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ABSTRACT

REEVALUATING SPECTRAL PARTITIONING FOR UNSYMMETRIC
MATRICES

Oktay, Eda

M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Murat Manguoğlu

Co-Supervisor : Assoc. Prof. Dr. Hamdulah Yücel

September 2020, 89 pages

Parallel solutions to scientific problems having graph representation require efficient
tasks and partitioning data. In this thesis, various parallel graph partitioning algo-
rithms are studied. While these algorithms are applicable to both directed and undi-
rected graphs, we focus on the directed case whose matrix representations are sparse
and unsymmetric arising in linear system of equations representing various applica-
tion domains such as computational fluid dynamics and thermal problems. Strategies
inspected in this study are ParMETIS with the Multilevel Kernighan-Lin algorithm
and the spectral partitioning algorithm with k-means clustering (SPEC) as well as the
recursive spectral partitioning algorithm in CHACO. We have implemented SPEC in
C programming language using PETSc and SLEPc libraries, whereas CHACO and
ParMETIS are called from PETSc. Weighted partitioning is done under the consid-
eration of the edge weights of the graph. SPEC is compared with the libraries only
when the unweighted partitioning is made due to the limitations of the libraries for
weighted partitioning. Hence, for weighted partitioning, only various eigensolver tol-
erances in SLEPc are studied in terms of the edge-cut and partitioning time. Another
study is performed for the spectral partitioning algorithm based on eigensolver tol-
erance used with the k-means algorithm in MATLAB. The comparison is based on
the quality of the partitioning (edge-cut and partition imbalance) and the number of
iterations. The quality of partitioning is determined by the edge-cut and the load im-
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balance, which could be based on the edge and vertex imbalance ratios of partitions
depending on the application. Since the adjacency matrix of a graph is structurally
symmetric, the eigenvalue problem can only be solved approximately when the ma-
trix is unsymmetric. Thus, only approximate results are provided in this study.

It is deduced that using SPEC performs better than the existing software libraries
when the number of cut edges is compared in unweighted partitioning of unsymmetric
matrices.

Keywords: parallel graph partitioning, Laplacian, PETSc, SLEPc, ParMETIS, CHACO,
spectral partitioning, domain decomposition, k-means clustering
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ÖZ

SİMETRİK OLMAYAN MATRİSLER İÇİN SPEKTRAL BÖLÜMLEMEYİ
YENİDEN DEĞERLENDİRME

Oktay, Eda

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Murat Manguoğlu

Ortak Tez Yöneticisi : Doç. Dr. Hamdulah Yücel

Eylül 2020, 89 sayfa

Grafik temsiline sahip bilimsel problemlerin paralel çözümleri, verimli görev ve veri
bölümleme gerektirir. Bu tezde, çeşitli paralel grafik bölümleme algoritmaları ince-
lenmiştir. Bu algoritmalar hem yönlendirilmiş hem de yönsüz grafiklere uygulanabilir
olsa da, bu çalışmada, matris gösterimleri seyrek ve simetrik olmayan, hesaplamalı
akışkanlar dinamiği ve termal problemler gibi çeşitli uygulama alanlarını temsil eden
doğrusal denklem sisteminde ortaya çıkan yönlendirilmiş duruma odaklanıyoruz. Bu
çalışmada incelenen stratejiler, Çok Seviyeli Kernighan-Lin algoritmasına sahip Par-
METIS, k-ortalamalı kümeleme algoritması ile birlikte kullanılan spektral bölümleme
(SPEC), ve CHACO içerisinde kullanılan spektral bölümleme algoritmasıdır. PETSc
ve SLEPc kitaplıkları kullanılarak C programlama dilinde SPEC algoritması uygu-
lanmış olup, CHACO ve ParMETIS ise PETSc’den çağrılmaktadır. Grafiğin kenar
ağırlıkları dikkate alınarak ağırlıklı bölümlendirme yapılır. Ağırlıklı bölümleme ya-
pıldığında kitaplıkların sınırlamaları nedeniyle SPEC, kitaplıklarla yalnızca ağırlıksız
bölümleme yapıldığında karşılaştırılır. Bu nedenle, ağırlıklı bölümleme için, sadece
SLEPc’deki çeşitli özdeğer çözücü toleransları, kenar kesme ve bölümleme süresi açı-
sından incelenir. Başka bir araştırma ise MATLAB içerisinde k-ortalamalı kümeleme
algoritması tarafından kullanıldığında, özdeğer çözücü toleransına dayalı spektral bö-
lümleme algoritması için yapılmıştır. Karşılaştırma, bölümlemenin kalitesine (kenar
kesimi ve bölüm dengesizliği) ve yineleme sayısı cinsinden maliyete dayanmaktadır.
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Bir bölümlemenin kalitesi, uygulamaya bağlı olarak bölümlerin kenar ve tepe denge-
sizlik oranlarına bağlı olabilecek yük dengesizliğinin yanı sıra kesilen kenar sayısı ile
belirlenir. Bir grafiğin bitişik matrisi yapısal olarak simetrik olduğundan, matris si-
metrik olmadığında özdeğer problemi ancak yaklaşık olarak çözülebilir. Bu nedenle,
bu çalışmada yalnızca yaklaşık sonuçlar verilmiştir.

Simetrik olmayan matrislerin ağırlıksız bölümlemesinde kenar kesim sayısı karşılaş-
tırıldığında, SPEC kullanımının mevcut yazılım kitaplıklarından daha iyi performans
gösterdiği sonucuna varılmıştır.

Anahtar Kelimeler: paralel grafik bölümleme, Laplas, PETSc, SLEPc, ParMETIS,
CHACO, spektral bölümleme, bölgesel ayrıştırma, k-means kümeleme yöntemi
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CHAPTER 1

INTRODUCTION

In many science and engineering problems, differential equations are used to model

numerical problems and estimate systems’ quantitative behaviors. Scientific comput-

ing tools are used for solving such equations to obtain some numerical simulations.

In solving such problems, limited memory becomes one of the main bottlenecks since

systems of equations are usually large and complicated. Hence, breaking down the

system becomes crucial in scientific computing. In literature, there are various ma-

trix partitioning methods such as Non-Rectangular Recursive Partitioning (NRRP)

[5], and recursive partitioning method [8], depending on the sparsity (nonzero struc-

ture) of a matrix. Graph partitioning is one method to break down the coefficient

side matrix if it is sparse [54]. The main goal of graph partitioning is to make the

matrix suitable for parallel computing by splitting it into smaller sub-matrices. There

are many partitioning strategies for graphs such as spectral, geometric, and multilevel

partitioning schemes [54]. Therefore, for matrix partitioning, using graph partitioning

techniques are preferred.

Graphs may or may not contain nodal coordinate information. In the former case,

there are algorithms using the available coordinate information. The latter (also called

non-spatial graph) is more general and applicable regardless of the availability of the

nodal coordinate information. There are two main graph partitioning strategies for

their use of nodal coordinates [6]: If a graph has coordinate information of its nodes,

then the partitioning is done to assume nearest neighbor connectivity, meaning that

the algorithm ignores edges. On the other hand, if the graph is non-spatial, then the

partitioning will be based only on the graph’s adjacency information since there is no

1



information about coordinates [6].

Moreover, non-spatial graph partitioning algorithms are categorized into two based

on the approaches that work on the entire or local graph, namely global and local

methods. Global methods work on the entire graph and compute solution directly,

whereas local methods find a small cut near a specified starting vertex [1]. One of the

most common examples of global methods is spectral partitioning [10] which is an

approach based on the Fiedler vector [19]. A significant advantage of global methods

is that they do not rely on an arbitrary initial partitioning. However, the essential

drawback is that they are limited to bi-partitioning, which is partitioning a graph into

two disjoint and independent sets. To overcome the limitation, these methods can

be used with various clustering algorithms. For instance, the spectral method can

do k partitioning when the k-means clustering algorithm is used on k eigenvectors

[44]. Furthermore, local approaches are useful if the main concern is the cost in

terms of time. Because instead of graph size, partitioning time of such algorithms

are proportional to the edge-cut. However, these methods’ main disadvantage is the

vertex set’s arbitrary initial partitioning since it affects the final partitioning quality.

As an example of local approaches, the Kernighan-Lin algorithm [41] can be given.

As the problems become larger, solving and partitioning them become more difficult

due to limited memory and require too much time to obtain a solution. Hence, the

need for parallelism arises [36]. The main aim of parallel computing is to obtain

solutions faster by using multiple resources. If some of the connections between

vertices can be reduced in a graph, it can be partitioned in parallel faster, and hence if

the application is solving a sparse linear system, it can be solved faster.

There are many libraries for graph partitioning using various sequential algorithms

(e.g., Party [50], CHACO [32]) or parallel algorithms (e.g., ParMETIS [40], SCOTCH

[49]). Using them in partitioning a graph can reduce cost in terms of communication

time, and load balance can be achieved. However, the algorithms used in these li-

braries are heuristics, and their parallel implementations are known to be not scalable.

To improve the quality and parallel scalability, we propose an algorithm using spec-

tral partitioning [4] with the k-means clustering algorithm [43], that we call SPEC

throughout the thesis.
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We choose to study spectral graph partitioning since it is more amenable to paral-

lelism and provides some flexibility via the precision of the eigenvalue computations.

The spectral partitioning algorithm is first introduced by Donath and Hoffman [16].

In 1973, they proposed an algorithm for the construction of graph partitions based

on the corresponding adjacency matrix’s eigenvectors. In the same year, Fiedler [19]

discovered the algebraic connectivity of graphs. Algebraic connectivity is based on

the second smallest eigenvalue of Laplacian graph and its corresponding eigenvector.

Hence, he suggested using this eigenvector to partition a graph. Then, to compute

eigenvectors more efficiently, Parlett et al. [48] made improvements in algorithms

to compute eigenvealues approximately. Later, the spectral partitioning method has

become a simplified approach for graph partitioning, sparse matrix reorderings, and

computing the Fiedler vector in parallel [45].

Another graph partitioning method is Kernighan-Lin (KL) algorithm. In 1970, KL

algorithm is devised by Kernighan and Lin [41] for partitioning arbitrary graphs ef-

fectively in terms of time and the edge-cut. Later, in 1993, Bui and Jones [9] made

improvements on the quality of the bisection returned by the KL and introduced three

steps of multilevel partitioning: coarsening, partitioning, and uncoarsening. Later,

Hendrickson and Leland [32] made improvements on this algorithm and presented

another multilevel algorithm in based on the recursive usage of the spectral method.

In 1998, Karypis and Kumar [39] presented a faster KL algorithm, multilevel KL, in

which Fiduccia and Mattheyses linear-time version [18] of KL (KLFM) refinement is

done during uncoarsening.

As partitioning large-scale matrices need to be faster, software packages have started

to be developed while partitioning algorithms have been improved. In 1993, CHACO

[31] was developed for the recursive graph partitioning. Later, to use multilevel meth-

ods, in 1997, Karypis and Kumar developed a software package called as METIS

[38] for partitioning unstructured graphs. However, METIS is operating sequentially.

Moreover, to partition graphs in parallel, they introduced ParMETIS [37] in the same

year.

To partition a graph using the algorithms mentioned above, it is assumed that the

graph is undirected. Therefore, there are many studies comparing the partitioning al-
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gorithms when the corresponding matrix is symmetric. For instance, Gupta compared

[27] graph partitioning and sparse matrix ordering package, namely WGPP, [26] and

METIS, while Horst compared [55] recursive spectral bisection with recursive graph

bisection, and recursive coordinate bisection in terms of the edge-cut.

There are several studies on structurally unsymmetric matrices. In 1998, Hendrickson

and Kolda [28] partitioned unsymmetric and rectangular matrices by using bipartite

graph concept and multilevel partitioning approaches. In 2000, they also tested sev-

eral methods on unsymmetric matrices such as Fiduccia–Mattheyses [18], spectral,

and alternating partitioning [42] methods with their multilevel implementations [30].

According to their research in [29], there are two types for modeling unsymmetric

matrices for using symmetric matrix partitioning techniques. The first one is con-

verting directed edges to undirected edges, i.e., using the matrix structure |A|+ |A|T .

The second one is giving weights edges representing only one-way communication as

ones, whereas giving the ones representing two-way communication as twos. For par-

titioning unsymmetric matrices, hypergraph partitioning strategies can also be used.

If some edges connect more than two vertices, then these edges are said to be hy-

peredges, and the graph is said to be hypergraph. In 1999, Çatalyürek and Aykanat

[13] proposed a generalized graph model along with hypergraph models for enabling

the decomposition of unsymmetric matrices. In this study, unsymmetric matrices are

partitioned using symmetric partitioning techniques by using the first modeling ap-

proach in [29]: For an unsymmetric matrix A, the problem is modeled as |A| + |A|T

so that it becomes structurally symmetric. Even though this computation gives ap-

proximation results, it is an exact model for some applications, such as Hermitian

and skew-Hermitian splitting [2].

Recently, with the advances of new computer architectures, more efficient algorithms

and their implementations have been proposed in which they can solve eigenvalue

problems faster and in parallel, such as Krylov methods [33]. Therefore, in this thesis,

we focus on the reevaluation of spectral partitioning algorithms, which used to be

considered as a slower alternative in the past. Using spectral partitioning algorithm

has two main advantages. First of all, the tolerance of the eigenvalue problem used

in the spectral partitioning provides flexibility that the other algorithms do not have.

Moreover, when weighted graph partitioning is inspected, while the other partitioning
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methods can only consider integer weights in the best case, the spectral algorithm can

consider floating-point numbers as weights. This advantage makes the spectral graph

partitioning method more accurate since, for other methods, a mapping is needed for

integer weights, which causes information loss.

This thesis compares SPEC against CHACO and ParMETIS to partition a graph

whose matrix representation is sparse unsymmetric arising in the linear systems rep-

resenting the solution of various problems such as structural and mathematical prob-

lems. Furthermore, different eigensolver tolerances are inspected in the spectral par-

titioning algorithm in MATLAB to consider optimal tolerance when used with the

k-means algorithm. The comparison is based on the quality of partitioning (edge-cut

and partition imbalance), the cost in terms of time, and the number of iterations. The

quality of a graph partition is determined from the edge-cut between vertices in dif-

ferent clusters and the load imbalance, which could be based on the edge and vertex

imbalance ratios of partitions depending on the application. Since we use unsymmet-

ric matrices even though the adjacency matrices have to be symmetric, the eigenvalue

problem can only solve the partitioning problem approximately.

The rest of the thesis is organized as follows: in Chapter 2, the main ingredients

of graph partitioning and graph partitioning algorithms for sparse matrices are ex-

plained, and parallelization of the methods are given; in Chapter 3, the application

problems and the software infrastructure used in this study are introduced. In Chapter

4, the results of numerical experiments are presented and discussed, and finally, in

Chapter 5, conclusions are given with possible future work.

5



6



CHAPTER 2

PRELIMINARIES

This chapter summarizes some of the most well-known graph partitioning methods

for partitioning a sparse matrix. We will focus only on row block partitioning of

sparse matrices.

2.1 Graph Partitioning

Graphs are one of the useful tools for modeling a problem. Especially in solving a

linear system of equations when the coefficient matrix is sparse, the graph represen-

tation is frequently used to reduce fill-in and partition the problem. To partition the

coefficient matrix, its graph representation is partitioned first, and the solution of the

linear system is obtained, hopefully in a shorter amount of time.

A graph can be represented as

G = (V,E),

where V and E correspond to the set of vertices and edges, respectively. Graphs

can be divided into two classes: Undirected and directed graphs. If for each edge

(v1, v2) ∈ E, there exists (v2, v1) ∈ E, where v1 and v2 are vertices in V , and

(v1, v2) = (v2, v1), then the graph is said to be undirected. Otherwise, it is said to

be directed. If the graph is undirected, then the concept of degree of a vertex can be

introduced: The degree of vertex v ∈ V is the number of edges incident to the vertex

[6]:

deg(v) = |(v, v′) ∈ E, v′ ∈ V |. (2.1)
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Moreover, the vertex weight function ωV : V (G) → R maps all vertices onto the set

of real numbers. The weight of a vertex v is denoted as ωV (v).

After defining graphs, now, graph partitioning problems (GPP) can be introduced

[21]: For an undirected graph G = (V,E) with non-negative edge weights, ω : E →
R>0, for partitioning G into k ∈ N>1 parts, the graph partitioning problem (GPP)

asks for a partition Π of V with blocks of nodes Π = (V1, ..., Vk):

1. V1 ∪ ... ∪ Vk = V ,

2. Vi ∩ Vj = ∅, ∀i 6= j.

The aim of GPP is partitioning V into k almost equal parts while minimizing the num-

ber of edges connecting vertices in different parts. In many numerical computations,

such as sparse matrix-vector multiplication, GPP is used to reduce the communica-

tion between parts. GPP is introduced when the graph is undirected, i.e., the original

matrix is symmetric. On the other hand, if it is unsymmetric, it is symmetrized using

the computation |A|+ |A|T . Therefore, the model is approximate at multiple levels.

