
STATISTICAL INFERENCE BASED LOAD BALANCED ROUTING IN

SOFTWARE DEFINED NETWORKS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SEMİH KAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

SEPTEMBER 2020

Approval of the thesis:

STATISTICAL INFERENCE BASED LOAD BALANCED ROUTING IN SOFTWARE

DEFINED NETWORKS

Submitted by Semih Kaya in partial fulfillment of the requirements for the degree of Master of

Science in Information Systems Department, Middle East Technical University by,

Prof. Dr. Deniz Zeyrek Bozşahin

Dean, Graduate School of Informatics

Prof. Dr. Sevgi Özkan Yıldırım

Head of Department, Information Systems

Assoc. Prof. Dr. Altan Koçyiğit

Supervisor, Information Systems, METU

Examining Committee Members:

Assoc. Prof. Dr. Erhan Eren

Information Systems, METU

Assoc. Prof. Dr. Altan Koçyiğit

Information Systems, METU

Assoc. Prof. Dr. Aysu Betin Can

Information Systems, METU

Assoc. Prof. Dr. Enver Ever

Computer Engineering, METU-NCC

Assist. Prof. Dr. Serhat Peker

Management Information Systems, İzmir Bakırçay

University

Date: _24/09/2020

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name : Semih Kaya

Signature :

iv

ABSTRACT

STATISTICAL INFERENCE BASED LOAD BALANCED ROUTING IN

SOFTWARE DEFINED NETWORKS

Kaya, Semih

MSc., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Altan Koçyiğit

September 2020, 55 pages

Networks have been the main method of transferring data for more than forty years. The
traffic volumes and sizes of networks have increased considerably in the last two decades.
The traditional methods used in the networks to transfer data become inefficient due to
this growth. Therefore, network planning and smart delivery methods have gained
importance. Accordingly, traffic engineering methods are deployed to meet the faster and
more efficient delivery requirements. These methods have been proven beneficial and they
are still being used on every level of networking. Recently, software defined networking
redefined the architecture of networks and network devices. This new architecture paved
the way for more flexible network and traffic management techniques.

In this thesis, we propose a new routing method, which minimizes the maximum link
utilization in the software-defined networks. The proposed method defines a new cost
metric based on statistical inference to distribute load evenly in the network. The method
is demonstrated, and its performance is evaluated on virtual software defined network
topologies under various artificial network loads. The experiments show that the proposed
algorithm achieves the even distribution of traffic and minimizes the maximum link
utilization in software defined networks.

Keywords: Software Defined Networks, Routing, Traffic Engineering, Minimization of
Maximum Link Utilization, Statistical Inference

v

ÖZ

Kaya, Semih

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Altan Koçyiğit

Eylül 2020, 55 sayfa

Bilgisayar ağları veri, kırk yıldan fazla bir süredir, veri aktarımının ana yöntemi olmuştur.
Son yirmi yıl içerisinde trafik hacmi ağların büyüklükleri kayda değer şekilde artmıştır.
Bu büyümeden kaynaklı olarak ağlarda veri iletiminde kullanılan geleneksel yöntemler
yetersiz kalmıştır. Böylece ağ planlama ve akıllı yönlendirme yöntemleri önem
kazanmıştır. Bu doğrultuda daha hızlı ve etkin veri iletimi gereksinimlerini karşılamak
için trafik mühendisliği yöntemleri konuşlandırılmaktadır. Bu yöntemlerin faydaları ispat
edilmiştir ve bilgisayar ağlarının her seviyesinde hala kullanılmaktadırlar. Yakın
geçmişte, yazılım tanımlı ağlar ağların ve ağ donanımlarının mimarisini yeniden
tanımlamıştır. Bu yeni mimari daha esnek bir ağ ve trafik yönetimi için yeni yollar
açmıştır.

Bu tezde, yazılım tanımlı ağlarda en yüksek kullanımı asgari düzeye indiren yeni bir
yönlendirme yöntem öneriyoruz. Önerilen yöntem, ağ içinde trafiği eşit dağıtmak için
istatistiksel çıkarım üzerine kurulu bir hat maliyeti ölçütü tanımlamaktadır. Farklı yapay
ağ yükleri altındaki sanal bir yazılım tanımlı ağ topolojisi üzerinde yöntem gösterilmiş ve
başarımı değerlendirilmiştir. Gerçekleştirilen deneyler, önerilen yöntemin yazılım tanımlı
ağlar üzerinde düzgün trafik dağılımı sağladığını ve en yüksek bağlantı kullanımını asgari
seviyeye indirdiğini göstermektedir.

Anahtar Sözcükler: Yazılım Tanımlı Ağ, Yönlendirme, Trafik Mühendisliği, En Yüksek
Bağlantı Kullanımının Asgari Düzeye İndirgenmesi, İstatistiksel Çıkarım

YAZILIM TABANLI AĞLARDA İSTATİSTİKSEL ÇIKARIM TEMELLİ

YÜK DAĞILIMLI YÖNLENDİRME

vi

DEDICATION

To My Wife and Our Beautiful Children

vii

ACKNOWLEDGMENTS

First, I would like to express my gratitude to my supervisor Assoc. Prof. Dr. Altan
Koçyiğit, for his guidance through my Master’s program. His positive attitude, tolerance,
and expertise has been the most important enabler of this work.

Besides my supervisor, I would like to thank my company ASELSAN A.Ş and my
managers Hüsnü Coşkun, Mehmet Uçak and Tanın Afacan for their continuous support.

Finally, I would like to thank to my wife, the love of my life, for the tolerance and support
during my absence from home.

viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ... v

DEDICATION ... vi
ACKNOWLEDGMENTS ... vii
TABLE OF CONTENTS ... viii
LIST OF FIGURES .. x

LIST OF ACRONYMS ... xii
CHAPTER
1. INTRODUCTION ... 1

2. BACKGROUND .. 5

2.1. Traffic Engineering .. 5

2.2. Software Defined Networking ... 6

2.2.1. OpenFlow ... 7

2.3. Statistical Inference ... 9

3. RELATED WORK .. 11

4. STATISTICAL INFERENCE BASED LOAD BALANCED ROUTING 19

5. IMPLEMENTATION AND TESTING ... 23

5.1 Implementation .. 23

5.1.1 Packet In Listener: .. 23

5.1.2 Topology Discovery: .. 23

5.1.3 Host Discovery: .. 23

5.1.4 Statistics Collection: ... 25

5.1.5 Route Discovery: .. 25

5.1.6 Flow Table Installation Process: .. 26

5.1.7 Rerouting: ... 27

5.2 Testing ... 27

ix

5.2.1 Simple Topology: ... 28

5.2.2 Mesh Topology: ... 34

6. CONCLUSION .. 45

REFERENCES ... 47

APPENDICES ... 51

APPENDIX A .. 51

x

LIST OF FIGURES

Figure 1 OpenFlow Pipeline [29] ... 8

Figure 2 OpenFlow Match Fields [30] ... 8
Figure 3 Normal Distribution and Scales [32] ... 9
Figure 4 Process Pipeline of SILBR Implementation .. 24
Figure 5 SILBR Host Table ... 24

Figure 6 Floodlight Host Rules .. 25
Figure 7 SILBR Path Information .. 25

Figure 8 Path Cost Calculation... 26
Figure 9 The Simple Topology Used ... 28
Figure 10 Throughput plot of a single TCP flow – 1400 byte packet size, 200 pps,
exponential inter arrival rate .. 29
Figure 11 Traffic Distribution with Static Routing on Simple Topology 31

Figure 12 Traffic Distribution on Simple Topology with MH Routing 32
Figure 13Traffic Distribution on Simple Topology with SILBR 33

Figure 14 The Mesh Topology Used .. 34
Figure 15 SILBR with 1 Mbps host connections, 1 Mbyte 200 flows 35
Figure 16 IMAB with 1 Mbps host connections, 1 Mbyte 200 flows 35

Figure 17 MH with 1 Mbps Host Connections – 1 Mbyte 200 flows 36
Figure 18 Maximum Bandwidth Usages for SILBR, IMAB and MH metrics, Mesh
Topology 1 Mbps Host Uplink Connections.. 37
Figure 19 Minimum Bandwidth Usages for SILBR, IMAB and MH metrics, Mesh
Topology 1 Mbps Host Uplink Connections.. 37
Figure 20 Average Bandwidth Usages for SILBR, IMAB and MH metrics, Mesh
Topology 1 Mbps Host Uplink Connections.. 38

Figure 21 SILBR & IMAB Path Length Comparison 1 Mbps Host Uplink Connections –
1 Mbyte 200 Flows ... 38

Figure 22 SILBR with 5 Mbps Host Connections – 5 Mbyte 200 flows 39
Figure 23 IMAB with 5 Mbps Host Connections – 5 Mbyte 200 flows 40
Figure 24 MH with 5 Mbps Host Connections – 5 Mbyte 200 flows 40
Figure 25 Maximum Bandwidth Usages for SILBR, IMAB and MH metrics, Mesh
Topology 5 Mbps Host Uplink Connections.. 41

Figure 26 Minimum Bandwidth Usages for SILBR, IMAB and MH metrics, Mesh
Topology 1 Mbps Host Uplink Connections.. 41
Figure 27 Average Bandwidth Usages for SILBR, IMAB and MH metrics, Mesh
Topology 1 Mbps Host Uplink Connections.. 42

file:///D:/TEZFINAL/SemihKayaSILBR2309_4.docx%23_Toc52264432
file:///D:/TEZFINAL/SemihKayaSILBR2309_4.docx%23_Toc52264433
file:///D:/TEZFINAL/SemihKayaSILBR2309_4.docx%23_Toc52264437
file:///D:/TEZFINAL/SemihKayaSILBR2309_4.docx%23_Toc52264438
file:///D:/TEZFINAL/SemihKayaSILBR2309_4.docx%23_Toc52264439
file:///D:/TEZFINAL/SemihKayaSILBR2309_4.docx%23_Toc52264439
file:///D:/TEZFINAL/SemihKayaSILBR2309_4.docx%23_Toc52264443

xi

Figure 28 SILBR & IMAB Path Length Comparison 5 Mbps Host Uplink Connections –
5 Mbyte 200 Flows .. 42
Figure 29 SILBR and IMAB Average Path Latency Comparison – 5 Mbyte 200 flows 43
Figure 30 MH with 1 Mbps Host Uplink Connections - 3 Mbyte 200 Flows 51
Figure 31 SILBR with 1 Mbps Host Uplink Connections - 3 Mbyte 200 Flows............. 52

Figure 32 IMAB with 1 Mbps Host Uplink Connections - 3 Mbyte 200 flows 52
Figure 33 MH - 1 Mbps Host Uplink Connections - 5 Mbyte 200 Flows 53

Figure 34 IMAB with 1 Mbps Host Uplink Connections - 5 Mbyte 200 Flows 53
Figure 35 SILBR with 1 Mbps Host Uplink Connections – 5 Mbyte 200 Flows 54
Figure 36 SILBR & IMAB Path Length Comparison 1 Mbps Host Uplink Connections –
3 Mbyte 200 Flows .. 54

Figure 37 SILBR & IMAB Path Length Comparison 1 Mbps Host Uplink Connections –
5 Mbyte 200 Flows .. 55

xii

LIST OF ACRONYMS

5G The Fifth Generation Mobile Network

AP Access Point

API Application Programming Interface

ARM Adaptive Route Modification

ARP Address Resolution Protocol

CSPF Constraint Based Shortest Path First

DIP Dynamic Information Polling

DRILL Distributed Randomized In-network Localized Load-balancing

ECMP Equal Cost Multi Path

ESF Equally Split Flow

IETF Internet Engineering Task Force

IMAB Inverse Maximum Available Bandwidth

LAT Load Allocation Table

LTE Long Term Evolution

MCP Minimal Impact Congestion Control algorithm

MH Minimum Hop

MLU Maximum Link Utilization

MPLS Multi-Protocol Label Switching

RSVP Resource Reservation Protocol

S2SP switch to switch path table

SCH Switch Health Check

SDN Software Defined Networking

SILBR Statistical Inference based Load Balanced Routing

SILBR Statistical Inference Based Routing

SR Segment Routing

TCP Transmission Control Protocol

UDP User Datagram Protocol

W Window

1

CHAPTER 1

INTRODUCTION

Traditional networks have primarily utilized per hop routing [1] in order to transfer
data through the best paths. As the traffic types and volume increase tremendously,
per hop routing turns out to be inefficient since, for instance, it over utilizes the best
path, while non-best paths are left under-utilized. This inefficiency has led to the
development of traffic engineering. The methods used in traffic engineering evolved
from offline methods to more dynamic approaches such as resource reservation
protocol, segment routing and constraint based shortest path routing.

