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ABSTRACT

GENERALIZED KERR-SCHILD METRICS IN EINSTEIN‘S GRAVITY

Celik, Ufuk Can
M.S., Department of Physics
Supervisor: Prof. Dr. Bayram Tekin

Co-Supervisor: Prof. Dr. Metin Giirses

September 2020, 49| pages

Several aspects of the Kerr-Schild ansatz; including the generalized ansatz which has
a generic background metric instead of a flat metric, Kerr-Schild groups and Classical
Double Copy, are investigated. It is shown that, in vacuum, not all generalized Kerr-
Schild spacetimes are algebraically special, whereas the Kerr-Schild spacetimes are
always algebraically special. We also touch upon Kerr-Schild-Kundt spacetimes and
further discuss their universality property before we continue with the Kerr-Schild
groups in the next chapter where we work on the coordinate transformations leading
to the generalized Kerr-Schild ansatz. Finally, we study the classical double copy
proposition which relates some solutions of gravity theories with the solutions of
gauge theories. To this end, we examine the correspondence between solutions of the

Kerr-Schild form and the Yang-Mills solutions.

Keywords: Null Congruence, Kerr-Schild Metrics, Kerr-Schild-Kundt Metrics, Alge-
braic Classification of Spacetimes, Kerr-Schild Groups, Classical Double Copy
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EINSTEIN KUTLECEKIM TEORISINDE KERR-SCHILD METRIKLERI

Celik, Ufuk Can
Yiiksek Lisans, Fizik Bolimi
Tez Yoneticisi: Prof. Dr. Bayram Tekin

Ortak Tez YoOneticisi: Prof. Dr. Metin Giirses

Eyliil 2020 , 49| sayfa

Diiz bir uzayzaman yerine herhangi bir uzayzaman ile olusturulan genellestirilmis
yaklasim-formu, Kerr-Schild gruplan ve Klasik Cift Niisha da dahil olmak iizere
Kerr-Schild yaklasik-formun bir¢ok yonii arastirildi. Kerr-Schild uzayzamanlarin ce-
birsel olarak 6zel oldugu gosterilirken, biitiin genellestirilmis Kerr-Schild uzayza-
manlarin cebirsel olarak 6zel olmadig1 gosterildi. Ayrica, Kerr-Schild-Kundt uzay-
zaman sinifina da deginildi ve evrensellik 6zelliginden bahsedildi. Daha sonra ise
genellestirilmis Kerr-Schild metriklerinin koordinat doniisiimii sonucu olarak ortaya
cikabilecegi sebebiyle Kerr-Schild gruplar ¢alisildi. Son olarak ise bazi kiitlecekim
teorileri ¢oziimleri ile Ol¢ii teorileri ¢oziimleri arasinda bir baglant1 6ne siirmiis olan
Klasik Cift Niisha hesaplarini ¢alistik. Bu nedenle Kerr-Schild formundaki ¢oziimler

ile Yang-Mills ¢oziimleri arasindaki baglantiy: arastirdik.

Anahtar Kelimeler: Isik-gibi Egriler Toplulugu, Kerr-Schild Metrikleri, Kerr-Schild-

Kundt Metrikleri, Uzayzamanlarin Cebirsel Siniflandirilmasi, Kerr-Schild gruplari,
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CHAPTER 1

INTRODUCTION

As the field equations of general theory of relativity had been found, the quest for
finding solutions began. Almost a month later, Karl Schwarzschild discovered the
first nontrivial solution which describes the exterior gravitational field of spherically
symmetric mass with no charge. A couple of years later, the solution for a spherically
symmetric mass with charge, called the Reissner-Nordstrom solution, was found.
Later, for nearly 50 years, a metric that describes the asymptotically vanishing gravi-
tational field of an axially symmetric rotating stationary mass with no charge had been
sought for, but to no avail until it was found by Kerr in 1963[1][2]. This discovery
was made possible by a method of classification of spacetimes by studying the alge-
braic character of the Weyl tensor, developed by Petrov in 1954[3]]. A few years after
this development, starting with Pirani and then by many other physicists, including
Bel, Debever, Penrose and Sachs, this classification was studied and formulated in
equivalent ways which turned out to be quite useful to find new exact solutions of the
field equations. Two years after the discovery of the Kerr metric, its charged version,
namely the Kerr-Newman metric, was found and the fact that all of these very im-
portant solutions could be written in a simple form, called Kerr-Schild(KS) form[4]],
was realized. As a matter of fact, this form of the metric was already given for the
Schwarzschild metric in 1924[5], but the importance of the underlying form went un-
noticed. The fact that KS metrics lead pseudo energy-momentum tensors to vanish
and linearize the field equations, not necessarily in vacuum, was shown by Giirses and
Giirsey[6l]. The KS ansatz was generalized to have a generic background spacetime
instead of flat spacetime by Xanthopoulos[7]],[8]] and the generalized ansatz was also

studied in details by Taub[9].



In this thesis, we start off with a discussion of the properties of the the KS met-
rics and then proceed to calculate the transformations of the the Christoffel symbols
and the curvature tensors. We then delve into the field equations in vacuum for the
generalized KS ansatz, which give restrictions on the profile function and the null
vector of the ansatz. Next, we consider the general situation of nonvanishing energy-
momentum tensor and choose a different ansatz with a null geodesic vector that leads
to the linearization of the Ricci tensor. Intersection of the Kundt class of metrics
and the KS metrics, called the Kerr-Schild-Kundt(KSK) metrics, is also investigated
and the chapter ends with a discussion of KS forms of the abovementioned solutions
of utmost importance. In the next chapter, we give a treatment of the KS ansatz
from a mathematical point of view[10][11] without the restrictions of the field equa-
tions. We investigate the KS symmetries of a given metric in a similar way that the
isometries and conformal transformations are studied and to this end, we consider the
group of transformations that change the metric tensor in a way such that the trans-
formed metric is the generalized KS metric. In the last chapter, the proposed double
copy correspondence between a solution of the field equations of general relativity
in the KS form and a solution of Abelian gauge theory is discussed at the classical
level[12][13]][14]. We show that a procedure similar to BC'J duality[15] yields the
covariant Maxwell’s equations from the field equations of general theory of relativ-
ity. Gauge theory solution is seen as a single copy of gravity solution whereas the

biadjoint scalar field theory solution is seen as the zeroth copy.

The conventions used in this work are the following
n = diag(—1,1,1,1)
vop

R, =R’

pov

Rt =0,T% + T TV, — (04 p)
(1.1)

1
G =R, — §Rgu,, = 8T,

Lastly, greek indices are used for spacetime coordinates whilst the latin indices are

used for spatial coordinates.



CHAPTER 2

GENERALIZED KERR-SCHILD METRICS

Although the KS form of the Schwarzschild metric was already written down in 1924,
its importance was realized with the discovery of the Kerr metric which turns out to
be manifestly in the KS form in the derivation. The derivation starts with considering

a metric written in an orthonormal frame
b
Gab = Nap0* @ O 2.1)

and defining {k%, 1%, m® m®}, where k and [ are null real vectors and m?, m® are null

complex vectors, by

0 1 0o_ 1
kode=2"7  jgp=T"C
V2 V2 59
o +io? o? —io? 2.2)
m-dr = , dxr =

Then, one obtains the following complex null tetrad

Gab = _kalb_kbla+mamb+mbma
B=CF=m?=m*=0=k-m=k-m=1-m=1-m (2.3)
k-l=—1=-m-m

Here k£ and [ are null geodesic vectors; furthermore, these are the outgoing and in-
going null rays. Essentially, by using the optical properties of the null rays and the

Killing vectors, one can show that the Kerr metric has the KS form which is given by

G = M + 2V N, where
N AN = g NN = A =0

(2.4)

The total metric, or the full metric, g, is formed by adding a term 2V A\, )\, to a flat

background metric 7,,, where V' is a scalar function of spacetime coordinates and A

3



is a null vector with respect to both metrics. Inverse metric is equal to
g =t =2V AN (2.5)

The metric g, is exact in the sense that if we introduce h,, = 2V A, ), then the
higher order terms vanish due to the nullity of A\. It is also an algebraically special
metric in vacuum by the Goldberg-Sachs theorem. If the energy-momentum tensor
is not zero, then one can define A\ to be a null geodesic vector in the ansatz and the
metric g, becomes algebraically special[6]. This also leads to the linearization of

the field equations and vanishing of the pseudo energy-momentum tensor.

