an acceptable solution. 

From Figure 3-19 to Figure 3-22, the variation of displacements and forces along the 

member were plotted on the same graph for the analytical solution and warping beam 

elements. As can be seen from the figures, the analysis results extracted from the 

intermediate elements are also in line with the analytical solution. At the fixed ends 

and loaded mid-span, the total torsion is entirely carried by the warping torsion, and 

the bi-moment is at its maximum. Both warping torsion and bi-moment decrease 

towards the quarter span from both ends. However, even at the point where the St. 

Venant torsion is maximum, i.e., at 3.75 ft, the ratio of St.Venant torsion to warping 

torsion is only 3.6%. 
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Figure 3-19 Verification Problem 2: Twist angle along the member. 

 

Figure 3-20 Verification Problem 2: St. Venant torsion along the member. 

 

Figure 3-21 Verification Problem 2: Warping torsion along the member. 
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Figure 3-22 Verification Problem 2: Bi-moment along the member. 

3.3.3 Shell models 

The same problem was modeled with shell elements by using the same mesh size 

and element type as the refined model of Verification Problem 1 (Shell Model 2, 

Figure 3-8). The fully-fixed boundary conditions were assigned to the nodes at both 

ends, and the torsional load of 1000 kip-in was modeled by a force couple applied to 

the flange nodes at the mid-span. 

Since Vlasov’s theory neglects web distortion and shear deformation effects, the 

twist angle values of the refined full-shell model are expected to be larger than the 

analytical solution. Similar to the Verification Problem 1, additional models were 

created to investigate the effect of these assumptions by adding rigid link elements 

restraining the shear deformations and web distortion, and flexurally rigid elements 

restraining only the web distortion, to the model. Different from Verification 

Problem 1, where the rigid elements were defined only at the beam end, these 

elements were defined in Verification Problem 2 throughout the beam. The twist 

angle values at the mid-span were extracted from the nodes of shell models defined 

at the centroid of the cross-section and compared with the analytical solution, that 

was found to be 0.0036 radians, as shown in Table 3-8. 
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Table 3-8 Twist angle at the mid-span (θx at x = L/2), in radians. 

No Rigid Element With Flexurally Rigid Elements With Rigid Link Elements  

0.0043 (17.7%) 0.0039 (8.0%) 0.0037 (2.7%) 

Note: The values in brackets are percentage differences between the analytical solution 

and shell model. 

The percentage differences between the analytical solution and shell models show 

the same trend as the previous verification problem (Table 3-4 to Table 3-6). For 

both verification problems, when there are no rigid elements in the model, the 

percentage difference between the analytical solution and the shell model is around 

16-17%. While the contribution of shear deformation effects to the percentage 

difference is more pronounced in the current verification problem, the differences 

between the analytical solution and extracted results are found to be mainly due to 

the web distortion, similar to the previous verification problem. 

The variation of twist angle values extracted from the centroid nodes along the 

member is presented in Figure 3-23. The variation of St.Venant torsion and warping 

torsion, which are obtained based on the in-plane flange mid-line rotations, are 

presented in Figure 3-24 and Figure 3-25. In Figure 3-23, the twist angle values 

extracted from the full-shell model with rigid link elements are included. Results of 

the alternative modeling approach, in which flanges of the cross-section are modeled 

with beam elements, are also presented in these graphs. 

In the presence of rigid links, the member behaves as assumed in Vlasov’s theory, 

and the variation of twist angle along the member length is in-line with the analytical 

solution. Unlike the twist angle, it was observed that the variation of St. Venant 

torsion and warping torsion are not affected by the assumptions of Vlasov’s theory. 

In addition, the alternative modeling approach is found to be capable of capturing 

the torsional response of the example structure as it produces the results similar to 

the refined full-shell model. 
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Figure 3-23 Shell Models: Twist angle along the member. 

 

Figure 3-24 Shell Models: St. Venant torsion along the member. 

 

Figure 3-25 Shell Models: Warping torsion along the member. 

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0

θ
x

(r
ad

)

x (ft)

Twist Angle Along the Member
Analytical Solution
No Rigid Links
With Rigid Links
Alternative Modeling

-20.0

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0

M
s

(k
ip

-i
n

)

x (ft)

St. Venant Torsion Along the Member
Analytical Solution

No Rigid Links

Alternative Modeling

-500.0

-490.0

-480.0

-470.0

-460.0

-450.0

450.0

460.0

470.0

480.0

490.0

500.0

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0

M
w

(k
ip

-i
n

) 
[L

/2
 ≤

 x
 ≤

 L
]

M
w

(k
ip

-i
n

) 
[0

 ≤
 x

 ≤
 L

/2
]

x (ft)

Warping Torsion Along the Member 

Analytical Solution

No Rigid Links

Alternative Modeling



 

 

43 

CHAPTER 4  

4 CASE STUDIES 

During the construction of steel I-girder bridges, exterior girders are subjected to 

torsional moments that are produced by the eccentric loads acting on the overhang 

forming brackets. The loads include the weight of deck overhang concrete, deck 

form, screed rail, and finishing machine. In the analysis and design of exterior 

girders, it is necessary to consider the flange lateral bending moments and stresses 

resulting from these torsional loads. In addition to the eccentric overhang bracket 

loads, the girders of horizontally-curved steel I-girder bridges are subjected to torsion 

under vertical construction loads. The flange lateral bending moments and stresses 

due to curvature should also be considered in the analysis and design of these 

bridges. 

As an example of the design code requirement, the effects of eccentric overhang 

bracket loads acting on the non-composite exterior I-girders should be investigated 

at the Constructibility Limit State per AASHTO LRFD Bridge Design 

Specifications, Article 6.10.3.4 – Deck Placement (American Association of State 

Highway and Transportation Officials, 2017). In the commentary section of this 

article, two equations are suggested to estimate the maximum flange lateral bending 

moments, 𝑀𝑙𝑎𝑡, under the loadings mentioned in the preceding paragraph, and the 

equations are to be used in the absence of a more refined analysis. Both equations 

are based on the assumption that adjacent unbraced lengths have approximate 

symmetry conditions, and hence torsionally fixed boundary conditions exist at the 

ends of the unbraced length. Equation 4-1 is suggested for the case of the eccentric 

overhang loading assumed to be applied as uniformly distributed lateral loads, 𝐹𝑙𝑎𝑡, 

to the flanges. 
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𝑀𝑙𝑎𝑡 =
𝐹𝑙𝑎𝑡 ∗ 𝐿𝑏

2

12
 (4-1) 

where Lb is the unbraced length. 

Per AASHTO LRFD Bridge Design Specifications, Article 6.10.3.2 – Flexure, the 

flange lateral bending effects due to curvature must always be considered in 

discretely braced flanges during construction. In the commentary section of Article 

4.6.1.2.4b – I-Girders, the specification provides an approximate equation (Equation 

4-2) to be used for determining the lateral bending moment due to curvature. The 

equation is based on the V-Load Method (Fiecht, Fenves, & Frank, 1987), which 

assumes the presence of a cross-frame at the point under consideration to resist the 

torsional action due to curvature by sets of shears developed within the cross-frames. 