⁠

The common
point of these methods is optimizing the performance of a network by dynamically
monitoring, predicting and regulating traffic. They essentially properly distribute
traffic over the network and avoid congestion on the network’s links by efficient
utilization of the available network resources in the network.

The offline methods in traffic engineering require knowing traffic demand and
topology information in advance to find the optimal distribution of traffic over a
network. Such methods usually presume that the network and the traffic demand is
static or change very slowly in time. However, contemporary networks are very large
and highly dynamic, thereby rendering such methods unpractical. On the other hand,
dynamic approaches, such as the Resource Reservation Protocol (RSVP) and
Constraint Based Shortest Path First (CSPF) [1],⁠ aim to automate the resource planning
of network devices. The operational process, however, depends on each router to
provide the information about its available resources to other routers in the network
when a new flow is to be routed. Thus, such methods are inherently distributed and
require frequent exchange of resource information between the routers. Also, in order
to properly distribute the traffic, continuous monitoring and short/long term estimation
of the traffic demands are required. These monitoring and demand estimations
necessitate the use of advanced routers with high-end processing capabilities.
Similarly, segment routing (SR) [2] aims to automate the resource reservation
problems in the network. Segment routing combines traffic engineering with source-
based routing. The SR can leverage distributed or centralized control structures. SR
traffic engineering can only be applied to IPv6 or MPLS networks.

2

The recently introduced Software Defined Networking (SDN) technology has the
potential to transform traditional data networks to open and flexible architectures.
Basically, SDN decouples control plane which makes routing decisions and data plane
which performs packet forwarding. Hence, it makes network control programmable
by centralizing network state and intelligence. With SDN, application and control
layers are packed closely [3] and communication with the data layer becomes simpler
compared to traditional networks. While the traffic engineering methods suggested for
traditional networks are also applicable to SDN, dynamic behavior of the management
plane enables different approaches [4] for traffic engineering. The focus of these
approaches can be summarized as traffic steering, traffic load balancing, traffic
analysis, fault tolerance and concurrent management.

SDN can provide dynamic management of flow tables [5]⁠. Therefore, routing can be
made dynamic without the need for information exchange between switching devices
in the data plane. This reduces the complexity and adds agility to the management
process of SDN based networks and allows an SDN controller to steer the traffic more
dynamically than traditional networks.

The flow rules can mark traffic of interest in a range from physical port level to
transport layer protocols [3] and allows for fine grained traffic control. Moreover, SDN
can provide up-to-date traffic information [6] about the network in the control plane.
This enables applications to easily access and consume statistical information about
the network and modify the state of network according to the changes in traffic
demand.

The load balancing mechanisms are deployed widely in networks for services provided
over networks in order to prevent resource overwhelming. SDN based load balancing
solutions are deployed over a wide range of networks [7] such as 5G, LTE, Data
Center, radio access. Since SDN based solutions provide a global view of the network,
these solutions can improve overall system performance. Availability of real time
statistical information and agile management allow the development of novel
approaches in load balancing. Both deterministic[4], [8], [9] and non-deterministic
[10] methods are being researched for SDN traffic engineering.

In traditional networks, a routing mechanism is limited by its software implementation
and predefined metrics[11] [12]. In order to carry out statistical calculations and
incorporate inferences into routing decisions, either a complex signaling protocol
along with the routing should be used as in the example of RSVP, or an external
controller should be deployed to constantly monitor and configure the underlying
network. In the latter, SDN facilitate collecting and involving statistical indicators in
the routing decisions and dynamically managing the routing in order to obtain a
balanced traffic distribution.

In this thesis, we focus on providing a heuristic load balanced routing scheme. We
propose a method, namely Statistical Inference Based Load Balanced Routing
(SILBR) that utilizes statistical inference in routing decisions. Similar to [9] and [13],

3

we strive for the distribution of flows in the network in a way that creates a balanced
traffic distribution over the network. We introduce a link cost metric that is calculated
by the current link usage information collected by means of centralized global view of
SDN. SDN also supports the agile management of traffic by allowing fast
transformation of flow tables, which can be used like a routing table of traditional
routing. The work in [14] shows an example of route management by manipulating
the flow table rules.

The primary objective of the routing algorithm proposed is to minimize the maximum
link utilization. Hence, the network can be used to carry more traffic and lower delay
experienced by the packets by avoiding congestion in the links. The beneficial side
effect of such a traffic management method is the optimal utilization of the underlying
network.

The primary contribution of this thesis is the SILBR algorithm proposed. SILBR
introduces a dynamic link cost metric that can be used in routing to achieve an even
traffic distribution over a network. The proposed routing approach makes use of
statistical analysis of recent link utilization measurements to minimize the maximum
link utilization by dynamic link cost adjustments.

The rest of the thesis is organized as follows. In chapter 2, the key concepts used to
realize SILBR are introduced. In chapter 3, we present a review of the literature
regarding traffic management and engineering in software-defined networks. In
chapter 4, we present our routing algorithm and details of proposed traffic management
method. In chapter 5, we present the details of our implementation, testing
environment and test results. In chapter 6, we conclude our study and suggest
directions for the relevant future work for improvements.

4

5

CHAPTER 2

2. BACKGROUND

This chapter explains the necessary concepts about traffic engineering and software
defined networks that we used in this study.

2.1. Traffic Engineering

The traffic-engineering addresses the problem of sharing limited sources of the
network according to demands of the traffic. Since the traffic demands and the
available resources are constantly changing there is no obvious solution to this
problem. Internet Engineering Task Force (IETF) defines the traffic-engineering [15]
as “encompassing the application of technology and scientific principles to the
measurement, modeling, characterization, and control of Internet traffic, and the
application of such knowledge and techniques to achieve specific performance
objectives”. As seen from the definition, traffic engineering requires measurement and
control of traffic in order to optimize the resource utilization.

Performance objectives of traffic-engineering can be traffic oriented or resource
oriented. Traffic oriented traffic engineering aims to increase the service quality by
minimization of packet loss, minimization of delay, maximization of throughput, and
enforcement of service level agreements. Resource oriented traffic engineering aims
to adjust the resource utilization so that the degradation in service quality can be
avoided. The resource limitations can be the hardware related or service provider
related such as bandwidth.

Best-effort Internet traffic is an example of traffic-oriented traffic-engineering and
congestion avoidance is an example of resource-oriented traffic-engineering. While
the former is more concerned with classification of traffic in order to apply the correct
policies, the latter requires measurement of resources and distribution of load among
available resources.

The control scheme can be reactive or proactive in traffic engineering. Traffic
engineering actions are listed in [15] as:

• Modification of traffic management parameters

6

• Modification of routing parameters

• Modification of attributes and constraints associated with resources

As stated in [1], [15] and [16] control mechanisms of current routing protocols are not
adequate for Traffic engineering; moreover, the shortest path algorithms significantly
increase the congestion problems. The overlay network models extend the design
space for networks by enabling virtual topologies atop physical network topology and
provides important services to support traffic engineering such as constraint-based
routing, traffic shaping, traffic policing, path compression and virtual paths.

Each router in the network floods information about its performance characteristics,
connected links and administrative policy using the extensions to the intra-autonomous
system routing protocols such as OSPF [17] and IS-IS [18].

Constraint Based Shortest Path First (CSPF) aims to combine additional metric
parameters with the shortest path routing. Constraints for the routing can be bandwidth
requirements, hop limitations, administrative groups (link colors), priority (setup and
hold), explicit route link attributes and available free bandwidths of the links. The
CSPF computation is based on graph pruning, however it requires hop by hop
calculation [16].

MPLS uses separation of control and forwarding planes [19] which allows it to base
routing decisions other than shortest path. MPLS traffic-engineering mechanism is
based on distributing the resource information, constraint-based routing and RSVP
based signaling for pseudo wire tunneling the traffic. MPLS pseudo wire tunnels can
be created dynamically and label switching paths can be calculated in a distributed
fashion or can be determined by a centralized function in an offline manner. MPLS-
TE uses constraint-based routing for tunnel creation and label switching path
formation and the routing decision is delivered to the network as an explicit route
object.

Explicit route objects are delivered to RSVP [20] [15] in order to handle the signaling
in a hop by hop manner. RSVP is designed to provide resource reservation for IP
protocols using the integrated services architecture [21]. RSVP reserves resources for
flows. A flow can be a destination IP address, protocol identifier and destination port
or a label switching path. The RSVP protocol explicitly signals each node for resource
reservation requirement from source to the destination. Assuming the RSVP messages
are valid, each router along the path is responsible for generating the RSVP message
for the next hop along the path and passing the message downstream. If the necessary
resources can be reserved for the flow, actual transmission of data starts.

2.2. Software Defined Networking

Traditional networks operate in a distributed structure and vertically integrated manner
[3]. This structure increases complexities and obstructs the management. The software

7

defined networking is the structure that aims to overcome these hindrances of
traditional networking by separation of control and data planes. The separated
structure is realized as control plane and forwarding plane where a single control plane
controls several devices in the forwarding plane[22]. While separated structure solves
the problem of management, it does not change the operational principles of
networking. The solution for orchestration of operation is developed as open interfaces
and programmable network. In summary, SDN is the collection of open,
programmable interfaces deployed in physically separated control and data planes
[23].

 SDN architecture comprises [3] Forwarding Devices, Data Plane, South Bound
Interface, Control Plane, North Bound Interface, Management Plane. According to this
separation, forwarding devices are the hardware or software devices that perform a set
of basic operations, data plane is the representation of interconnections for forwarding
devices, southbound interfaces are the open API’s that enable communication with
forwarding devices, control plane is where all the control logic for the network rests,
northbound interface is the abstraction of southbound interface and the management
plane is where all the network functions operate. The enabler of this structure is the
soutbound API’s used in the network. ForCES [24], OpenFlow [25], and POF [26] are
examples of these interfaces. OpenFlow is a very frequently used interface and we will
examine it in the next section

2.2.1. OpenFlow

OpenFlow is one of the southbound specifications defined for SDN. OpenFlow
specification set is maintained by Open Networking Foundation (ONF) [27]. The
abstract packet processing machine of the OpenFlow protocol stack is called switch.
An OpenFlow enabled switch is divided into three parts flow table, secure channel and
OpenFlow protocol [25]. The flow table holds the rules and actions related to packet
processing, secure channel enables communication between the controller and the
switch and the OpenFlow protocol enables controller to define and modify flow entries
in the switch flow tables.