It is quite interesting that almost all fundamental solutions; including the Schwarzschild,
Reissner-Nordstrom, Kerr, Kerr-Newman solutions, of the field equations of general
theory of relativity can be written in such a simple form of the metric. In the next
section, we will consider a generalized KS ansatz and the results for the KS ansatz

can be seen as a special case g = 7.

2.1 Vacuum Field Equations

One way to generalize the KS ansatz is to replace the flat background spacetime with

a generic background spacetime:

Guw = Guv + 2V, A, where
I 1 I (2.6)
Gu AN = gu N =X\ =0

The inverse metric for a generic vector, not necessarily null, can be calculated as

follows
g =g" — kMN = 000" = G g" + 2V AT — KAAY = 2VRAYVAA LA,
= /-@/\H)\a(l +2VAN) = 2V

2.7
Then the inverse metric is
2V RN
W =gt — 2.8
g 1+ 2V A\ 28)
An intriguing result follows when A is a null vector,
g =g =2V AN (2.9)

4



that is, the inverse metric is also linear in V. Now, transformation of the Christoffel

Symbols can be obtained starting from

I, = %g‘“ (Ovgpa + OpGva — Oalup) (2.10)
We have ) ) .
OGpa — 1% 900 = Ta900 = Vilpa
=V, (Gpa +2VAA0) (2.11)
=2V, (VA \a)

Note that there is no distinction between 0 and O since there is no transformation of

coordinates. Then,

1 o W o o v o
" = égﬂ 2V, (VAAa) +1%, 1900 + 10900 + 2V, (VA AG) + 17,900

+fgpagua - 2va (VAy)\p) - Faaygap - Faapgau]

(2.12)
which, after cancellations, gives
I, =T, + g"" A, (2.13)
Here, A,,, is defined as
Aovp = Vio(VI M) + V, (VA AL) — Vo (VAN) (2.14)

Transformation of the Riemann tensor can be obtained from the above result,
Rt =0,T% +T" 1" — (0 p)

vop
= 80f‘“yp + 05 (9" Dawp) + I ﬁfﬁup + g#aAaaﬁfﬁup + gﬂaAanfwaﬁ

ag

+9"9" NaosDyp — (0 ¢ p) (2.15)
—R", [aa(g“o‘Aan) TR TN N O

+ guagﬂ’oncaﬁA'pr - (J A 10)]
From this we can calculate the transformation of the Ricci tensor,
RV/J = RVP + [aﬂf (gaaAan) - ap(gaaAaw) + gaaAaaﬂF'Bup - gaaAaﬂﬂfﬁua

+ gﬁaAoa/pf‘aa,B - gﬁaAowaf‘apﬁ + gaagﬁ’y(AaaﬁA'wp - AapBA’yVU)]
(2.16)

We can readily notice that

97 Dave = (77 = 2VA"A) Ay = 0
( ) (2.17)
97 Dags = (57 — 2VA"A) Ages = 0



where

37Dave =0 since A =0, and

AMANAge =0 since AV, (VA A,) = VAU%VV()\Q)\Q) =0
Essentially, all the simplifications boil down to the nullity of A. Using these results,
we find

R,y =R, + 0,(¢°"Aavp) — 7 Dapsl?, + gﬁo‘Aanl_Wgﬁ — gﬁC‘Aan”pB 2.18)
— 9797 Daps Ao

This can be further simplified by calculating the following terms;

e gaaAaup = _JaAan - QV)\UAaAan

= A%+ 2VAAVL(VAN,)

(2.19)

where we used A\*A,,, = —/\O‘?Q(V)\V)\p). Next, using this result, we calculate
o 979 AnpsDive = (A% + 2VATA Vo (VAAg)) (A5, +2VA XV, (VALN,))
= A7 A5+ 2V (A Vo (VA M)A AS,
+2VINVL(VAA)) N A7

where the term that is quartic in V' vanishes since A’V (V A, A,) = 0. Now, we also

have
NAS =XV, (VAN and

Va (VAA8) Vo (VAN) = VAN, (Vads) (Vo A7)
from which it follows that
979" DappDave = N AF, 4+ AVIN A NN (Vo dg) (VoA Y] (2.20)
The quadratic term A"pBAfBW simplifies as follows
A% A8, = [V, (VAA) + Vs(VAA) = V7 (VA)] [ TulVAA) + Vo (VAN)
— VAV AN
= V2NNV, A5V N — VNNV, ATV, + VNN VATV, A,
Vs(VAA)V(VAN) = VNN VA VI, — VAN VIV, N
— V2NV AN + VI (VAN VA (VAN,)

= 2V5(VA AV (VAN = 2V2N 0\, Ve ATVAN,
(2.21)

! Henceforth, parantheses will not be used for products of two derivative terms unless there is a total derivative
term.




Lastly, note that
i aa(gaaAaup) = (8agaa)Aaup + gaaaaAazzp
- [vﬂgga - faaﬁgﬁa - f‘aaﬁgaﬁ} Aaup
+ gCTCV [vUAaVP + Aﬁ”ﬂfﬁaa + Aaﬁﬂfﬁau + Aal’ﬁfﬁap}
= 22T, (VAIA) = 07N, T 5 + VoA, — 2VATAY, A,

+ gUaAOéﬁchﬂn/ + goaAavﬂfgp
(2.22)

Hence, after the cancellation of connection coefficients, we obtain
Ryp = Ry + VA%, = 2VA AV Awyy — 2V (VATA) Ay, — A% 5N,
— AVIN NN (Vo) (Vo AP)
= Ryp 4 VoA, — 2V, (VA A" Agy,) — 2V (VAN Vo (VA A)
2V2N N,V ATVEN, — AVEN AN (Vo ds) (VA7)
(2.23)
For the class of solutions which have the mass term present in the scalar function V'
one can write the vacuum field equations, 12,, = 0, order by order;
o (V) V. (VX A"Au,) + Va(VAN )V (VAN = VEA N VAT VPN, =0
o (V¥ VAINMANT (Vo) (Vo A) =0
(2.24)
Now since the mass of the background spacetime might be nonzero, we cannot claim

that the terms of order V° and V! must be zero. Instead, we will take the background

spacetimes to be vacuum solutions, R,,p = 0, and then for order V! we will have
o (V1 ?QAO‘W) =0

Next, order V3 gives
MV AN (Vo A) =0 = AV, isanull vector field — (2.25)

Note that we have

ANV LN =0 (2.26)

which is the orthogonality of A and V. The fact that VA is null and orthogonal to
A implies that it must be a multiple of A; that is,

/\“@“X’ = ¢\ for some constant ¢ (2.27)

7



The above equation describes a geodesic without an affine parameter, but it can be
reparametrized to have the RHS equal to zero. Therefore, the null vector in the ansatz
is also a geodesic vector for vacuum solutions. Next, instead of attempting to directly
solve order V1, which is a rather complicated set of equations to solve for V and ),
one can contract these equations and obtain some simpler results:

Contracting V,A?, , = 0 with g gives
(i) : VoAV, (VA) + V) =0

and with \” gives
(i1) : Va(A* ANV, V 4 2VENN,) = (VoY) [ — VAV + V,(VA*A)
+ VAV,
— VAV AN (=N, + V%)
+ A (VoA VL (VA,) + VAV, A,

= VA (VA (VA — V0N, + EAV,(V )
(2.28)

Corollary (i7) can be further simplified by calculating the LHS
MV o (AV, V) 4 280,\'V,V

+2EN, Vo (VAY) +2VEN, = VA, (Vo X)) (VLAY = VA,) + ENNV,V + 3V,
(2.29)

which yields
NV oAV, V) +EN'V,V 428V, (VAY) +VE = VV N (V,AY = Ve,) (2.30)
For the V2 order we have
Vo(VAI A Ausy) + Ve(VIA AV, (VAN = VAN VA VAN, =0 (2.31)
Note that
oV, <VA”Aava(VAVAp)> ~v, (V/\”AVA,)()\Q?QV + 26V))
=M, (AVoV +VVAT +28V) (A*V,V +2¢V)
+ VAN, (BN VLV + NNV, V,V + 28NV, V)
= AVAP(A”A“?UV?QV +TEVAV,V + VAV, V VA

F2FVAIV LN + 432V + VA“AWNQV)
(2.32)



and
o Vs(VAN)V, (VAN = [A,,X’%V + V@B(Apv)] [(A,,Aﬂvgv + vvg(AyAﬁ)}
=\ (A"Aﬁvavvﬁv +AGV N5V + 38212
+ vszva%f)
(2.33)
Then, the equations for the V2 order become
M, [BEVAIVLV + VAV, VV LA + 28V2V, A7 + &V
F VAN, VoV + VEVATVEN, — VAUV, | =0 230
Setting the above paranthesis to 0 to get nontrivial solutions and rearranging the terms

yields

V VoAV N — VoATVEN,] = 32NV, + ATV, ATV V) + 28V VA7 + &V

(2.35)
which is the same equation as the corollary (i7) equation of the V! order. We see
that not all equations are independent and this can also be seen from R*, = 0, where
there is no V3 equation. As we will see in the next section, if \* is a null geodesic,
then R* is linear in V and there is no V2 equation. Therefore, the equations of order
V! determine all properties of \* completely; that is, they provide the most general
restrictions on the null vector \. However, note also that although all the equations
involving A* and V can be written in a compact manner as vaAo‘W = 0, it is still
helpful to write down the contracted equations, which are less complicated, out of
these.