The method also assumes the uniform cross-frame spacing and constant major-axis 

bending moment, 𝑀, within the unbraced length, 𝐿𝑏. 

𝑀𝑙𝑎𝑡 =
𝑀 ∗ 𝐿𝑏

2

𝑁 ∗ 𝑅 ∗ 𝐷
 (4-2) 

where 𝑅 is the girder radius, 𝐷 is the web depth, and 𝑁 is a constant taken as 10 or 

12. 

In addition to the stresses resulting from the major-axis bending effects, the flange 

lateral bending stresses resulting from the curvature for curved girders as well as the 

flange lateral bending stresses resulting from the overhang bracket loads for exterior 

girders are considered when checking the flexural resistance of discretely braced 

flanges at the Constructibility Limit State, per AASHTO LRFD Bridge Design 

Specifications, Article 6.10.3.2 – Flexure. 

Furthermore, excessive rotation of exterior girders under the overhang bracket loads 

may cause a considerable amount of deck thickness loss leading to overstress in the 

girders, and such problems may also be encountered during the deck placement. In 

order to limit the girder rotation, it is necessary to predict the twist angle of the 

exterior girder accurately. For example, the Illinois Department of Transportation 
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(IDOT) limits the maximum vertical displacement of the overhang tip to 3/16 inches, 

and the exterior girder rotation corresponding to that displacement can be treated as 

the limit (Ashiquzzaman et al., 2016). 

Apart from these, the steel girders are cambered during the fabrication to compensate 

for the dead load deflections and match the designed profile in the final state. In case 

the finite element method is used for the analysis and estimating the camber 

information, it is essential to capture girder vertical deflections precisely. Since the 

horizontally-curved girders are under the coupled action of major-axis bending and 

torsion for the dead load effects, the torsional modeling has a significant effect on 

vertical deflection values. 

In order to understand what extend the beam element formulations with warping, 

refined, and alternative modeling approaches can produce accurate analysis results 

and to qualify the usability of the proposed modeling approaches in the current 

bridge engineering practice, three case studies are conducted by focusing on the 

specified load effects and design parameters. As a first case study, a straight exterior 

I-girder is analyzed under deck overhang loads. As a second case study, a single 

horizontally-curved I-girder is analyzed under deck weight loading. As a third case 

study, a single span horizontally-curved I-girder bridge superstructure is analyzed 

under deck weight loading. 

A comparative study is performed for all case studies. The 3D full-shell models and 

alternative shell models, in which flanges of the cross-section are modeled with beam 

elements, are constructed and analyzed in LARSA 4D program. Beam models are 

constructed and analyzed in 3D Frame Analysis Program by utilizing 6 DOF 

conventional beam elements, 6 DOF beam elements with an effective torsion 

constant (Jeff), and 7 DOF warping beam elements, for the girder. The results of 

different modeling approaches are compared by taking the 3D full-shell model as a 

reference. For all case studies, the existing bridge geometries were considered in the 

generation of analysis models. 
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4.1 Case Study #1: Straight Exterior I-Girder Under Overhang Loads 

A 130 ft long simply supported straight I-girder was modeled as an isolated exterior 

girder by using flat shell and beam elements. The cross-sectional dimensions of the 

girder are shown in Figure 4-1. The sectional and material properties used in the 

analysis are given in Table 4-1.  

 

Figure 4-1 Straight Exterior Girder: Cross-sectional dimensions. 

 

Table 4-1 Straight Exterior Girder: Properties. 

Cross-Sectional Properties 

Area (A)  77.05 in2 

Moment of inertia about the z-axis (Iz) 43967.12 in4 

Moment of inertia about the y-axis (Iy) 854.6378 in4 

Torsion constant (J)  26.56 in4 

Warping constant (Cw) 723740 in6 

Material Properties 

Modulus of elasticity (E) 29000 ksi 

Shear modulus (G) 11200 ksi 
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4.1.1 Deck overhang loads 

The overhang width and the average deck thickness in the overhang were taken as 

3.25 ft and 9 inches, respectively. The unit weight of concrete used in the self-weight 

computation is 150 lb/ft3. The total deck overhang weight was calculated as 366 lb/ft. 

The half of deck overhang weight was assumed to be resisted by overhang brackets 

and the other half by the girder. The weight of deck forms and screed rail included 

in overhang bracket loads is 185 lb/ft. The analyzed loads are summarized in Figure 

4-2. While the loads were analyzed as uniform member loads in beam models, they 

were analyzed as nodal loads in shell models. 

 

Figure 4-2 Deck overhang loads. 

4.1.2 Analysis models 

The sample exterior girder was modeled in LARSA 4D finite element analysis 

software with flat shell elements. In addition to full-shell models, flanges of I-girder 

were modeled with beam elements, and the results of this alternative modeling 

approach were included in the comparison. The same problem was solved in 3D 

Frame Analysis Program by utilizing the different beam elements available in the 

program. The laterally supporting cross-frames were not modeled explicitly. Instead, 

the torsional restraints were provided in beam models, and the lateral restraints were 
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provided in shell models. The assumed eight cross-frame locations, including the 

start and end of the girder, are shown in Figure 4-3. 

 

Figure 4-3 Side View: Cross-frame locations. 

In shell models, the simple supports at girder ends were defined at the bottom flange 

nodes. As stated in Chapter 3, the thin-incompatible shell-type was utilized in all 

case studies. The dimensions of shell elements employed for the web is 10 inches × 

9.7 inches along the longitudinal and elevation axis of the girder, respectively. The 

dimensions of shell elements employed for flanges are 10 inches × 8 inches along 

the longitudinal and transverse axis of the girder, respectively. 

In beam models, each unbraced length was divided into four beam elements, except 

for the 8.33 ft long last segment, which was divided into two elements. The simple 

supports at girder ends were defined at the centroid. 

All the analysis models of the first case study are summarized in Table 4-2.  
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Table 4-2 Analysis models of the first case study. 

 

When setting up the BM2 model, assumptions were made regarding warping 

deformations. The warping was assumed to be free at the simply supported ends of 

the girder and restrained at cross-frame locations except for the last cross-frame 

location considering that the length of each span is same or close to each other except 

the last span. For the first six members, the effective torsion constant was computed 

using the member’s unbraced length and boundary conditions as either free or fixed. 

Since there is a significant difference between the lengths of the last two members,  

the effective torsion constant (Jeff) was not computed in a similar manner. Instead, 

the torsion constant of the girder cross-section given in Table 4-1 was utilized in the 

analysis. 