Next, vertex separator and the edge-cut concepts can be discussed since the purpose

of GPP is to minimize the edge-cut. A vertex seperator is a subset of vertices such that

removing those vertices divides the graph into k disconnected graphs [52]. Further,

an edge separator E ′ is a subset of edges such that removing those edges divides the

graph into k disconnected graphs. The norm of E ′ is the number of edge-cut.

To find optimal partitioning of a graph, load balance constraints and the edge-cut

should be optimized simultaneously. With those two constraints, the problem is not

easy, and it is known to be NP-Complete [22].

There are two matrices having crucial parts in graph partitioning: adjacency and

Laplacian matrices.

2.1.1 Adjacency Matrix

To describe the connectivity of the nodes in a graph, adjacency matrix Adj is used.

Since it contains only data for the nodes, the size of this matrix is |V | × |V |, where
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|V | is the number of vertices. The absolute value of the nonzero elements Adju,v of

Adj shows the weight of the edge connecting node u to node v. If Adju,v is zero, then

there is no edge connecting node u to node v [7].

2.1.2 Laplacian Matrix

As the adjacency matrix, the Laplacian matrix L(G) of an undirected graph G also

plays an important role in graph partitioning. As will be mentioned in Section 2.2,

spectral graph partitioning is based on the eigenvectors of the Laplacian matrix of a

graph.

The Laplacian matrix shows the distribution of the edges in G, and it is of size |V | ×
|V | with one row and a column for each node. A Laplacian matrix can be unweighted

(Lu(G)) or weighted (Lw(G)). In this study, weighted Laplacian is formed in two

steps: First, L = D − A, where D is the diagonal of A, is found. Then, the absolute

row-sums of each row is written as the diagonal element for this row. Each nonzero

element in the row is said to be the weight W(u,v) of edge, (u, v). If the Laplacian is

unweighted, then instead of absolute row-sums, the number of nonzero elements in

the row is used. The unweighted and weighted Laplacian matrices are mathematically

defined as

Lu(G)(u, v) =


deg(u), if u = v,

−1, if u 6= v and (u, v) ∈ E,

0, otherwise,

and

Lw(G)(u, v) =



∑
(u,v)∈E

W(u,v), if u = v,

−W(u,v), if u 6= v and (u, v) ∈ E,

0, otherwise,

respectively.

From the definition of the Laplacian matrix, it can be said that it is symmetric, positive

semi-definite, and for e, Le = 0. Hence, if the graph is connected, i.e., there is a

path from any point to any other point in the graph, L has the smallest eigenvalue

0 with the corresponding eigenvector e [47]. Since L is positive semi-definite, if
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G is connected then the second smallest eigenvalue λ2 is positive [34]. λ2 is also

called as algebraic connectivity [19]. The eigenvector x2 associated with λ2 (called

the Fiedler vector) contains important directional information about the graph: "the

components of x2 are weights on the corresponding vertices ofG such that differences

of the components provide information about the distances between the vertices and

the graph is partitioned based on their signs. Furthermore, to minimize the distances

between vertices, they can be sorted by using the Fiedler vector [4].

2.2 Spectral Graph Partitioning

One of the most common graph partitioning algorithms is based on the spectral bisec-

tion algorithm, called spectral graph partitioning [4]. The spectral bisection algorithm

is implemented by using various eigensolver algorithms such as iterative methods

(e.g., Lanczos) and Rayleigh Quotient Iteration (RQI) [23]. Spectral partitioning can

be considered to be analogous to vibrating strings in physics. A string can be thought

of as nodes connected by edges in one dimensional graph. In the case of the string

being stable, the eigenvalue of the matrix L associated with the graph G becomes

zero. Since the Laplacian is positive, this eigenvalue is smallest. During vibration,

the eigenvalue is the second smallest one of L, and the eigenvector corresponding

to this eigenvalue is called as Fiedler vector. To define algebraic connectivity of the

graphs, Corollaries 1 and 2 are given below. If the vector’s corresponding component

is negative, then the node will be placed in the partition N−; otherwise, in N+.

Corollary 1. [20, Corollary 3.5] Let G = (N,E) be connected and when the node

becomes negative (positive), label nodes as N− (N+). Then N− is connected. If no

v2(n) = 0, then N+ is also connected.

Corollary 2. [20, Corollary 3.9] Let G1(N,E1) be a subgraph of G(N,E), so that

G1 is “less connected” than G. Then λ2(L(G1)) ≤ λ2(L(G)), i.e., the algebraic

connectivity of G1 is less than or equal to the algebraic connectivity of G.
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2.3 Multilevel Graph Partitioning

To reduce the computation time of the solution of the graph partitioning problem, one

can split the problem into a sequence of bisection steps. Partitioning can be done

by dividing the graph into two pieces first and then bisecting the two subpieces in-

dependently and continue this process recursively. By this, an arbitrary number of

almost equal-sized sets can be generated. However, since it does not reduce com-

plexity, three stages of partitioning a graph in multiple levels are introduced in [9]:

coarsening, partitioning, and uncoarsening, see Algorithm 1.

Algorithm 1 Multilevel Algorithm for Graph Partitioning [32]
while graph is not small enough do

coarsen the graph.

end while

Partition graph.

while original graph is not achieved do

uncoarsen the graph.

uncoarsen the partitioning.

locally refine partition if desired.

end while

2.3.1 Multilevel Kernighan-Lin Algorithm

One of the multilevel algorithms used in graph partitioning is the Multilevel Kernighan-

Lin (KL) algorithm [35]. During the uncoarsening phase of the multilevel algorithm,

Fiduccia and Mattheyses linear-time version [18] of KL (KLFM) refinement is used

have better initial partition for the KL. This process is done because, since KL has a

better initial partition, a smaller edge-cut can be achieved in fewer iterations.

The aim of the Kernighan-Lin algorithm [41] is to partition the vertices into two

disjoint subsetsA andB of (almost) equal size, such that the edge-cut between subsets

are minimized. One of the most important advantages of this algorithm is that KL is

more cost-effective than the bisection algorithm if a good initial partitioning is given.

The pseudo-algorithm for KL is given in Algorithm 2 [51].
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Algorithm 2 The pseudo-code for Kernighan-Lin algorithm for G(V,E) [51]
Require: Initial partitioning of vertices into A and B.

Compute D values for all a in A and b in B.

Let gv, av, and bv be empty lists.

for n = 1 to |V |/2 do

Find a from A and b from B, such that g = D[a]+D[b]−2×c(a, b) is maximal.

Remove a and b from further consideration in this pass.

Add g to gv, a to av, and b to bv.

Update D values for the elements of A = A a and B = B b.

end for

Find k which maximizes gmax, the sum of gv[1], ..., gv[k].

while gmax > 0 do

Exchange av[1], av[2], ..., av[k] with bv[1], bv[2], ..., bv[k].

end while

return return G(V,E).
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CHAPTER 3

APPLICATIONS AND THE SOFTWARE INFRASTRUCTURE

In this chapter, the application problems with their properties and the software infras-

tructure used to partition the matrices arising from these problems are introduced.

The concept of parallel computing is solving a computational problem using multiple

computational resources simultaneously. However, this also introduces the need for

communication (or synchronization in shared address space platforms). By breaking

down the problem into parts so that each one can be solved concurrently, solution time

is reduced. Concurrent solution requires significant coordination. There are several

ways to exchange data between processors, such as through a shared memory bus or

over a network. In this thesis, the distributed memory model is used with the MPICH

implementation [25] of the Message Passing Interface (MPI) library, which is used to

coordinate the communication between processors.

In this study, three different graph partitioning algorithms are used: Spectral parti-

tioning algorithm [4] with the k-means clustering [43] (SPEC), ParMETIS [40] (uses

Multilevel Kerninghan-Lin Algorithm), and CHACO [32] (uses recursive spectral

partitioning algorithm). Spectral partitioning algorithm is implemented in C language

and PETSc [3], SLEPc [53] libraries, whereas CHACO and ParMETIS are imple-

mented in C language and called from PETSc. Further, to compare load imbalance

and the number of iterations based on the eigensolver’s tolerance, MATLAB [46] is

used to partition the graphs with SPEC.
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3.1 Matrices

In the literature, there are studies based on symmetric sparse matrix partitioning com-

parisons based on CHACO, ParMETIS, Multilevel Kerninghan-Lin, and spectral par-

titioning methods. For the details of those comparisons for symmetric matrices, see

[14, 24, 47, 57] and references therein.

Even though there are hypergraph partitioning models [12] for directed graphs, there

are not enough studies evaluating the accuracy of the classical graph partitioning of

unsymmetric matrices via graph partitioning models. From the adjacency matrix def-

inition, the structure must be symmetric, and hence, only an approximate partitioning

can be obtained. Matrices’ sizes, symmetric structures, types of their elements, and

problem kinds are given in Table 3.1. Except for Poisson(5) and Poisson(12), all

matrices are obtained from the University of Florida Sparse Matrix Collection [15].

Poisson(5) and Poisson(12) are derived from the 5-point stencil solution of the Pois-

son equation in the domain of [0, 1] with step size 1/(m + 1), where m = 5 and

m = 12, respectively, and since they are not taken from the Collection, their types are

denoted as (-).

In this thesis, matrices having a size less than 100× 100 are used to visualize original

and partitioned graphs by using GraphViz [17]. The ones having a size between

100×100 and 1000×1000 are used to compare the load imbalance, edge-cut, and the

number of iterations based on the tolerance of eigensolver in MATLAB when SPEC

is used. Finally, the larger ones are used to compare the algorithms used in this study

in computational time and edge-cut.

Figures 3.1 - 3.4 show the small-sized matrices with their spy plots and graph repre-

sentations in Table 3.1 before partitioning. From the spy representations, their vertex

distribution can be observed, whereas, from their graphs, connections of the edges

between vertices can be seen. Lastly, from the spy plots, their sparsity structures can

be inspected.
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Table 3.1: Properties of the sparse matrices [15]
NAME SIZE SYMM TYPE KIND

Ragusa18 23× 23 NO INTEGER Directed Weighted Graph
can_24 24× 24 YES BINARY Structural Problem

GD01_b 18× 18 NO BINARY Directed Graph
Poisson(5) 25× 25 YES INTEGER -

Poisson(12) 144× 144 YES INTEGER -
cz148 148× 148 NO REAL 2D/3D Problem

can_161 161× 161 YES BINARY Structural Problem
lshp_265 265× 265 YES BINARY Thermal Problem

FEM_3D_thermal1 17880× 17880 NO REAL Thermal Problem
bcspwr10 5300× 5300 YES BINARY Power Network Problem

epb2 25228× 25228 NO REAL Thermal Problem
sme3Da 12504× 12504 NO REAL Structural Problem
rw5151 5151× 5151 NO REAL Statistical/Mathematical Problem
Zhao1 33861× 33861 NO REAL Electromagnetics Problem
ns3Da 20414× 20414 NO REAL Computational Fluid Dynamics Problem

poisson3Db 85623× 85623 NO REAL Computational Fluid Dynamics Problem
chem_master1 40401× 40401 NO REAL 2D/3D Problem

av41092 41092× 41092 NO REAL 2D/3D Problem

36×



−4 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −4 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −4 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −4 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 −4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 −4 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 −4 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 −4 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 −4 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 −4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 −4 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 −4 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 −4 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 −4 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 −4 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −4 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −4 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −4 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −4 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −4 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −4 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −4 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −4 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −4 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −4


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Figure 3.1: Matrix, graph, and spy representations of Poisson(5)
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

1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0
0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0
1 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1
0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1
1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1
1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0
1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0
1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0
1 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1


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Figure 3.2: Matrix, graph, and spy representations of can_24



1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0


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Figure 3.3: Matrix, graph, and spy representations of GD01_b

3.2 Comparison Metrics

This study’s comparison metrics are determined as the edge-cut, partition imbalance,

the number of iterations required for the eigensolver, and elapsed wall-clock time.

The edge-cut and load imbalance give information about partitioning quality (the
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

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 2 0 2 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0
0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 1 2 0 0 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 2 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 3 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0


0 5 10 15 20

nz = 64

0

5

10

15

20

Ragusa18

Figure 3.4: Matrix, graph, and spy representations of Ragusa18

smaller edge-cut and imbalance, the better the partitioning becomes for solving the

linear system).

The computation of the edge-cut for all algorithms is given in Figure 3.5. If the matrix

is symmetric, then the sum is halved since the graph is undirected, and the values are

repeated in transposed blocks.

The load imbalances are obtained by the edge and vertex imbalance ratios of parti-

tions. The computations of edge and vertex imbalances are given in Figure 3.6 and

Figure 3.7, respectively. If the ratio is one, then the perfect imbalance is achieved.

For comparison, three different algorithms are used: SPEC, Multilevel KL algorithm

by ParMETIS, and recursive spectral partitioning algorithm by CHACO. Unweighted

(weighted) Laplacian is used for unweighted (weighted) partitioning in the spectral

partitioning algorithm when tolerances of the eigensolver are compared.

The comparisons are also made based on the eigensolver tolerances to find the op-

timal tolerance for partitioning. In the spectral partitioning algorithm, each matrix

is partitioned for 2, 4, 8, and 16 parts with eigensolver tolerances 10−2, 10−4, 10−6,

10−8, and 10−10. The default subspace dimension in SLEPc is set to 17 since the par-
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Figure 3.5: The flowchart of the edge-cut computation
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Find maximum
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Divide max-
imum by
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Figure 3.6: The flowchart of the edge imbalance ratio computation

titioning is done up to 16. However, for a subspace dimension, 17 is considered quite

high for Krylov subspace methods. Therefore, changing the stopping criterion does

not affect the quality of the partitions much, as observed later in Section 4. Lastly, the

elapsed time is measured, starting after checking symmetry and ending after finding

edge-cut.

3.3 Software Libraries

This section explains software libraries we use for this study: ParMETIS and CHACO

are used as graph partitioning libraries, whereas PETSc is a scientific parallel appli-

cation development environment, and SLEPc is a parallel eigensolver library. At the

end of the section, we also explain the functions we used in MATLAB during the

study.

ParMETIS is an MPI-based parallel library implementing various graph partitioning
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Figure 3.7: The flowchart of the vertex imbalance ratio computation

algorithms. ParMETIS_V3_PartKway is the routine in this library that is used to par-

tition unstructured graphs. This routine takes a graph as an input. It computes a k-way

partitioning while attempting to minimize the edge-cut and, at the same time, main-

taining load balance (within a percentage of a user-defined parameter). The parallel

graph partitioning algorithm used in this routine is based on the sequential multilevel

k-way partitioning algorithm. The main advantage of ParMETIS is that it is being

based on multilevel partitioning. Using a multilevel approach instead of recursive

partitioning, a various number of partitions can be done instead of 2n. Moreover,

since it operates in parallel, using ParMETIS is advantageous when the large-scale

numerical simulations are made. On the other hand, using Multilevel KL may not

always be the best partitioning approach, since it is a local method. Depending on the

graph structures, a global partitioning strategy can be more effective in partitioning a

graph in terms of the edge-cut.

CHACO is also a software package designed to partition graphs [32]. Instead of mul-

tilevel algorithms, CHACO partitions the graphs recursively by using several methods

such as inertial, spectral, KL. These approaches can partition the graph into two, four,

or eight pieces at each recursion level. In this study, the spectral partitioning method

is used with CHACO to compare the quality of partitioning and time with our parallel

implementation of spectral partitioning using PETSc and SLEPc with the k-means

clustering algorithm. Moreover, it is used to analyze the quality of the partitions in

terms of the edge-cut when it is compared to ParMETIS. However, CHACO’s main

disadvantage is unlike ParMETIS, CHACO operating sequentially, and using recur-

sive bisection instead of multilevel, which can cause CHACO to perform slower.

PETSc is a library for the implementation of large-scale applications in parallel or

serial. For parallel implementation, PETSc uses MPI. Unfortunately, the number of

processes being equal to the number of partitioning is a limitation of PETSc [3].

To solve large sparse eigenproblems in parallel, a general library, SLEPc [53], is also
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used in this study. This software library can be considered an extension of PETSc,

for solving eigenvalue problems.

For ParMETIS and CHACO, the input matrix A is considered as the parallel adja-

cency matrix of a graph [3]. Since the adjacency matrix should be symmetric as it is

defined in Section 2.1, the symmetry of A should be checked first. If A is not sym-

metric, the algorithm uses (|A|+ |A|T ) to achieve symmetry. Then the partitioning is

applied by the chosen algorithm.