One may employ corollary (i) to write the equation for order V2 in terms of VV

instead of VVV;

(VaX®) V, (VAY) + AV Y, (VAY) + &V, (VAY) = 0
= V(VaA)? + (VAAIN'VLV + X0V, (WY, V + VYY) +EV,(VAY) =0
= V(VAAY)2 £ NV (AV,V) + NV 4 AV (VYY) + 6V (VAY) = 0

(2.36)

Substituting the expression for A"V, (A*V, V) into the equation for order V2, we get

V VA VPN, — VAT VA = V(VAY)? — EATV,V — EVV, N7 03
~ BV £ AV (VYY) '



Note that
AV VN = A ([Va, Vo] + V, Vo) N
= /\O‘R”Uw)\” + A2V, V \

- - - - - (2.38)
= AN Ryo + Vo, ( AV A) — (VLAY (V)
=0+ cVV, 2\ — (V,A%) (VoY)
Then, for the V2 order equation we finally have
VVA VPN, = V(VAY)? = BNV, V — &V + AV, VV, N\ (2.39)

When the null vector field M is also tangent to the geodesics, ¢ = 0, the above

equation becomes:
VATVEN, = (VaA2)2 4 %XJ‘VQVV,,X’ (2.40)
which resembles the shearlessness condition of \;
VA VAN, + VA7V = (V)2 (2.41)

The shear of a vector field is one of the optical scalars which are defined for null

vector fields as follows:

Given a null geodesic vector £, one can decompose its covariant derivative into three
parts; a divergence term, a shear term and a rotation (curl) term. The corresponding
scalar quantities are

e The expansion of k is § = %V#k“

e The shear of k is 02 0 = 3V, k) VFE” — 1(V ,kH)?

e The twist of k is w: w? = $V |,k VFk*

In order to check whether the field equations impose the shearlessness condition on
the null vector \ or not, one needs to use the order V! equations which encapsulate

all properties of A\ and relate V', A and their derivatives.

Alternatively one may opt to use the Goldberg-Sachs theorem|[/16]] which states that in
vacuum, a spacetime has an algebraically special Weyl tensor if and only if it admits

a shearless null geodesic congruence with the tangent vector field satisfying

ACeuopA” A7 = 0

10



At this point, an interlude of discussion of the algebraically special metrics is in order.
Algebraic Classification of the Weyl Tensor

There are two equivalent methods; one way is to solve the characteristic equation
of the eigenvalue problem for the Weyl tensor ",/ AP7 = AA" and the other
method is to use some certain null directions which are called the principal null di-
rections(PNDs). The spacetimes are then classified by the multiplicities of the roots
of the characteristic equation or the principal null directions. The result is that there
are 6 types of spacetimes:

e Type I, No PNDs are repeated.

e Type /I, Two PNDs are repeated, the remaining two are distinct from each other
and the repeated ones.

e Type D, Two PNDs are repeated, the remaining two are also repeated but distinct
from the other repeated ones.

e Type [11, Three PNDs are repeated, the other one is distinct.

e Type N, All four are repeated.

e Type O,C,pr =0

Type I is called algebraically general whilst the other types are called algebraically
special. Given a null vector £*, it is a PND if kj,Cy .0k kPkP = 0 and the Weyl
tensor is; type [ if

Crvplokak" kP =0

type D if

CWP
type I11 if

Chwplokalk? =0

type N if

Chvpek® =0

Clearly, C,, - is type I if none of the PNDs satisfy type /1, I11, N, O equations.

(wka)k” kP = 0 and C sl l"1? = 0 where [ is another null vector,

Now, returning to our discussion, since we study vacuum solutions, the Riemann

tensor reduces to the Weyl tensor R, = C\..5, . Then we have
CevopA' N7 = RepopA' N7 = gﬂgR“WpX’)\” (2.42)

11



and substituting the expression for Rf, ;

R:, = R+ [0,(9" Dap) + 9" Daos T’ + 67 Ao, T

vop vop

+ g#agﬂ,yAaUﬁA'pr - (0 Ad p)]
we obtain

CevapA' A" = gue R0 ) N7 + gue A"\ (80 (9" Dawp) — ap(g”“AW))
AN (DgopT?y — Depsl? ) + A7 G,e0% (Dapl™ 5 — Auwol™ )

—+ )\”)\pgﬂa (AfaﬂA’yup - AﬁpﬁAW’U)
(2.43)

This can be simplified calculating the following terms

i 6a(guaAaup) = (aag“a)Aaup + g“aagAaup
= [Vog"* —T" 59" =T 39" ] Ay

_I— g/wé [?UAOWP + f‘ﬁaaA/BVp + fﬁmjA/BVﬂ + f‘ﬁapAaVﬁ]
(2.44)

hd ap(g'uaAal/p) = [vpg#a - fupﬁgﬁa - fo;;ﬁgﬂﬁ] Aoa/a

+ 0" [VpDavo + T8 Asve + T, Aage + T, Mg
(2.45)

and noting that \\°A,,, = 0. Then we have

Gue AN (aG@WAan) - @,(gWAaW))
= Gue NN Awup [-2V (VAFAY) — f*‘aﬁgﬂa — T 59"

+ AN [voﬁsup + T e B + T, B¢y — VDo — I pVA550i|
(2.46)
Inserting these results into the expression for Ce,,,A” A7 gives
Oﬁvap)‘y/\a = gMERHl/apAV)\G + guﬁ/\y/\oAan [_QvU(V/\“/\a) - f‘agﬁguﬂ]
NN [V Agy + T2 Ay, — vagw} NN A A,
= gNER“Mp)\”)\" = 2NN A0 ) Vo (VAAY) + NA7 (Volep — VpDeyo)

+ N A AV (VAN)
(2.47)

12



Hence, the final result is given by

Cvmp NN = gue R0 AT = NV, (VAA)ATV o (VAN
n [A“?U(A”?V(V)\f)\p)) — (AT A g, + vp(Avv)Agw]
(2.48)

Now since we have:
o NV, (VAN V, (VAAY) = VEX AV, AV, A
o NV, ( AV, (VAA,)) = NV (AL (V) + ANV, (V)
=NV, (V) + AV, VL (V) + EANVL(VA)

+ ANV, (A'V,(VA,))
o V,(\WA)A¢e = 2(V, NN Vo (VAN)
= 2VANTV NV, A,
o (VAN )A¢, = NV, (VA,) = EXNVA, + ANV, (V)
(2.49)
these terms do not contribute to A\3C¢0,A”A?. Hence, we obtain
NgCoeuopA' A" = (Asgue — Negus) R gp AN
= (AsRevop = AeRovop) "X
+ 2V, (AgAe — AeAp) R“Wp)\”/\g (2.50)

= A\ Rejuop X' N7
# 0 in general.

Then the generalized Kerr-Schild ansatz metric, g, is not guaranteed to admit a
shearless null geodesic congruence in general. An instance when it does is the case

of a maximally symmetric spacetime,

R,m/pcr = (g,upgua - g,LLagz/p> (251)

ol =

which gives

AaRulpe NN = 0= Ao Ry pio A A N (2.52)

Therefore, the null vector A is a repeated principle null direction and the metric is
algebraically special. By the Goldberg-Sachs theorem A is geodesic and shearless in
vacuum.