The full-shell model SM1 was taken as the reference model for comparisons. While 

generating  SM1 and SM2 models, flexurally rigid members were added along the 

web depth at cross-frame locations assuming that the connection plates at these 

locations prevent the web distortion. The models SM3 and SM4 were created 

additionally to test the effect of the flexible connection plate. The 0.65 inches 

thickness full-depth connection plate was modeled on single-side of the exterior 

Analysis Models 

Shell Model 1 (SM1): Full-shell (reference) model. Web distortion is prevented at 

cross-frame locations with rigid members. 

Shell Model 2 (SM2): The web is modeled as shell elements, flanges are modeled 

as beam elements. Web distortion is prevented at cross-

frame locations with rigid members. 

Shell Model 3 (SM3): Full-shell model. Connection plates are modeled at cross-

frame locations. 

Shell Model  4 (SM4): The web is modeled as shell elements, flanges are modeled 

as beam elements. Connection plates are modeled at cross-

frame locations as beam elements. 

Beam Model 1 (BM1):  Beam model with 7 DOF warping beam elements. 

Beam Model 2 (BM2): Beam model with 6 DOF beam elements and Jeff. 

Beam Model 3 (BM3): Beam model with conventional 6 DOF beam elements. 
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girder except for the girder ends, which have double-sided plates to represent the 

bearing stiffeners, as shown in Figure 4-4. 

 

Figure 4-4 Analysis models SM3 and SM4 with connection plates. 

4.1.3 Major-axis bending 

For the major-axis bending response, all analysis models produced the same results. 

The mid-span deflection was obtained as 2.81 inches in the downward direction. At 

support locations, the magnitude of equal and opposite rotations was 0.0057 rad 

about the transverse axis of the girder. 

4.1.4 Twist angle 

In Figure 4-5, the twist angle values obtained from the shell models SM1, SM2, and 

warping beam model BM1 are plotted on the same graph. The shell model SM2, 

where the flanges of the girder were modeled with beam elements, produced the 

same results as the reference full-shell model, SM1. The twist angle values within 

the unbraced length of shell models are larger than the warping beam model, which 

shows that the web distortion is effective within the unbraced length of the girder. 

Since the web distortion was prevented at cross-frame locations, the zero twist angle 

computed at the beam ends in the warping beam model is also seen in the shell 

models.  
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Figure 4-5 Twist angle along the girder for models SM1, SM2, and BM1. 

 

The results obtained from beam models BM2 and BM3 are plotted separately in 

Figure 4-6, together with the results of the reference model SM1. While the use of 

Jeff in the analysis of beam model BM2 improves the results, considering the twist 

angle values in the middle of each unbraced length, it can be seen that the results of 

the BM2 model are three to eight times larger than the reference model SM1. This is 

because the Jeff is computed based on the assumptions made regarding warping 

deformations at the ends of each unbraced length, and the same Jeff value is employed 

for intermediate elements since the warping boundary conditions within the 

unbraced length are unknown. For the BM3 model, the twist angle goes up to thirty 

to fifty times the reference model as a result of neglecting the warping effects. 

Another factor contributing to these differences is that the beam elements of BM2 

and BM3 models are not capable of capturing the web distortion effects, similar to 

the beam elements of the BM1 model. 
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Figure 4-6 Twist angle along the girder for models SM1, BM2, and BM3. 

 

In Figure 4-7, the results obtained from shell models SM3 and SM4 are plotted 

together with the results of reference model SM1. Modeling of the flexible 

connection plates did not make a significant difference in the results when compared 

to the reference model in which the web distortion is fully prevented at the cross-

frame locations. The difference at the intermediate cross-frame locations is due to 

the eccentricity between single-sided connection plates and the vertical loads applied 

on top flange along the centroidal axes of the girder. The effect of additional torsion 

induced by this eccentricity is seen in the twist angle results. The largest difference 

is seen at the fourth cross-frame location, i.e., 59.16 ft, and it is equal to 0.0001 

radians. 

 

Figure 4-7 Twist angle along the girder for models SM1, SM3, and SM4. 
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For the 3.25 ft overhang width of the present case study, the 3/16 inches maximum 

vertical deflection limit for the overhang tip suggested by IDOT is equivalent to 

0.0048 rad rotation limit for the girder. Considering Table 4-3, it is apparent that the 

twist angle values obtained from the models with conventional 6 DOF beam element 

and beam element with Jeff cannot be used to evaluate the beam rotation against the 

recommended limit, as it is overestimated. Whereas, the analysis model with warping 

beam elements produced reliable results. 

Table 4-3 Maximum rotation θx obtained from analysis models. 

Analysis Model Maximum Rotation θx (rad) 

SM1-SM4 0.0009 

BM1 0.0008 

BM2 0.0069 

BM3 0.0314 

 

4.1.5 Lateral bending 

The lateral bending moments were extracted from the individual flanges of girder 

shell models and reported separately for the top and bottom flanges. While the 6 

DOF beam elements do not give any output regarding the flanges, the 7 DOF 

warping beam element produces bi-moments as a component of member forces. The 

equal and opposite flange lateral bending moments for the torsional action were 

obtained by dividing the bi-moment output of the warping beam element by the 

distance between flange centroids. The results were plotted in Figure 4-8 and Figure 

4-9, together with the results of shell models SM1 and SM2. As can be seen from 

these figures, the warping beam model BM1 and the shell model SM2, which uses 

an alternative modeling approach for the flanges, are able to capture the response of 

the reference model, SM1. 
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Additionally, it is observed that modeling of flexible connection plates has a 

negligible effect on the flange lateral bending moments, as can be seen in Figure 

4-10 and Figure 4-11. 

 

Figure 4-8 Top flange lateral bending moment. Models SM1, SM2, and BM1. 

 

Figure 4-9 Bottom flange lateral bending moment. Models SM1, SM2, and BM1. 
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Figure 4-10 Top flange lateral bending moment. Models SM1, SM3, and SM4. 

 

Figure 4-11 Bottom flange lateral bending moment. Models SM1, SM3, and SM4. 

In Table 4-4, maximum absolute flange lateral bending moment values 

corresponding to 17.5 ft-long first segment, 20.83 ft-long intermediate segments, and 

8.33 ft-long last segment are summarized together with the maximum moment values 

calculated by the approximate equation (Equation 4-1) suggested by AASHTO 

LRFD Bridge Design Specifications. When compared to the reference model SM1, 

all other analysis models produced close results. Since the approximate equation 

assumes torsionally fixed boundary conditions at the ends of unbraced length, it 

should not be used for the end segments. 
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Table 4-4 Maximum flange lateral bending moment within the unbraced length, in 

kip-in. 

Lb  
AASHTO LRFD 

C6.10.3.4.1-2 
SM1 SM2 SM3 SM4 BM1 

17.50 ft 77.2 107.9 107.8 107.6 107.6 101.3 

20.83 ft 109.4 112.0 111.9 111.6 111.7 105.2 

8.33 ft 17.5 79.2 79.1 79.1 79.0 73.0 

 

4.1.6 Cross-frame forces 

The laterally supporting cross-frames were represented by torsional restraints in 

beam models and by lateral restraints in shell models. To compare the lateral forces 

at the top and bottom chord of the cross-frames, the lateral support reactions were 

directly taken from the shell models, and the torsional support reactions obtained 

from the beam models were divided by the distance between flange centroids. The 

comparison of the results can be seen in Figure 4-12 and Figure 4-13. 