MATLAB [46] is a numerical computing environment for matrix operations, plotting

functions and implementation of algorithms. In this study, MATLAB is used to in-

spect the load imbalance of the partition by using SPEC, and the number of iterations

is done to compute the eigenvalues. The eigenvalues are computed iteratively using

the MATLAB function eigs, whereas the k-means clustering algorithm is applied

by kmeans.

3.4 Spectral Graph Partitioning (SPEC)

Similarly, in the spectral partitioning algorithm, after checking the input matrix if it

is symmetric or not, depending on user input, the weighted or unweighted Laplacian

matrix L of the graph G having adjacency matrix A is obtained. If A is not symmet-

ric, the algorithm uses (|A| + |A|T ) to achieve symmetry. In the weighted case, the

absolute value of the nonzeros is considered as the weights.

In the spectral graph partitioning algorithm defined in Section 2.2, based on the given

number of processes nproc and eigensolver tolerance given by the user, by calling

SLEPc library, λ2, λ3, . . . , λnproc+1 are found, where 0 = λ1 < λ2 < λ3 < · · · <
λnproc+1 are eigenvalues of the Laplacian matrix. There are many eigensolvers im-

plemented in parallel in SLEPc. Power iteration and Krylov subspace methods are

the most popular eigensolver methods for solving large sparse systems [44]. In [53],

these techniques are not recommended due to the complexity of problems. Instead,

the Krylov-Schur method is recommended because it is considered to be more ef-

ficient. Krylov-Schur can be considered a variation of Arnoldi/Lanczos algorithms

[58] with effective restarting techniques [53]. We also investigate that using the Lanc-
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zos algorithm as the eigensolver is not feasible for low tolerances since the number

of converged eigenvalues is less than the number of partitions. Thus, Krylov-Schur

method [59] is used as the eigensolver in this thesis.

After finding eigenvalues and the corresponding eigenvectors, an unnormalized spec-

tral clustering algorithm in [44] is used with the k-means clustering algorithm pre-

sented in [11]. The pseudo-code for the k-means algorithm is given in Algorithm 3

[56]. A centroid of a cluster (cluster center) is a data point representing the center

of the cluster. This data point can be imaginary or real. The original input matrix is

permuted by using clustering information. This step is crucial for the approximation

of partitioning the unsymmetric input matrix. After the permutation, the edge-cut is

computed as described in Section 2.1.

Algorithm 3 The pseudo-code for k-means clustering algorithm [56]
Require: k (the number of clusters), D (data points)

Initialize k centroids randomly.

Associate each data point in D with the nearest centroid.

Recompute the position of centroids.

Repeat steps 2 and 3 until there are no more changes in the membership of the data

points.

return Data points with cluster memberships.
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A graph partitioning can be unweighted or weighted. If it is weighted, then as it is

explained in Section 3.2, weights of edges will be considered. If not, then all edge

weights will be assumed to be one. In this study, both cases are studied to have a

reliable comparison between partitioning libraries and the proposed algorithm. A

flowchart of the proposed algorithm is given in Figure 3.8.

Symmetrize
Obtain the
Laplacian

Solve the
eigenvalue
problem

Apply unnor-
malized spectral

clustering
algorithm

Apply partition
to the original

unsymmet-
ric matrix

Find edge-cut

Figure 3.8: The flowchart of the proposed algorithm
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CHAPTER 4

NUMERICAL RESULTS

In this chapter, the numerical results are obtained from three different graph par-

titioning algorithms with various libraries: SPEC, ParMETIS [40] (uses Multilevel

Kerninghan-Lin Algorithm), and CHACO [32] (uses recursive spectral partitioning).

Furthermore, MATLAB is used for comparison of load imbalance, edge-cut, and the

number of iterations. The C codes for calling these algorithms within PETSc can

be found in Appendix A, the numerical results in Appendix B, and figures of the

partitioned small-sized matrices in Appendix C.

Even though we specifically target unsymmetric matrices for the comparison of the

algorithms, in the numerical experiments, we include examples of symmetric ones

as well. In the latter case, there is no need for symmetrizing the matrix. They are

included as a baseline in order to observe the contribution of the symmetrizing step.

Those symmetric matrices are shown in Table 3.1.

The computer environments used for numerical experiments in this study are intro-

duced in Table 4.1. Greyfurt2 is located at the Department of Computer Engineering,

Middle East Technical University. To compare large-sized matrices, 16 cores in Grey-

furt2 are used for operating the partitioning with CHACO, ParMETIS, and spectral

partitioning with the k-means clustering, whereas, for medium-sized matrices, 2 cores

in TOSHIBA L50-C-172 are used in MATLAB.

Table 4.1: Computer environments

OS Processors RAM # Threads # Cores # Processors

Greyfurt2 Linux 5.3.0 AMD Opteron 6376 64GB 64 64 4

TOSHIBA L50-C-172 Linux 4.13.16 Intel i5-5200U 8GB 4 2 1
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4.1 Load Imbalance and The Number of Iterations

In this section, edge-cut, edge, vertex imbalances, and the number of iterations re-

quired for the eigensolver are inspected using MATLAB. Several eigensolver toler-

ances are also used in this part to obtain the best choice. For comparison, the sub-

space dimension in MATLAB eigs function is set to be nparts + 3, where nparts

is the number of partitions. The maximum number of iteration is set to be 1000, and

nparts+ 1 eigenvalues are requested.

The numerical results of the number of iterations, edge-cut, edge and vertex imbal-

ance ratios obtained from the partitioning of medium sized matrices can be found in

Tables B.1 - B.4, whereas bar graphs representing the results are depicted in Figures

4.1 - 4.8.

Comparisons are interpreted as follows. The edge-cut gives an upper bound for the

communication volume when a matrix-vector multiplication is performed. We also

define a new metric called the computational imbalance. It is defined based on the

context. For example, if only matrix-vector multiplications are performed, it is only

the edge imbalance, and if only inner products are performed, it is only the vertex

imbalance. Moreover, the number of inner products and matrix vector multiplica-

tions per iteration vary. Therefore, both inner products and matrix-vector multiplica-

tions are required in an iterative solver and the weights depend on the iterative solver.

Hence, to solve sparse linear systems iteratively, the computational imbalance is a

weighted combination of both edge and vertex imbalance.
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4.1.1 Symmetric Medium-Sized Matrices
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Figure 4.1: Results obtained from the weighted partitioning of can_161

When Figures 4.1 and 4.2 are observed, it is seen that partitioning of can_161 into

two gives the same result through the vertex and edge imbalance ratios, and edge-cut,

whether the partitioning is weighted or not. Additionally, using 10−4 as tolerance

requires the smallest number of iterations for partitioning into two. Furthermore, for

any use of Laplacian, if the edge-cuts are considered, it is seen that for four and eight

partitions, using 10−10 tolerance is the best choice for can_161. On the other hand,

if the metric is edge and vertex imbalance, then using a larger tolerance becomes

beneficial.
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Figure 4.2: Results obtained from the unweighted partitioning of can_161

From Figures 4.3 and 4.4, it is inspected that when lshp_265 is partitioned into two

with any Laplacian, the same partitioning is obtained for each tolerance since all

values are the same, except the number of iterations. It is seen that, for this case,

10−4 tolerance should be used to partition the matrix since its eigenvalues converge

faster than those for any other tolerances. From the figures, it is also seen that when

lshp_265 is partitioned into eight, the smallest tolerance should be used for vertex and

edge imbalance, whereas 10−8 should be used for less edge-cut for both partitions.

Lastly, if the matrix is partitioned into sixteen, then for a reasonable imbalance ratio,

10−8 should be used as a tolerance if weighted Laplacian is used, while 10−2 will be

enough for the unweighted case.
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Figure 4.3: Results obtained from the weighted partitioning of lshp_265
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Figure 4.4: Results obtained from the unweighted partitioning of lshp_265
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From Figures 4.5 and 4.6, it is seen that when weighted Laplacian is used to parti-

tion Poisson(12) up to sixteen, vertex and edge imbalance ratios are the closest to one

when tolerance is the smallest. However, ratios become closer to one when tolerance

is the highest if the partition number is raised. When the unweighted case is consid-

ered, using the largest tolerance gives smaller edge-cut and more balanced partitions.

It is also seen that, when the matrix is partitioned into four, the load is completely bal-

anced if 10−10 is chosen for tolerance since both vertex and edge imbalance ratios are

1, whether the Laplacian is weighted or not. In the same conditions, the edge-cut also

becomes the smallest. Last but not least, when four or more partitions are required

to cluster Poisson(12), the largest tolerance requires the smallest number of iterations

for all partitions, and this number increases dramatically as tolerance decreases, for

both unweighted and weighted partitionings.
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Figure 4.5: Results obtained from the weighted partitioning of Poisson(12)
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Figure 4.6: Results obtained from the unweighted partitioning of Poisson(12)

4.1.2 Unsymmetric Medium-Sized Matrices

From Figures 4.7 and 4.8, it is observed that when weighted Laplacian is used for

partitioning cz148 into two, the same partitioning is made for each tolerance since

except the number of iterations, all values are the same although tolerance changes.

However, the least number of iterations is achieved when it is 10−6, whereas, in the

unweighted case, 10−4 tolerance yields the least number. Moreover, if cz148 is parti-

tioned into eight and unweighted Laplacian is used, then for more balanced partitions,

tolerance should be decreased to 10−10. It is also observed that when unweighted

Laplacian is used for partitioning the matrix into sixteen, both vertex and edge imbal-

ance ratios become higher than two.
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Figure 4.7: Results obtained from the weighted partitioning of cz148
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Figure 4.8: Results obtained from the unweighted partitioning of cz148
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4.1.3 Results

Based on the numerical results obtained from the weighted (wgh) and unweighted

(uwg) partitioning of 4 medium-sized matrices in terms of load imbalance, edge-cut,

and the number of iterations, Tables 4.2-4.4 present the best tolerances for eigs to

partition each matrix, respectively.

Table 4.2: The best tolerance for the eigensolver of eigs routine in MATLAB in terms
of load imbalance when the medium-sized matrices are partitioned into 2, 4, 8, and
16 by using weighted (wgh) and unweighted (uwg) Laplacian.

nparts Tolerance
cz148 Poisson(12) lshp_265 can_161

wgh uwg wgh uwg wgh uwg wgh uwg

2

10−2 + + + + + +
10−4 + + + + +
10−6 + + + + +
10−8 + + + + + +
10−10 + + + + + +

4

10−2 + +
10−4 + +
10−6 + +
10−8

10−10 + +

8

10−2

10−4

10−6 + +
10−8 +
10−10 + + + + +

16

10−2 + + +
10−4 +
10−6 +
10−8 + +
10−10 +
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Table 4.3: The best tolerance for the eigensolver of eigs routine in MATLAB in terms
of the edge-cut when the medium-sized matrices are partitioned into 2, 4, 8, and 16

by using weighted (wgh) and unweighted (uwg) Laplacian.

nparts Tolerance
cz148 Poisson(12) lshp_65 can_61

wgh uwg wgh uwg wgh uwg wgh uwg

2

10−2 + + + + + +
10−4 + + + + +
10−6 + + + + +
10−8 + + + + + +
10−10 + + + + + +

4

10−2 + +
10−4 + +
10−6 + +
10−8

10−10 + +

8

10−2

10−4

10−6 + +
10−8 +
10−10 + + + + +

16

10−2 + + + +
10−4 +
10−6 +
10−8 + +
10−10

Overall, from the numerical results, it is seen that the number of iterations usually

increases as the number of partitions increases. However, as seen in Figures 4.1, 4.2,

4.5, and 4.6, can_161 and Poisson(12) have some exceptions. When can_161 is par-

titioned into four, finding eigenvalues when 10−8 and 10−10 are used as tolerances

requires more iterations than those when eight partitions are made. Similarly, parti-

tioning Poisson(12) with a tolerance of 10−10 needs more iteration than partitioning

the matrix into four or sixteen. When eight partitions are made, only 10−2 or 10−4

should be used as tolerance.

It is seen that 2 of the 4 matrices yield more balanced results when the tolerance is

10−10. For cz148, 10−2 tolerance is enough to have more balanced partitions, whereas

for can_161, 10−4 tolerance should be used. Moreover, the best tolerance for better

partitions (the least edge-cut) depends on the matrix. cz148 achieves better partitions
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Table 4.4: The best tolerance for the eigensolver of eigs routine in MATLAB in terms
of the number of iterations when the medium-sized matrices are partitioned into 2, 4,
8, and 16 by using weighted (wgh) and unweighted (uwg) Laplacian.

nparts Tolerance
cz148 Poisson(12) lshp_65 can_61

wgh uwg wgh uwg wgh uwg wgh uwg

2

10−2

10−4 + + + + +
10−6 + + +
10−8

10−10

4

10−2 + + + + + +
10−4 + +
10−6

10−8

10−10

8

10−2 + + + + + + +
10−4 +
10−6

10−8

10−10

16

10−2 + + + + + + + +
10−4

10−6

10−8

10−10

when the tolerance is 10−2, the two of them achieve the least edge-cut when the

tolerance is decreased up to 10−10, and can_161 gets better partitions for various

tolerances as the number of partitions varied.

When the comparison is made based on the number of partitions, it is observed

that when unweighted partitioning is made, using the largest tolerance is enough to

achieve a more balanced partition when the matrices are divided into two. However,

in the weighted case, the tolerance should be decreased to 10−10 for Poisson(12).

The rest can be partitioned in a more balanced way when 10−2 is used as tolerance.

Moreover, to partition the matrices into two in the least number of iterations, 10−4

tolerance is used for 3 matrices for the unweighted case, whereas it is decreased to

10−6 for Poisson(12). If the partitioning is weighted, then the tolerance is decreased

to 10−6 for cz148. Further, for 3 of the matrices, 10−2 is a sufficient tolerance for
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the least edge-cut whether the partitioning into two is unweighted or not. For Pois-

son(12), using 10−10 tolerance is beneficial if the partitioning is weighted. Lastly,

when cz148 is partitioned by using unweighted Laplacian, 10−8 tolerance should be

used for less edge-cut.

When 4 matrices are partitioned into four, 2 of them give more balanced partitions

when the tolerance is 10−4 for the weighted case and 10−6 for the weighted case.

cz148 needs to have 10−2, and Poisson(12) needs to have 10−10 tolerance, whether

the partitioning is weighted or not. If the number of iterations is considered, then

all matrices are partitioned in the least iteration when the tolerance is the highest

if the partitioning is unweighted. However, if it is weighted, 2 of them need 10−4

tolerance for fewer iterations. Last but not least, for any type of partitioning, cz148

gives a less edge-cut when the tolerance is 10−2, Poisson(12) gives when it is 10−10.

The remaining 2 matrices give the least edge-cut when the tolerance is 10−4 when

weighted partitioning is made, whereas it is 10−6 when the partitioning is unweighted.

As the number of partitions increased to eight, optimum tolerance starts to decrease.

To obtain more balanced partitions in weighted partitioning, cz148 needs 10−6, while

the rest need to have 10−10 tolerance. When the partitioning is unweighted, Pois-

son(12) yields more balanced partitions when the tolerance is 10−6, whereas can_161

needs a tolerance of 10−8. Moreover, 3 of 4 matrices give the least number of it-

erations when tolerance is the highest. When weighted partitioning is made, cz148

is partitioned in less number of iterations when the tolerance is 10−4. While Pois-

son(12) gives the less edge-cut in the tolerance of 10−6 when unweighted partitioning

is made, can_161 gives it when the tolerance is 10−8. The remaining 2 matrices ob-

tain less edge-cut when the tolerance is the smallest. Lastly, if the partitioning is made

with weighted Laplacian, cz148 needs 10−6 as tolerance, whereas 3 of them need the

tolerance to be 10−10.

When sixteen partitions are obtained from the matrices, can_161 gives the most bal-

anced partition when the tolerance is 10−6, while 2 of them give when it is 10−2.

lshp_265 needs to have 10−8 tolerance when weighted Laplacian is used for parti-

tioning. On the other hand, when unweighted Laplacian is used, lshp_265 gives more

balanced partitions when the tolerance is the highest, whereas can_161 and Pois-
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son(12) need 10−4 and 10−8 tolerances, respectively. For unweighted partitioning of

cz148, 10−10 should be used as tolerance. If the number of iterations is considered, all

matrices give the least number of iterations when the tolerance is the highest, whether

Laplacian is weighted or not. Lastly, can_161 gives less edge-cut when the tolerance

is 10−4, 2 of them give when it is 10−2, and Poisson(12) gives when the tolerance is

10−8 if unweighted partitioning is performed. Contrarily, when weighted partitioning

is made, can_161 and Poisson(12) need 10−6 and 10−8 tolerances for less edge-cuts,

respectively. The remaining 2 can be partitioned with less edge-cuts when tolerance

is the highest.