Now suppose that g,,, = g, + 2V A, A\, is a solution to the field equations in vacuum

13



and Ao Clyupe AN = 0, i.e. gy, is an algebraically special metric. Then, the null
vector A\ is also a shearless geodesic vector by the Goldberg-Sachs theorem.
Comparing the order V? field equation (in the case of null geodesic \*) with the

shearless condition given by
VNVEN, + VAV A = (V)2 (2.53)

we arrive at the following, rather simple, equation relating V and A,

VANV A = —%)\“VMVV,,X’ (2.54)
The LHS can be rewritten as
VAT, = V(TN — AT, T, N
= 0= XN ([Vu, VL] + V, V) M
= NRE NNV, VA

(2.55)

ouy
— VL,V
where we used \*V, M = 0 = R“UW = R,,. Then, we get the following, corollary
(131),
- 1 _ _
P VA“VMVV,,X’ (2.56)

which can be used to construct the KS form of some metrics. Consider the Schwarzschild
in the standard coordinates and suppose g = n and \* = (1, 1,0, 0) in spherical coor-
dinates which is manifestly spherically symmetric, null, geodesic and shearless. We

have V,, = 0, and hence,

VN = 9N = 8y(1) + V- X
2
Cor
Using corollary (iii) we get
2 1 2
ANO,— = —= (M - 2.58
0, . V( 9,V) . (2.58)

Now, since the solution is static and spherically symmetric, we take V' (t,7,0,¢) =

V (r) and the above equation becomes
d2 1dV2 V.odv

b var T T a4 2:59)

14



which yields V' = constant = M. Therefore, as we will see in the last section of

this chapter, the KS form of the Schwarzschild metric is given as
M .
G = N +2—A, A, with A, =(—1,1,0,0) (2.60)
r

In the case of the Kerr metric in advanced Eddington-Finkelstein coordinates, we

have

ds? = — [1 — %} (du + asin® 0dg)* + 2 (du + asin® 0d¢) (dr + asin® 0dg)

+ % (d6? + sin® 0d¢?)
(2.61)
where u =t + 7,2 =12 + a’cos® 0, A\, = (1,0,0,asin®#) and \* = (0,1,0,0).

Here, \* is a null geodesic shearless vector and its divergence is

_ 2r
VM == 2.62
p > (2.62)
Then, corollary (iii) gives
_ 9or 1 _ 2r 1. 2r 1
A= VA v 7 T N (e P} 2.6
v“Z V( V“V)2 = %3 > V(?V (2.63)
KS form is given by \* = (0,1,0,0) and V = 2 —om.

As for the electrovacuum solutions of the field equations, corollary (7ii) does not hold

in general. The field equations are

1 1
Ry = SRy = 87T = 87(Fuo F, ” = 29 Fpe ) (2.64)

The energy-momentum tensor for an electromagnetic field is traceless, "1, = 0
and thus the trace of the LHS, — R, must also vanish. We have R = 0 and the field

equations become

1
R, =8m(F,F,° — Zglepan”) (2.65)

When the background spacetime is a vacuum solution, the equation of the transfor-

mation of R becomes
0=R=2V,V, (VIN) 4+ 2V2NA'V N7V, A, (2.66)

which does not imply that the null vector A is a geodesic, unlike the vacuum solu-

tions. If we further assume that \* is a geodesic, we obtain
0=V, ,V,(VNMXN) =V, MV, (VX)) (2.67)
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As an application of this result, consider the Reissner-Nordstrom metric for which we

will choose, similar to the Schwarzschild metric, § = 1 and A* = (1, 1,0, 0). Then,
1 d

_ n_e un o Ldo s )
V,(VA") =V - (V) 2 dr(r V) (2.68)
whence we obtain
1 d 1d1|d
m (2 — | (2 —
O <>\ 2 (r V)) 0o = S Llr (r V)} 0 (2.69)

Hence, d%(r?V) = A and integration yields 72V = Ar + B where A and B are con-
stants.

Therefore, KS form of the Reissner-Nordstrom metric in spherical coordinates is

given by
B
-2

g=m, A= (17 1’070)7 V(T) = r

A
- + (2.70)

where A and B are related to mass and charge respectively.

In general, there is no compelling reason to assume that the mass term is present only
in the scalar function and the equations can be written order-by-order. Instead, the
properties of A will be determined by contracting the complete expression for R,,,

with \¥\? and ¢"”. We have
NNR,, =NNR,,+ A”AP%A@W —2\"\V, (V/\"/\"‘ACWP)
= \'MR,, + [%(Aumaw) — Aayp?a()\”)\p)}
— 2 [V (VNNAAA,) — VATAY AL,V (A A)] (2.71)
= \'NR,, — 2)\pAan?aX’ + AVAT A A p AV o N
= N'NR,, —2VA* NV, A\, VN
where the simplifications are due to the fact that
N = MV, N =NNA,,, =0 (2.72)
Similarly
R=(R—2VNNR,,) + [V A% —2VA'N¥V,A%, |
-2 [?U(VX’)\O‘AOW”) — 2V)\”AP?U(V)\”)\“AWP)]
— 2VANTAPV A"V, )\,
= (R—=2VA'NR,,) + [2Va Vo, (VAAY) + AVZA NV NV, |
— 2V2A N VA"V, A,

(2.73)

— (R=2VA'NR,,) +2V,V, (VA" N) + 2V NV AV, 0,

16



where we substituted the simplified expression for A \*V A% , from the calculations
of \"\?R,,, and also used the fact that \*A " = 0 = A”AP?U(VX’AQAWP). The
latter can easily be seen by taking one of the null vectors inside the paranthesis and
subtracting the extra term added in this way, both of which are zero. Hence, from
the \”\*R,,, result we observe that if \"\?R,,, = 0, then AY\*R,,, = 0 implies that
)\p)\a?p)\yﬁax\” = 0; that is, )\“?M)\" = ¢\, which after reparametrization, can
be turned into a geodesic equation with an affine parameter. Therefore, A is a null
geodesic vector.

If RW, = 0, then from R = 0; we obtain
VoV, (VA*N) =0 and MV, N =\ (2.74)

which are corollary (i) of the previous discussion and the geodesic equation.

Lastly, we calculate \" 2, ;:

N R,y = ARy + AVGAY, — 2VAV, (VAN Ay, (2.75)

For vacuum solutions, R,, = 0 = R,,, we get

NVoAS = 2VN'V, (VATA* Agyp)
= —2V3(V, AN A Ay
(2.76)
= —2V2ENA"AL,,

=0
which is corollary (ii) of the previous section. Since our previous discussions de-

pend only on corollary (i), (i) and the geodesic property, evidently they are valid in

general.

2.2 Ansatz with Null Geodesics

Having been motivated by the simplifications in the calculations brought forth by
the ansatz of the preceding section, we begin with a similar ansatz in this section

and consider the field equations when the energy-momentum tensor does not vanish

17



identically. We have

G = G + 2V A, and  ¢g"" = g — 2V NN as solutions to

R _
Eg,w = 87GT,. and R, —

Y av]

R, — G = 87TGTW

(2.77)

where V' is a scalar function and A is a null geodesic vector with respect to both

metrics;

GuN' A =0= g, AN MV, =0=\V,\,
Transformation of the Christoffel Symbols is given by

Th  =TH 4 g"Aayp =T, + A+ 2VAAV,(VAN,)

(2.78)

(2.79)

Following the notation of [17]] we introduce ¢*, ) = QVA“AV)\,,)\O‘?QV as the quadratic

term in V and obtain

l—wl/p = F'ul/p + A’ul/p + 5l¢/p

Then
R - (aUF#up + Fﬂaarayp) - (U And p)

vop

= 0,1, + 0,2, 4 0,88, + T, 10, + T, A,

T2 8%, + A% T+ A% A 4+ AR5

oo vp oo vp

+ éwaocf‘aup + 5MUaAan + 5N 606 :| - (U < p)

ca” vp

Splitting terms in orders of V' and noting that 0 4%, = 0, we get

oa” vp

Rh,, = Rh, + [0,A8, + T A +T% A" — (0 p)]

vop vop
+ [8‘75qu + fwaaaolé/p + f\aup(s;fﬂx + AuaaAan - (J A p):|
+ (A‘uaa(solé/p + AOél/,oé‘uo'oz - (U A p))

Now, using the following results

° 0, A%, , = ?UA“VP — f’fmAO;,p + e A* ,t re Al
d aU(Suup = vU(Sli/p - Fucra(;aup + f‘aau&uap + Faap(suua
. AR 8%, = 2V A AN ANV 5V VY

18

(2.80)

(2.81)

(2.82)



° A% 00, = —2VNANA NNV VY,V
and noting that the terms that are symmetric in o <+ p vanish, transformation of the

Riemann tensor is given by

Ry = Ry + |V, D%, N 4 T A = (0 45 )

vop vop

+ [vg&;p + T S+ T 5+ A A% — (0 p)]

vp© oa ov” ap

Ryt [T, 9,0 [0, - T, 09, - )

vop

=R\, + Ry 0, + R

vop vop (Q) vop
(2.83)
where
R = @ A#VU - vUAMV
(L) vpo = "¢ o (2.84)
RQ‘Q) oo = V,oh, — VU(VLP + A‘fmA‘j,a - A“mA"‘Vp

are the linear and the quadratic terms in V', respectively. Note that there are no cu-
bic or quartic terms in V' as one would expect from a generic transformation of the
Christoffel Symbols with linear and quadratic terms. Next, we find the transformation
of the Ricci tensor