OpenFlow Protocol Stack [28] is composed of message layer, state machine, system
interface, configuration and data model. Message layer defines structure and semantics
for all messages. State machine defines the low-level protocol behaviors like
negotiation, capability discover, flow control and delivery. System interface defines
communication method to be used in information exchange with the outside world
such as TCP or TLS. Configuration is the initial state or default values of variables in
the protocol stack. Data model is the abstract information that describes the process
capabilities, configuration state and current statistics of an OpenFlow switch.

OpenFlow data model, illustrated in Figure 1 describes the relationship of entities in
the protocol stack of OpenFlow. The entity relations also describe the decision process
of an OpenFlow switch.

8

Figure 1 OpenFlow Pipeline [29]

Each flow that enters an OpenFlow switch is matched against the entries in flow tables.
A general structure of flow entry is illustrated in the Figure 2 as presented in [30].

Match

Fields

Priority Counters Instructions Timeouts Cookie Flags

Figure 2 OpenFlow Match Fields [30]

If a match is found in flow entries, related instructions are carried out by the switch.
The actions can be Apply-Actions, Clear-Actions,Write-Actions,Write-Metadata,Stat-
Trigger or Goto-Table.

The OpenFlow control channel connects each switch to a controller. This interface
allows controller to configure switches and switches can send asynchronous event
messages to a controller. The event messages can be related to packet arrivals or
departures, port status changes or flow table changes. In this thesis, we are interested
in new flow arrivals to the network. A new flow can be detected by table miss events
caused by the first packet of the flow entering a switch in the network. When a table
miss event happens, switches can be configured to deliver the control of the packet to
the controller through the control channel. The PACKET_IN message is sent from the
switch to the controller along with partial or full packet data. The PACKET_IN
message contains important information like DataPathID of the switch sending the
packet, packet header, ID of the table that was looked up, reasons packet is sent to
controller. The packet in messages can be used to detect the flows entering the network
and by following PACKET_IN messages controller can run applications that can
dynamically change the behavior of network.

9

2.3. Statistical Inference

The normal distribution is a well-known and natural distribution that occurs
frequently. According to study in [31], the network traffic distribution models and
analysis based on normal distributions are valid. The normal distribution can be
standardized using the z distribution. The z distribution and the standard z-value gives
us the measure of the difference between the raw sample mean and the population
mean. The formula for calculating a z value is given by

𝑧 =
𝑋−𝜇

𝜎
 (1)

where:

𝑋 is the raw measurement.

𝜇 is the population mean.

𝜎 is the population standard deviation.

The z-score enables to use a standard view of the normal distribution. Figure 3 taken
from [32] shows empirical 68-95-99.7 rule of normal distribution and its relation to
the Z and T Scores.

Figure 3 Normal Distribution and Scales [32]

10

In statistical analysis the z distribution can be used for predictive inference of the
population mean when the population variance of measured variable is known.

By the central limit theorem, we know that sample means are approximately normally
distributed. Hence, the formula for z distribution can be used to relate sample statistics
to population statistics. The equation (2) and (3) shows this derivation.

𝑧 =
𝑥̄−𝜇
𝜎

√𝑛⁄
 (2)

where 𝑥̄is the sample mean and n is the sample size.

Solving the eq (2) for μ:

𝜇 = 𝑥̄ −
𝑧∗𝜎

√𝑛
 (3)

The sample mean can be lower or higher than the population mean. The corrected
version of equation (3) is given in equation (4).

𝜇 = 𝑥̄ ±
𝑧∗𝜎

√𝑛
 (4)

Thus, with a given confidence interval of 𝛼 the estimate of population mean can be
calculated using the Z table as given in equation (5):

𝑥̄ − 𝑧 ∗
𝜎

√𝑛
< 𝜇 < 𝑥̄ + 𝑧 ∗

𝜎

√𝑛
 (5)

When the population variance is unknown the Student’s t distribution can be used to
estimate the population mean [31]. Similar to z distribution, the t distribution requires
the population to be normally distributed.

The formula for t value is given in equation number (6):

𝑡 =
𝑥̄−𝜇

𝑠

√𝑛

 (6)

where s is the sample standard deviation and n is the sample size and n-1 is the degree
of freedom.

The t table is created from many different t distributions, and each line shows a
different behavior. The degree of freedom, defined as “the number of independent
observations for a source of variation minus the number of independent parameters
estimated in computing the variation” [31], is used to differentiate between the lines
of the t table. Similar to z distribution the t distribution can be used to estimate the
mean value of a population. The formula for this is given in equation (7).

𝑥̄ − 𝑡𝑛−1 ∗
𝑠

√𝑛
< 𝜇 < 𝑥̄ + 𝑡𝑛−1 ∗

𝑠

√𝑛
, 𝑑𝑓 = 𝑛 − 1 (7)

11

CHAPTER 3

3. RELATED WORK

There are many methods to achieve a uniform traffic distribution on networks. In this
chapter, we review examples for such methods. Some of the work we present here
aims to distribute the network traffic with micro level decisions that are taken in the
operating systems of switching hardware and the others apply a macro level
management by combining the high level network view of SDN with flow rule
manipulation.

Ghorbani et al. [33] present an example of micro level load distributions. Their work
is centered on Clos network topologies. A Clos network is a commonly used data
center layout which is composed of spine and leaf nodes. Although, such layouts
contain large amount of diversity, due to the shortcomings of shortest path and Equal
Cost Multi Path (ECMP) routing these networks suffer heavily from short burst
congestions. Ghorbani et al. [33] proposed DRILL (Distributed Randomized In-
network Localized Load-balancing) algorithm to micromanage flow traffic in packet
level and achieve and estimate Equally Split Flow (ESF) load distribution using a
switch local algorithm. DRILL assumes that for a given destination, a set of least cost
routes are installed into each switch’s forwarding table by the routing protocol. Then
the algorithm starts leveraging the outgoing buffers’ loading levels and selects the
shortest queue for each packet and updates memory slots with the identities of selected
buffers. As the performance metric, they use the standard deviation of uplink queues
in the spine switches. Their work can outperform the state-of-the-art load balancing
mechanisms. Their measurements show that as the amount of memory and choice is
increased, the performance of the algorithm increases; however, excessive increase in
memory and choices decreases the effectiveness of the algorithm and the performance
of the switches. The contribution of this work is that, by micromanaging and moving
packets to the shortest queues, load balancing can be achieved in data center networks.
The load balancing achieved this way can also be a solution to the large number packet
losses that are caused by microbursts. However, due to the fact that a small amount of
choices should be given on each switch, the amount of data that can be processed in
the micromanagement scale is limited due to the algorithm’s time constraints. Also,
the algorithm is constrained in the number of paths that can be chosen. The main
problem of packet level load balancing, as the writers have discussed in their work, is
the reordering of the packets. The paper illustrates the need for reordering and claims

12

that the TCP is not affected by this reordering, no mention of UDP traffic degradation
or loss of quality in real time traffics is given.

Karuna [34] is another example of micromanagement for load balancing in data center
networks. The paper focuses on flow completion times and the aim is to minimize the
deadline meet rate, minimize the average flow completion time and also prevent the
reverse effects that are caused by such algorithms on the flows that doesn’t have a
deadline requirement such as earliest deadline first. The basic approach is to reserve
the minimum amount of bandwidth to complete a flow barely before its deadline and
leave the maximum possible bandwidth for the remaining flows. The flows are
classified into three categories in accordance with their completion time requirements:
flows with deadlines, flows without deadlines but known sizes, and flows without
deadlines or known sizes. In order to handle the deadline requirements, they propose
a Minimal Impact Congestion Control algorithm (MCP) that utilizes the explicit
congestion control available in the TCP protocol stack. Their approach is superior to
similar preceding work in that the MCP is a non-greedy algorithm in terms of
bandwidth. MCP places the flows with deadlines into highest priority queues and their
rates are throttled in order to just meet the deadline. In order to measure the impact of
such prioritization on other flows, they measure the long-term time averaged per
packet delay and try to minimize this value. In order to sustain the queue stability, the
Lyapunov optimization framework with drift-plus-penalty method is applied to the
network. The link model used in the paper is an M/M/1 queue, by using the size of the
last window and predefined queue and congestion threshold an early flow termination
mechanism is deployed in order to prevent unnecessary bandwidth preservation for
flows that cannot complete in time. The tests are carried out on a small size data center
network model. The testbed network is composed of a single switch and 16 servers.
The results show that Karuna reserves just enough bandwidth to complete flows in
time and achieves almost zero deadline miss rate. The study presented in [34] does not
create any starvation problem that is commonly experienced by shortest job first or
strict priority queueing algorithms. Although their algorithm is successful in terms of
increasing the number of flows meeting their deadline criteria, proposed mechanism
works as a kernel module on the host machines and acts as a shim layer between
network interface and TCP/IP protocols. Packet level queueing and manipulation also
requires packet reordering.

LABERIO [9] aims to achieve dynamic load balancing in data center networks with a
path switching algorithm. The basic idea is to deploy a halfway switching strategy
which switches the path of a flow in the midway in order to better utilize the agility of
OpenFlow. The goal of load balancing is to improve the network throughput. The
quality of service parameter is defined and measured as the minimum bandwidth
requirement, packet reordering due to path switch is left to end hosts and end hosts are
required to set a priority weight to their flows. LABERIO divides the problem into two
stages such as end host scheduling and load balanced routing. The end host scheduling
part is simply weighting the flows by the hosts and application of Largest Weight First

13

Served algorithm in the switches. For the load balanced routing part, two important
tables, namely switch to switch path table (S2SPT) and load allocation table (LAT),
are created and maintained in the controller. S2STP provides all the path information
and in the LAT, the remaining bandwidth of every link along a path is maintained. The
load balance detector parameter is used as the indicator for starting path switching.
The load balance detector parameter is defined as the absolute gap between the average
load of the network and real time load on each link. The metric used is very similar to
variance except that instead of using the links’ mean bandwidth occupancy value,
overall average bandwidth occupancy is used. When a flow request is received by the
controller, the algorithm starts calculating an initial path. When the load balance
parameter on a link exceeds the predefined threshold value, the algorithm starts path
switching by finding a substitute path for the flows on that link and selecting the least
loaded one. The authors report the problem of this approach as the frequent switching
of some flows, which causes the heavy increase in total number of hops. They revise
their algorithm to into account the number of switching actions taken on a flow and
the number of hops increase on the path for that flow. They further refine the algorithm
by measuring the bandwidth requirement in the flow level. LABERIO is highly
criticized for its frequent path switching problem in the preceding works on the
subject. Although the authors do not specify the reason for this behavior, we suspect
the reason is the usage of variance as the decision parameter. Moreover, their work
only indicates the variance as the decision parameter and states the usage of absolute
distance; however, the absolute distance cannot be the only indicator since it does not
contain the directional information about the trend of bandwidth on a link. In addition,
the algorithm requires end hosts to mark their traffic for prioritization.

Like LABERIO, DLPO [13] tries to load balance data center traffic during flow
transmission using path switching. It improves LABERIO by providing a priority-
based flow table update strategy. The aim is to improve network throughput and
effectively resolve the congestion problem. The use of priority-based flow table update
is to redirect the flows of the congested paths to lightly loaded paths without causing
packet loss. DLPO algorithm is composed of two stages: path initialization and
dynamic path optimization. In the path initialization stage, the algorithm tries to find
a temporary path according to the available bandwidth of each path’s bottleneck link
among all the paths between source and destination. In the dynamic path optimization
stage, DLPO uses OpenFlow to retrieve statistics from switches to detect the load
balance status. If the link status is imbalanced, the path optimization algorithm is
triggered. In order not to face the frequent path switching problem reported in the
LABERIO, authors chose to use the simple moving average (SMA) of the variance of
link loads as the indicator of load imbalance. The SMA formulation used in their
algorithm uses the average load of all the links in the network. DLPO employs two
different load balancing methods as multi-link and single-link DLPO. The multi-link
tries to load balance the top 10% busiest links and the single link version reroute flows
in the highest utilization link. The priority-based update strategy increments the newly
added flow rules’ priority before removing the old rules. DLPO introduces significant
improvements over LABERIO and has special methods for avoiding the frequent path
changes and packet loss due to changes made on the switch flow tables. The partial

14

path modification and activation after the congestion occurs, loses the edge provided
by the global view of SDN.