To summarize, choosing the optimal eigensolver tolerance for obtaining more bal-

anced partitioning and less edge-cut depends on the matrix. It is also observed that as

tolerance decreases, the edge-cut does not decrease. This is because the subspace di-

mension in eigs function becomes larger, especially when the number of partitions

increases. Since the subspace dimension depends on the number of partitions, in the

end, 16 + 3 = 19 is quite a significant value as a subspace dimension for an eigen-

solver. Since MATLAB requires the subspace dimension being at least nparts + 2,

an increase in dimension and a decrease in partitions’ quality become inevitable.

4.2 Edge-cut and The Cost in terms of Time

In this section, edge-cut and the cost in terms of time are inspected when various

algorithms are used to partition large-sized graphs. In comparing SPEC, various

eigensolver tolerances are used to find the optimum value. All of these algorithms

are used with C language and PETSc [3], SLEPc [53] libraries. The numerical re-

sults are presented in Tables B.5 - B.14, and graphs along with spy representations

of the partitioned small-sized matrices with 2 and 4 processes (nproc) are given in

Appendix C. Each color and shape in spy representations of graphs shows a different

partition, where black dots represent off-block diagonal elements. Tables show the

results of edge-cuts and elapsed time (sec) for SPEC, ParMETIS, and CHACO with

a various number of processes (partitions) (NPROC). Moreover, only the unweighted

partitions are made when ParMETIS is used since PETSc requires edge weights be-

ing integer and less than 10 if ParMETIS is used to partition a matrix with a weighted
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option. Therefore, matrices should be mapped to achieve the desired edge weight

properties. Also, CHACO does not support weighted partitioning, whereas SPEC

can consider floating-point numbers as weights. Hence, only in the unweighted case,

SPEC is compared with the libraries. That is why weighted results of CHACO and

ParMETIS in tables are denoted as (−). Furthermore, various eigensolver tolerances

(10−2, 10−4, 10−6, 10−8, 10−10) and weighted (W), unweighted (U) Laplacian usages

(LAP) are inspected for SPEC. Results presented in tables are rounded to two decimal

digits from seven, and the best results are marked based on the seven decimal digits.

Each numerical results in tables are computed as the average of 10 iterations to have

reliable results. The numerical results obtained from the partitioning of large-sized

graphs are presented in Figures 4.10 - 4.9.

For comparison, the default eigensolver in SLEPc is used (Krylov-Schur), with the

subspace dimension 17. For SPEC, the number of eigenvalues we requested is equal

to the number of processes. Moreover, due to a limitation of PETSc, the number of

partitions is set to be equal to the number of processes [3].

4.2.1 Symmetric Large-Sized Matrices

Based on Figure 4.9, to partition bcspwr10, SPEC should be used when the number

of processes is less than sixteen and unweighted edge-cut is compared. When six-

teen processes are used, using CHACO performs better in terms of the edge-cut. If

partitioning time is concerned for unweighted partitioning, using CHACO becomes

preferable when two processes are used. Otherwise, ParMETIS should be chosen.

When weighted partitioning of the matrix is considered, it is seen that if four or fewer

processes are used, then using the highest tolerance results in the least edge-cut. If

more processes are used, then the tolerance should be decreased. In terms of parti-

tioning time, using the highest tolerance performs faster when weighted partitioning

is made.
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Figure 4.9: Results obtained from the partitioning of bcspwr10

4.2.2 Unsymmetric Large-Sized Matrices

Figure 4.10 shows that when the unweighted cut is compared, up to four partitions,

CHACO gives better cut for rw5151. However, it is seen that SPEC is a better choice

for more partitions. For this matrix, SPEC should be used with a tolerance of at

least 10−10 for having a smaller edge-cut. Hence, to partition rw5151, if one needs

to cluster the matrix into eight or more to achieve the smallest unweighted edge-cut,

SPEC should be used. When the partitioning is made by using weighted Laplacian, it

is seen that using the highest tolerance usually results in less edge-cut.
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Figure 4.10: Results obtained from the partitioning of rw5151

From Figure 4.11, observations show that SPEC should be used with a tolerance of

at least 10−8 when unweighted edge-cut is compared. On the other hand, when the

cost is considered in terms of time, ParMETIS looks like the best option for obtaining

unweighted edge-cut. It is also seen that when unweighted Laplacian is applied to

av41092, partitioning into two is the slowest process. This is because of the number

of strongly connected components in the resulting graph of this matrix being four,

whereas it is one for other matrices. When the weighted Laplacian is used, parti-

tioning is operated the fastest when the tolerance is the highest for all number of

processes. Further, as the number of processes increases up to 16, the best tolerance

for less edge-cut decreases. When 16 processes are used, using 10−4 as tolerance

becomes optimum for less weighted edge-cut.
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Figure 4.11: Results obtained from the partitioning of av41092

Figure 4.12 shows that when unweighted edge-cut is compared, up to four partitions,

ParMETIS and CHACO give better cuts for chem_master1. When the matrix is par-

titioned into two, it is observed that ParMETIS is a better option, while for four par-

titions, CHACO performs better. However, SPEC becomes a better choice for more

partitions. For this matrix, SPEC should be used with tolerance at least 10−8 if the

weighted cut is considered; otherwise, 10−2 is enough for more than four partitions.
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Figure 4.12: Results obtained from the partitioning of chem_master1

When Figure 4.13 is inspected, it is seen that for less unweighted edge-cut, SPEC

should be used for partitioning of epb2 by using any number of processes. However,

when partitioning time is considered, it is inspected that ParMETIS is the fastest

option for unweighted partitioning. Moreover, when the weighted Laplacian is used

to partition the matrix, it is seen that using a tolerance of 10−6 usually gives the

least edge-cut. Lastly, for partitioning the matrix faster into sixteen using weighted

Laplacian, 10−8 tolerance should be used instead of 10−2.
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Figure 4.13: Results obtained from the partitioning of epb2

Figure 4.14 presents that if one needs to partition FEM_3D_thermal1, then using

SPEC is beneficial for good partitions in terms of unweighted edge-cuts. For the

algorithm, 10−10 tolerance is enough for the eigensolver. If one needs four parti-

tions, choosing ParMETIS should be the best option in terms of the edge-cut. When

weighted partitioning of the matrix is considered, it is seen that up to eight partitions,

using the highest tolerance performs the fastest. When the number of processes is

increased, using a tolerance of 10−4 is preferable. Lastly, it is seen that for sixteen

processes, using the highest tolerance gives the least weighted edge-cut. When the

number of processes is decreased, using smaller tolerances yields less edge-cut.
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Figure 4.14: Results obtained from the partitioning of FEM_3D_thermal1

As shown in Figure 4.15, for the unweighted partitioning, up to sixteen partitions,

SPEC should be used with a tolerance of at least 10−8. Starting from sixteen parti-

tions, using ParMETIS starts being a better choice for less edge-cut. If the elapsed

time is the comparison metric for obtaining unweighted partitions, one should parti-

tion ns3Da by using ParMETIS. From the weighted partitioning of the matrix, it is

seen that using the highest tolerance performs faster when the number of processes is

less than sixteen. If it is increased to sixteen, then 10−6 should be used as tolerance. If

the number of processes is more than four, then tolerance of 10−8 should be used for

less weighted edge-cuts. If the number of processes is smaller, then higher tolerances

should be used.
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Figure 4.15: Results obtained from the partitioning of ns3Da

From Figure 4.16, results show that when unweighted edge-cut is compared, for par-

titioning, ParMETIS and CHACO give better cuts for poisson3Db. When software

libraries are compared, CHACO is a suitable choice for two partitions. In contrast,

for more partitions, ParMETIS becomes a better option. It is also seen that if time is

compared for unweighted partitioning, ParMETIS should be the option regardless of

the number of partitions. For the weighted case, SPEC should be used with a toler-

ance of at least 10−8 for less edge-cut. It is observed that as the number of partitions

increases, the best tolerance for less edge-cut decreases to 10−10. Lastly, if sixteen

processes are used for weighted partitioning, then it is seen that using 10−6 tolerance

performs faster.
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Figure 4.16: Results obtained from the partitioning of poisson3Db

From Figure 4.17, it is seen that for unweighted partitioning of sme3Da, up to sixteen

processes, using SPEC results less edge-cut. However, if the number of processes

becomes sixteen, then ParMETIS should be used instead. If the partitioning time

is considered for the unweighted case, then ParMETIS is the fastest option. When

weighted partitioning of the matrix is performed, it is seen that using the highest

tolerance results in less edge-cut when at most four processes are used. If more

processes are used, then the tolerance should be decreased.
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Figure 4.17: Results obtained from the partitioning of sme3Da

Based on the results in Figure 4.18, for weighted edge-cut, SPEC should be used to

partition Zhao1 into at most four. If one needs more partitions than four, CHACO

should be used. It is also inspected that for any number of partitions when un-

weighted partitioning is made, CHACO performs faster than the other algorithms.

When weighted partitioning of the matrix is considered, it is seen that using the high-

est tolerance performs faster. If less edge-cut is desired, then 10−2 should be used as

tolerance for two and sixteen processes. Otherwise, 10−6 should be preferred.
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Figure 4.18: Results obtained from the partitioning of Zhao1

4.2.3 Results

Based on the numerical results obtained from the unweighted partitioning of 10 large-

sized matrices in terms of the edge-cut and partitioning time, Tables 4.5-4.6 present

the best algorithms for each matrix, respectively.

Table 4.5: The best algorithms (SPEC, ParMETIS (PAR), and CHACO) for large-
sized matrices in terms of the unweighted edge-cut.

2 4 8 16
SPEC PAR CHACO SPEC PAR CHACO SPEC PAR CHACO SPEC PAR CHACO

bcspwr10 + + + +
epb2 + + + +

sme3Da + + + +
av41092 + + + +

poisson3Db + + + +
rw5151 + + + +

FEM_3D_thermal1 + + + +
Zhao1 + + + +
ns3Da + + + +

chem_master1 + + + +
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Table 4.6: The est algorithms (SPEC, ParMETIS (PAR), and CHACO) for large-sized
matrices in terms of the unweighted partitioning time.

2 4 8 16
SPEC PAR CHACO SPEC PAR CHACO SPEC PAR CHACO SPEC PAR CHACO

bcspwr10 + +, +, +,
epb2 + + + +

sme3Da + + + +
av41092 + + + +

poisson3Db + + + +
rw5151 + + + + +

FEM_3D_thermal1 + + + +
Zhao1 + + + +
ns3Da + + + +

chem_master1 + + + +

As a summary, ParMETIS performs the fastest in partitioning 9 of the 10 matrices.

For Zhao1, CHACO performs faster. The reason for ParMETIS operating faster

than CHACO is that CHACO depending on the recursive usage of spectral bisec-

tion, where Multilevel Kernighan-Lin in ParMETIS is based on the partitioning in the

coarsest level.

It is also observed that 7 of the 10 matrices perform better in terms of the edge-

cut when only SPEC is used for unweighted partitioning. For 2 matrices, SPEC

and CHACO perform better for the different number of partitions. For poisson3Db,

ParMETIS gives the least edge-cut. Hence, SPEC becomes a preferable option for

most cases.

When the comparison is made based on the number of processes, it is observed that 7

of 10 matrices give better performances in SPEC, 2 of them give in CHACO, and only

one of them, chem_master1 gives fewer edge-cuts in ParMETIS when two processes

are used. On the other hand, when the number of processes is increased to four,

2 of the matrices yield less edge-cut when ParMETIS is used and the partitioning

of chem_master1 in less edge-cut is performed in CHACO. The remaining 7 matri-

ces are partitioned in less edge-cut when SPEC is used. When eight processes are

used to partition the matrices, SPEC operates better for 8 matrices, where for Zhao1,

CHACO should be used for less edge-cut, and poisson3Db gives a better partition

in ParMETIS. Lastly, using SPEC yields less edge-cut in 5 of matrices when sixteen

processes are used. 3 of the matrices result in better partitions when ParMETIS is

used. The remaining 2 are partitioned better by CHACO. Hence, SPEC performs bet-

ter when the number of processes is small, whereas using libraries starts to perform
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better in terms of the edge-cut when sixteen processes are used.

Based on the numerical results obtained from the weighted partitioning of 10 large-

sized matrices, the best tolerances for SPEC in terms of the edge-cut and partitioning

time are presented in Tables 4.7-4.8, respectively.

Table 4.7: The best tolerances for the eigensolver of SPEC in terms of weighted
edge-cut when large-sized matrices are partitioned by using 2, 4, 8, and 16 processes.

nproc Tolerance bcspwr10 epb2 sme3Da av41092 poisson3Db rw5151 FEM_3D_thermal1 Zhao1 ns3Da chem_master1

2

10−2 + + + + +
10−4

10−6 + + +
10−8 +
10−10 +

4

10−2 + + + +
10−4 + +
10−6 + + +
10−8 +
10−10

8

10−2 +
10−4

10−6 + + + +
10−8 + + + +
10−10 +

16

10−2 + + +
10−4 + +
10−6

10−8 + + +
10−10 + +

Table 4.8: The best tolerances for the eigensolver of SPEC in terms of partitioning
time when large-sized matrices are partitioned with weighted Laplacian by using 2,
4, 8, and 16 processes.

nproc Tolerance bcspwr10 epb2 sme3Da av41092 poisson3Db rw5151 FEM_3D_thermal1 Zhao1 ns3Da chem_master1

2

10−2 + + + + + + + + + +
10−4

10−6

10−8

10−10

4

10−2 + + + + + + + + +
10−4 +
10−6

10−8

10−10

8

10−2 + + + + + + + +
10−4 + +
10−6

10−8

10−10

16

10−2 + + + + + +
10−4 +
10−6 + +
10−8 +
10−10

Lastly, if weighted partitioning is made for the matrices, it is observed that using the

highest tolerance performs faster for every matrix. If the edge-cuts are considered,

then the tolerance usually decreases as the number of processes increases up to six-
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teen. If sixteen processes are used, then a higher tolerance usually yields less edge-cut

for matrices.

In conclusion, when the cost is compared in terms of time, libraries give better per-

formance for any partitions, while to achieve good partitions in terms of edge-cuts,

SPEC should be preferred.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we have inspected various applications of graph partitioning for matrix

partitioning. Breaking down the system of equations and solving them in parallel

becomes essential in scientific computing, and hence for making them suitable for

this process, graph partitioning is used. For partitioning a graph, existing software li-

braries can be used as well as an additional algorithm to graph partitioning techniques

such as the k-means clustering. To examine the effect of various graph partition-

ing techniques on the cost in terms of time and unweighted edge-cut, we compared

CHACO and ParMETIS with SPEC. To obtain the optimum eigensolver tolerance for

SLEPc, weighted edge-cuts are also inspected when the matrices are partitioned by

SPEC.

To have a general opinion on the partitioning square structurally unsymmetric matri-

ces, matrices having various properties have been used during the study: all of the

large-sized matrices have different conditional numbers, least singular values, num-

bers of non-zeros, and symmetry rates. Hence, it is not suitable for generalization

of the results based on a structure except being square structurally unsymmetric. For

extending this study based on the structural properties, all application domains in the

University of Florida Sparse Matrix Collection will be used in future work.

Using spectral graph partitioning leads to solving an eigenvalue problem. In this

case, solving this problem and obtaining good partitioning depends on the eigensolver

tolerance. Thus, this thesis’s comparison is also based on the load imbalance and the

number of iterations the eigensolver used when tolerance of the eigensolver changes.
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The numerical results are obtained from the large-sized matrices show that when the

cost is inspected in terms of time, the software libraries become more preferred to use.

Moreover, it is seen that ParMETIS should be preferred over CHACO since CHACO

is based on recursive bi-partitioning while ParMETIS uses multilevel algorithms.

Furthermore, a C code is developed for partitioning unsymmetric matrices by using

SPEC to perform the solution of linear systems with an unsymmetric coefficient ma-

trix more efficiently. When unweighted edge-cuts are inspected, using SPEC instead

of graph partitioning libraries results in better partitions. Moreover, if a software

package is needed to be used, then for less edge-cut, CHACO should be used instead

of ParMETIS. Although ParMETIS gives the fastest performance for almost all ma-

trices, it can be seen that there is no significant difference between the performance

time of CHACO and ParMETIS. Thus, using CHACO instead of ParMETIS does not

cause a worthwhile trade-off between the edge-cut and the cost in terms of time.