 

Figure 4-12 Lateral cross-frame forces at the top chord. 
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Figure 4-13 Lateral cross-frame forces at the bottom chord. 

While reporting results, the results of all shell models and the results of beam models 

with 6 DOF were grouped together because they gave the same results. In all shell 

models, equal and opposite lateral forces developed in the top and bottom chord 

against the torsional action. The warping beam model, BM1, was able to capture the 

distribution of forces as shell models. The absence of a warping degree of freedom 

in the 6 DOF beam elements caused the torsional restraints in beam models BM2 

and BM3 to develop reaction forces as in the case of warping-fixed boundary 

conditions defined together with torsional restraints. 

4.2 Case Study #2: Horizontally Curved I-Girder Under Deck Weight 

Loading 

A 150.5 ft long simply supported horizontally curved I-girder with 425 ft radius was 

modeled as an isolated interior girder by using flat shell and beam elements. The 

cross-sectional dimensions of the girder are shown in Figure 4-14. The sectional and 

material properties used in the analysis are given in Table 4-5.  
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Figure 4-14 Curved Interior Girder: Cross-sectional dimensions. 

Table 4-5 Curved Interior Girder: Properties. 

Cross-Sectional Properties 

Area (A)  110.86 in2 

Moment of inertia about the z-axis (Iz) 128900.43 in4 

Moment of inertia about the y-axis (Iy) 2220.45 in4 

Torsion constant (J)  38.97 in4 

Warping constant (Cw) 3912900 in6 

Material Properties 

Modulus of elasticity (E) 29000 ksi 

Shear modulus (G) 11200 ksi 

4.2.1 Deck weight loading 

The deck thickness, including integral wearing surface and the tributary deck width, 

were taken as 9.5 inches and 8 ft, respectively. The unit weight of concrete used in 

the self-weight computation is 150 lb/ft3. The deck weight was calculated as 950 lb/ft 

and applied as uniform member loads in beam models. In shell models, the loading 

was applied as nodal loads on top of girders. 
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4.2.2 Analysis models 

The sample interior girder was modeled and analyzed in LARSA 4D finite element 

analysis software, also in 3D Frame Analysis Program, following similar procedures 

as the previous case study. The laterally supporting cross-frames were not modeled 

explicitly. Instead, the torsional restraints along the girder longitudinal axis were 

defined in beam models, and the lateral restraints along the girder transverse axis 

were provided in shell models. As shown in Figure 4-15, cross frames were assumed 

equally spaced at 21.5 ft along the girder, including the start and end of the girder. 

The girder was restrained in all translational directions at the start, in girder 

transverse and elevation axes at the end. 

 

Figure 4-15 Plan View: Cross-frame locations. 

In shell models, the pin supports at girder ends were defined at the bottom flange 

nodes. The dimensions of the shell elements employed for the web is 10.75 inches 

and 8.4 inches along the longitudinal and elevation axis of the girder, respectively. 

The dimensions of shell elements used for the flanges are 10.75 inches and 11 inches 

along the longitudinal and transverse axis of the girder, respectively. 

In beam models, each unbraced length was divided into ten beam elements. The 

simple supports at girder ends were defined at the centroid.  

All the analysis models of the second case study are summarized in Table 4-6.  
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Table 4-6 Analysis models of the second case study. 

Analysis Models 

Shell Model 1 (SM1): Full-shell (reference) model. Web distortion is prevented at 

cross-frame locations using rigid members. 

Shell Model 2 (SM2): The web is modeled as shell elements, flanges are modeled 

as beam elements. Web distortion is prevented at cross-

frame locations using rigid members. 

Beam Model 1 (BM1):  Beam model with 7 DOF warping beam elements. 

Beam Model 2 (BM2): Beam model with 6 DOF beam elements and Jeff. 

Beam Model 3 (BM3): Beam model with conventional 6 DOF beam elements. 

 

When setting up the BM2 model, the warping condition was assumed to be free at 

the simply supported ends of the girder and restrained at the cross-frame locations. 

The effective torsion constant was computed for each unbraced length and applied 

to all beam elements within the unbraced length. 

The full-shell model SM1 (Figure 4-16) was taken as the reference model in 

comparisons. Similar to the previous case study, flexurally rigid members were 

added along the web depth at the cross-frame locations. Since the effect of modeling 

flexible connection plates was found to be negligible in the previous case study, there 

is no additional analysis model created to consider this effect in the present case 

study. 

 

Figure 4-16 3D View: The full-shell model. 
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4.2.3 Major-axis bending 

For the major-axis bending response, all analysis models produced almost the same 

results except the BM3 model with conventional 6 DOF beam elements. In Figure 

4-17 and Figure 4-18, the vertical displacement and rotation about the girder 

transverse axis are plotted along the girder.  

 

Figure 4-17 Vertical displacements along the girder. 

 

Figure 4-18 Rotation about the girder transverse axis. 

As can be seen from the figures, neglecting the warping stiffness of the girder in the 

BM3 model causes a significant overestimation, almost 4 times larger vertical 
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beam elements to model curved I-beams under the bridge’s self-weight would cause 

unrealistic cambering of such beams. 

4.2.4 Twist angle 

In contrast to beam models that do not take into account the web distortion and 

produce a single twist angle value at the centroid of the girder, the twist angle varies 

along the web depth in shell models. Since significant web distortions were observed 

within the unbraced segments of shell models, there is no comparison made between 

the shell and beam models of this case study in terms of the twist angle. 

The plots of lateral displacement and twist angle along the web can be seen in Figure 

4-19 for the middle of first and last unbraced segments, and for the mid-span. 

 

Figure 4-19 Lateral displacements and twist angle along the web. 
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4.2.5 Lateral bending 

The lateral bending moments were extracted from the individual flanges of the girder 

from the shell models and reported separately for the top and bottom flange. The 

equal and opposite flange lateral bending moments were obtained by dividing the bi-

moment output of the warping beam element by the distance between flange 

centroids. Additionally, the major-axis bending moment values obtained from the 

reference SM1 model were used in Equation 4-2, which is the approximate equation 

provided by AASHTO LRFD Bridge Design Specifications, and the lateral bending 

moment values due to curvature were calculated. (The constant 𝑁 was taken as 12 in 

Equation 4-2.) 

The results were plotted in Figure 4-20 and Figure 4-21. As can be seen from these 

figures, the warping beam model BM1 and the shell model SM2, which uses an 

alternative modeling approach for the flanges, are able to capture the response of the 

reference model, SM1. The approximate equation provides an upper bound for the 

flange lateral bending moments and captures the response of the reference model at 

the cross-frame locations. This is because the V-Load Method assumes the presence 

of a cross-frame at the point under consideration. 