L2RM [14] is an example of macro management for data center networks. L2RM uses
an SDN controller and statistic polling from switches to get a global view of network
and distributes flows by inserting appropriate flow rules to the switches. The work
presented in L2RM has three main parts: adaptive route modification (ARM)
mechanism, switch health check (SHC) mechanism, and dynamic information polling
(DIP) mechanism. The aim of L2RM is to increase network performance by load
balancing traffic in fat tree data center topologies. The arm mechanism follows the
load variation in order to insert a route modification. In order to achieve load balancing
among the routes, L2RM uses bucket weights to share the traffic among action buckets
in different group tables. L2RM maintains path, load and entry tables for each switch
in the network and uses SHC mechanism to update these tables. The load table keeps
traffic information of each port on each switch. The load table is also used as the
general view of the network. The ARM mechanism is invoked according to changes
in the load table. The SHC mechanism is used for controlling the path table. As the
metric for invoking the ARM, L2RM uses a scaled-up version of variance from the
average port load in the network. If the variation is greater than a predetermined
threshold value, the ARM mechanism is invoked. In order to avoid unnecessary
invocations that can be caused by instantaneous bursts, the ARM mechanism is
invoked if the port traffic exceeds the threshold for two successive measurement
intervals. The ARM mechanism selects the link with heaviest load then selects the
highest bandwidth demanding flow from the link and moves the flow to alternate link.
If the alternate link is also heavily loaded, another alternate link is selected. Then the
bucket weights are adjusted to share the traffic among primary and alternate ports. The
DIP mechanism provides the data needed to take these actions. L2RM deploys
methods for reduction of process load on the controller, such as timeout values for
flow entries, random exponential back off algorithm for statistics polling. The
algorithm however considers only primary and backup routes for load balancing. The
load balancing mechanism is based on variance directly, which can give false alarms
by rapidly changing in accordance with the traffic load. Also, algorithm waits for two
consecutive measurement intervals for invoking the ARM to distribute the load on a
link, which would degrade its performance under highly varying loads by not
performing the load distribution.

A different approach to load balancing problem is proposed in [8] and named
Centflow. The authors propose the use of centrality functions which has been research
topic of social networking, in order to determine highly utilized central nodes and
edges in a network. CentFlow employs betweenness centrality and temporal node
degree to measure how central a node is or how often an edge is selected for flows.
The aim is to influence the routing algorithms to select the paths that uses fewer central
nodes by dynamically evaluating the packet forwarding capacity of each node and
deferring the nodes that can cause saturation in the network. This way, the3 authors
aim to achieve a more load balanced traffic distribution in the network. The definitions
of geodesic and geodesic distance are given as the shortest path and its length between

15

two nodes in the network. Betweenness centrality of a node is defined as the ratio of
number of geodesics to the total number of geodesics from a source to destination.
Similarly, edge betweenness is also defined as the ratio number of geodesics to the
total number of geodesics from a source to destination. After a network topology is
obtained CentFlow starts by assigning random weights to the nodes. The node and
centrality measures are computed and dynamically. When a node hits the threshold
utilization value the node is disconnected from the graph and centrality values are
recomputed. The authors combine their algorithm with the Dijkstra’s shortest path
algorithm and demonstrate the results as 62% increase in node utilization and 49%
increase in link utilization. The contributions of the CentFlow are very significant
since it describes a more inclusive approach to load balancing, puts no differentiation
between TCP or UDP flows and doesn’t require any end host or switch level
modification on flows.

The research presented in [35] aims to perform load balancing by calculating each
switch capacity across a path to which packets are routed in advance. The proposed
algorithm presents the network as a simple, directed, connected graph. The capacity is
defined as bytes per second data thorough a given switch. When a flow is received by
the controller simple paths are created to deliver the packets from source to destination.
Algorithm determines multiple paths from source to destination. Minimum threshold
values are given for each path and the average of these values are calculated to
determine the average path threshold. The load balancing action redirects packets to
alternate path when the received packet exceeds this threshold. The test results for the
study is given in terms of Request Success Rate, Request Failure Rate, Response Time,
and Link utilization, no mention of request. These metrics are meaningful for
measuring the effectiveness of the load balancing on service or a server, however no
consideration is given to the traffic loads in the network or its distribution.

In [36], Shu et al. several studies in SDN are inspected in terms of traffic engineering.
The study by Shu et al. propose a reference framework that divides the traffic
engineering into two main fields as traffic measurement and traffic management. Their
work also divides the network structures as SDN and IP where IP refers to the
traditional networks. Traffic measurement technologies are classified as network
parameter measurement, general measurement framework, traffic analysis and
prediction. The traffic management technologies are classified as traffic load
balancing, quality of service guaranteeing, energy saving and hybrid SDN/IP traffic
management. The authors emphasize that the traffic engineering is a necessity in
traditional networks due to routing protocols’ inefficiency in managing traffic in
accordance with the changing traffic parameters and SDN is a promising technology
in traffic engineering due to the control, programmability and openness characteristics.
It is claimed that these characteristics can solve current traffic engineering problems
in traffic measurement, scheduling, management, flexible flow management. As
examples of network parameters measurement, the authors inspected works on traffic
statistics collection, traffic matrix estimation and dynamic traffic change analysis. For
generic measurement, the paper focuses on flow sampling, flow polling, network
device resource management and accuracy of measurement. For the traffic analysis,

16

the authors focus on the consistency checks in terms of configuration and topology,
abnormal traffic detection and routing loop detection. In the traffic load balancing, the
authors inspect studies on package level load balancing, equivalence multipath routing
(ECMP), elephant flow detection and routing optimization according to elephant/mice
flow classification. In quality of service guarantee scheduling, the authors focus on
studies related to flexible traffic scheduling strategies to satisfy QoS requirements such
as queue management, flow scheduling and IP packet header information handling to
improve QoS performance of networks. The authors claim that networks consume
50% of energy spent for services delivered over the networks, therefore the energy
consumption should be considered for traffic management. They support their claim
by presenting research that tries to utilize sleep states on ports, minimizing number of
routes used in order to shut down switches that are not relevant for optimized traffic
routing and optimizing service schedule in accordance with the QoS requirements of
flows in order to minimize the number of routing paths used. The survey handles the
hybrid IP/SDN structures from the aspects of mutual benefit and interoperability. In
terms of mutual benefit, deployment strategies create a performance improvement for
both IP and SDN networks and migration strategies are inspected in terms of
interoperability. The survey is concluded by stating the importance of measurement
for providing traffic engineering in SDN and importance of traffic engineering for the
widespread adoption of SDN architecture.

The work in [37] is a survey on load balancing techniques in software defined
networks. It also provides a summary of research challenges and directions for load
balancing. The authors also investigate mathematical models and emulators commonly
used in testing of algorithms. Authors state the difficulties arising from the traditional
IP networks routing and route distribution mechanisms prevent the implementation
and deployment of intelligent routing solutions while the global view and flexible
programming provided by SDN enables such solutions. The load balancing techniques
are classified as controller load balancing, server load balancing, wireless networks
link load balancing, communication path load balancing and artificial intelligence-
based load balancing. Controller load balancing focuses on solving the controller load
disparity in the presence of multiple controllers. The main idea of related papers is to
cluster the switches to the controllers in a way that allows the controller to share the
process load. In server load balancing, research efforts show variations since the
performance metrics show a high variety when the applications are involved. Some
examples of the metrics are request numbers, throughput and response time and the
methods used involve application of swarm intelligence for cloud computing,
adjusting flow paths according to traffic demand or server allocation according to
client demand. The authors state that SDN controllers and load balancing solutions can
be deployed to wireless networks in order to dynamically load balance access point
(AP) traffic. The research work investigated involves measuring traffic load to
determine the optimal associations, variance-based traffic routing and measuring the
end user experience for effective load balancing. In communication path load
balancing, the authors inspect routing methods used in [9] and [13] and state that these
algorithms are not generalized and need to be changed when the topology changes.
The remaining studies are criticized in terms of scaling problems, low response time,

17

packet loss or high energy consumption. In the artificial intelligence-based load
balancing, it is stated that load balancing is achieved by different artificial intelligence
techniques such as artificial neural network, reinforced learning and deep neural
networks. The authors state that, since artificial intelligence methods can model
complex algorithms with precision and rationality, the decision-making process of the
controller is positively affected by the deployment of such algorithms.

The SILBR routing algorithm proposed in this thesis, like the macro level traffic
management studies explained, relies heavily on the utilization measurements carried
out by the switches and collected by the SDN controller in a network. In a network,
traffic demand generally exhibits a highly dynamic behavior and instantaneous link
usage measurements may not reflect the actual long-term usage behavior. Hence,
SILBR employs moving averages and statistical inference to evaluate the long-term
traffic demand on core network links. Hence, a more credible network state
information is obtained, and this contributes to the stability of the routing decisions.
Moreover, our algorithm relies on inferences for decision making rather than
depending on the measurements alone. This approach improves the accuracy of the
routing decisions made. Unlike the studies examined so far, in SILBR, rerouting is
only used as a correction method for even traffic distribution when necessary and
adequate. Therefore, the need for rerouting is minimized thereby reducing the
processing load on the controller and the control messaging required for management
of the network.

18

19

CHAPTER 4

4. STATISTICAL INFERENCE BASED LOAD BALANCED ROUTING

The primary objective of Statistical Inference Based Routing (SIBLR) algorithm
proposed in this thesis is to evenly distribute traffic in the network by minimizing the
maximum link utilization. The utilization of a link reflects the average load on the link
and it is expressed as the percentage of the utilized link capacity [38]. Hence,
Maximum Link Utilization (MLU) in a network can be defined as the utilization of the
most utilized link in the network at a given time instant or during a given time interval.
One of the most common approaches employed in traffic engineering is the
minimization of MLU and it serves several purposes such as improved scalability of
the network, lower end-to-end packet delay, and higher flow throughput.

A routing algorithm that leads to a smaller MLU allows increasing the existing traffic
volume by a larger factor. Hence, such routing algorithms contribute to the scalability
of the networks. Accordingly, by minimizing MLU, the mean time between network
link capacity upgrades can be minimized.

The average queuing delay experienced by packets in a link increases with the
utilization of the link and there is a non-linear relationship between them. Therefore,
if queuing delays in a network are larger compared to other delay components, a lower
MLU value usually results in a lower end-to-end packet delay.

In a network, flows can arrive at and leave the network at random times and multiple
flows usually share one or more network links. The fairness objective of the
communication protocols, such as TCP, leads to equal bandwidth share for the flows
passing through a bottleneck link [39]. Hence, minimizing the number of flows passing
through the bottleneck link enables providing more bandwidth to individual flows
passing through that link. On the other hand, over-utilization of some of the links in
the network results in lower throughput for the flows passing through that link.
Therefore, MLU also plays a very important role in the maximum throughput that can
be achieved by individual flows.