Finally, when the comparison is made based on the number of processes, it is observed

that SPEC performs better when the number of processes is small, whereas using

libraries starts to perform better when sixteen processes are used.

When the spectral partitioning is used, eigensolver tolerance should also be inspected.

Hence, we have studied the eigensolver function in MATLAB to find an optimal

tolerance for medium-sized matrices. From the results, it is seen that to get more

balanced partitions, the smallest tolerance should be used with the eigensolver. It is

also seen that the optimum tolerance for better partitions (the least edge-cut) depends

on the matrix.

PETSc requires edge weights being integer and less than 10 if ParMETIS is used to

partition a matrix with a weighted option. In other words, matrices should be mapped

to achieve the desired edge-weight properties. However, mapping causes information

loss, and SPEC uses more information on matrices since it does not require such

mapping. Also, CHACO does not support weighted partitioning. Hence, using SPEC

will give a better partitioning in terms of the edge-cut when weighted partitioning is

made. Thus, a comparison based on the mapping of matrices for weighted partitioning

will be studied for all application domains in the University of Florida Sparse Matrix

Collection on ParMETIS in the future.
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One of the significant drawbacks of the MATLAB eigensolver is the increase in the

subspace dimension as the number of partitions increases. Therefore, as future work,

each matrix’s load imbalance will also be inspected in C language by using the SLEPc

library. Another disadvantage encountered in this study is the subspace dimension in

SLEPc being high. Hence, the optimum eigensolver tolerance with smaller subspace

dimensions will be studied for all application domains in the University of Florida

Sparse Matrix Collection.

53



54



REFERENCES

[1] R. Andersen, F. Chung, and K. Lang, Local Partitioning for Directed Graphs
Using PageRank, in Algorithms and Models for the Web-Graph, pp. 166–178,
Springer Berlin Heidelberg, 2007.

[2] Z.-Z. Bai, G. H. Golub, and M. K. Ng, Hermitian and Skew-Hermitian Splitting
Methods for Non-Hermitian Positive Definite Linear Systems, SIAM Journal on
Matrix Analysis and Applications, 24(3), pp. 603–626, 2003.

[3] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelma, L. Dal-
cin, A. Dene, V. Eijkhout, W. Gropp, D. Karpeyev, D. Kaushik, M. Knepley,
D. May, L. C. McInnes, R. Mills, T. Munson, K. Rupp, P. Sanan, B.Smith,
S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual Revision 3.12, Ar-
gonne National Laboratory, 3.12 edition, 2019.

[4] S. T. Barnard and H. D. Simon, Fast Multilevel Implementation of Recursive
Spectral Bisection for Partitioning Unstructured Problems, Concurrency: Prac-
tice and Experience, 6(2), pp. 101–117, 1994.

[5] B. A. Becker and A. Lastovetsky, Matrix Multiplication on Two Interconnected
Processors, in 2006 IEEE International Conference on Cluster Computing, pp.
1–9, 2006.

[6] C.-E. Bichot, Local Metaheuristics and Graph Partitioning, chapter 6, pp. 137–
161, John Wiley & Sons, Ltd, 2013.

[7] N. Biggs, Algebraic Graph Theory, Cambridge Mathematical Library, Cam-
bridge University Press, 2 edition, 1974.

[8] E. G. Birgin, R. D. Lobato, and R. Morabito, An Effective Recursive Partitioning
Approach for the Packing of Identical Rectangles in a Rectangle, Journal of the
Operational Research Society, 61(2), pp. 306–320, 2010.

[9] T. N. Bui and C. Jones, A Heuristic for Reducing Fill-in in Sparse Matrix Fac-
torization, Technical report, Society for Industrial and Applied Mathematics
(SIAM), 1993.

[10] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, Recent Advances
in Graph Partitioning, in Algorithm Engineering, pp. 117–158, Springer, 2016.

[11] D. Casella, k-means, https://github.com/dcasella/k-means,
2017.

55

https://github.com/dcasella/k-means


[12] Ü. Çatalyürek and C. Aykanat, PaToH (Partitioning Tool for Hypergraphs), pp.
1479–1487, Springer US, 2011.

[13] U. V. Catalyurek and C. Aykanat, Hypergraph-Partitioning-Based Decompo-
sition for Parallel Sparse-Matrix Vector Multiplication, IEEE Transactions on
parallel and distributed systems, 10(7), pp. 673–693, 1999.

[14] T.-Y. Choe and C.-I. Park, A k-way Graph Partitioning Algorithm Based on
Clustering by Eigenvector, in Computational Science - ICCS 2004, pp. 598–
601, Springer Berlin Heidelberg, 2004.

[15] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection,
ACM Transactions on Mathematical Software, 38(1), 2011.

[16] W. Donath and A. Hoffman, Lower Bounds for the Partitioning of Graphs, IBM
Journal of Research and Development, 17(5), pp. 420–425, 1973.

[17] J. Ellson, E. Gansner, L. Koutsofios, S. North, G. Woodhull, S. Description,
and L. Technologies, Graphviz - Open Source Graph Drawing Tools, in Lecture
Notes in Computer Science, pp. 483–484, Springer-Verlag, 2001.

[18] C. M. Fiduccia and R. M. Mattheyses, A Linear-Time Heuristic for Improving
Network Partitions, in Proceedings of the 19th Design Automation Conference,
pp. 175–181, IEEE Press, 1982.

[19] M. Fiedler, Algebraic Connectivity of Graphs, Czechoslovak Mathematical
Journal, 23, pp. 298–305, 1973.

[20] M. Fiedler, A Property of Eigenvectors of Nonnegative Symmetric Matrices and
Its Application to Graph Theory, Czechoslovak Mathematical Journal, 25(4), pp.
619–633, 1975.

[21] P.-O. Fjällström, Algorithms for Graph Partitioning: A Survey, volume 3,
Linköping University Electronic Press Linköping, 1998.

[22] M. Garey, D. Johnson, and L. Stockmeyer, Some Simplified NP-Complete
Graph Problems, Theoretical Computer Science, 1(3), pp. 237 – 267, 1976.

[23] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.), Johns Hopkins
University Press, 1996.

[24] L. Grady and E. Schwartz, Isoperimetric Partitioning: A New Algorithm for
Graph Partitioning, SIAM Journal of Scientific Computing, 27, pp. 1844–1866,
2006.

[25] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, A High-Performance, Portable
Implementation of the MPI Message Passing Interface Standard, Parallel Com-
puting, 22(6), pp. 789 – 828, 1996.

56



[26] A. Gupta, WGPP: Watson Graph Partitioning (and sparse matrix ordering)
Package, IBM TJ Watson Research Center, 1996.

[27] A. Gupta, Fast and Effective Algorithms for Graph Partitioning and Sparse-
Matrix Ordering, IBM Journal of Research and Development, 41(1.2), pp. 171–
183, 1997.

[28] B. Hendrickson and T. G. Kolda, Partitioning sparse rectangular matrices for
parallel computations of ax and atv, in International Workshop on Applied Par-
allel Computing, pp. 239–247, Springer, 1998.

[29] B. Hendrickson and T. G. Kolda, Graph Partitioning Models for Parallel Com-
puting, Parallel Computing, 26(12), pp. 1519 – 1534, 2000.

[30] B. Hendrickson and T. G. Kolda, Partitioning Rectangular and Structurally Un-
symmetric Sparse Matrices for Parallel Processing, SIAM Journal on Scientific
Computing, 21(6), pp. 2048–2072, 2000.

[31] B. Hendrickson and R. Leland, The Chaco User’s Guide Version 1.0, Sandia
National Laboratories, 1993.

[32] B. Hendrickson and R. Leland, A Multi-Level Algorithm for Partitioning
Graphs, in Supercomputing ’95:Proceedings of the 1995 ACM/IEEE Confer-
ence on Supercomputing, pp. 28–28, 1995.

[33] I. C. F. Ipsen and C. D. Meyer, The Idea Behind Krylov Methods, The American
Mathematical Monthly, 105(10), pp. 889–899, 1998.

[34] W. N. A. Jr. and T. D. Morley, Eigenvalues of the Laplacian of a Graph, Linear
and Multilinear Algebra, 18(2), pp. 141–145, 1985.

[35] G. Karypis and V. Kumar, Multilevel Graph Partitioning Schemes, in Proceed-
ings of 24th International Conference on Parallel Processing, III, pp. 113–122,
CRC Press, 1995.

[36] G. Karypis and V. Kumar, Parallel Multilevel Graph Partitioning, in Proceedings
of International Conference on Parallel Processing, pp. 314–319, 1996.

[37] G. Karypis and V. Kumar, A Coarse-Grain Parallel Formulation of Multilevel
k-way Graph Partitioning Algorithm, in Proceedings of the Eighth SIAM Con-
ference on Parallel Processing for Scientific Computing, 1997.

[38] G. Karypis and V. Kumar, METIS — A Software Package for Partitioning Un-
structured Graphs, Partitioning Meshes and Computing Fill-Reducing Ordering
of Sparse Matrices, 1997.

[39] G. Karypis and V. Kumar, A Fast and High Quality Multilevel Scheme for Par-
titioning Irregular Graphs, SIAM Journal on scientific Computing, 20(1), pp.
359–392, 1998.

57



[40] G. Karypis and K. Schloegel, PARMETIS, Parallel Graph Partitioning and
Sparse Matrix Ordering Library Version 4.0, University of Minnesota, Depart-
ment of Computer Science and Engineering, 4 edition, 2013.

[41] B. W. Kernighan and S. Lin, An Efficient Heuristic Procedure for Partitioning
Graphs, The Bell System Technical Journal, 49(2), pp. 291–307, 1970.

[42] T. G. Kolda, Partitioning Sparse Rectangular Matrices for Parallel Processing, in
Solving Irregularly Structured Problems in Parallel, pp. 68–79, Springer Berlin
Heidelberg, 1998.

[43] A. Likas, N. Vlassis, and J. J. Verbeek, The Global k-means Clustering Algo-
rithm, Pattern Recognition, 36(2), pp. 451 – 461, 2003.

[44] U. Luxburg, A Tutorial on Spectral Clustering, Statistics and Computing, 17,
pp. 395–416, 2004.

[45] M. Manguoglu, E. Cox, F. Saied, and A. Sameh, TRACEMIN-Fiedler: A Paral-
lel Algorithm for Computing the Fiedler Vector, in High Performance Comput-
ing for Computational Science – VECPAR 2010, pp. 449–455, Springer Berlin
Heidelberg, 2011.

[46] MATLAB, version 7.10.0 (R2016a), The MathWorks Inc., 2016.

[47] M. Naumov and T. D. Moon, Parallel Spectral Graph Partitioning, Technical
report, NVIDIA, 2016.

[48] B. Parlett, H. Simon, and L. Stringer, On Estimating the Largest Eigenvalue with
the Lanczos Algorithm, Mathematics of Computation, 38, pp. 153–153, 1982.

[49] F. Pellegrini, Distillating Knowledge About Scotch, in Dagstuhl Seminar Pro-
ceedings, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2009.

[50] R. Preis and R. Diekmann, PARTY - A Software Library for Graph Partitioning,
1998.

[51] C. P. Ravikumar and G. W. Zobrist, Parallel Methods for VLSI Layout Design,
Greenwood Publishing Group Inc., 1995.

[52] F. Rendl and R. Sotirov, The Min-cut and Vertex Separator Problem, Computa-
tional Optimization and Applications, 69, pp. 159–187, 2017.

[53] J. E. Roman, C. Campos, E. Romero, and A. Tomas, SLEPc Users Man-
ual: Scalable Library for Eigenvalue Problem Computations, Technical Report
DSIC-II/24/02, Universitat Politecnica De Valencia, Departamento de Sistemas
Informaticos y Computacion, 2019.

[54] K. Schloegel, G. Karypis, and V. Kumar, Graph Partitioning for High-
Performance Scientific Simulations, pp. 491–541, Morgan Kaufmann Publishers
Inc., 2003.

58



[55] H. D. Simon, Partitioning of Unstructured Problems for Parallel Processing,
Computing systems in engineering, 2(2-3), pp. 135–148, 1991.

[56] D. Singh and C. K. Reddy, A Survey on Platforms for Big Data Analytics, Jour-
nal of big data, 2(8), 2015.

[57] A. Soper, C. Walshaw, and M. Cross, A Combined Evolutionary Search and
Multilevel Optimisation Approach to Graph-Partitioning, Journal of Global Op-
timization, 29, pp. 225–241, 2004.

[58] D. Sorensen, Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale
Eigenvalue Calculations, ICASE/LaRC Interdisciplinary Series in Science and
Engineering, 4, 1996.

[59] G. W. Stewart, A Krylov–Schur Algorithm for Large Eigenproblems, SIAM
Journal on Matrix Analysis and Applications, 23(3), pp. 601–614, 2002.

59



60



APPENDIX A

THE C CODES

In this appendix, C codes used for partitioning large-sized matrices are given. The

first algorithm is used for partitioning by using ParMETIS and CHACO, whereas

the latter one is by using SPEC algorithm. Each algorithm symmetrizes the original

unsymmetric input matrix first.

1 static char help[] = "Matrix Partitioning by Using ParMETIS and

CHACO.\n\n";↪→

2 #include <petscmat.h>

3 #include <petscis.h>

4 #include <petscsys.h>

5 #include <stdio.h>

6 #include <stdlib.h>

7 #include <petsctime.h>

8 /* Returns to the absolute value of matrix */

9 PetscErrorCode absmat(Mat A,Mat *AbsA)

10 {

11 PetscErrorCode ierr;

12 PetscInt n,i,nc,j,rstart,rend;

13 const PetscInt *aj;

14 const PetscScalar *aa;

15 PetscScalar *absaa;

16 MatGetSize(A,&n,NULL);

17 MatDuplicate(A,MAT_COPY_VALUES,AbsA);

18 /* Copy over the matrix entries */

19 MatGetOwnershipRange(A,&rstart,&rend);

20 for (i=rstart; i<rend; i++) {

21 MatGetRow(A,i,&nc,&aj,&aa);

22 /* Replace the nonzero values with their absolute values */

23 PetscMalloc1(nc,&absaa);

24 for (j=0; j<nc; j++){

25 absaa[j] = fabs(aa[j]);

26 }

27 MatSetValues(*AbsA,1,&i,nc,aj,absaa,INSERT_VALUES);

28 MatRestoreRow(A,i,&nc,&aj,&aa);

29 }

30 return(0);
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31 }

32

33 int main (int argc,char **argv)

34 {

35 Mat A=NULL,AL;

36 IS partitioning;

37 PetscViewer fd;

38 char file[PETSC_MAX_PATH_LEN];

39 PetscBool flg;

40 PetscErrorCode ierr;

41 MatPartitioning part;

42

43 /* Read matrix from Petsc Binary File */

44 PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return
ierr;↪→

45 /* Determine files from which we read matrix */

46 PetscOptionsGetString(NULL,NULL,"-f",file,PETSC_MAX_PATH_LEN, c

&flg);↪→

47 if (!flg) SETERRQ(PETSC_COMM_WORLD,1,"Must indicate binary

file with the -f option");↪→

48 /* Open binary file */

49 PetscViewerBinaryOpen(PETSC_COMM_WORLD,file,FILE_MODE_READ,&f c

d);↪→

50 /* Load the matrix; then destroy the viewer. */

51 MatCreate(PETSC_COMM_WORLD,&A);

52 MatSetType(A,MATMPIAIJ);

53 MatSetOptionsPrefix(A,"a_");

54 MatSetFromOptions(A);

55 MatLoad(A,fd);

56 PetscViewerDestroy(&fd);

57 /* Start the wall-clock time */

58 PetscLogDouble v1,v2,elapsed_time;

59 PetscTime(&v1);

60 /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - -↪→

61 Create Partitioning

62 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - */↪→

63 /* Symmetry check */

64 Mat Atr,SymmA,Atrabs,Aabs;

65 PetscBool isEqual;

66 Vec D;

67 PetscInt i;

68 flg = PETSC_TRUE;

69 PetscOptionsGetBool(NULL,NULL, "-check_symmetry", &flg,NULL);

70 if (flg) {

71 MatIsSymmetric(A,0.0,&isEqual);

72 if (isEqual) {

73 PetscPrintf(PETSC_COMM_WORLD,"Input matrix is

symmetric\n\n");↪→

74 absmat(A,&SymmA);

75 } else {

76 PetscPrintf(PETSC_COMM_WORLD,"Input matrix is not

symmetric\n\n");↪→
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77 MatTranspose(A,MAT_INITIAL_MATRIX,&Atr);

78 absmat(Atr,&Atrabs);

79 absmat(A,&Aabs);