Ry = R,s + R’(LL) + R (2.85)

vuo T AYQ) vpo

Using the calculations below

- R'ELL) vpo - vMAMVU ) since AMV“ =0
— R?Q) vuo Vo, — ANMAQW ,  Ssince A“W =0= 5@/#

— Vot =V, 2V = 20, A2V, (VARV, V)

AR NS = [vg(mua) YV (VAN — W(VAUAQ)} [vy(vvxu)
+ VL (VAN — va(wym]
= [)\“/\U/\“/\V?QV?NV + VEA AV MV LAY — VI, VA
FAANANTIV VY £ VAN, TN VN,

— 20\, [Auamvvav + V2V AT, A — vzvavvw}
(2.86)
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we obtain

R(Q) vo = RM

() vio = 2V A NIV, (MVLV) = VUMV ATV VMV,

(2.87)

Hence, transformation of the Ricci tensor in its covariant form is given by
R, = R,,U + ?MA“W -+ R(Q) vo (2.88)

which involves both the linear and the quadratic terms. Transformation of the Ricci

tensor in its mixed form is an even more interesting result and is given by

R% = g™ R,, = R% — 2VA*N' Ry + VAP —2VAN'V, A"+ G R(0) vo

(2.89)
Now, we have
NV, =V (WAL) = (V) A,
=V, (AWV,(VNMXA,)) = VN (VA VRN, + VAV, ) 290,
=V, (WNAVLV) = VAV AV A =V AVEN)
Y [A”mwvyw VYNV N+ vvwvm}
which yields
—2VAN'V! = =G R(Q) vo (2.91)
Therefore, transformation of % becomes
R® = R — 2VA*N"R,, + VA (2.92)

where there are no quadratic or higher order terms. The Ricci scalar curvature trans-

forms as follows
R=R —2VA"NR,, + V, A
= R—2VAN Ry + 2V, (AU (VA))

(2.93)

From these one can calculate the transformation of the Einstein tensor G, = R, —

%ng, which in turn yields the transformation of the energy-momentum tensor 7,,,.

2.3 Kerr-Schild-Kundt Metrics

Kundt class of spacetimes are defined by the existence of a null congruence such that

the tangent vector field has no divergence, no shear and no twist.[18]] If we start with
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the generalized Kerr-Schild metric,
Guv = Guv + 2V AN,

where ) is null.
We see that divergence of )\ is not necessarily zero. However, as in [19]-[20], if we

introduce another vector & such that
(1) Vi = ) (i7) EA* =0 (i13) A0,V =0

then (7) and (4¢) imply that X is a geodesic vector with respect to both g, and g,,,.
NN A = MEN + MEN, =0 (2.94)
since A is null and orthogonal to £. Similarly,

MY A, = MWV, + (F"W — f"w) Ao

= 97" Ao As

= VL (VAN (2.95)

= - AAYV,LV

=0
where the last equality follows from the defining property (iii) and the equality before
that follows from the geodesic property of A. In addition to being a null geodesic
vector with no-divergence, A is also non-twisting. This result immediately follows

from the scalar definition of twist: Twist of \ is:

1
W = §V“)\VV[M)\,,] =0 (2.96)

Since VA, is symmetric by definition (in the Kerr-Schild-Kundt ansatz) and thus
antisymmetric term V[, A, is 0.
Alternatively, one can reach the same result rom the vectoral definition of twist. Twist

vector of )\ is given by:

wh = "INV )\
= PN (Ao (2.97)
=0
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Hence, we see that the symmetric definition of VA, = § A, in the KSK ansatz

leads A to be non-twisting.

Another consequence of properties (7) and (i7) is the shearlessness of A:

VNV N VN — (V)2 =0

We have already shown that A has no divergence, V ,\* = 0. From
o V, N =& N +EN\, and
o VHN, =V M =N &1,

it can also be seen that

VN'VEN, = 0=V, A"V, A\

(2.98)

(2.99)

(2.100)

since A is null and orthogonal to §, A*A, = 0, A*§, = 0. Lastly, it is evident from

property (ii) that the index of the & can be raised or lowered with respect to both

metrics.

These results hold in the background spacetime as well. From:
VN =V X+ (T, —T%,,) A7
=V, A + ¢"* Do\’
=V, A + (57 = 2V AY) A7V, (VAL A,)
=V, \ + AV, (V')
=V, N+ ANV, V
it is obvious that ) is nondiverging;
VN =V, M =0
nontwisting;
VRNV A = (VX + NNV V)V A
= ?“/\”V[#)\U]
1= _ _
= §V“X’ (Vudo + WA,V = (145 1))

— A

= ?“A”?[MAV] =0
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and shearless,

2VHN'V (M) — (V) =0

= 2 (VAN + MNNY V) Vi — (V) =0
( ) (n\v) (u ) (2.105)

= 2V (Vih) + A ATV V) = (V) =0
= VAV A — (V) =0
with respect to g,,,,. Note that the calculations here follow from the fact that \*A\"V A,

)\“)\”?HAV = 0 which in turn is a consequence of A being a null geodesic vector with

respect to both metrics.

Now, looking at the KSK ansatz, one can realize that there are many other different
ansitze that may be used to describe the Kundt spacetimes. In other words, starting
with

Guv = g,uu + QV)\,LLAZI7 )\'u)\ﬂ =0 (2106)
The following ansétze

= VA =&, &N, =0
j (Y] w (2.107)
- VA=A, &4 =0

also make )\ a null geodesic vector field that is non-diverging, non-twisting and shear-

less.

¢ MV, N =0, V,\=0
o VEA'V ), = VEA'V, A, = 0 = V*A'V, 0, = VA V()

(2.108)

For the KSK ansatz V, A, = {,A,). We also see that V|, A\, + VA, = 0 and hence A

is also a Killing vector field.

The KSK ansatz can be used to find exact solutions to the quadratic gravity theories
and further, these are universal spacetimes; to wit, these spacetimes solve all generic
gravity theories constructed from the Riemann tensor and its covariant derivatives.
Lastly, by using the defining properties one can simplify the expressions for the trans-
formations of the Riemann tensor and the Ricci tensor of the previous section for the
KSK metrics, as done in [21]. In this case, the Riemann tensor itself turns out to be

linearin V.
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2.4 Kerr-Schild Forms of Some Exact Solutions

In this final section of this chapter, we will derive KS forms of some well-known

exact solutions of GR.

2.4.1 The Schwarzschild Metric

The Schwarzschild metric in its standard form is given by

oM oM\ !
ds? = — (1 — T) de? + (1 — T) dr? 4+ r?df* + r?sin® 0d¢®  (2.109)

where f(r) = 1 — 222, The above metric does not admit a KS form, g,, = n,, +

2V A\, Ay, and this can be observed as follows;

1-f

ds* = —dt* 4+ dr* + r*df* + r? sin® 0d¢?® + (1 — f)dt* + ——dr?
f
1 f (2.110)
= N drtdx’ + (1 — f)dt* + Td?“2
Note that

ds? = g dztdz” = n,,dx"dx” + 2V, A\, dz" dz” (2.111)

Then there exists a KS form if

1

2V N datdx” = (1 — f) {dt2 + ?drﬂ (2.112)

However, since the paranthesis is not a square, there are no such V and )\ in these
coordinates. In order to complete the RHS to a square, we make the following change

of coordinates:
t =t=1t— A(r), =, 0 =0, ¢ = ¢ (2.113)
which will give the necessary cross term dtdr in the paranthesis, with

dt* = di? + 2A' (r)dAdr + (A (r))dr? (2.114)
We have

1 oo
ds* = — fdt* + ?dﬁ +7%dQ* — 2f A (r)dtdr — fA®(r)dr® (2.115)
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Then,

gm,(f, r,0,¢)dx"dz” = n,,detdx” 4+ (1 — f)df2 + (% _ fA’Q(r)> dr?

— 2f A'(r)didr

= Ndatde” + (1 — f) [df2 — 21

_|— (
For the expression in the paranthesis to be a square, it must be that

fooN 1 f
(1—fA(r)> AT

which yields
/ f f 1
AT <ﬂ+1> B
_F\2
— A/Q(’/‘) _ (1 fo)
2M
=  A(r) = j:/ ’”QMdr
= iQM/r—2M

= A(r) = £2M In(r — 2M) + constant

It follows that

2M .
gudxtda” = n,datdx” + — [dl,a F 2dtdr + d7°2]
r

2M | -
= et da” + = (d F dr)?
T

and thus we have

oM
VAN dotde” = == (df F dr)?

which is now solvable for V" and .