In order to minimize MLU, the routing algorithm must take into account the current
state of the network such as the topology of the network, link capacities and link loads.
If a flow is routed without considering the current link utilizations, some of the links
may be over-utilized while many links in the network are lightly loaded. Hence, a
routing algorithm that aims to minimize MLU may proactively route flows over under-
utilized links to avoid congestion in some of the links. Hence, minimizing MLU
generally leads to moving load that would normally be passing through the most
utilized link to other links. Alternatively, the routing algorithm may reactively achieve

20

minimization of MLU by re-routing flows passing through the mostly utilized link to
alternative paths passing through lightly loaded links. In both cases, the routing
algorithm needs to know the current state of the network. The SILBR embodies both
approaches and depends on the global view of the SDN controller in order to obtain
current network status in terms of characteristics such as topology and the link
bandwidth utilization levels.

In order to minimize MLU (and accordingly achieve evenly distributed traffic in the
network) SILBR defines a link cost metric that reflects the degree of even distribution
of load across the links. The link loads are periodically collected by SILBR. These
successive link load measurements serve as sample measurements that allow inferring
the average load on that link. SILBR then calculates the probability that the link’s
utilization is larger than the average link utilization in the network. The link cost that
will be used in routing decisions is determined according to this probability. SILBR
also has rerouting feature. SILBR keeps track of the paths that are being used by the
flows. If an imbalance in the flow distribution is observed SILBR reroutes some of the
flows to other alternate paths to restore even distribution of the load across the links.

In SILBR, we assume that each link in the network core has a predefined and equal
maximum capacity. However, the access networks, which are used to connect end
nodes to the network, may have different capacities. As the link capacities are the same
in the core of the network, the link utilizations are proportional to traffic load on the
links (i.e., utilization = link load / capacity). Hence, in the following, link load and link
utilization are used interchangeably.

We periodically measure the load on each link in the network core by using the simple
moving average method. Please note that the moving average for a link merely
corresponds to a sample mean which may be smaller or larger than the actual mean
load on that link. Nevertheless, by considering the measurements used in moving
average operation and the relevant statistics such as the number of measurements, the
sample means and standard deviations, we can build confidence intervals and make
inferences about the actual mean of the link load.

We also periodically compute the “grand mean link load” for the entire network by
computing the average of the latest link load averages for all links in the network core.
At any time, the mean load on a link could be higher or lower than the grand mean
link load. The selection of paths should be made in a way to minimize MLU of the
links that constitute the paths. That is, we try to avoid passing through links that have
mean loads above the grand mean link load. Therefore, we can minimize MLU in the
network to achieve our objective. To this end, we calculate the probability that an
individual link’s actual mean load is higher than the grand mean link load in the
network. Hence, the routing algorithm chooses the path that has the minimum
probability that at least one of the links in the path has a mean load that is larger than
the grand mean link load.

The details of the path selection are as follows:

21

Time is divided into slots of equal length and average amount of traffic passing
through each link is computed for each slot.

W: Window size to calculate the simple moving average of link load.

βi(n): The amount of traffic flowing through ith link at time slot n.

µi(n): At time slot n, the simple moving average of the latest W traffic measurements
for the ith link. It is calculated as:

µ𝑖(𝑛) =
1

𝑊
∗ ∑ βi(𝑛 − 𝑘)

𝑊−1

𝑘=0
 (8)

si(n): The unbiased sample variance of the load in ith link at time slot n. It is calculated
as:

s𝑖(𝑛) = √∑ (βi(n − k) − µ𝑖)2/(W − 1)
𝑊−1

𝑘=1
 (9)

Ϻ(n): The grand mean link load at time slot n for the network. It is equal to the average
of the sample means of the links in the network core. Let N be the number of links in
the network core. The grand mean link load is calculated as:

 Ϻ(n) =
1

N
∑ µ𝑖(𝑛)𝑁

1 (10)

The above definitions and formulas give the information about the current state of the
network in terms of the grand mean link load and individual link loads. The grand
mean link load gives an idea about the average amount of data carried by the links in
the entire network. An indicator of even distribution of load in the network may be
how close the individual link means are to the grand mean link load. Hence, we can
conclude that if the link loads are very close to the grand mean link load the load is
evenly distributed in the network.

As explained above, we can think of the moving average for an individual link as the
sample mean for that link. The sample mean gets closer to the actual mean of that link
as the size of the moving average window (W) gets larger. From the statistical point
of view, the sample means may be assumed to follow the Student’s t-distribution [31]
with a degree of freedom one less than the sample size (i.e., W-1). Hence, we can make
inferences about the actual link mean by using the Student’s t-distribution. For
instance, we can find the probability that the actual link load is greater than the grand
mean link load by using the t-value. The t-value for each link at the nth time slot,
denoted by ti(n), is calculated as:

𝑡𝑖(𝑛) = (𝜇𝑖(n) − Ϻ(n))/(𝑠𝑖(n)/√𝑊) (11)

The cumulative distribution function of t distribution evaluated at the 𝑡𝑖(n) for each n
gives us the probability Ρi(n) of finding the actual link load, greater than Ϻ(n). That

22

is, Pi(n) = Pr(µ(n) > Ϻ(n)). Hence, the probability that the actual link load mean is less
than M(n) becomes 1-Pi(n).

As the traffic on a link I increases, it will be more likely to have a sample mean (i.e.,
the moving average) greater than the grand mean link load and Pi(n) will be close to
zero. Similarly, as the load on a link gets lighter, it will be more likely to have a sample
mean less than the grand mean link load and Pi(n) will be close to 1. This implies that
the probability Pi(n) and the cost for link may be related to each other to achieve even
distribution of load in the network.

If we assume that the loads on the links are independent of each other, for a path
composed of k links, the probability C(n) that every link that the path passes through
has a sample mean less than the grand mean, Ϻ(n) can be found as:

C(n) = ∏ (1 − 𝑃𝑖(𝑛))𝑘
𝑖=1 (12)

In order to convert multiplication to sum, we can take the natural logarithm of both
sides as:

ln 𝐶(𝑛) = ln(∏ (1 − 𝑃𝑖(𝑛))𝑘
𝑖=1) = ∑ ln(1 − 𝑃𝑖(𝑛))𝑘

𝑖=1 (13)

Therefore, instead of maximizing C(n), we can maximize 𝑙𝑛 𝐶(𝑛), or equivalently
minimize – 𝑙𝑛 𝐶(𝑛) , in order to select the paths with least amount of traffic.
Accordingly, finding the best path reduces to finding the shortest path in the network
when we define the cost of link I at time slot n as:

𝑐𝑖(𝑛) = − ln(1 − 𝑃𝑖(𝑛)) (14)

At time n, the cost of a path consisting of k links becomes:

𝑃𝑎𝑡ℎ 𝐶𝑜𝑠𝑡(𝑛) = − ∑ ln(1 − 𝑃𝑖(𝑛))𝑘
𝑖=1 (15)

Therefore, in order to minimize MLU, we can choose the path that minimizes equation
(15). The equation (15) represents the more natural way of path selection in the shortest
path finding algorithms.

In order to further refine the minimization of MLU, SILBR uses rerouting process
which is also based on the SILBR metric. Each flow in the network is registered with
a unique hash code. The hash code is also used to track the path information that the
flow is assigned to. The SILBR first controls the number of flows assigned to each
path. If the algorithm finds an imbalance in the flow distribution a rerouting process
starts. The process checks for the alternative path costs of each flow. If an alternative
with lesser cost is found, the flow is moved to the alternative path.

23

CHAPTER 5

5. IMPLEMENTATION AND TESTING

5.1 Implementation

This Section describes the design and implementation of the described algorithm and
its performance evaluation.

Floodlight SDN controller [40] is chosen as the development environment of the
algorithm. Floodlight controller is designed to operate as a highly concurrent system
and utilizes the multithreaded design. The controller supports for users to create their
own modules and supports REST applications by making several REST interfaces
available. For ease of access to the controller resources and information, the algorithm
is implemented as a module into the Floodlight controller.

The process flow of the algorithm is given in the Figure 4.

5.1.1 Packet In Listener:
The module is implemented as a PACKET_IN listener. Whenever a packet in message
is received from the switches, the module starts related processes. Process details of
SILBR implementation are given in the following sections.

5.1.2 Topology Discovery:
For every PacketIn message received by the controller, SILBR checks if the internal
switch set contains the DatapathID of the switch that sends the message. If the switch
DatapathID is not recorded before, module starts an update process using the Switch
Service of the Floodlight Controller.

5.1.3 Host Discovery:
SILBR implements passive host discovery by listening to the Address Resolution
Protocol (ARP) messages. Host discovery uses the Device Service of the controller.
The findDevice method returns the connection point information about the device.

24

The host information is stored in the form of an IP table that contains the DatapathID
of the switch and port number of the host connection. The flow routing process is not
started until both the source and destination IP addresses of the flow is included in this
table. The structure of the table is exemplified in Figure 5.

IPv4 Address Switch Datapath ID OF Port

10.0.0.1 Id=10:00:00:00:00:00:00:01 Port = 1

Figure 5 SILBR Host Table

As the hosts are discovered, SILBR adds flow rules to the switches. These rules are
exceptions to the normal operation of the SILBR algorithm. Under normal operation
conditions the flow rules are used for routing and are installed for a limited time.
However, host rules are permanent, and these rules direct the packets, whose

Figure 4 Process Pipeline of SILBR Implementation

25

destination IP addresses matches the end host, to the connection port of the end host.
An example of the process is displayed in Figure 6.

5.1.4 Statistics Collection:
SILBR collects switch port bandwidth usage statistics from every switch in the
topology in every 2 seconds. The data contains bandwidth measurements from the
ports in RX and TX directions separately. After the collection, port data is associated
with a performance data. Performance data contains separate records of RX and TX
bandwidth values. Using these records statistics such as mean, variance and t-score
values are calculated and added to the record. According to these calculated values
each port is assigned a cost value. For this process SILBR Link Discovery, Statistics
and Topology services of the controller. The process runs as a single separate task.

5.1.5 Route Discovery:
SILBR collects routing information with a separate thread in every 2 seconds. In order
to prevent the algorithm from choosing irrationally long paths, we limited the number
of paths that are used in the load balanced routing process. SILBR choses the smallest
cost path among the k alternate shortest paths. The k value is chosen as 60 during the
testing but it may be determined according to the size of a network. The algorithm
calculates up to 60 paths from each source switch to destination switch using the
IRoutingService of the controller. The collected path information is stored locally as
exemplified in Figure 7.

<Source Switch Datapath ID, Dest. Switch Datapath ID> List of Unidirectional
Paths

<Id=10:00:00:00:00:00:00:01,Id=10:00:00:00:00:00:00:02> {Path1, Path2 … Path60}

Figure 7 SILBR Path Information

Figure 6 Floodlight Host Rules

26

Each path starts with the outbound connection from the starting switch then continues
as receiving and leaving ports on the next switch until receiving port of the destination
switch is reached.

The collected routing information is combined with the cost value calculated from the
port performance data and stored locally to create a routing table. For the purpose of
traffic load distribution, we defined the path cost value as the cumulative value of
outbound link costs that the path is traversing. An illustration of path cost calculation
is given in Figure 8.

5.1.6 Flow Table Installation Process:

SILBR listens to incoming PACKET_IN messages from switches to decide on flow
routing. When both host discovery and route table processes are completed, the
module starts routing flows by installing static flow entries into the switches.

According to [41], PACKET_IN messages contain the header information of the
packet that causes the message. The SILBR module checks the header information in
order to determine the corresponding flow’s source and destination IP addresses.
SILBR obtains the source and destination switch’s DatapathID information by using
the host discovery information. Possible paths for the source and destination switch
DatapathIDs are sorted according to the cost information; after sorting, the minimum
cost path and the data payload information is passed to a new update thread for
installing corresponding flow table rules to the switches.