80 MatAssemblyBegin(Atrabs,MAT_FINAL_ASSEMBLY);

81 MatAssemblyEnd(Atrabs,MAT_FINAL_ASSEMBLY);

82 MatDuplicate(Atrabs,MAT_COPY_VALUES,&SymmA);

83 MatAssemblyBegin(Aabs,MAT_FINAL_ASSEMBLY);

84 MatAssemblyEnd(Aabs,MAT_FINAL_ASSEMBLY);

85 MatAXPY(SymmA,1.,Aabs,DIFFERENT_NONZERO_PATTERN);

86 }

87 }

88 /* Create adjacency matrix from the symmetric input matrix

*/

89 MatAssemblyBegin(SymmA,MAT_FINAL_ASSEMBLY);

90 MatAssemblyEnd(SymmA,MAT_FINAL_ASSEMBLY);

91 MatConvert(SymmA,MATMPIADJ,MAT_INITIAL_MATRIX,&AL);

92 MatPartitioningCreate(MPI_COMM_WORLD,&part);

93 MatPartitioningSetAdjacency(part,AL);

94 /* Create partitioning for symmetric matrix */

95 MatPartitioningSetFromOptions(part);

96 MatPartitioningApply(part,&partitioning);

97 /* To find the approx cut, apply the partitioning to

nonsymmetric input matrix */↪→

98 PetscMPIInt rank,size;

99 MPI_Comm_rank(PETSC_COMM_WORLD, &rank);

100 MPI_Comm_size(PETSC_COMM_WORLD, &size);

101 PetscInt siz,sizm,j,k;

102 MatGetSize(A,&siz,&sizm);

103 /* Allgather the partitioning */

104 const PetscInt *idUarr;

105 IS isall;

106 ISAllGather(partitioning,&isall);

107 ISGetIndices(isall,&idUarr);

108 PetscScalar *idUarrint;

109 PetscMalloc1(siz,&idUarrint);

110 for (i=0; i<siz; i++){

111 idUarrint[i] = idUarr[i];

112 }

113 /* Sort the partitioning set to permute A */

114 PetscInt *idxU,idm,idn;

115 PetscMalloc1(siz,&idxU);

116 for (i=0; i<siz;i++){

117 idxU[i] = i;

118 }

119 PetscSortRealWithPermutation(siz,idUarrint,idxU);

120 /* Scatter nodes into clusters based on partitioning

information */↪→

121 MatGetLocalSize(A,&idm,&idn);

122 PetscInt sizofidxU;

123 PetscInt *idxUsub;

124 PetscMalloc1(siz,&idxUsub);

125 for(i=0;i<siz;i++){
126 if (i != 0){

127 if (idUarrint[idxU[i]]== idUarrint[idxU[i-1]]){
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128 continue;
129 }

130 }

131 if (idUarrint[idxU[i]]== rank){

132 sizofidxU = 0;

133 k = i;

134 j = 0;

135 while (idUarrint[idxU[k]] == rank){

136 idxUsub[j] = idxU[k];

137 sizofidxU++;

138 k++;

139 j++;

140 if (k == siz){

141 break;
142 }

143 }

144 }

145 }

146 IS idUi;

147 ISCreateGeneral(PETSC_COMM_WORLD,sizofidxU,idxUsub,PETSC_COPY c

_VALUES,&idUi);↪→

148 /* Permute the input matrix */

149 Mat Ais,PL;

150 MatCreateSubMatrix(A,idUi,idUi,MAT_INITIAL_MATRIX,&Ais);

151 ISSetPermutation(idUi);

152 MatPermute(Ais,idUi,idUi,&PL);

153 /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - -↪→

154 Find the edge-cut by finding off-block diagonal elements

155 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - */↪→

156 PetscInt Bm,Bn,Rm,Rn;

157 MatGetOwnershipRangeColumn(PL,&Bm,&Bn);

158 Mat dum;

159 MatDuplicate(PL,MAT_COPY_VALUES,&dum);

160 MatSetOption(dum,MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_FALSE);

161 MatGetRowUpperTriangular(dum);

162 const PetscInt *cold;

163 const PetscScalar *vald;

164 PetscInt nval,r;

165 PetscScalar sum,sumr,tot;

166 PetscScalar *valdn,*sumarr;

167 PetscMalloc1(size,&sumarr);

168 PetscInt cutt,partt;

169 sumr = 0.0;

170 for (r = Bm; r<Bn; r++){

171 MatGetRow(dum,r,&nval,&cold,&vald);

172 PetscMalloc1(nval,&valdn);

173 for (j=0;j<nval;j++){

174 if(cold[j]>=Bm && cold[j]<Bn){

175 valdn[j]=0.0;

176 }else{
177 valdn[j]= 1.0;

178 }
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179 }

180 sum=0.0;

181 for (j=0;j<nval;j++){

182 sum = sum + valdn[j];

183 }

184 sumr = sumr +sum;

185 MatRestoreRow(dum,r,&nval,&cold,&vald);

186 }

187 PetscScalar global_sum;

188 MPI_Reduce(&sumr, &global_sum, 1, MPIU_SCALAR, MPI_SUM, 0,

189 MPI_COMM_WORLD);

190 if (isEqual) {

191 global_sum = global_sum/2;

192 PetscPrintf(PETSC_COMM_WORLD,"edge cut %g\n",global_sum);
193 }else{
194 PetscPrintf(PETSC_COMM_WORLD,"edge cut

%g\n",global_sum);↪→

195 }

196 /* Stop timer and calculate elapsed time */

197 PetscTime(&v2);

198 elapsed_time = v2 - v1;

199 PetscPrintf(PETSC_COMM_WORLD," \nElapsed time:

%2.1e\n\n",elapsed_time);↪→

200 ISDestroy(&partitioning);

201 MatPartitioningDestroy(&part);

202 MatDestroy(&AL);

203 MatDestroy(&A);

204 PetscFinalize();

205 return ierr;

206 }

Listing A.1: Matrix Partitioning by Using ParMETIS and CHACO

65



1 static char help[] = "Matrix partitioning by using spectral

partitioning algorithm with the k-means clustering\n\n";↪→

2

3 #include <petscmat.h>

4 #include <petscis.h>

5 #include <petscsys.h>

6 #include <slepceps.h>

7 #include <stdio.h>

8 #include <stdlib.h>

9 #include <petsctime.h>

10 #include <petscdraw.h>

11 #include <petscviewer.h>

12 #include <petscdm.h>

13 #include <petscdmlabel.h>

14 #include <petscds.h>

15 #include <petscsf.h>

16 #include <mpi.h>

17 #include "../include/km.h"

18 #include <math.h>

19 #include <float.h>

20 #include <string.h>

21 #include <time.h>

22

23 #define ERR_NO_NUM -1

24 #define ERR_NO_MEM -2

25 #define FREED_RAND -3

26

27 int *clusters_sizes;

28

29 void print_vector(long double *vector, int vector_size) {

30 printf("(");

31 for (int i = 0; i < vector_size; ++i) {

32 if (i > 0)

33 printf(", ");

34 printf("%Lf", vector[i]);

35 }

36 printf(")");

37 }

38

39 void print_observations(long double **observations, int
observations_size, int vector_size) {↪→

40 printf("[");

41 for (int i = 0; i < observations_size; ++i) {

42 if (i > 0)

43 printf(", ");

44 print_vector(observations[i], vector_size);

45 }

46 printf("]");

47 }

48

49 void print_clusters(long double ***clusters, int k, int
observations_size, int vector_size) {↪→

50 printf("{");

51 for (int i = 0; i < k; ++i) {
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52 if (i > 0)

53 printf(", ");

54 print_observations(clusters[i], clusters_sizes[i],

vector_size);↪→

55 }

56 free(clusters_sizes);

57 printf("}");

58 }

59

60 int compare_clusters(const int *clusters_map1, const int

*clusters_map2, int clusters_size) {↪→

61 int i = 0;

62 while (i < clusters_size) {

63 if (clusters_map1[i] != clusters_map2[i])

64 return 0;

65 ++i;

66 }

67 return 1;

68 }

69

70 long double ***km(long double **observations, int k, int
observations_size, int vector_size) {↪→

71 clusters_sizes = (int *) calloc(k, sizeof(int));
72 int *clusters_map = (int *) calloc(observations_size,

sizeof(int));↪→

73 long double **cs = initialize(observations, k,

observations_size, vector_size);↪→

74

75 if (observations_size < k) {

76 printf("Could not compute clusters.");

77 for (int i = 0; i < k; ++i)

78 free(cs[i]);

79 free(cs);

80 free(clusters_map);

81 free(clusters_sizes);

82 exit(1);

83 }

84 while (1) {

85 int *new_clusters_map = partition(observations, cs, k,

observations_size, vector_size);↪→

86 if (compare_clusters(clusters_map, new_clusters_map,

observations_size)) {↪→

87 long double ***clusters = map_clusters(clusters_map,

observations, k, observations_size, vector_size);↪→

88 for (int i = 0; i < k; ++i)

89 free(cs[i]);

90 free(cs);

91 free(clusters_map);

92 free(new_clusters_map);

93 return clusters;

94 }

95 for (int i = 0; i < k; ++i)

96 free(cs[i]);

97 free(cs);
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98 free(clusters_map);

99 clusters_map = new_clusters_map;

100 cs = re_centroids(clusters_map, observations, k,

observations_size, vector_size);↪→

101 }

102 }

103

104 long double *centroid(long double **observations, int
observations_size, int vector_size) {↪→

105 long double *vector = (long double *) calloc(vector_size,

sizeof(long double));↪→

106

107 for (int i = 0; i < observations_size; ++i) {

108 long double *temp = vsum(vector, observations[i],

vector_size);↪→

109 free(vector);

110 vector = temp;

111 }

112 for (int i = 0; i < vector_size; ++i)

113 vector[i] /= observations_size;

114 return vector;

115 }

116

117 long double *vsum(const long double *vector1, const long double

*vector2, int vector_size) {↪→

118 long double *vector = (long double *) malloc(sizeof(long
double) * vector_size);↪→

119

120 for (int i = 0; i < vector_size; ++i)

121 vector[i] = vector1[i] + vector2[i];

122 return vector;

123 }

124

125 long double *vsub(const long double *vector1, const long double

*vector2, int vector_size) {↪→

126 long double *vector = (long double *) malloc(sizeof(long
double) * vector_size);↪→

127

128 for (int i = 0; i < vector_size; ++i)

129 vector[i] = vector1[i] - vector2[i];

130 return vector;

131 }

132

133 long double innerprod(const long double *vector1, const long
double *vector2, int vector_size) {↪→

134 long double prod = 0;

135

136 for (int i = 0; i < vector_size; ++i)

137 prod += vector1[i] * vector2[i];

138 return prod;

139 }

140

141 long double norm(const long double *vector, int vector_size) {

142 return sqrt(innerprod(vector, vector, vector_size));
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143 }

144

145 /* Source for shuffling algorithm:

http://stackoverflow.com/a/5064432 */↪→

146 int rand_num(int size) {

147 static int *numArr = NULL;

148 static int numNums = 0;

149 int i, n;

150

151 if (size == -22) {

152 free(numArr);

153 return FREED_RAND;

154 }

155 if (size >= 0) {

156 if (numArr != NULL)

157 free(numArr);

158 if ((numArr = (int *) malloc(sizeof(int) * size)) == NULL)

159 return ERR_NO_MEM;

160 for (i = 0; i < size; ++i)

161 numArr[i] = i;

162 numNums = size;

163 }

164 if (numNums == 0)

165 return ERR_NO_NUM;

166 n = rand() % numNums;

167 i = numArr[n];

168 numArr[n] = numArr[numNums - 1];

169 numNums--;

170 if (numNums == 0) {

171 free(numArr);

172 numArr = 0;

173 }

174 return i;

175 }

176

177 long double **initialize(long double **observations, int k, int
observations_size, int vector_size) {↪→

178 long double **centroids = (long double **) malloc(sizeof(long
double *) * k);↪→

179

180 srand(time(NULL));

181 int r = rand_num(observations_size);

182 for (int i = 0; i < k; ++i) {

183 centroids[i] = (long double *) malloc(sizeof(long double) *
vector_size);↪→

184 for (int j = 0; j < vector_size; ++j) {

185 centroids[i][j] = observations[r][j];

186 r = rand_num(-1);

187 }

188 }

189 rand_num(-22);

190 return centroids;

191 }

192
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193 int *partition(long double **observations, long double **cs,

int k, int observations_size, int vector_size) {↪→

194 int *clusters_map = (int *) malloc(sizeof(int) *
observations_size);↪→

195 float curr_distance;

196 int centroid;

197

198 for (int i = 0; i < observations_size; ++i) {

199 float min_distance = DBL_MAX;

200 for (int c = 0; c < k; ++c) {

201 long double *temp = vsub(observations[i], cs[c],

vector_size);↪→

202 if ((curr_distance = norm(temp, vector_size)) <

min_distance) {↪→

203 min_distance = curr_distance;

204 centroid = c;

205 }

206 free(temp);

207 }

208 clusters_map[i] = centroid;

209 }

210 return clusters_map;

211 }

212

213 long double **re_centroids(int *clusters_map, long double

**observations, int k, int observations_size, int
vector_size) {

↪→

↪→

214 long double **centroids = (long double **) malloc(sizeof(long
double *) * k);↪→

215 long double **temp_arr = (long double **) malloc(sizeof(long
double *) * observations_size);↪→

216

217 for (int c = 0, count = 0; c < k; ++c) {

218 for (int i = 0; i < observations_size; ++i) {

219 int curr = clusters_map[i];

220 if (curr == c) {

221 temp_arr[count] = observations[i];

222 ++count;

223 }

224 }

225 centroids[c] = centroid(temp_arr, count, vector_size);

226 count = 0;

227 }

228 free(temp_arr);

229 return centroids;

230 }

231

232 long double ***map_clusters(int *clusters_map, long double

**observations, int k, int observations_size, int
vector_size) {

↪→

↪→

233 long double ***clusters = (long double ***)

malloc(sizeof(long double **) * k);↪→

234

235 for (int i = 0; i < k; ++i)
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236 clusters[i] = map_cluster(clusters_map, observations, i,

observations_size, vector_size);↪→

237 return clusters;

238 }

239

240 long double **map_cluster(const int *clusters_map, long double

**observations, int c, int observations_size, int
vector_size) {

↪→

↪→

241 int count = 0;

242 int *temp_arr = (int *) malloc(sizeof(int) *
observations_size);↪→

243

244 for (int i = 0; i < observations_size; ++i) {

245 if (clusters_map[i] == c) {

246 temp_arr[count] = i;

247 ++count;

248 }

249 }

250 long double **cluster = (long double **) malloc(sizeof(long
double *) * count);↪→

251 for (int i = 0; i < count; ++i)

252 cluster[i] = observations[temp_arr[i]];

253 free(temp_arr);

254 clusters_sizes[c] = count;

255 return cluster;

256 }

257

258

259 /* Absolute value of matrix */

260

261 PetscErrorCode absmat(Mat A,Mat *AbsA)

262 {

263 PetscErrorCode ierr;

264 PetscInt n,i,nc,j,rstart,rend;

265 const PetscInt *aj;

266 const PetscScalar *aa;

267 PetscScalar *absaa;

268

269 MatGetSize(A,&n,NULL);

270 MatDuplicate(A,MAT_COPY_VALUES,AbsA);

271

272 /* Copy over the matrix entries */

273 MatGetOwnershipRange(A,&rstart,&rend);

274 for (i=rstart; i<rend; i++) {

275 MatGetRow(A,i,&nc,&aj,&aa);

276

277 /* Replace the nonzero values with their absolute values */

278 PetscMalloc1(nc,&absaa);

279 for (j=0; j<nc; j++){

280 absaa[j] = fabs(aa[j]);

281 }

282 MatSetValues(*AbsA,1,&i,nc,aj,absaa,INSERT_VALUES);

283 MatRestoreRow(A,i,&nc,&aj,&aa);

284 }
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285 return(0);
286 }

287

288 int main (int argc,char **argv)

289 {

290 EPS eps;

291 Mat

A=NULL,Atr,SymmA,Atrabs,Aabs,L,PL,NSymmA,NSymmAtrabs;↪→

292 int s;

293 Vec x,D,DD,vr,DDD;

294 EPSType type;

295 PetscInt i,nev,*idx,mm,nn,rw,ncols,j,siz;

296 PetscScalar kr,none=-1.0,*arr;

297 const PetscScalar *vals;

298 const PetscInt *cols;

299 IS is,partitioning;

300 PetscViewer fd;

301 char file[PETSC_MAX_PATH_LEN];