M -
V=— and M\, dz"==£(dtFdr)

r

For \,dz# = +(dt — dr),

= X\, =(1,-1,0,0) or A\, =(-1,1,0,0)
= M=9"\, =(-1,-1,0,0) or \*=(1,1,0,0)
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(2.117)

(2.118)
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and for \,dz* = +(dt + dr)

— A, =(1,1,0,0) or A, = (=1, —1,0,0
w=( ) w=( ) 2.123)
= M=p"\ =(-1,1,0,0) or M =(1,-1,0,0)

2.4.2 The Reissner-Nordstrom Metric

KS form of the Reissner-Nordstrom solution can be found in a similar way. Now we
have

) =1-=24 % (2.124)

Then, we get
ds® = ndatda” + (1 — f)[dt* F 2dtdr + dr?]

oM Q?

. (2.125)
= Nwdx'dz” + (T - ﬁ) (dt F dr)

Therefore, the null vector is the same as that of the Schwarzschild solution whereas

the proﬁle function V is given by
V = — — — 2.126
RN r 27“2 ( )

2.4.3 The Kerr Metric

In Kerr’s coordinates, the Kerr metric is given by

2M
ds? = — (1 - m> (du + asin? dg)* + 2(du + asin® 0d¢) (dr + asin® 0dg)
+ (r? + a* cos® 0) (d6? + sin? Odp*)
(2.127)
where r is not the radius coordinate but instead defined implicitly by
2y 22
——+—==1 2.128
r24+a? 12 ( )
and u = t + r. The coordinates might also be written as,
x = (rcos¢+ asin¢g)sinf
y = (rsin¢ — acos ¢) sin (2.129)

z=rcosf
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Similar to the arguments in the Schwarzschild case, we expect the mass term to be
proportional to a complete square and remaining terms to give the flat spacetime. We

have

ds* = ds?|p—o = — (du + asin? 9d¢)2 +2 (du + asin® 0d¢) (dr + a sin? Hdgb)
+ (r2 + a? cos? (9) (d92 + sin? 6’d¢2)
= —du® + (r* + a?) sin® d¢? + 2dudr + 2a sin® fdgdr
+ (r* 4 a® cos® 0)db?
= —dt* + dr* + (r* + a?) sin® 0d¢* + 2a sin® Odpdr
+ (r* 4+ a® cos® 0)db?
(2.130)
With the above coordinate transformations, one can show that ds? is the flat Minkoswki
spacetime. We then have

2Mr

ds* = ds + ——
° ° +r2—|—a200829

(du + asin® fd¢)* (2.131)

Hence, KS form is written with

_ Mr . 9
g=r1, V= m, )\Md,TM = du + asin 9d¢ (2132)

whence one can obtain the shearless null geodesic vector \;
A, =(1,0,0,asin’0) and N =(0,1,0,0) (2.133)

Applying the coordinate transformations given above, the metric can be written in

Cartesian coordinates.

gt gz g 2t [ rledetydy) | alyde — xdy)
r4 r2 4+ g2 2+ q2

2
z
—d 2.134
+ a222 + , 21 ( )

where d5? = —dt?+da®+dy>+dz? and 2% +y>+2% = r’+a’sin? § = r2+a2(1—j—3)

Therefore, we have

V:

M3 —
r Ay = (me—kay Ty — ax z) (2.135)

rt + a222’ r24+a2’ r24a2’r

Similar to the relation between the Schwarzschild and the Reissner-Nordstrom solu-

tions, where we found that the null vectors are the same but the profile function V'

changes in the KS form of the charged solution, the Kerr-Newman metric(charged
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rotating solution) can be obtained by choosing the same null vector and the following

smooth function
1% r M- ¢ (2.136)
== r——= .
BN g 222 2

Note that without rotation this reduces to Viyy = }2 (M r— %) and the null vector is

Ay = (1 z Y f) Without charge, Vi x in turn reduces to Vg = % whereas the null

S o

vector remains the same.
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CHAPTER 3

KERR-SCHILD TRANSFORMATIONS

3.1 Motivations

KS ansatz is about the transformation of the metric, and the coordinates are not trans-
formed.

I = Guv + 2‘/)\“)\1/ 3.1

At this point, one may ask for the transformations of coordinates leading to the gen-

eralized KS ansatz;

B or® 0z B
G (@) = 55 e () = G + 2V AN (3.2)

This idea can be better grasped if we consider isometries and conformal transforma-

tions. For isometries we have

o= 2 = 32", G D G = G (3.3)

where ¢ is a diffeomorphism that leaves the metric invariant. Now, a Weyl transfor-
mation is;

20(z)

G — g;“, =g, (3.4)

which simply rescales the metric. On the other hand, we know that a conformal

transformation is a particular coordinate transformation such that

20(z)

= 2" = o(a"), guw 7, 9w = €7 (3.5)

where the diffeomorphism ¢ is an angle-preserving smooth map. Hence, we see that
a transformation of metric (Weyl transformation) is the result of a coordinate trans-

formation(conformal transformation) and in this chapter we will study the diffeomor-
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phisms leading to generalized KS ansatz and the related subjects.

3.2 Kerr-Schild Coordinate Transformations

Expression for the KS ansatz with null geodesics, without coordinates, is given by,
g=n—+2VA® A (3.6)

where \* = n~1(), ) is a null vector with respect to both metrics. The Generalized

KS ansatz is,
g=g+2VA® A, where

gil()‘a A) =0= gil(>‘7 )‘)

(3.7

Here, V' : M — R is a smooth function of spacetime coordinates, V € C*°(M )E],
and M is the smooth manifold representing the spacetime. The one-form A € A'(M)

is null and \* = g~!(),-). The inverse metric is given as
g =g -2VNaN (3.8)

Any two metrics in the generalized KS ansatz are referred to as KS related metrics.
Then, a diffeomorphism ¢ is called a Kerr-Schild transformation (¢ : M — M,
and hence an automorphism) if g = ¢*g that is, the pullback of the background
metric gives the full metric. Next, one can look for the one-parameter group of these

transformations which is given by (®, o), with
¢ ={¢; € Dif f(M):s€R, ¢;5=7g+2V,A®@ A}

being the set of KS transformations and map composition being the group operation.
The identity element is given by Idy; = ¢g, ¢ © ¢s = P © P9 = ¢ and the inverse

element of a given element ¢, is given by
¢s_1:¢—s = ¢so¢5_1:¢so¢—s:¢o and
¢5_10¢s:¢750¢82¢0

! Tn this chapter, definitions will be written in this way for the sake of brevity, eventhough they are local. To
write these rigorously we can use open sets of the manifold U C M

(3.9)
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Associativity property follows from the fact that map composition operation is asso-
ciative. Then, lastly we need to look at the closure property. Now, since the flow ¢ is

defined as a group action by

¢:RxM — M,
(3.10)
¢(0,p) =p and ¢(s,¢(t,p)) = ¢(s +1,p)
where s,t € R, p € M. Equivalently we can write
gbo(p) =D and (¢s o ¢t)(p) = gbs—i—t(p) (3.1D
As p € M is arbitrary, we must have
Ps © Pr = Pt (3.12)

Thus, G = (¢, o) is indeed a one-parameter group of transformations if ¢ps0¢; = Py 4

(s 0 P:)"g = ¢} © g
O, (G+2VaA® ) (3.13)
=g+ 2VIA® A+ 2(01V5) (91 A) @ (91 A)

which is equal to

Pr§ =G+ 2Vop A® A (3.14)

if o7\ = U\, for some U; € C°°(M), and V; + (¢;V,)U? = V... Hence, the KS
group on M, (®, o), can be defined as the one-parameter group of KS transformations

from M to M;
& ={¢, € Diff(M)|sE€R, ¢g=g+2VA®\ dA=UA}  (.15)

where V;, U, € C°(M),V, =0 and V; + (¢;V5)U? = V4.