The update task uses source, destination IP and port information in the data payload
and creates a unique hash value for each flow. The produced hash, flow details and
path information are stored locally and updated as flows added and removed in order
to use in rerouting process and keep track of the flows in the network. In order to create
the required match information, the task uses OFFactories for OpenFlow version 1.4.

Figure 8 Path Cost Calculation

27

The factories are implemented in the controller. The update task uses the Static Entry
Pusher Service of the floodlight controller to send the flow table rules to the switches.

If the flow is a new one, the flow rules are added with medium level priority and 2
seconds idle timeout value. Therefore, when a flow is finished related rules are
removed from the switches automatically. If the flow is a rerouted one, the flow rules
are added with highest priority and 2 seconds idle timeout value so that the previous
rules, related to the same flow, time out within 2 seconds.

5.1.7 Rerouting:
The rerouting process also works as a separate task. The task is activated in every 2
seconds to check for reroute requirements. The task uses Static Entry Pusher Service
to collect the information about the continuing flows in the network. The flow table
installation process keeps track of the paths that the flows are routed through. By
considering flow-path information and already constructed routing table, the rerouting
task counts the number of flows assigned to the paths and determines the minimum
and maximum number of flows assigned to the paths. If the difference is more than 2,
the task starts to process the flows. If a path with cost value lower than the current one
is found, the task moves the flow to this path and starts a Flow Table Installation task.
This way the SILBR tries to equally distribute the flows over the topology.

5.2 Testing

In this section, we present the performance of SILBR and compare it with the
performances of other protocols. In order to illustrate the essence of SILBR, we first
used a very simple topology and compared the SILBR to static routing and the
minimum hop (MH) routing (i.e., the shortest path routing based on hop count). We
present the results of this section by box plots of link bandwidth usage levels obtained
from the whole network. Then, we compare the SILBR to MH and the Inverse
Maximum Available Bandwidth (IMAB) routing (i.e., the shortest path routing with
link costs equal to inverse of the available bandwidth) algorithms and observe the
traffic distributions and path lengths. We present the results of our experiments as
minimum, maximum and average bandwidth plots individually for each algorithm and
comparatively for the three algorithms.

For testing we used two different topologies. The tests performed on the simple
topology is aimed to show the advantage obtained by using a dynamic metric for traffic
distribution. The tests performed on the mesh topology are aimed to compare the
performance of SILBR to similar dynamic metrics used for traffic distribution.

The Mininet [42] and MiniEdit [43] tools are used for topology generation and network
emulation, respectively. The Mininet tool provides both an API and command line
interfaces to create, access and interact with virtual networks and these operations can
be automated easily with scripting.

28

Iperf [44] and D-ITG [45] traffic generators are used for creating desired traffic
patterns among the hosts. Both traffic generators are widely used for research purposes
and can produce network traffic in the packet level by replicating the necessary
stochastic processes. Both traffic generators also allow manipulation of the network
traffic by changing the packet level parameters such as packet inter-departure times,
average packet sizes.

5.2.1 Simple Topology:
The Figure 9 depicts the topology used in this part of testing.

The network setup is composed of longer alternate paths and a shortest path passing
through switch 5. The host uplink connection is limited to 1 Mbps and core links are
operating at 2Mpbs. Each host on one side of the network, transfers data by
establishing a TCP connection to a destination host on the opposite side of the network.
That is, no traffic inter-switch traffic between the hosts is created. The TCP
connections start every 6 seconds. The source sends 1400 byte packets a rate of 200
pps (packets per second) and inter-arrival times are exponentially distributed. Each
TCP connection carries 12000 Kbytes of data. The resulting throughput of a single
TCP connection is shown in Figure 10.

Figure 9 The Simple Topology Used

29

29

.
Fi

gu
re

 1
0

Th
ro

ug
hp

ut
 p

lo
t o

f a
 si

ng
le

 T
C

P
flo

w
 –

 1
40

0
by

te
 p

ac
ke

t s
iz

e,
 2

00
 p

ps
, e

xp
on

en
tia

l i
nt

er
 a

rr
iv

al
 ra

te

30

We first tested the traffic with static routing. The routing is set up in a way that none
of the core links will be delivered traffic surpassing 2 Mbps. The resulting traffic
distribution is depicted in Figure 11. We would like to emphasize here that; due to the
simplicity of the topology and the identical shape of the traffic an ideal traffic
distribution is obtained. The average traffic over the network links is 1 Mbps and the
maximum utilization is 2 Mbps. Some of the links do not carry any traffic. The
resulting box plot shows that the maximum, minimum and average utilization values
accordingly.

In Figure 12, the traffic distribution with Minimum Hop (MH) routing (i.e., shortest
path routing with unit link cost) is depicted. Since no alternate route is selected for the
flows in this algorithm, no traffic distribution is achieved. The resulting box plot shows
the measured bandwidths as outliers. The links on the selected path is used up to their
capacity.

The Figure 13 depicts the traffic distribution when SILBR algorithm is applied. The
resulting box plot shows that the minimum bandwidth usage is increased while the
maximum link utilizations are about 25% lower than the link capacity.

When the SILBR routing and the static routing is compared, it is observed that the
completion time for the transfer of data is slightly higher for the SILBR, however
SILBR increases the completion time only by 2% while it achieves about 40%
decrease in the MLU. Also, it is evident from the outliers in Figure 13 SILBR utilizes
all the links in the network.

31

 31

Fi

gu
re

 1
1

Tr
af

fic
 D

is
tri

bu
tio

n
w

ith
 S

ta
tic

 R
ou

tin
g

on
 S

im
pl

e
To

po
lo

gy

32

32

Fi
gu

re
 1

2
Tr

af
fic

 D
is

tri
bu

tio
n

on
 S

im
pl

e
To

po
lo

gy
 w

ith
 M

H
 R

ou
tin

g

33

33

Fi

gu
re

 1
3T

ra
ff

ic
 D

is
tri

bu
tio

n
on

 S
im

pl
e

To
po

lo
gy

 w
ith

 S
IL

B
R

34

5.2.2 Mesh Topology:

Figure 14 shows the second topology used for testing. In this topology, we compared
the performance of SILBR with the performances of MH and IMAB. In IMAB, inverse
of the remaining link capacity is assigned as the cost for a link and this adaptive
approach is widely used for traffic distribution and minimization of MLU.

We carried out two different experiments on this topology. In the first version, we used
1 Mbps uplink connections to the switches (i.e., the access network links), and 5 Mbps
links between the switches (i.e., the core network links). We measured the core
network traffic and compared the traffic distribution by observing minimum,
maximum and average link utilizations. Moreover, we compared the path lengths. In
the second version we connected the hosts and switches with 5 Mbps links and
observed the minimization of MLU behavior of SILBR, IMAB and MH. The reason
we increased the host connections to 5 Mbps is to ensure that the TCP fair share
behavior is not limiting the connection speeds.

For this test, we created 10 TCP flows per one second for 20 seconds. Source and
destination pairs are chosen randomly for each flow. We conducted the experiment
with different payload sizes as 1 Mbyte/flow, 3 Mbyte/flow, and 5 Mbyte/flow. We

Figure 14 the Mesh Topology Used

35

present 1 Mbyte/flow results here and the results for 3 Mbyte/flow, and 5 Mbyte/flow
are presented in the Appendix A. Figure 15, Figure 16, and Figure 17 show our results
with 1 Mbps host (i.e., access network) connections.

Figure 15 SILBR with 1 Mbps host connections, 1 Mbyte 200 flows

Figure 16 IMAB with 1 Mbps host connections, 1 Mbyte 200 flows

0

200000

400000

600000

800000

1000000

1200000
1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

B
a

n
d

w
id

th
s
 (

b
p

s
)

Sample Numbers

SILBR - 1 Mbps Host Connections - 1 Mbyte 200 Flows

Minimum

Maximum

Average

0

200000

400000

600000

800000

1000000

1200000

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

B
a

n
d

w
id

th
s
 (

b
p

s
)

Sample Numbers

IMAB - 1 Mbps Host Connections - 1 Mbyte 200 Flows

Minimum

Maximum

Average

36

Figure 17 MH with 1 Mbps Host Connections – 1 Mbyte 200 flows

When the results are compared against the MH routing, total transmission times are
not affected for both IMAB and SILBR. The maximum bandwidth usages for the
IMAB shows better performance. The minimum bandwidth usages are better in the
case of SILBR. The supplementary comparison charts for maximum, minimum and
average bandwidth usages are given in Figure 18, Figure 19 and Figure 20
respectively.

The sudden increases at the start and end of the traffic shows that the IMAB routes the
flows similar to a round robin fashion. As the number of TCP flows increases in the
network, flows start to share the same links. Due to the limitations in the host uplinks,
as the number of flows increases the TCP fair share principle causes the per flow
bandwidth usages to decrease. This shows that the IMAB starts routing flows to lower
cost links first and as the number of flows increase in time the newer flows are added
to the paths with the oldest flows in the network. This behavior is also evident from
the sudden increase at the end of the graph where the latest arriving flows find higher
usable bandwidths due to completed earlier arriving flows. This behavior causes
changes in the delays and increases jitter in the network.

0

200000

400000

600000

800000

1000000

1200000

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

B
a

n
d

w
id

th
 (

b
p

s
)

Sample Numbers

MH - 1 Mbps Host Connections - 1 Mbyte 200 Flows

Minimum

Maximum

Average

37

Figure 18 Maximum Bandwidth Usages for SILBR, IMAB and MH metrics, Mesh Topology 1 Mbps
Host Uplink Connections

Figure 19 Minimum Bandwidth Usages for SILBR, IMAB and MH metrics, Mesh Topology 1 Mbps
Host Uplink Connections

0

200000

400000

600000

800000

1000000

1200000

1400000

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

B
a

n
d

w
id

th
 (

b
p

s
)

Sample Number

Comparison of Maximum Bandwidth Usages
1Mbps Host Uplink Connection

IMAB

SILBR

MH

0

100000

200000

300000

400000

500000

600000

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

B
a

n
d

w
id

th
(b

p
s
)

Sample Number

Comparison of Minimum Bandwidth Usages
1Mbps Host Uplink Connection

IMAB

SILBR

MH

38

Figure 20 Average Bandwidth Usages for SILBR, IMAB and MH metrics, Mesh Topology 1 Mbps
Host Uplink Connections

The comparison of maximum bandwidth usages shows that the SILBR achieves 20%
decrease in the MLU and IMAB achieves 38% decrease in the MLU on average. In
terms of minimum and average bandwidth usages the SILBR achieves a 20% higher
usage. The average bandwidth usage of the SILBR shows an increasing trend.

Figure 21 SILBR & IMAB Path Length Comparison 1 Mbps Host Uplink Connections – 1 Mbyte 200
Flows

0

100000

200000

300000

400000

500000

600000

700000
1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

B
a

n
d

w
id

th
 (

b
p

s
)

Sample Number

Comparison of Average Bandwidth Usages
1Mbps Host Uplink Connection

IMAB

SILBR

MH

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

N
u

m
b

e
r

o
f
S

e
le

c
te

d
 P

a
th

s

Path Hop Count

Comparison for SILBR & IMAB Path Lengths

SILBR

IMAB

39

In addition to the bandwidth measurements, we compared path lengths for SILBR and
IMAB in Figure 21. The results of this comparison show that SILBR uses shorter paths
compared to that of IMAB. This behavior can be explained by the round robin like
traffic distribution performed by the IMAB. The path lengths show that the SILBR
creates less traffic load on the network devices since less amount of network devices
needs to process the traffic. Another advantage obtained by using the shorter paths is
that it causes less processing, transmission, propagation and queuing delays for
individual packets. The decrease in both propagation and buffer delays causes a better
decrease in the round-trip time. Also, since the variation in the path lengths is smaller
in the SILBR, a lower jitter value is expected.