302 PetscBool flg,isEqual,unw,wgh;

303 PetscErrorCode ierr;

304 MatPartitioning part;

305

306

307 SlepcInitialize(&argc,&argv,(char*)0,help);if (ierr) return
ierr;↪→

308 PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return
ierr;↪→

309

310 /* Determine files from which we read matrix */

311 PetscOptionsGetString(NULL,NULL,"-f",file,PETSC_MAX_PATH_LEN, c

&flg);↪→

312 if (!flg) SETERRQ(PETSC_COMM_WORLD,1,"Must indicate binary

file with the -f option");↪→

313

314 /* Open binary file */

315 PetscViewerBinaryOpen(PETSC_COMM_WORLD,file,FILE_MODE_READ,&f c

d);↪→

316

317 /* Load the matrix; then destroy the viewer. */

318 MatCreate(PETSC_COMM_WORLD,&A);

319 MatSetType(A,MATMPIAIJ);

320 MatSetOptionsPrefix(A,"a_");

321 MatSetFromOptions(A);

322 MatLoad(A,fd);

323 PetscViewerDestroy(&fd);

324

325 /* Start the wall-clock time */

326 PetscLogDouble v1,v2,elapsed_time;

327 total_elapsed_time = 0;

328 PetscTime(&v1);

329

330 /* - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - -↪→

331 Create Laplacian
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332 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - */↪→

333

334 /* Symmetry check */

335 flg = PETSC_TRUE;

336 PetscOptionsGetBool(NULL,NULL, "-check_symmetry", &flg,NULL c

);

337

338 if (flg) {

339 MatIsSymmetric(A,0.0,&isEqual);

340 if (isEqual) {

341 PetscPrintf(PETSC_COMM_WORLD,"Input matrix is

symmetric\n\n");↪→

342 absmat(A,&SymmA);

343 } else {

344 PetscPrintf(PETSC_COMM_WORLD,"Input matrix is not

symmetric\n\n");↪→

345 MatTranspose(A,MAT_INITIAL_MATRIX,&Atr);

346 absmat(Atr,&Atrabs);

347 absmat(A,&Aabs);

348 MatAssemblyBegin(Atrabs,MAT_FINAL_ASSEMBLY);

349 MatAssemblyEnd(Atrabs,MAT_FINAL_ASSEMBLY);

350 MatDuplicate(Atrabs,MAT_COPY_VALUES,&SymmA);

351 MatAssemblyBegin(Aabs,MAT_FINAL_ASSEMBLY);

352 MatAssemblyEnd(Aabs,MAT_FINAL_ASSEMBLY);

353 MatAXPY(SymmA,1.,Aabs,DIFFERENT_NONZERO_PATTERN);

354 }

355 }

356 PetscOptionsHasName(NULL,NULL,"-unweighted",&unw);

357 PetscOptionsHasName(NULL,NULL,"-weighted",&wgh);

358

359 /* Unweighted Laplacian */

360 if (unw) {

361 /* DD = diag(SymmA) */

362 MatCreateVecs(SymmA,&DD,NULL);

363 VecZeroEntries(DD);

364 MatAssemblyBegin(SymmA,MAT_FINAL_ASSEMBLY);

365 MatAssemblyEnd(SymmA,MAT_FINAL_ASSEMBLY);

366 MatGetDiagonal(SymmA,DD);

367 /* L = SymmN-diag(DD) */

368 VecScale(DD,none);

369 MatDuplicate(SymmA,MAT_COPY_VALUES,&L);

370 MatSetOption(L,MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_FAL c

SE);↪→

371 MatDiagonalSet(L,DD,ADD_VALUES);

372 /*
373 [row,col,values] = find(L)

374 values = -1

375 RestNew = sparse(row,col,values,x,y)

376 */

377 MatGetOwnershipRange(L,&mm,&nn);

378 MatDuplicate(L,MAT_DO_NOT_COPY_VALUES,&NSymmA);

379 MatSetOption(NSymmA,MAT_NEW_NONZERO_ALLOCATION_ERR,PETS c

C_FALSE);↪→
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380 for(rw = mm; rw<nn; ++rw){

381 MatGetRow(L,rw,&ncols,&cols,&vals);

382 s = ncols;

383 PetscMalloc1(s,&arr);

384 for(j=0;j<s;++j){
385 arr[j]=-1.0;

386 }

387 MatSetValues(NSymmA,1,&rw,ncols,cols,arr,INSERT_VAL c

UES);↪→

388 MatRestoreRow(L,rw,&ncols,&cols,&vals);

389 }

390 MatAssemblyBegin(NSymmA,MAT_FINAL_ASSEMBLY);

391 MatAssemblyEnd(NSymmA,MAT_FINAL_ASSEMBLY);

392 MatCreateVecs(NSymmA,&DDD,NULL);

393 VecZeroEntries(DDD);

394 MatDiagonalSet(NSymmA,DDD,INSERT_VALUES);

395 /* D = sum(abs(NSymmA’)) */

396 absmat(NSymmA,&NSymmAtrabs);

397 MatCreateVecs(NSymmAtrabs,&D,NULL);

398 VecZeroEntries(D);

399 MatAssemblyBegin(NSymmAtrabs,MAT_FINAL_ASSEMBLY);

400 MatAssemblyEnd(NSymmAtrabs,MAT_FINAL_ASSEMBLY);

401 MatGetRowSum(NSymmAtrabs,D);

402 /* L = diag(D) + NSymmA */

403 MatDuplicate(NSymmA,MAT_COPY_VALUES,&L);

404 MatSetOption(L,MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_FAL c

SE);↪→

405 MatDiagonalSet(L,D,ADD_VALUES);

406 } else if (wgh) { /* Weighted Laplacian */

407 /* Initialize D as zero vector */

408 MatCreateVecs(SymmA,&D,NULL);

409 VecZeroEntries(D);

410 VecDuplicate(D,&DD);;

411 /* D = sum(SymmA) */

412 MatAssemblyBegin(SymmA,MAT_FINAL_ASSEMBLY);

413 MatAssemblyEnd(SymmA,MAT_FINAL_ASSEMBLY);

414 MatGetRowSum(SymmA,D);

415 /* L = -(SymmA-diag(diag(SymmA)))+diag(D) */

416 MatDuplicate(SymmA,MAT_DO_NOT_COPY_VALUES,&L);

417 MatSetOption(SymmA,MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC c

_FALSE);↪→

418 MatDiagonalSet(SymmA,DD,INSERT_VALUES);

419 MatAXPY(L,-1.,SymmA,DIFFERENT_NONZERO_PATTERN);

420 MatSetOption(L,MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_FAL c

SE);↪→

421 MatDiagonalSet(L,D,ADD_VALUES);

422 }

423 /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - -↪→

424 Create the eigensolver and solve the

eigensystem↪→

425 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - */↪→

426 PetscMPIInt rank,size;
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427 MPI_Comm_rank(PETSC_COMM_WORLD, &rank);

428 MPI_Comm_size(PETSC_COMM_WORLD, &size);

429 EPSCreate(PETSC_COMM_WORLD,&eps);

430 EPSSetOperators(eps,L,NULL);

431 EPSSetProblemType(eps,EPS_HEP);

432 EPSSetDimensions(eps,size,PETSC_DEFAULT,PETSC_DEFAULT);

433 EPSSetWhichEigenpairs(eps,EPS_SMALLEST_MAGNITUDE);

434 EPSSetFromOptions(eps);

435 MatCreateVecs(L,&x,NULL);

436 VecSet(x,1.0);

437 EPSSetDeflationSpace(eps,1,&x);

438 VecDestroy(&x);

439 EPSSolve(eps);

440 EPSGetType(eps,&type);

441 PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type);
442 EPSGetDimensions(eps,&nev,NULL,NULL);

443 PetscPrintf(PETSC_COMM_WORLD," Number of requested

eigenvalues: %D\n",nev);↪→

444 MatCreateVecs(L,&vr,NULL);

445 Vec *V;

446 VecDuplicateVecs(vr,nev,&V);

447 for (i=0; i<nev;i++){

448 EPSGetEigenpair(eps,i,&kr,NULL,V[i],NULL);

449 }

450 VecGetSize(vr,&siz);

451 /* Define a matrix U so that each eigenvector is a column of

U */↪→

452 Mat U;

453 PetscScalar *valsu;

454 const PetscScalar *va;

455 PetscInt urstart,urend;

456 PetscInt sizV;

457 PetscInt k;

458 MatCreateDense(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,siz c

,nev,NULL,&U);↪→

459 MatSetUp(U);

460 MatGetOwnershipRange(U,&urstart,&urend);

461 for (i=0; i<nev;i++){

462 MatDenseGetColumn(U,i,&valsu);

463 VecGetArrayRead(V[i],&va);

464 VecGetLocalSize(V[i],&sizV);

465 PetscInt mmm;

466 for (j=0; j<sizV; j++) {

467 mmm = rank*sizV+j;

468 MatSetValues(U,1,&mmm,1,&i,&va[j],INSERT_VALUES);

469 }

470 MatDenseRestoreColumn(U,&valsu);

471 VecRestoreArrayRead(V[i],&va);

472 }

473 MatAssemblyBegin(U,MAT_FINAL_ASSEMBLY);

474 MatAssemblyEnd(U,MAT_FINAL_ASSEMBLY);

475 /* Get each row of U as row vector */

476 PetscInt *idxU,idm,idn;

477 PetscMalloc1(siz,&idxU);
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478 for (i=0; i<siz;i++){

479 idxU[i] = i;

480 }

481 PetscInt *idxUc;

482 PetscMalloc1(nev,&idxUc);

483 for (i=0; i<nev;i++){

484 idxUc[i] = i;

485 }

486 IS idUi,idUic;

487 ISCreateGeneral(PETSC_COMM_WORLD,siz,idxU,PETSC_COPY_VALUES,& c

idUi);↪→

488 ISCreateGeneral(PETSC_COMM_WORLD,nev,idxUc,PETSC_COPY_VALUES, c

&idUic);↪→

489 Mat *submat;

490 MatCreateSubMatrices(U,1,&idUi,&idUic,MAT_INITIAL_MATRIX,&sub c

mat);↪→

491 Vec duv,*UV;

492 VecCreate(PETSC_COMM_SELF,&duv);

493 VecSetSizes(duv,PETSC_DECIDE,nev);

494 VecSetUp(duv);

495 VecDuplicateVecs(duv,siz,&UV);

496 const PetscScalar *arrayone;

497 PetscScalar *arrUV;

498 MatDenseGetArrayRead(submat[0],&arrayone);

499 for (i=0;i<siz;i++){

500 VecGetArray(UV[i],&arrUV);

501 for(j=0;j<nev;j++){
502 arrUV[j]=arrayone[i+j*siz];

503 }

504 VecRestoreArray(UV[i],&arrUV);

505 VecRestoreArray(UV[i],&arrUV);

506 }

507 MatDenseRestoreArrayRead(submat[0],&arrayone);

508 MatDestroySubMatrices(1,&submat);

509 /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - -↪→

510 Apply k-means clustering algorithm to row vectors

511 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - */↪→

512 PetscInt nA;

513 int nAi;

514 MatGetSize(A,&nA,NULL);

515 nAi = nA;

516 int observations_size = nAi;

517 int vector_size = nev;

518 int kc = nev;

519 long double **observations;

520 long double ***clusters;

521 observations = (long double **) malloc(sizeof(long double *)

* observations_size);↪→

522 for (int i = 0; i < observations_size; i++){

523 observations[i] = (long double *) malloc(sizeof(long
double) * vector_size);↪→

524 }
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525 int stepsiz,kj;

526 stepsiz = sizV;

527 for (int i = 0; i < observations_size; i++) {

528 VecGetArray(UV[i],&arrUV);

529 if(i%stepsiz == 0){

530 kj = i/stepsiz;

531 }

532 for (int j = 0; j < vector_size; j++){

533 observations[i][j] = arrUV[j];

534 }

535 VecRestoreArray(UV[i],&arrUV);

536 }

537 clusters = km(observations, kc, observations_size,

vector_size);↪→

538 /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - -↪→

539 Partition the nodes based on clustering information

540 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - */↪→

541 Vec vecidU;

542 PetscScalar *idUarrint;

543 PetscMalloc1(siz,&idUarrint);

544 PetscScalar *idUarridx;

545 PetscScalar *idxstop,idxs;

546 PetscMalloc1(nev,&idxstop);

547 for(j=0;j<nev;j++){
548 PetscMalloc1(clusters_sizes[j],&idUarridx);

549 if (j == rank){

550 for (k=0;k<clusters_sizes[j];k++){

551 i=0;

552 while(clusters[j][k] != observations[i]){

553 i++;

554 }

555 idUarridx[k] = i;

556 }

557 }else {

558 continue;
559 }

560 idxstop[j]=k;

561 idxs = k;

562 VecCreateMPIWithArray(PETSC_COMM_WORLD,1,clusters_sizes[j c

],siz,idUarridx,&vecidU);↪→

563 }

564 VecScatter vecctx;

565 Vec idUall,idUalldum,vecidUdum;

566 PetscInt ls,vstart,vend,*vecar;

567 PetscScalar rk;

568 const PetscScalar *vecarr;

569 VecScatterCreateToAll(vecidU,&vecctx,&idUall);

570 VecScatterBegin(vecctx,vecidU,idUall,INSERT_VALUES,SCATTER_FO c

RWARD);↪→

571 VecScatterEnd(vecctx,vecidU,idUall,INSERT_VALUES,SCATTER_FORW c

ARD);↪→

572 VecDuplicate(vecidU,&vecidUdum);
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573 VecGetLocalSize(vecidU,&ls);

574 VecGetOwnershipRange(vecidUdum,&vstart,&vend);

575 for(i=vstart;i<vend;i++){
576 rk = (PetscReal) (rank*1.0);

577 VecSetValues(vecidUdum,1,&i,&rk,INSERT_VALUES);

578 }

579 VecGetArrayRead(vecidU,&vecarr);

580 PetscMalloc1(vend-vstart,&vecar);

581 for(i=0;i<vend-vstart;i++){
582 vecar[i] = vecarr[i];

583 }

584 IS idvec;

585 ISCreateGeneral(PETSC_COMM_WORLD,vend-vstart,vecar,PETSC_COPY c

_VALUES,&idvec);↪→

586 /* Permute the input matrix */

587 Mat Ais;

588 MatCreateSubMatrix(A,idvec,idvec,MAT_INITIAL_MATRIX,&Ais);

589 ISSetPermutation(idvec);

590 MatPermute(Ais,idvec,idvec,&PL);

591 /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - -↪→

592 Find the edge-cut by finding off-block diagonal elements

593 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - */↪→

594 PetscBool cunw,cwgh;

595 PetscOptionsHasName(NULL,NULL,"-unweightedcut",&cunw);

596 PetscOptionsHasName(NULL,NULL,"-weightedcut",&cwgh);

597 PetscInt Bm,Bn,Rm,Rn;

598 MatGetOwnershipRange(PL,&Bm,&Bn);

599 const PetscInt *cold;

600 const PetscScalar *vald;

601 PetscInt nval,r;

602 PetscScalar sum,sumr,tot,*valdn,*sumarr;

603 PetscMalloc1(nev,&sumarr);

604 sumr = 0.0;

605 for (r = Bm; r<Bn; r++){

606 MatGetRow(PL,r,&nval,&cold,&vald);

607 PetscMalloc1(nval,&valdn);

608 for (j=0;j<nval;j++){

609 if(cold[j]>=Bm && cold[j]<=Bn){

610 valdn[j]=0.0;

611 }else{
612 if(cunw){
613 valdn[j]= 1.0;

614 }else if(cwgh){
615

616 if(vald[j]<0){
617 valdn[j]= -1.0*vald[j];

618 }else{
619 valdn[j]= vald[j];

620 }

621 }

622 }

623 }
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624 sum=0.0;

625 for (j=0;j<nval;j++){

626 sum = sum + valdn[j];

627 }

628 sumr = sumr +sum;

629 MatRestoreRow(PL,r,&nval,&cold,&vald);

630 }

631 PetscScalar global_sum;

632 MPI_Reduce(&sumr, &global_sum, 1, MPIU_SCALAR, MPI_SUM,

0,MPI_COMM_WORLD);↪→

633 if (isEqual) {

634 global_sum = global_sum/2;

635 PetscPrintf(PETSC_COMM_WORLD,"edge cut %g\n",global_sum);
636 }else{
637 PetscPrintf(PETSC_COMM_WORLD,"edge cut %g\n",global_sum);
638 }

639 VecDestroy(&DD);

640 VecDestroy(&D);

641 MatDestroy(&SymmA);

642 MatDestroy(&L);

643 VecDestroy(&vr);

644 /* Stop timer and calculate elapsed time */

645 PetscTime(&v2);

646 elapsed_time = v2 - v1;