Now, let £ be the infinitesimal generator of a KS group(¢ generates the flow ¢). We

have
Leg — Tim ¢:(Joup) — o _ lim (0:9)p — dp
5—0 S s—0 S (3.16)
= 2 (o)
ds s9)P|s=0
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Hence,

dV,
g=2—2 AR A
£§g dS s=0 ®©
=202\ and
(3.17)
d dU.
L= — (PN =2 A
¢ dS <¢s )320 dS s=0
= mA\

These equations are called the KS equations for the metric and the transformation

null direction, respectively, and in coordinates they are given as

V.6 + V.6 =2p\ N\, and
VA + (V,E9)A, = mA,

(3.18)

Solutions of the KS equations are called the Kerr-Schild vector fields (KSVFs) with
respect to the transformation null direction )\ One can show that a KSVF ¢ has no

divergence by taking trace of the KS metric equation.
Note that p and A are not uniquely determined in the KS-metric equation:

Leg=2pAR@ N — 2pA® X under following transformations

/ p o (3.19)
A= N=NX p—op =N N#0ON e C™(M)
KS-\ equation becomes:
LN =ACeN + NL = N(N) + NmA
)\/
= NﬁN +m\
1 (3.20)
= —EN | N
(m+ Né )
=m'N

These are tantamount to gauge transformations in the sense that under the following
transformations

1
A= N =N, p—)p/:%, m—>m/:(m+N§N) (3.21)

the KS equations remain invariant and for this reason p is called the gauge of the
metric and m is called the gauge of the null direction A\. One can immediately realize

that if A = 0, then the KSVF becomes a Killing vector field. Any KSVF which is not

2 For brevity, from now on we will write "the null direction \"

32



a Killing vector field is called a proper KSVFE. Now, using g = g + 2V A ® \ and the

KS equations, we obtain

Leg=Le(g+2VARN)
=202 @A+ 2(LVIAR AN+ 2V [(LN) @ A+ A ® (LeA)]

(3.22)
= AR A+ 2EVIAR A+ 4AmVA® A

=2(p+EV+2mV)A® A

Hence, any KSVF of g with respect to the null direction A is a KSVF of g with respect
to A. Clearly, converse statement also holds and thus the two KS-related metrics have
the same KSVFs with respect to . Incidentally, we observe that the KSVF ¢ is a
Killing Vector field, locally, of g if p+ £V 4+ 2mV = 0. Recall that, given a metric g,
the KSVFs of g are defined with respect to a null direction A. Next, we consider the

set of KSVFs for a metric g on M, and a null direction A:
Sia={6 € X(M)|Leg=2pAR N, LA =mA for somep,me C®(M)}

(S3.a, +, ) is a vector space over the field of reals. Where the binary operation + is
the standard addition operations and the scalar multiplication - is the standard mul-
tiplication operation. It is clear that S; \ satisfies the axioms of a vector space; 0
is the identity element: £ +0 = 0+ ¢ = £, —¢ is the inverse of £ : £ + (—=¢&) =
(=€) + & =0, commutativity : £+ n =n+ &, associativity : £+ (n+0) =
(E+n)+o, distributive properties : (c1+c2)€ = c1€+c€ and c(E+n) = c€+en
forallc € Rand £, n,0 € S; . It can also be seen that Sj;  is closed under the addi-

tion operation. Given any §,1 € Sj 5,

Leg=2pARA, LA =mA

(3.23)
Lyg=2gA®@ N\, L,A=n)\
§+n € Sy, since
LewnG = LG+ LG =2(p+ QAN
&+n 3 n ( ) (3.24)
Leinh =2(m +n)A
However, if we are given any two vector fields £, € Sj; such that
Leg=2pAR@ N, L,g=2qk®k (3.25)
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we have L¢1,§ = 2pA @ A + 2qk @ k. Thus, if 7' (A, k) # 0 then § + 71 ¢ S;. Note
that in these calculations we tacitly assumed that A and k are null one-forms. Now,

one can readily observe that

Sgan =S5 where X=h\0%#heC™®(M) (3.26)

g

In fact, we can define an equivalence relation ~ over the set of null one-forms A} (M)
by; ~: is equal to a non-zero smooth function multiple of.

It can easily be seen that ~ is

e Reflective, since A ~ \

e Symmetric, since A ~ w = w ~ A

e Transitive, since if A ~ w and w ~ k, then A ~ k.

forall \,w, k € AL (M). Equivalence class of ) is given by.

null

A ={we A, (M) |w~A} (3.27)

null

Note, in particular, that
[0] = {0} (the equivalence class of A = 0 has only the A\ = 0 elements)
Hence for the quotient space we have

Apr(M) /o = {N T A € Ay (M)}

null

whence we obtain

So=JSin=1 U San | USso (3.28)
iel ieI—{0}
where ); is a representative of [\;] for all ¢ # 0 and Ay = 0 is a representative
of the set of Killing Vector fields of g. The latter equality in the above equation
defines a partition for Sg; that is, it gives a pairwise disjoint, except for the additive
identity, union of S;. An alternative equivalence relation can be defined over the set
{Sgn | A € AL, (M)}, ~: is equal to

which is clearly reflective, symmetric and transitive. Equivalence class of Sy is

given by
[S50] = {Sgw | w = hA, for some h € C®(M), h # 0} (3.29)

and it gives the same result.

The set of all smooth vector fields on M, X(M), has the structure of a vector space
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and further it becomes a Lie algebra when equipped with the additional binary opera-
tion (a multiplication), the Lie bracket [ , ]. As it is bilinear and anti-commutative
and satisfies the Jacobi identity for all X € X(M), these properties hold for all
Y € (S5, +, -, R). Then, the vector space (Sj , +, -, R) forms a Lie algebra if it is

closed under the Lie bracket |, | (i.e., if [ , | is a binary operation); given £,y € Sj
such that
Leg=2pAR@ N, LA =mA
‘ ¢ (3.30)
L,§=2g\A® N, L,A=n\
we have [£,7] € (S50, +, -, R) if
Lie 17 =29\ @ A
(€] 3.31)

LA =uX for someyandu € C*(M)

The following calculations show that the set of KSVFs is indeed closed under the Lie

bracket:
Lieng = LeLyg — LLeg
=L (2pA®N) — L, (2gA ® N) (3.32)
=2(&p+2pm —vqg — 2qn) A @ A
and
LigpA = Ly = Ly LA = Le(nA) — Ly(mA)
= ({n+nm — ym — mn)A (3.33)
= (§n —ym)A
Therefore, (S; \, +,-,[, |) over R is a Lie algebra which will denote simply by K.
We have
R= @ﬁ&. where Ry, = Ko = Killing algebra (3.34)

which is not a finite d;reriensional Lie algebra in general. Note that, we have Lg = 0
for Killing vector fields and £,g = Vg for conformal Killing vector fields where W is
a smooth function. In both cases, the vector field £ is independent of a null direction
A whereas for KSVFs ¢ is defined with respect to A. For this reason, unlike the cases
of Killing algebra and conformal Killing algebra, the Lie algebra of KSVFs can be
infinite dimensional. Now, consider a proper non-zero KSVF &, parallel to the null

direction. £ = WA for smooth function ¥ # (. By definition we have
Leguw = Loxeguw = YN Vagu + Viu(YA) oy + Vo (PA") o
= V(TN + T, (0,

(3.35)
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and
Ly = Ly, = \Il)\"‘?o)\u + ?M(\I/)\O‘))\a

= AV, (3.36)
- \Ijﬁ)\u )\N

From these we get

200, =V, (UA,) + V,(TA,)
= U(V, A+ Vo) + A0, + A\,0,¥ (3.37)
= ULyG+ MAOY 4+ N\,0,0
and

mA, = UA*V, A\, (3.38)

where we used the metric compatibility property of g and the nullity of \. Now we

can write £,:g in terms A, p and ¥:

1 1
Ly = 2200, — NGO = Mg 0,

v (3.39)
—<£>\ —9 ln|\If|>\>+>\ (BA ) ln|\I/|)
- U o o v I U v v
Introducing w € A'(M), w := £X — dIn |¥| we obtain
Lyg=w@AN+AQw and
oy ﬂ)\ (3.40)
MNA = U

Now, from )\“?HAV = %)\V we see that M is geodesic vector, albeit not an affinely

parametrized one. Further, from

Vih + VA = (£, = 0umn [9]) A+ A (S0, =0, n[w]) (34D

we obtain, by taking trace of both side, that

2VEN'V Ay = = A VN0, In | T

(3.42)
- —%X’&, In ||
Conversely, given a null one-form A and a proper KSVF ¢ # 0 such that
Lyig=w@A+AQw and Leg=2pA® A (3.43)
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where w is a one-form, w, = £\, — 9, In|¥| with 0 # ¥ € C*(M),p € C>*(M),

we have

LG = (2/\u —9,In |x11|) A+ A, (%)\,, ~9,In |x11|)

7
= U(V, A + Vod) = 2000, — A0, — X,0,0
= LeGuw = V(V, A + Vo A) +1,0,0 + 1,0,0 (3.44)