For the second test case, we again created 10 TCP flows per one second for 20 seconds.
Source and destination pairs are chosen randomly for each flow. We conducted the
experiment with 5 Mbyte/flow payload sizes and the host uplink connections are set
to operate at 5 Mbps. The Figure 22, Figure 23 and Figure 24 show our experiment
results. The reason for the increase in the host uplink connection is to minimize the
effect of TCP fairness and test that the same beneficial results are obtained. The
comparisons for 1 Mbps host uplink connections and 3 Mbyte/flow and 5 Mbyte/flow
payload cases are presented in the Appendix A

Figure 22 SILBR with 5 Mbps Host Connections – 5 Mbyte 200 flows

0

1000000

2000000

3000000

4000000

5000000

6000000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

B
a

n
d

w
id

th
 (

b
p

s
)

Sample Number

SILBR - 5Mbps Host Uplink Connections - 5Mbyte 200 Flows

Minimum

Maximum

Average

40

Figure 23 IMAB with 5 Mbps Host Connections – 5 Mbyte 200 flows

Figure 24 MH with 5 Mbps Host Connections – 5 Mbyte 200 flows

The results presented in Figure 22, Figure 23 and Figure 24 are consistent with the
previous test case where the host connections are set to operate at 1 Mbps. The traffic
values at the start and end of the data transmission shows a smoother increase and
decrease for the SILBR. The supplementary comparison charts for maximum,
minimum and average bandwidth usages are given in Figure 25, Figure 26 and Figure
27 respectively. The Figure 28 show the path length comparison for IMAB and SILBR.
The results show that the SILBR choses shorter paths compared to IMAB.

0

1000000

2000000

3000000

4000000

5000000

6000000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

B
a

n
d

w
id

th
 (

b
p

s
)

Sample Number

IMAB- 5Mbps Host Uplink Connections - 5Mbyte 200 flows

Minimum

Maximum

Average

0

1000000

2000000

3000000

4000000

5000000

6000000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

B
a

n
d

w
id

th
 (

b
p

s
)

Sample Number

MH - 5Mbps Host Uplink Connections - 5Mbyte 200 flows

Minimum

Maximum

Average

41

Figure 25 Maximum Bandwidth Usages for SILBR, IMAB and MH metrics, Mesh Topology 5 Mbps
Host Uplink Connections

Figure 26 Minimum Bandwidth Usages for SILBR, IMAB and MH metrics, Mesh Topology 1 Mbps
Host Uplink Connections

0

1000000

2000000

3000000

4000000

5000000

6000000

1 7
1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

1
4
5

1
5
1

1
5
7

B
a

n
d

w
id

th

Sample Number

Comparison of Maximum Bandwidth Usages
5Mbps Host Uplink Connection

SILBR

IMAB

MH

0

500000

1000000

1500000

2000000

2500000

1 7
1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

1
4
5

1
5
1

1
5
7

B
a

n
d

w
id

th
(b

p
s
)

Sample Number

Comparison of Minimum Bandwidth Usages
5Mbps Host Uplink Connection

SILBR

IMAB

MH

42

Figure 27 Average Bandwidth Usages for SILBR, IMAB and MH metrics, Mesh Topology 1 Mbps
Host Uplink Connections

The comparison of maximum bandwidth usages shows that the SILBR achieves 20%
decrease in the MLU and IMAB achieves 25% decrease in the MLU on average. In
terms of minimum bandwidth usage, IMAB increases the bandwidth usage by 50%
more than SILBR. Both algorithms achieve almost the same results in terms of average
bandwidth usages.

Figure 28 SILBR & IMAB Path Length Comparison 5 Mbps Host Uplink Connections – 5 Mbyte 200
Flows

0

500000

1000000

1500000

2000000

2500000

3000000

3500000
1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

1
4
5

1
5
1

1
5
7

B
a

n
d

w
id

th
 (

b
p

s
)

Sample Number

Comparison of Average Bandwidth Usages
5Mbps Host Uplink Connection

SILBR

IMAB

MH

0

5

10

15

20

25

30

1 2 3 4 5 6 7

N
u
m

b
e

r
o

f
S

e
le

c
te

d
 P

a
th

s

Path Hop Count

Comparison SILBR & IMAB Path Lengths

SILBR

IMAB

43

As a side benefit of the SILBR metric, when results in Figure 21 and Figure 28 is
considered, it can be seen that the SILBR requires less number of hops compared to
IMAB which is another optimization for the SDN controller resource management.
Another advantage of using shorter paths is that the SDN controller will need to send
a smaller number of control messages to the network devices in order to control the
traffic distribution.

For this test case, we also measured the path latency between the hosts by sending ping
packages between the hosts. Figure 29 shows that, on average, the path latency when
using SILBR metric is 18.5% less than IMAB metric. For this test, we again used the
mesh topology and created flows at a rate of 10 flows/second for 20 seconds. Each
flow carried 5 Mbyte data between randomly selected host pairs. After the flows
started, ping messages are sent from host 1, host 2 and host 3 to all other hosts in the
network. The path selection for the ICMP traffic is also made using SILBR or IMAB
metrics for the respective test. The ping messages are stopped as soon as all the flows
in the network are completed. The average latency is calculated as arithmetic average
of latency values for each ping message.

Figure 29 SILBR and IMAB Average Path Latency Comparison – 5 Mbyte 200 flows

0

100

200

300

400

500

600

700

800

L
a

te
n

c
y
 (

m
s
)

Start-End Hosts for Path

Average Path Latency Comparison

SILBR
Average
Latency

IMAB Average
Latency

44

45

CHAPTER 6

6. CONCLUSION

In this thesis, we focus on minimization of MLU for traffic engineering method. The
minimization of MLU has many benefits. Minimizing link utilization leads to lesser
queuing delay, improves the scalability of network and increases per flow throughput.
Hence, by minimizing MLU, we both improve the scalability of the network and the
performance of traffic flows.

Our proposed SILBR metric uses a statistical approach to the minimization problem.
In general, the statistical approach, with the application of proper methods and
analysis, leads to lesser data requirements for decision-making and helps
understanding the nature of change in the data. The SILBR, uses the data collected
from the links, combines this data with the information small amount of data from the
network. The SILBR uses this combined information and Student’s T distribution to
infer the status of the link and presents this information as link cost. Thus, SILBR
performs a proactive traffic management.

We tested our proposed SILBR metric and algorithm on SDN networks. We used the
used the FloodLight SDN controller and its interfaces to measure the required
performance characteristics of the network. In order to create the testing topologies,
we used Mininet and MiniEdit. We only used software environments for testing.
Firstly, we tested SILBR on a trivial topology to show that it works as intended. We
then tested SILBR on a more complex topology to understand its benefits and compare
to similar traffic engineering approaches.

Our experiment results show that SILBR distributes the traffic as intended and
achieves near %20 decrease on average in the MLU. We tested SILBR routing against
the MH routing method. Our results show that SILBR improves flow completion times
by increasing the utilization of the links in the network. When SILBR routing is
compared against IMAB, SILBR performance approaches IMAB in terms of
minimization of maximum link utilization.

As a side benefit of SILBR, SILBR creates a smaller number of flows in the physical
network and prefers shorter paths compared to IMAB. Our experiments have shown
about 18.5 % decrease in the latency when SILBR and IMAB are compared under the
same traffic conditions.

We evaluated the performance on a virtual network setting that emulates the tested
topologies. As we conducted only software-based experiments, the experimentation
has been carried out under suboptimal conditions. For example, only TCP traffic has

46

been tested. We leave the further testing with more generalized topologies and real
traffic models for future studies.

Our experiments have shown that SILBR algorithm is a promising approach to Traffic
Engineering in SDN. Currently, SILBR utilizes a simple rerouting algorithm. It was
tested only on uniform-bandwidth networks. For the future of the work in this thesis,
we plan to generalize the routing metric proposed so that it can be used on non-uniform
bandwidth networks and improve rerouting by involving approaches that utilizes
machine learning based traffic determination methods.

47

REFERENCES

[1] R. Gallaher, “MPLS Traffic Engineering,” Rick Gall. MPLS Train. Guid., pp.
107–126, 2003, doi: 10.1016/b978-193226600-9/50008-8.

[2] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois, “The
segment routing architecture,” 2015 IEEE Glob. Commun. Conf. GLOBECOM

2015, 2015, doi: 10.1109/GLOCOM.2014.7417124.

[3] F. Ieee et al., “Software-Defined Networking : A Comprehensive Survey,” vol.
103, no. 1, 2015.

[4] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “Research challenges
for traffic engineering in software defined networks,” no. June, pp. 52–58, 2016.

[5] S. Delaët, S. Dolev, D. Khankin, and S. Tzur-David, “Make&activate-before-
break for seamless SDN route updates,” Comput. Networks, vol. 147, pp. 81–
97, 2018, doi: 10.1016/j.comnet.2018.10.005.

[6] W. Queiroz, M. A. M. Capretz, and M. Dantas, “An approach for SDN traffic
monitoring based on big data techniques,” J. Netw. Comput. Appl., vol. 131, pp.
28–39, 2019, doi: 10.1016/j.jnca.2019.01.016.

[7] A. A. Neghabi, N. J. Navimipour, M. Hosseinzadeh, and A. Rezaee, “Load
Balancing Mechanisms in the Software Defined Networks: A Systematic and
Comprehensive Review of the Literature,” IEEE Access, vol. 6, pp. 14159–
14178, 2018, doi: 10.1109/ACCESS.2018.2805842.

[8] R. Challa, S. Jeon, D. S. Kim, and H. Choo, “CentFlow: Centrality-Based Flow
Balancing and Traffic Distribution for Higher Network Utilization,” IEEE

Access, vol. 5, pp. 17045–17058, 2017, doi: 10.1109/ACCESS.2017.2743697.

[9] H. Long, Y. Shen, M. Guo, and F. Tang, “LABERIO: Dynamic load-balanced
routing in OpenFlow-enabled networks,” Proc. - Int. Conf. Adv. Inf. Netw. Appl.

AINA, pp. 290–297, 2013, doi: 10.1109/AINA.2013.7.

[10] H. Ren, X. Li, J. Geng, and J. Yan, “A SDN-Based Dynamic Traffic Scheduling
Algorithm,” 2016 Int. Conf. Cyber-Enabled Distrib. Comput. Knowl. Discov.,
no. 2, pp. 514–518, 2017, doi: 10.1109/cyberc.2016.103.

[11] “ISO - ISO/IEC 10589:2002 - Information technology — Telecommunications
and information exchange between systems — Intermediate System to
Intermediate System intra-domain routeing information exchange protocol for
use in conjunction with the protocol for providing the connectionless-mode
network service (ISO 8473).” https://www.iso.org/standard/30932.html

48

(accessed Aug. 30, 2020).

[12] “RFC 2328 - OSPF Version 2.” https://tools.ietf.org/html/rfc2328 (accessed
Aug. 30, 2020).

[13] Y.-L. Lan, K. Wang, and Y.-H. Hsu, “Dynamic load-balanced path optimization
in SDN-based data center networks,” in 2016 10th International Symposium on

Communication Systems, Networks and Digital Signal Processing (CSNDSP),
Jul. 2016, pp. 1–6, doi: 10.1109/CSNDSP.2016.7573945.

[14] Y. C. Wang and S. Y. You, “An Efficient Route Management Framework for
Load Balance and Overhead Reduction in SDN-Based Data Center Networks,”
IEEE Trans. Netw. Serv. Manag., vol. 15, no. 4, pp. 1422–1434, 2018, doi:
10.1109/TNSM.2018.2872054.