 

Figure 4-20 Top flange lateral bending moment along the girder. 
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Figure 4-21 Bottom flange lateral bending moment along the girder. 

4.2.6 Cross-frame forces 

The equal and opposite lateral forces were obtained in the top and bottom chord of 

the cross-frames. The absence of a warping degree of freedom in the 6 DOF beam 

elements caused the cross-frame forces to differ from other analysis models as the 

warping boundary conditions could not be modeled accurately. Since the differences 

were negligible, the comparison of the results was not reported. 

4.3 Case Study #3: Single Span Horizontally Curved I-Girder Bridge 

Under Deck Weight Loading 

The bridge that is subject to this case study is a single span horizontally curved I-
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example bridge Bridge NISCR2, examined under Project NCHRP 12-79 (White et 
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radius of curvature is 425 ft at the centerline. The cross-section of the bridge consists 
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used in the previous case study (Figure 4-14 and Table 4-5). The study bridge 

consists of the superstructure with idealized supports at the ends. The simple support 

conditions of the previous case study were utilized at the ends of each girder. 
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As shown in Figure 4-22, the uniform girder and cross-frame spacings are 8 ft and 

21.5 ft, respectively. The cross-frames are full depth X-type cross-frame with top 

and bottom chords that can be seen through the 3D view of the bridge, in Figure 

4-23. 

 

Figure 4-22 Plan view of the bridge. 

 

Figure 4-23 3D view of the bridge. 

4.3.1 Deck weight loading 

The bridge has 3 ft long overhang at both sides. The deck thickness, including 

integral wearing surface, was taken as 9.5 inches, and the unit weight of concrete 

used in the self-weight computation is 150 lb/ft3. The deck weight acting on the 

interior and exterior girders were calculated as 950 lb/ft and 831.3 lb/ft, respectively. 
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In beam models, the loading was applied as uniform member loads. In shell models, 

the loading was applied as nodal loads on top of girders. 

4.3.2 Analysis models 

The sample bridge was modeled and analyzed in LARSA 4D finite element analysis 

software, also in 3D Frame Analysis Program following similar procedures as the 

previous case studies except that the cross-frames were modeled explicitly by truss 

elements and connected to nodes at the intersection of flanges and the web.  

The dimensions of shell elements employed for the web and flanges in shell models, 

the number of elements employed for modeling girders in beam models, also the 

assumptions made regarding the warping conditions of the beam model with Jeff are 

same as the previous case study (Section 4.2.2). In beam models, the cross-frames 

were connected to the girder centroid through rigid connection members, which are 

6 DOF conventional beam elements with large cross-sectional and material 

properties. Figure 4-24 shows the graphical illustration of these models with the 

corresponding elements. 

 

Figure 4-24 Beam models of the third case study. 

 



 

 

67 

All the analysis models of the present case study are summarized in Table 4-7.  

Table 4-7 Analysis models of the third case study. 

Analysis Models 

Shell Model 1 (SM1): Girders are modeled as full-shell elements. Web distortion 

is prevented at cross-frame locations with rigid members.  

Shell Model 2 (SM2): The web is modeled as shell elements, flanges are modeled 

as beam elements. Web distortion is prevented at cross-

frame locations with rigid members. 

Beam Model 1 (BM1):  Girders are modeled as 7 DOF warping beam elements. 

Conventional 6 DOF rigid beams connect cross-frames and 

girders. 

Beam Model 2 (BM2): Girders are modeled as 6 DOF beam elements with Jeff. 

Conventional 6 DOF rigid beams connect cross-frames and 

girders. 

Beam Model 3 (BM3): Girders and rigid connection members between girders and 

cross-frames are modeled as conventional 6 DOF beam 

elements. 

 

The SM1 model was taken as the reference model in comparisons. While reporting 

results, girders were numbered starting from the outside of the curve. The outermost 

girder corresponds to  Girder 1, and the inside girder corresponds to Girder 4. 

4.3.3 Major-axis bending 

Similar to the previous case study, which analyzes an isolated curved girder, all 

analysis models produced similar results for the vertical displacements except the 

BM3 model with conventional 6 DOF beam elements. In Table 4-8, vertical 

displacements at the mid-span of girders were reported. As can be seen from the 

table, neglecting the warping stiffness of girders in the BM3 model causes the girder 

vertical deflections to be overestimated. 
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Table 4-8 Vertical displacements at the mid-span, in inches. 

Girder  SM1 SM2 BM1 BM2 BM3 

G1 -6.87 -6.87 (0.0%) -6.82 (-0.7%) -6.63 (-3.5%) -18.42 (168.1%) 

G2 -5.06 -5.06 (0.0%) -5.03 (-0.6%) -4.95 (-2.2%) -13.63 (169.4%) 

G3 -3.28 -3.27 (-0.3%) -3.25 (-0.9%) -3.30 (0.6%) -8.85 (169.8%) 

G4 -1.50 -1.50 (0.0%) -1.49 (-0.7%) -1.66 (10.7%) -4.08 (172.0%) 

Note: The values in brackets are percentage errors with reference to the SM1 model. 
 

In addition to the vertical displacements, the major-axis bending moments were 

extracted from the analysis models, and the major-axis bending stresses were 

computed relative to the elastic neutral axis, which is at the girder centroid. The stress 

values at the mid-span of girders were reported in Table 4-9. 

Table 4-9 Bottom flange major-axis bending stresses at the mid-span, in ksi. 

Girder  SM1 SM2 BM1 BM2 BM3 

G1 18.81 18.81 (0.0%) 18.80 (-0.1%) 17.8 (-5.4%) 18.63 (-1.0%) 

G2 13.29 13.29 (0.0%) 13.29 (0.0%) 12.94 (-2.6%) 13.25 (-0.3%) 

G3 7.41 7.41 (0.0%) 7.41 (0.0%) 7.73 (4.3%) 7.47 (0.8%) 

G4 1.07 1.07 (0.0%) 1.07 (0.0%) 2.11 (97.2%) 1.22 (14.0%) 

Note: The values in brackets are percentage errors with reference to the SM1 model. 
 

As can be seen from the table, stresses obtained from the shell model, SM2, and 

warping beam model, BM1 was identical to the stresses obtained from the reference 

model. While the BM3 model produced erroneous results for the vertical 

displacements, it produced similar results for the major-axis bending stresses as the 

reference model, meaning that the major-axis bending stresses were not much 

affected by the warping contributions. 
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Regarding the BM2 model, the assumption of warping fixity at the intermediate 

cross-frame locations caused the bridge torsional stiffness to be overestimated as a 

system, and less load was transferred from the inner girders to the outside girder 

when compared with the results of the reference model. The effect of this assumption 

was not apparent in vertical displacements (Table 4-8), also in the major-axis 

bending stresses of Girder 1 to 3 (Table 4-9). However, the BM2 model 

overestimates the major-axis bending moments and stresses significantly for Girder 

4, as shown in Figure 4-25 and Figure 4-26. 