= ?u(qj)‘u) + ?V(\I»‘u)
= Lyt G

Hence, we obtain

;ng = E\I})\ﬁg = L{_q»\ﬁg =0 (345)

which holds either if £ = WA? or if ¢ — WAf = ~,  being a Killing vector field.
The discussions in this chapter can be applied to several specific cases such as 2-

dimensional spacetimes, flat spacetime (g = 7) etc.
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CHAPTER 4

CLASSICAL DOUBLE COPY

The double copy is a proposed correspondence between gauge theories and gravity
theories which holds at tree level. This duality is observed by replacing the kinematic
factors of the gravity amplitudes by the color factors of the Yang-Mills scattering
amplitudes. The result turns out to be that the gravity amplitudes are squares of the
scattering amplitudes of Yang-Mills theories and for this reason Yang-Mills theories
are called the single copies of the gravity theories. In the case of the double copy
for classical theories, the Yang-Mills solutions and the solutions of general relativity
are related where the Kerr-Schild ansatz provides a natural framework for examining
this idea. For the KS ansatz, there are no dilaton or axion fields since h,, = 2V, \,
is symmetric and traceless. We will now continue with a brief review of Yang-Mills
theory:

Yang-Mills theory is a gauge theory with SU(N) as its symmetry group. The La-
grangian is

1
Lyar = = F* (@.1)

where the field strength tensor is given by
Dy, D] = —igF},,t" 4.2)
Here, D, = 0, — igAj;t* is the covariant derivative, g is the coupling constant, ¢* are

the generators of the Lie algebra associated to the Lie group of gauge symmetries and

Af, are gauge vector fields. We obtain

Fo, = 0,A% — 0,A% + gf "™ AL A (4.3)
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where [, defined by [t*,t*] = ift°, are the structure constants. As for the

equations of motion, we have

GEYM aLYM _
aAfL — 8Va(8qu) =0 “4.4)
Now since
1 a a
ay 8£YM _ 81, a(_Z(F )2) _ _1 9. 61, e 8Fpa
8(81,Az) 6(8VA2) 4 8(8VA6M)
1 apo 14 14 e 4.5
= =0, (F (8,76, = 6,76,")5;) 45
= —0, "
and
O e
8Aeu 4 8146#

= Loy Fe(8.0 ) AG 4 ADo"6°,)

2 pY oY e

1 aec papo pc abe ha (46)
:_ég(f P Ao'—{_bepuAbp)

— _ng,ECFCLMVACV
— ngCaACVFaV/j,

where we obtained a factor of 2 in the paranthesis since
abe 17a b __ aeb apr) Ab
JEFHAL, = (= f1O) (= F) A,

The equations of motion are:
O, F ™ + g f** A" F = 0 4.7)

Maxwell’s theory is an Abelian theory, with U(1) as its symmetry group, and thus

febe = 0. In this case, the equations of motion are; with no source term,
O, F"" =0
and with source term, £ = —iF’“’FW —A,JH,

—JF 4 O, F =0
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At this point we return to the vacuum field equations of GR with the KS-ansatz with

geodesic property. Recall that
R = R — 2V AN R, + V, A%
and
R=R—=2VNNR,, +2V,(\'V,(V))
When the background metric is flat (§ = n), these reduce to

Re = 1o, =0TV + (VAN + 8, (VAN
> 4.8)
R =20,(M9,(VAY))

since R, = R = 0. From the vacuum field equations above, it is possible to extract
the equations of motion of an Abelian gauge theory. In order to obtain 4 equations of

gauge theory out of 10 equations of gravity, an index of I?*, is chosen. Then

1
Ry = 50, [=0,(VA"Xo) + 0"(VA"Xo) + Bo(V AN 49)
Now, one can observe that if the term Jy(V A\?\*) vanishes and ) is taken to be a
constant then the paranthesis on the RHS reduces to an expression that is very similar
to the field strength. To this end, we assume Ay = 1 and 9V = JpA* = 0 i.e. no

explicit time dependence. Then
1
Ry = 5&, (0,(VA7) = 97(VAM)) (4.10)

Further, we replace the smooth function V with ¢/2 where ¢ is a scalar field. This

implies that \* can be considered as the gauge vector field A,,. We have

Ry = J00(0"(6X7) — 07 (6\")

—%Mwm_mw> @.11)

1

= —0,F"
4

Hence,

0,F°" =0 with A" = ¢\
(4.12)
where Oy = AN =0 and \g=1

This leads us to consider gravity as a double copy of gauge theory. The remaining
field equations are given by
. 1 . ) )
R’y = 20, [—07(VA'N)) + 0'(VA7N)) 4+ 0;(VARA)]

_ %ak [—0M(VAN) + O (VARN) + 8, (VARX)]

(4.13)
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In particular, 1 = 0 equation of R, = 0 is

Ry = 10, (P(0X) = 07 (6)))

Lo 1o

|
— _ZV b
Therefore, the scalar field satisfies V2¢ = 0. One may interpret the gauge field
A, = ¢\, as the single copy of graviton field h,, = ¢\, ), and the scalar field ¢ as

the zeroth copy. More generally,

1 1
G = Ny + KRy = My + 5/»@2@“&, G = EHJQT,W (4.15)

and
A% = cpN,, B =" (4.16)

where x? = 167G and ®*' is the biadjoint scalar field with the following equation of
motion,

82@(1@’ . yfabc]ca’b’c’q)bb’(bcc' =0 4.17)
and A“, is a solution to
ayFaV,LL i gfabcAbchu,u =0

Note that the term g f* fo'¥'¢' ' de’ vanishes since ' &' is symmetric in b < ¢’
whereas the structure constants £ and f¢¥ are antisymmetric. Hence, we simply

have

92 = () (4.18)

which is the R’ equation. Essentially, by replacing one of the null vectors )\, from
the graviton field h,, = %/{gb)\u)\y with ¢, we obtain the gauge field A%, = "¢,
and repeating this we get the biadjoint scalar field ®** = &% .

As an example, consider the Schwarzschild solution
1
R, — iRg,“, =81GT,, 4.19)
for which we have the following KS-form;
Guv = Nuw + T)\MAV (420)
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_
x

where A\, = (—1,1,0,0) in spherical coordinates and A\, = (—1, %) in Cartesian

coordinates. We get

2GM K K M
(87 )¢ , = Ay 2¢ W @21)
C t* )
a g4777’ H

In order to have this correspondence we replace mass with charge and gravitational
constant G with the gauge coupling constant g as follows: M <> c,t* and %Ii “g.
In passing, we see that the gauge vector field A, can be gauge transformed such that
the transformed gauge field describes a Coulomb charge. There are many examples
of this correspondence including the axially symmetric stationary rotations solution,
pp-waves etc.

One way to generalize this method is to use multi-KS ansatz

Guv = Muw + le)\u)\u + ¢2k,uku (4.22)

where A2 = k? = \-k = 0. However, this has the drawback that the field equations are
not linear in the graviton field.[22] One should also note that two gauge equivalent
solutions of the gauge theory, with the same source, may lead to different gravity

solutions; one with a dilaton field and one without a dilaton field.
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CHAPTER 5

CONCLUSIONS

We began with an investigation of the generalized Kerr-Schild spacetimes and dis-
cussed various topics related to it such as the algebraic classification of generalized
KS metrics, a derivation of the properties of null vector fields of the KS ansatz from
the vacuum field equations of general relativity and universality property of Kerr-
Schild-Kundt solutions etc. We have provided two corollaries which are useful to
find some exact solutions of the field equations and generate new solutions from
some given solutions. We finished this chapter by providing the KS forms of some
well-known exact solutions of GR. Next, we studied the Kerr-Schild group of coordi-
nate transformations which when applied to a background metric transforms it such
that the resulting transformation is the generalized KS ansatz. This discussion was
a mathematical one, with no restrictions of the field equations of GR, and included
some parts of the study of isometries as a special case. By choosing the background
metric to be a conformally flat spacetime, one can extend this idea to discuss the
conformal Killing vector fields. The existence of a null direction changes the dis-
cussion drammatically from that of isometries and in fact we find out that even the
set of KSVFs with respect to some certain null directions is not finite dimensional in
general. In the last chapter, we examined the classical double copy idea by showing
that the Maxwell’s equations can be obtained from the field equations of GR once we
assume that both the scalar field and the null vector are not explicitly time-dependent
and time component of the null vector is a constant. Next, by using the identifications
of the BC'J duality, we applied this procedure for the case of the Schwarzschild so-
lution and found that the gauge theory it corresponds to is gauge equivalent to that of

a Coulomb charge.
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