[15] A. Lipson, S. . Lispson, and H. Lipson, “RSVP-TE: Extensions to RSVP for
LSP Tunnels Status - RFC 3209,” https://tools.ietf.org/pdf/rfc3209.pdf, 2001,
doi: 10.1017/CBO9781107415324.004.

[16] H. Kamen, “An IETF Traffic Engineering Overview,” TLS - Times Lit. Suppl.,
no. 5795, p. 5, 2014, doi: 10.1075/jlp.17069.wei.

[17] D. Y. N. D. Katz,K. Kompella(Juniper Networks), “Traffic Engineering (TE)
Extensions to OSPF Version 2 Status,” https://tools.ietf.org/html/rfc3630,
2003, doi: 10.1017/CBO9781107415324.004.

[18] T. L. H. Smit(Procket Networks), “Intermediate System to Intermediate System
(IS-IS) Extensions for Traffic Engineering (TE) - RFC 3784,”
https://tools.ietf.org/html/rfc3784, doi: 10.1017/CBO9781107415324.004.

[19] B. C. Isaak and R. Planning, “A Comparison of Approaches for Traffic
Engineering in IP and MPLS Networks,” pp. 142–155, 2011, doi: 10.1002/fut.

[20] “The Use of RSVP with IETF Integrated Services Status - RFC 2210,” 1997,
[Online]. Available: https://tools.ietf.org/html/rfc2210.

[21] R. Braden, D. Clark, and S. Shenker, “RFC-1633: Integrated Services in the
Internet Architecture: an Overview Status of this Memo,” Internet Res., pp. 1–
28, 1994.

[22] “Open Networking Foundation is an operator led consortium leveraging SDN,
NFV and Cloud technologies to transform operator networks and business
models.” https://www.opennetworking.org/ (accessed Aug. 02, 2020).

[23] “RFC 7426 - Software-Defined Networking (SDN): Layers and Architecture
Terminology.” https://tools.ietf.org/html/rfc7426 (accessed Aug. 02, 2020).

49

[24] “RFC 5810 - Forwarding and Control Element Separation (ForCES) Protocol
Specification.” https://tools.ietf.org/html/rfc5810 (accessed Aug. 02, 2020).

[25] N. Mckeown, T. Anderson, L. Peterson, J. Rexford, S. Shenker, and S. Louis,
“Sigcomm08_Openflow.Pdf,” vol. 38, no. 2, pp. 69–74, 2008, doi:
10.1145/1355734.1355746.

[26] H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN through a
future-proof forwarding plane,” in HotSDN 2013 - Proceedings of the 2013

ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
2013, pp. 127–132, doi: 10.1145/2491185.2491190.

[27] “Open Networking Foundation is an operator led consortium leveraging SDN,
NFV and Cloud technologies to transform operator networks and business
models.” https://www.opennetworking.org/ (accessed Jul. 23, 2020).

[28] “SDN | Flowgrammable.” http://flowgrammable.org/sdn/ (accessed Jul. 23,
2020).

[29] “SDN / OpenFlow / Data Model | Flowgrammable.”
http://flowgrammable.org/sdn/openflow/data-model/ (accessed Sep. 12, 2020).

[30] Open Networking Foundation, “OpenFlow Switch Specification (Version
1.5.1),” Current, vol. 0, pp. 1–36, 2015, [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf.

[31] “CHAPTER 8: Statistical Inference: Estimation for Single Populations -
Business Statistics: For Contemporary Decision Making, 8th Edition.”
https://learning.oreilly.com/library/view/business-statistics-
for/9781118494769/18_chapter-08.html#ch08 (accessed Aug. 29, 2020).

[32] “File:Normal distribution and scales.gif - Wikimedia Commons.”
https://commons.wikimedia.org/wiki/File:Normal_distribution_and_scales.gif
(accessed Sep. 12, 2020).

[33] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian, “Drill:
Micro load balancing for low-latency data center networks,” SIGCOMM 2017

- Proc. 2017 Conf. ACM Spec. Interes. Gr. Data Commun., pp. 225–238, 2017,
doi: 10.1145/3098822.3098839.

[34] L. Chen, K. Chen, W. Bai, and M. Alizadeh, “Scheduling mix-flows in
commodity datacenters with Karuna,” SIGCOMM 2016 - Proc. 2016 ACM

Conf. Spec. Interes. Gr. Data Commun., pp. 174–187, 2016, doi:
10.1145/2934872.2934888.

[35] V. D. Chakravarthy and B. Amutha, “A novel software-defined networking

50

approach for load balancing in data center networks,” Int. J. Commun. Syst., no.
September, pp. 1–16, 2019, doi: 10.1002/dac.4213.

[36] Z. Shu et al., “Traffic Engineering in Software-Defined Networking:
Measurement and Management,” IEEE Access, vol. 4, pp. 3246–3256, 2016,
doi: 10.1109/ACCESS.2016.2582748.

[37] T. Semong et al., “Intelligent load balancing techniques in software defined
networks: A survey,” Electron., vol. 9, no. 7, pp. 1–24, 2020, doi:
10.3390/electronics9071091.

[38] P. By and M. Z. A Ali, “Part 4: Information Theory (Lectures-2017).”

[39] A. Kumar, D. Manjunath, and J. Kuri, “Adaptive Bandwidth Sharing for Elastic
Traffic,” in Communication Networking, Elsevier, 2004, pp. 323–433.

[40] “Floodlight Controller - Project Floodlight.”
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview
(accessed Sep. 16, 2020).

[41] V. Protocol, “OpenFlow Switch Specification,” vol. 1, pp. 1–283, 2015.

[42] Mininet, “Mininet: An Instant Virtual Network on your Laptop (or other PC) -
Mininet,” Mininet.Org, p. www.mininet.org, 2014, Accessed: Sep. 30, 2020.
[Online]. Available: http://mininet.org/.

[43] “mininet/miniedit.py at master · mininet/mininet · GitHub.”
https://github.com/mininet/mininet/blob/master/examples/miniedit.py
(accessed Sep. 30, 2020).

[44] “GitHub - esnet/iperf: iperf3: A TCP, UDP, and SCTP network bandwidth
measurement tool.” https://github.com/esnet/iperf (accessed Sep. 16, 2020).

[45] D. Manual, A. Botta, W. De Donato, A. Dainotti, S. Avallone, and A. Pescap,
“D-ITG 2.8.1 Manual,” pp. 1–35, 2013.

51

APPENDICES

APPENDIX A

PERFORMANCE EVALUATION RESULTS

This section includes test results mentioned in section 5.2.

Figure 30 MH with 1 Mbps Host Uplink Connections - 3 Mbyte 200 Flows

0

200000

400000

600000

800000

1000000

1200000

1400000

1
1
8

3
5

5
2

6
9

8
6

1
0
3

1
2
0

1
3
7

1
5
4

1
7
1

1
8
8

2
0
5

2
2
2

2
3
9

2
5
6

2
7
3

2
9
0

3
0
7

3
2
4

3
4
1

3
5
8

3
7
5

3
9
2

4
0
9

4
2
6

4
4
3

B
a

n
d

w
id

th
 (

b
p

s
)

Sample Numbers

MH 1 Mbps Host Uplink Connections - 3 Mbyte 200 Flows

Minimum

Maximum

Average

52

Figure 31 SILBR with 1 Mbps Host Uplink Connections - 3 Mbyte 200 Flows

Figure 32 IMAB with 1 Mbps Host Uplink Connections - 3 Mbyte 200 flows

0

200000

400000

600000

800000

1000000

1200000

1400000

1
1
9

3
7

5
5

7
3

9
1

1
0
9

1
2
7

1
4
5

1
6
3

1
8
1

1
9
9

2
1
7

2
3
5

2
5
3

2
7
1

2
8
9

3
0
7

3
2
5

3
4
3

3
6
1

3
7
9

3
9
7

4
1
5

4
3
3

4
5
1

B
a

n
d

w
id

th
 (

b
p

s
)

Sample Numbers

SILBR - 1 Mbps Host Uplink Connections - 3 Mbyte 200 Flows

Minimum

Maximum

Average

0

200000

400000

600000

800000

1000000

1200000

1400000

1
1

9
3

7
5

5
7

3
9

1
1
0
9

1
2
7

1
4
5

1
6
3

1
8
1

1
9
9

2
1
7

2
3
5

2
5
3

2
7
1

2
8
9

3
0
7

3
2
5

3
4
3

3
6
1

3
7
9

3
9
7

4
1
5

4
3
3

4
5
1

B
a

n
d

w
id

th
 (

b
p

s
)

Sample Numbers

IMAB - 1 Mbps Host Uplink Connections - 3 Mbyte 200 Flows

Minimum

Maximum

Average

53

Figure 33 MH - 1 Mbps Host Uplink Connections - 5 Mbyte 200 Flows

Figure 34 IMAB with 1 Mbps Host Uplink Connections - 5 Mbyte 200 Flows

0

200000

400000

600000

800000

1000000

1200000

1
3
0

5
9

8
8

1
1
7

1
4
6

1
7
5

2
0
4

2
3
3

2
6
2

2
9
1

3
2
0

3
4
9

3
7
8

4
0
7

4
3
6

4
6
5

4
9
4

5
2
3

5
5
2

5
8
1

6
1
0

6
3
9

6
6
8

6
9
7

7
2
6

B
a

n
d
W

id
th

 (
b

p
s
)

Sample Number

MH -1 Mbps Host Uplink Connections - 5 Mbyte 200 Flows

Minimum

Maximum

Average

0

200000

400000

600000

800000

1000000

1200000

1
3

1
6

1
9

1
1
2
1

1
5
1

1
8
1

2
1
1

2
4
1

2
7
1

3
0
1

3
3
1

3
6
1

3
9
1

4
2
1

4
5
1

4
8
1

5
1
1

5
4
1

5
7
1

6
0
1

6
3
1

6
6
1

6
9
1

7
2
1

7
5
1

B
a

n
d

w
id

th
 (

b
p

s
)

Sample Number

IMAB - 1 Mbps Host Uplink Connections - 5 Mbyte 200 Flows

Minimum

Maximum

Average

54

Figure 35 SILBR with 1 Mbps Host Uplink Connections – 5 Mbyte 200 Flows

Figure 36 SILBR & IMAB Path Length Comparison 1 Mbps Host Uplink Connections – 3 Mbyte 200
Flows

0

200000

400000

600000

800000

1000000

1200000

1
3
1

6
1

9
1

1
2
1

1
5
1

1
8
1

2
1
1

2
4
1

2
7
1

3
0
1

3
3
1

3
6
1

3
9
1

4
2
1

4
5
1

4
8
1

5
1
1

5
4
1

5
7
1

6
0
1

6
3
1

6
6
1

6
9
1

7
2
1

7
5
1

B
a

n
d

w
id

th
s
 (

b
p

s
)

Sample Number

SILBR - 1 Mbps Host Uplink Connections - 5 Mbyte 200 Flows

Minimum

Maximum

Average

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

N
u
m

b
e

r
o

f
S

e
le

c
te

d
 P

a
th

s

Path Hop Count

Comparison for SILBR & IMAB Path Lengths

SILBR

IMAB

55

Figure 37 SILBR & IMAB Path Length Comparison 1 Mbps Host Uplink Connections – 5 Mbyte 200
Flows

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

N
u

m
b

e
r

o
f

Se
le

ct
e

d
 P

at
h

s

Path Hop Count

Comparison for SILBR & IMAB Path Lengths

SILBR

IMAB