 

Figure 4-25 Major-axis bending moment along Girder 4. 

 

Figure 4-26 Bottom flange major-axis bending stresses along Girder 4. 
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4.3.4 Twist angle 

Figure 4-27 and Figure 4-28 shows the comparison of the twist angles along exterior 

girders obtained from the BM3 model and the reference SM1 model. As seen in the 

figures, the twist angle values of the BM3 model are larger than the reference model 

as a consequence of neglecting the warping effects. The twist angle values at the 

mid-span of Girder 1 and Girder 4 are almost eleven times and three times greater 

than the reference model, respectively. The twist angle values obtained from all other 

analysis models were close to each other. 

 

Figure 4-27 Twist angle along Girder 1 for models SM1 and BM3. 

 

Figure 4-28 Twist angle along Girder 4 for models SM1 and BM3. 
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In Figure 4-29 and Figure 4-30, twist angle values along the exterior girders are 

plotted for BM1 and BM2 models together with the reference model. Since the SM1 

and SM2 models produced identical results, they are grouped together. 

The twist angle values within the unbraced length of shell models are larger than the 

warping beam model BM1 due to Vlasov’s assumption of no web distortion during 

twisting. As the web distortion decreases from Girder 1 to Girder 4 (Figure 4-31), 

the results become closer. 

Compared to the reference model, the BM2 model produces close results by 

approximating the torsional stiffness with the effective torsion constant, based on the 

assumption of warping fixity at the cross-frame locations. 

 

Figure 4-29 Twist angle along Girder 1 for models SM1, SM2, BM1, and BM2. 

 

Figure 4-30 Twist angle along Girder 4 for models SM1, SM2, BM1, and BM2. 
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Figure 4-31 Lateral displacements along the web, at the mid-span of Girder 1 and 

Girder 4. 
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values obtained from the reference SM1 model were used in Equation 4-2, which is 

the approximate equation provided by AASHTO LRFD Bridge Design 

Specifications, and the lateral bending moment values due to curvature were 

calculated. (The constant 𝑁 was taken as 12 in Equation 4-2.) 

The obtained lateral bending moments were then divided by the section modulus of 
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warping beam model BM1 and the shell model SM2, which uses an alternative 

modeling approach for the flanges, were able to capture the response of the reference 

model, SM1. For Girder 1 to Girder 3, the approximate equation produced 

conservative flange lateral bending stresses throughout the length of the girder; 

however, it produced unconservative results within the unbraced lengths of Girder 

4. From Figure 4-32 to Figure 4-35, lateral bending stresses along Girder 2 and 

Girder 4 are plotted separately for the top and bottom flange. 

 

 

Figure 4-32 Top flange lateral bending stresses along Girder 2. 

 

 

Figure 4-33 Bottom flange lateral bending stresses along Girder 2. 
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As seen in the figures, the approximate equation produced reasonable results at 

cross-frame locations as the V-Load Method assumes the presence of a cross-frame 

at the point under consideration. However, different from the previous case study, 

the results do not perfectly match with the other reported results at the cross-frame 

locations. As an example, the top flange lateral bending stress of Girder 2 produced 

by the approximate equation at the fifth cross-frame location, i.e., 86 ft, is 17% 

greater than the stress obtained from the reference model. The reason for that is the 

V-Load Method analyzes flange as a continuous beam rigidly supported at the cross-

frame locations. Since the cross-frames were represented by lateral restraints in the 

previous case study, the approximate equation produced exact results at these 

locations. In the current case study, the cross-frames are explicitly modeled, and 

flanges are not rigidly supported at these locations. Therefore, the results obtained 

from the approximate equation show deviations at the cross frame locations, and the 

approximate equation produces unconservative results for Girder 4. At the mid-span 

of Girder 4, i.e., 75.25 ft, the top flange lateral bending stress produced by the 

approximate equation is 60% less than the stress obtained from the reference model. 

 

Figure 4-34 Top flange lateral bending stresses along Girder 4. 
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Figure 4-35 Bottom flange lateral bending stresses along Girder 4. 

4.3.6 Support reactions and cross-frame forces 

Under uniform deck weight loading, the reactions obtained at the start and end of 

girders were equal. In all analysis models, the distribution of reactions was similar, 

as shown in Table 4-10. Since the bridge is under torsional action due to its curved 

geometry, reactions are larger at the outer girder and smaller at the inner girder as 

expected. 

Table 4-10 Vertical support reactions at the start and end of girders, in kips. 

Girder  SM1 SM2 BM1 BM2 BM3 

G1 114.1 114.1 112.5 113.3 113.1 

G2 82.7 82.7 83.8 81.9 82.9 

G3 51.2 51.3 54.0 55.2 53.9 

G4 20.1 20.1 17.9 17.7 18.2 

Note: The values are identical for the start and end of girders. Duplicates are not shown. 
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support conditions. For the intermediate cross-frames, all analysis models produced 

close results.  

From Figure 4-36 to Figure 4-38, the axial forces in one of the diagonals were plotted 

for analysis models SM1, BM1, and BM2, relative to the cross frame numbers shown 

in Figure 4-23. There were slight differences between the results of SM1 and SM2 

models, also between the results of BM1 and BM3 models. Since the differences 

were not visible in the graphs, the results of SM2 and BM3 models are not shown 

for clarity. 

The cross-frame forces of the BM2 model deviate from the reference model as a 

result of the warping fixity assumption at the intermediate cross-frame locations. 

 

Figure 4-36 Forces in diagonal (between the top of G1 and the bottom of G2). 
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Figure 4-37 Forces in diagonal (between the top of G2 and the bottom of G3). 

 

Figure 4-38 Forces in diagonal (between the top of G3 and the bottom of G4). 
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CHAPTER 5  

5 SUMMARY AND CONCLUSIONS 

In finite element analysis of steel I-girder bridges, the restrained warping behavior 

of girder can be considered through detailed 3D shell models or alternative methods 

such as utilizing an effective torsion constant in the analysis with conventional beam 

elements. For practical purposes, there is still a need for an intermediate modeling 

approach that is time-saving, reliable, and will provide specific analysis output 

parameters with sufficient accuracy. 

In this study, a practical finite element modeling approach is investigated by utilizing 

7 DOF beam elements that consider restrained warping behavior as an additional 

degree of freedom for girders. A comparative study was performed by assessing the 

results of various shell models and beam models, from the analysis and design 

aspects. The beam models of the study were analyzed in the 3D Frame Analysis 

Program, which was developed in MATLAB. The space truss element, 6 DOF 

conventional beam element, 6 DOF conventional beam element that uses an effective 

torsion constant (Jeff) to consider warping effects, and 7 DOF warping beam element 

were implemented into the program. The shell models of the study were analyzed in 

LARSA 4D program through thin-Drilling and thin-incompatible shell elements 

available in the program. In addition to full-shell finite element models in which 

multiple shell elements constitute the cross-section of the member, an alternative 

modeling approach is considered by modeling the web of the cross-section with shell 

elements and its flanges with beam elements. 

Different modeling approaches were validated under torsional loading by comparing 

the analysis results with the analytical solution. The analytical solution for torsion 

and formulation of 7 DOF warping beam element was based on Vlasov’s theory, 

which neglects shear deformation effects on warping and assumes that the web 
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remains straight during twisting. Since the I-section members have small torsional 

rigidity and exhibit large amounts of warping, also the girders having thin webs are 

generally provided with stiffeners, the assumptions of Vlasov’s theory were 

considered admissible for practical purposes. The results obtained from beam models 

utilizing 7 DOF warping beam elements were capable of capturing the analytical 

solution for an I-section member under torsionally fixed-free and fixed-fixed 

boundary conditions. When multiple 6 DOF beam elements with Jeff were employed 

to model the member, larger twist angle values were obtained from the 

corresponding beam models compared to the analytical solution and other analysis 

models. While the variation of torsional moments and bi-moment obtained from 

analytical solution and shell models were similar, slight differences were observed 

in twist angle values. The differences were found to be mainly due to the no web 

distortion assumption of Vlasov’s theory during twisting. In case the web distortion 

is prevented in shell models by means of rigid members, the twist angle values were 

also in line with the analytical solution. During the validation process, it was found 

out that the thin-drilling shell models show stiff behavior in the presence of rigid 

members. 

Three case studies were conducted to understand to what extend the 7 DOF warping 

beam element can produce accurate analysis results and to qualify the usability of 

this element in the current bridge engineering practice. Case studies focused on the 

non-composite response of girders under construction loads and important design 

parameters such as major-axis and flange lateral bending stresses. The results of 

different modeling approaches were compared by taking the 3D full-shell model as 

a reference. In the analysis with Jeff, the warping was assumed to be free at the simply 

supported ends of the girder and restrained at cross-frame locations. There is no such 

assumption required in the analysis with 7 DOF warping beam elements. The 

conclusions drawn from these case studies are summarized in the following 

paragraphs. 

For curved I-girders in which the bending and torsional actions are coupled, 

neglecting girder warping stiffness by using the 6 DOF conventional beam elements 
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in bridge superstructure modeling causes unrealistic cambering because the girder 

vertical deflections are significantly overestimated under the bridge’s self-weight. In 

addition, this element overestimates the girder twist both for straight and curved I-

girders. Therefore, the associated rotations should not be used to evaluate girder 

rotation limits or overhang vertical deflection limits given by the design 

specifications. Besides that, the element produced major-axis bending moments and 

cross-frame forces with sufficient accuracy for the example structures analyzed in 

this study. 

When compared to the beam elements neglecting the girder warping stiffness, beam 

elements that incorporate the girder warping stiffness by means of an effective 

torsion constant provide a significant improvement in the analysis of steel I-girder 

bridges in terms of girder twist and vertical deflections. However, depending on the 

torsional stiffness of the bridge, the warping fixity assumed at the cross-frame 

locations to compute the effective torsion constant may yield incorrect analysis 

results for curved bridges. As in the case of the third case study, this assumption can 

cause the bridge torsional stiffness to be overestimated, and less load is transferred 

from the inner girders to the outside girder. As a result, the major-axis bending 

moments and stresses are overestimated for the inside girder. 

The modeling approach, which uses the 7 DOF warping beam elements, and the 

alternative refined modeling approach, which uses the combination of shell-beam 

elements for steel I-girders, are both capable of producing all of the analysis output 

parameters considered in this study with sufficient accuracy. The only exception is 

that, since the 7 DOF warping beam elements neglect web distortion effects, this 

element can produce inaccurate twist angle results in cases where the web distortion 

is effective.  

In conclusion, the modeling approach, which utilizes 7 DOF warping beam elements 

for steel I-girders, was found adequate in producing essential analysis output 

parameters with sufficient accuracy and can be used for practical purposes to 

consider the restrained warping behavior. 
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APPENDIX A - Element Stiffness Matrices 

The stiffness matrix for Truss Element: 

 

𝐸

𝐿3

[
 
 
 
 
 
𝐴𝐿2 0 0 −𝐴𝐿2 0 0
 0 0 0 0 0
  0 0 0 0

𝑆𝑦𝑚.   𝐴𝐿2 0 0
    0 0
      0]

 
 
 
 
 

 

 

The stiffness matrix for 6 DOF Beam Element: 

 

𝐸

𝐿3

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑘1 0 0 0 0 0 𝑘1−7 0 0 0 0 0
 𝑘2 0 0 0 𝑘2−6 0 𝑘2−8 0 0 0 𝑘2−12

  𝑘3 0 𝑘3−5 0 0 0 𝑘3−9 0 𝑘3−11 0
   𝑘4 0 0 0 0 0 𝑘4−10 0 0
     𝑘5 0 0 0 𝑘5−9 0 𝑘5−11 0
     𝑘6 0 𝑘6−8 0 0 0 𝑘6−12

      𝑘7 0 0 0 0 0
       𝑘8 0 0 0 𝑘8−12

        𝑘9 0 𝑘9−11 0
     𝑆𝑦𝑚.     𝑘10 0 0
          𝑘11 0
           𝑘12 ]
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𝑘1 = 𝑘7 = −𝑘1−7 =  𝐴𝐿2 

𝑘2 = 𝑘8 = −𝑘2−8 = 
12𝐼𝑧

(1 + 𝜑𝑦)
 

𝑘2−6 = 𝑘2−12 = −𝑘6−8 = −𝑘8−12 = 
6𝐿𝐼𝑧

(1 + 𝜑𝑦)
 

𝑘3 = 𝑘9 = −𝑘3−9 =
12𝐼𝑦

(1 + 𝜑𝑧)
 

𝑘3−5 = 𝑘3−11 = −𝑘5−9 = −𝑘9−11 = −
6𝐿𝐼𝑦

(1 + 𝜑𝑧)
 

𝑘4 = 𝑘10 = −𝑘4−10 =
𝐺𝐽𝐿2

𝐸
 

𝑘5 = 𝑘11 =
(4 + 𝜑𝑧)𝐿

2𝐼𝑦

(1 + 𝜑𝑧)
 

𝑘5−11 =
(2 − 𝜑𝑧)𝐿

2𝐼𝑦

(1 + 𝜑𝑧)
 

𝑘6 = 𝑘12 =
(4 + 𝜑𝑦)𝐿2𝐼𝑧

(1 + 𝜑𝑦)
 

𝑘6−12 =
(2 − 𝜑𝑦)𝐿2𝐼𝑧

(1 + 𝜑𝑦)
 

 

The stiffness matrix for 7 DOF Warping Beam Element: 
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𝐸

𝐿3

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑘1 0 0 0 0 0 0 𝑘1−8 0 0 0 0 0 0
 𝑘2 0 0 0 𝑘2−6 0 0 𝑘2−9 0 0 0 𝑘2−12 0
  𝑘3 0 𝑘3−5 0 0 0 0 𝑘3−10 0 𝑘3−12 0 0
   𝑘4 0 0 𝑘4−7 0 0 0 𝑘4−11 0 0 𝑘4−14

     𝑘5 0 0 0 0 𝑘5−10 0 𝑘5−12 0 0
     𝑘6 0 0 𝑘6−9 0 0 0 𝑘6−12 0
      𝑘7 0 0 0 𝑘7−11 0 0 𝑘7−14

       𝑘8 0 0 0 0 0 0
         𝑘9 0 0 0 𝑘9−13 0
     𝑆𝑦𝑚.      𝑘10 0 𝑘10−12 0 0
          𝑘11 0 0 𝑘11−14

           𝑘12 0 0
            𝑘13 0
             𝑘14 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑘1 = 𝑘8 = −𝑘1−8 =  𝐴𝐿2 

𝑘2 = 𝑘9 = −𝑘2−9 = 
12𝐼𝑧

(1 + 𝜑𝑦)
 

𝑘2−6 = 𝑘2−13 = −𝑘6−9 = −𝑘9−13 = 
6𝐿𝐼𝑧

(1 + 𝜑𝑦)
 

𝑘3 = 𝑘10 = −𝑘3−10 =
12𝐼𝑦

(1 + 𝜑𝑧)
 

𝑘3−5 = 𝑘3−12 = −𝑘5−10 = −𝑘10−12 = −
6𝐿𝐼𝑦

(1 + 𝜑𝑧)
 

𝑘4 = 𝑘11 = −𝑘4−11 =
6𝐺𝐽𝐿2

5𝐸
+ 12𝐶𝑤 

𝑘4−7 = 𝑘4−14 = −𝑘7−11 = −𝑘11−14 =
𝐺𝐽𝐿3

10𝐸
+ 6𝐶𝑤𝐿 

𝑘5 = 𝑘12 =
(4 + 𝜑𝑧)𝐿

2𝐼𝑦

(1 + 𝜑𝑧)
 

𝑘5−12 =
(2 − 𝜑𝑧)𝐿

2𝐼𝑦

(1 + 𝜑𝑧)
 

𝑘6 = 𝑘13 =
(4 + 𝜑𝑦)𝐿2𝐼𝑧

(1 + 𝜑𝑦)
 

𝑘6−13 =
(2 − 𝜑𝑦)𝐿2𝐼𝑧

(1 + 𝜑𝑦)
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𝑘7 = 𝑘14 =
2𝐺𝐽𝐿4

15𝐸
+ 4𝐶𝑤𝐿2 

𝑘7−14 = −
𝐺𝐽𝐿4

30𝐸
+ 2𝐶𝑤𝐿2 

 

Where; 

𝜑𝑦 =
12𝐸𝐼𝑧
𝐺𝐴𝑦𝐿2

 

𝜑𝑧 =
12𝐸𝐼𝑦

𝐺𝐴𝑧𝐿
2
 

𝐿: element length, 𝐸: modulus of elasticity, 𝐺: shear modulus, 𝐽: torsion constant, 

𝐶𝑤: warping constant,  

𝐴: cross-sectional area, 𝐼𝑧: the moment of inertia about member local z-axis, 𝐼𝑦: the 

moment of inertia about member local y-axis, 𝐴𝑦: shear area in member local y-axis, 

and 𝐴𝑧: shear area in member local z-axis. 

All stiffness matrices are symmetric. 
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APPENDIX B - Inputs and Outputs of the 3D Frame Analysis Program 

Inputs of the Program 

The inputs of the program are entered either relative to the local coordinate system 

of elements or the global coordinate system. The local coordinate system of an 

element is defined such that the x-axis of element directed along the member’s 

centroidal axis from the start of the member to the end.  For a horizontal member 

lying on the global X-axis, the member local-y and local-z axes coincide with the 

system global-Y and global-Z axes, respectively. 

Input Spreadsheet: Properties 

 

Properties: The input sheet for the material and cross-sectional properties. The 

material properties include modulus of elasticity (E), shear modulus (G), torsion 

constant (J), and warping constant (Cw). The cross-sectional properties include the 

section area (A), moments of inertia about member local z- and y- axes (Iz and Iy, 

respectively), the shear areas for transverse shear. All properties are entered in 

member local axes. 

Input Spreadsheet: Nodes 

 

Nodes: The input sheet for the coordinates of element nodes, in other words, for the 

joint locations. The locations are entered as x-, y- and z-coordinates in the global 

coordinate system. 
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Input Spreadsheet: Elements 

 

Elements: The input sheet for the element properties. These properties include 

connectivity of members defined by the start and end nodes of the element, the 

material and cross-sectional properties specified by the ID of property entered into 

Properties sheet, the type of element which can be one of Truss, Beam, Beam with 

Jeff, Warping Beam. Two properties for warping boundary conditions and unbraced 

length are only applicable to elements with type Beam with Jeff. Warping boundary 

conditions can be one of Fixed-Fixed and Fixed-Free. For intermediate elements 

defined between these boundaries, the two inputs should be the same. The unbraced 

length corresponds to the distance between warping boundaries. 

Input Spreadsheet: Restraints 

 

Restraints: The input sheet for the restraints or support conditions. The support 

conditions are specified as Fixed or Free for the available seven degrees of 

freedom with respect to the global coordinate system. The corresponding degrees 

of freedom are translation and rotation in x, y, z directions, and the warping DOF. 
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Input Spreadsheet: Nodal Loads 

 

Nodal Loads: The input sheet for concentrated loads to be applied to nodes of the 

analysis model. The loads are specified with respect to the global coordinate 

system. The loads corresponding to the available degrees of freedom are 

translational forces and moments in x, y, z directions, and bi-moment. 

Input Spreadsheet: Member Loads 

 

Member Loads: The input sheet for uniformly distributed loads to be applied to 

members of the analysis model. The loads are assumed to act on the member 

centroidal axis and specified with respect to member local axes. The member loads 

available in the program are uniform load in member local-z direction and uniform 

torsion in member local-x direction. 

 

Outputs of the Program 

Output Spreadsheet: Joint Displacements 

 

Joint Displacements: The output sheet that reports joint displacements in global 

coordinates. 
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Output Spreadsheet: Member End Displacements 

 

Member End Displacements: The output sheet that reports element end 

displacements in element local coordinates. 

Output Spreadsheet: Member End Forces 

 

Member End Forces (Local/Global): Two output sheets reporting element end forces 

in element local coordinates and global coordinates. 

Output Spreadsheet: Support Reactions 

 

Support Reactions: The output sheet that reports support reactions at the restrained 

DOFs, in global coordinates. 