647 PetscPrintf(PETSC_COMM_WORLD," \nElapsed time:

%2.1e\n\n",elapsed_time);↪→

648 MatDestroy(&A);

649 EPSDestroy(&eps);

650 SlepcFinalize();

651 return ierr;

652 }

Listing A.2: Matrix partitioning by using spectral partitioning algorithm with the k-

means clustering
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APPENDIX B

TABLES

In this appendix, numerical results obtained from the partitioning of medium and

large-sized matrices are given. For medium-sized matrices, load imbalance, the num-

ber of iterations, and edge-cuts are obtained by using eigs and kmeans routines

of MATLAB. For large-sized matrices, edge-cut and partitioning time are given as

results when SPEC, ParMETIS, and CHACO are used for partitioning.
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Table B.1: Results obtained from the partitioning of cz148

NPARTS 2 4 8 16
LAP W U W U W U W U

TOL = E-2

ITER 245.3 95.6 182.1 78.9 109 67.1 176.1 160.7
V.RATIO 1.05 1.11 1.10 1.11 1.32 1.34 1.55 2.41

CUT 737.26 85 930.22 154.2 2633.31 287.4 4852.13 401.9
E.RATIO 1.06 1.12 1.10 1.16 1.35 1.43 1.62 2.97

TOL = E-4

ITER 225.5 85 177.8 80.6 107.7 114 251.5 222.9
V.RATIO 1.05 1.12 1.11 1.22 1.44 1.57 1.70 2.24

CUT 737.26 84.4 930.07 149.6 2589.66 273.7 4791.64 412.6
E.RATIO 1.06 1.13 1.11 1.29 1.49 1.71 1.80 2.71

TOL = E-6

ITER 200.7 89 183.8 80.5 140.3 159.1 305.5 261.6
V.RATIO 1.05 1.14 1.20 1.19 1.17 1.37 1.56 2.29

CUT 737.26 84 939.69 152 2570.21 279.6 4817.13 420.9
E.RATIO 1.06 1.14 1.20 1.26 1.19 1.51 1.62 2.78

TOL = E-8

ITER 226 96 190.2 107.8 178.7 219.8 377 319.4
V.RATIO 1.05 1.10 1.10 1.14 1.30 1.4 1.66 2.22

CUT 737.26 85.4 929.91 151.8 2600.31 283.2 4745.64 429
E.RATIO 1.06 1.11 1.11 1.20 1.34 1.54 1.76 2.70

TOL = E-10

ITER 265.1 109.9 207 131.1 230.2 282.8 430.1 379.2
V.RATIO 1.05 1.113 1.16 1.13 1.29 1.29 1.65 2.21

CUT 737.26 84.8 952.36 152.4 2539.11 272 4696.18 417.4
E.RATIO 1.06 1.12 1.17 1.19 1.32 1.40 1.76 2.70

Table B.2: Results obtained from the partitioning of Poisson(12)

NPARTS 2 4 8 16
LAP W U W U W U W U

TOL = E-2

ITER 206.2 154.2 146.5 116.3 94.5 75.5 141.1 144.3
V.RATIO 1.01 1.01 1.64 1.58 1.62 1.83 1.72 1.8

CUT 2551.9 15.3 5999.5 37.8 11137.1 65.3 14770.6 85.1
E.RATIO 1.01 1.01 1.68 1.63 1.65 1.89 1.80 1.90

TOL = E-4

ITER 197.4 143.6 152.3 118.9 167.4 157.5 249.5 252.8
V.RATIO 1.02 1.03 1.53 1.56 1.53 1.57 1.76 1.87

CUT 2501.2 17 6168.5 38.5 9768.2 61 13705.9 83.4
E.RATIO 1.02 1.03 1.56 1.61 1.56 1.63 1.82 2.00

TOL = E-6

ITER 180.9 129.6 159 127.8 596 507.3 392.5 364.9
V.RATIO 1.01 1.03 1.51 1.58 1.66 1.58 1.8 1.91

CUT 2484.3 15.3 6506.5 36.4 8534.5 51.5 13739.7 82.2
E.RATIO 1.01 1.03 1.54 1.63 1.69 1.57 1.87 2.06

TOL = E-8

ITER 183.8 135.5 297.9 272.4 626.4 624.4 493.9 503.1
V.RATIO 1.01 1.02 1.19 1.31 1.52 1.53 1.86 1.7

CUT 2619.5 16.3 4512.3 30.1 8568.3 50.3 13503.1 79
E.RATIO 1.01 1.02 1.21 1.34 1.54 1.59 1.94 1.82

TOL = E-10

ITER 591.6 149.7 368.8 372.1 689 685.1 553.2 563.2
V.RATIO 1.01 1.02 1 1 1.5 1.62 1.92 1.82

CUT 2568.8 15.4 4056 24 8686.6 52.1 13503.1 80.7
E.RATIO 1.01 1.02 1 1 1.53 1.68 2.02 1.99
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Table B.3: Results obtained from the partitioning of lshp_265

NPARTS 2 4 8 16
LAP W U W U W U W U

TOL = E-2

ITER 232.4 250.7 178.1 175.9 181.5 207.4 190.6 243
V.RATIO 1.05 1.05 1.26 1.27 1.51 1.46 1.68 1.6

CUT 32 32 67.2 67.5 120.7 122 192.1 191.2
E.RATIO 1.05 1.05 1.27 1.28 1.57 1.50 1.80 1.71

TOL = E-4

ITER 168.2 182.7 190.9 176.9 318.1 311 407.5 393.9
V.RATIO 1.05 1.05 1.26 1.26 1.51 1.49 1.73 1.73

CUT 32 32 67.4 67.3 120.9 121.6 193.1 190.6
E.RATIO 1.05 1.05 1.26 1.27 1.57 1.54 1.86 1.87

TOL = E-6

ITER 206.6 204.8 224.5 206 412.3 416.4 560.9 571.7
V.RATIO 1.05 1.05 1.27 1.25 1.49 1.52 1.70 1.63

CUT 32 32 67.7 67.3 122.1 120.8 190.5 193.2
E.RATIO 1.05 1.05 1.28 1.26 1.54 1.58 1.84 1.75

TOL = E-8

ITER 263.8 253.1 333.5 308.3 487.7 493.7 733.4 739.8
V.RATIO 1.05 1.05 1.26 1.27 1.59 1.56 1.64 1.71

CUT 32 32 67.4 67.6 120.4 120.4 192.8 190.8
E.RATIO 1.05 1.05 1.28 1.28 1.66 1.63 1.76 1.84

TOL = E-10

ITER 323.1 313.6 417.8 402.8 580.3 609 883.7 884.6
V.RATIO 1.05 1.05 1.26 1.26 1.44 1.45 1.74 1.70

CUT 32 32 67.8 67.2 122 122 190.8 192.4
E.RATIO 1.05 1.05 1.27 1.27 1.48 1.50 1.87 1.83

Table B.4: Results obtained from the partitioning of can_161

NPARTS 2 4 8 16
LAP W U W U W U W U

TOL = E-2

ITER 94.5 92 82.7 84.6 79.2 84.6 149.5 137.3
V.RATIO 1.01 1.01 1.16 1.13 1.54 1.51 1.78 1.73

CUT 48 48 109.8 107.7 182 186.2 246.2 247.9
E.RATIO 1.025761 1.03 1.19 1.15 1.62 1.55 1.96 1.93

TOL = E-4

ITER 78.3 74.6 82.3 85 218.6 180.4 238.2 235.3
V.RATIO 1.01 1.01 1.07 1.10 1.45 1.56 1.62 1.50

CUT 48 48 107.1 107.5 167.2 166.2 245.5 244.2
E.RATIO 1.03 1.03 1.07 1.11 1.53 1.68 1.83 1.66

TOL = E-6

ITER 82.8 81.1 98.9 99.1 248.1 247.4 249.8 244
V.RATIO 1.01 1.01 1.12 1.10 1.47 1.58 1.47 1.64

CUT 48 48 107.7 107.3 163.9 163.2 243.1 240.1
E.RATIO 1.03 1.03 1.15 1.11 1.56 1.68 1.63 1.83

TOL = E-8

ITER 95.7 90.2 274.4 276.1 254.5 256.4 253.2 256.5
V.RATIO 1.01 1.01 1.43 1.49 1.41 1.44 1.55 1.72

CUT 48 48 100.4 99.4 166.4 164.3 241.7 243.4
E.RATIO 1.03 1.03 1.51 1.57 1.46 1.50 1.71 1.93

TOL = E-10

ITER 112 111.2 401.1 411.1 269.8 271.3 590.9 621.8
V.RATIO 1.01 1.01 1.65 1.64 1.40 1.48 1.57 1.64

CUT 48 48 95.8 95.9 163.6 161.7 243 244.6
E.RATIO 1.03 1.03 1.77 1.76 1.46 1.55 1.76 1.82
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Table B.5: Results obtained from the partitioning of bcspwr10

NPROC 2 4 8 16
LAP W U W U W U W U

SPEC

E-2
CUT 3447.8 3632.4 5472.57 5512 6738.17 6627.77 7368.8 7339.55

TIME 0.97 2.68 2.143 6.11 4.94 8.12 11.5 32.11

E-4
CUT 3683.6 3657.9 5718.17 5615.14 6556.2 6577.87 7418.44 7322.75

TIME 2.18 3.71 4.80 8.27 8.15 10.57 32.22 33.75

E-6
CUT 3585.1 3524 5633.33 5456.77 6493.45 6584.53 7355.55 7353.1

TIME 3.15 5.34 7.70 9.22 9.41 13.89 29.67 34.8

E-8
CUT 3537.8 3546.5 5636.43 5645.83 6587.1 6548.96 7426 7402

TIME 4.94 6.53 9.54 11 13 15 35.88 33.8

E-10
CUT 3540.2 3598.44 5532.67 5662.23 6621.83 6592.37 7318.4 7394.71

TIME 5.9 7.63 10.57 12 15 17 34.9 43.14

PARMETIS
CUT - 3700.8 - 5934.19 - 6795.48 - 6763.5

TIME - 0.087 - 0.09 - 0.10 - 0.23

CHACO
CUT - 3741.3 - 5952.58 - 6860.32 - 6760.8

TIME - 0.08 - 0.09 - 0.11 - 0.24

Table B.6: Results obtained from the partitioning of epb2

NPROC 2 4 8 16
LAP W U W U W U W U

SPEC

E-2
CUT 7.15 2027.4 9.26 12546.58 4751.72 42456.67 7592.20 44220.38

TIME 3.18 19.3 3.84 61.69 5.28 47.33 17.38 70.125

E-4
CUT 6.28 2956.7 505.25 13684.70 5854.22 41508.1 7968.41 42587.83

TIME 8.94 57.9 8.99 80.11 11.2 67.2 16.71 85.5

E-6
CUT 5.53 2925.3 420.71 13285.27 3398.72 38200.44 7070.59 42534.11

TIME 10.8 70.1 11.30 94.22 16.125 81 17.12 104.89

E-8
CUT 5.66 2091.8 387.89 13572.43 4725.07 38872.1 7059.14 44797.33

TIME 13.78 92.9 13.04 105 18.5 90.8 16.62 113.33

E-10
CUT 6.32 2979.1 524.43 12883.21 5656.77 38673.17 7799.03 44259.88

TIME 16.2 98.5 15.04 110.69 21.8 110 18.14 120

PARMETIS
CUT - 5349.6 - 18628.1 - 59409.9 - 73315.8

TIME - 0.74 - 0.53 - 0.41 - 0.54

CHACO
CUT - 3552.3 - 25253.2 - 48176.1 - 74211.3

TIME - 0.8 - 0.6 - 0.48 - 0.56

Table B.7: Results obtained from the partitioning of sme3Da
NPROC 2 4 8 16

LAP W U W U W U W U

SPEC

E-2
CUT 177564.25 347856.67 3906704.24 568983.07 33099257.9 723371.54 102601278 785580.6

TIME 3.42 3.22 4.19 3.16 8.98 4.35 20 14

E-4
CUT 325709.16 360182.2 4732248.33 577783.69 21666568.9 713939.43 77908288.9 788251.3

TIME 4.35 3.65 5.66 3.36 10.08 4.83 22.11 14.3

E-6
CUT 490991.77 378146.6 4061762.75 580390.52 20173584.9 709642.93 87369850 784247

TIME 5.28 4.14 7.64 3.65 11.69 5.40 22.33 14.22

E-8
CUT 186245.28 342154.2 3955129 571332.96 22265248.2 713608.64 101834075 780475.67

TIME 7.2 4.73 7.54 3.99 11.89 5.81 22.12 14.5

E-10
CUT 626977.78 377228.3 4550442.76 580133.83 18103760.7 721403.36 84627162.5 779831.22

TIME 8.14 5.08 9.38 4.28 13.17 6.16 23.88 18.22

PARMETIS
CUT - 386491 - 624002 - 728797 - 725362

TIME - 0.87 - 0.74 - 0.62 - 0.87

CHACO
CUT - 386726 - 624429 - 728487 - 725628

TIME - 0.96 - 0.96 - 1 - 1.3
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Table B.8: Results obtained from the partitioning of av41092

NPROC 2 4 8 16
LAP W U W U W U W U

SPEC

E-2
CUT 3.61 54 2421.38 8485.89 326045.62 1011116.22 366911.44 1215482.86

TIME 293 419 91.29 140.74 43.62 74.78 166.67 111.29

E-4
CUT 5.52 54 3245.53 10232.86 328031.38 931911 357798.86 1170944

TIME 298 423 95.44 143.93 58.12 79.67 221.43 148

E-6
CUT 7.65 54 2311.72 8294.48 328670.67 942487.4 371301.6 1233671.67

TIME 302 426 96.93 147.93 68.44 82.4 220 155

E-8
CUT 7.65 54 2529.52 9602.14 323929.67 949196.3 365404.86 1207084.44

TIME 310 435 100.77 150.36 78.67 91 277.14 163.33

E-10
CUT 6.70 54 2916.34 11409.61 328781.33 989577.33 359577.75 1228014.29

TIME 316 435 110 152.14 107.78 100.33 280 274.29

PARMETIS
CUT - 570071 - 1071490 - 1231760 - 1357700

TIME - 4 - 3.8 - 2.9 - 3.3

CHACO
CUT - 756486 - 1133640 - 1176020 - 1334670

TIME - 7.7 - 8.3 - 8.1 - 10

Table B.9: Results obtained from the partitioning of poisson3Db

NPROC 2 4 8 16
LAP W U W U W U W U

SPEC

E-2
CUT 1569.63 1119165 8642.87 1666558.57 14530.88 1953335.88 27935.2 2111390

TIME 19 26.5 20.26 27.29 29.2 38.29 78 150

E-4
CUT 2002.61 1120924.44 5115.87 1687069.58 12259.07 1955761.11 25855.53 2110710

TIME 20.5 31.78 24.12 31.17 32.89 43.44 92.33 182

E-6
CUT 2068.89 1121311.11 5169.94 1672333.13 11506.42 1950050.53 21594.2 2109636.67

TIME 22.4 37.11 26.31 39.19 33.74 47.74 70.5 140.67

E-8
CUT 1768.73 1121640 5509.39 1672930.37 11160.70 1957599.44 20725.4 2109037.5

TIME 24.11 42.5 27.4 42.85 37.2 49.39 72 120.5

E-10
CUT 1868.28 1119676 5349.22 1687595.79 11453.59 1960292.5 25606.7 2098330

TIME 25.3 48.1 28.69 46.95 38.76 56.5 79 132.5

PARMETIS
CUT - 1021800 - 1642050 - 1920710 - 1909780

TIME - 8.8 - 5.6 - 3.6 - 3

CHACO
CUT - 1018730 - 1648950 - 1922440 - 1912030

TIME - 9 - 6.2 - 4.6 - 4.7

Table B.10: Results obtained from the partitioning of rw5151

NPROC 2 4 8 16
LAP W U W U W U W U

SPEC

E-2
CUT 820.98 1686.22 1276.79 4336.67 1955.34 7902.7 2313.21 9245.5

TIME 1.98 1.71 3.07 2.25 5.71 4.19 13.3 12.4

E-4
CUT 802.58 3088.5 1231.70 4485.59 2031.85 7827.44 2315.51 9232.25

TIME 2.47 2.02 3.83 2.69 6.57 5.18 15.11 14.25

E-6
CUT 949.86 1527.12 1174.25 4525.59 2077.29 8004.38 2314.92 9247.8

TIME 2.94 2.25 4.47 3.06 7.48 5.29 14.44 14.5

E-8
CUT 808.19 711.6 1225.14 4512.38 2061.27 7874.32 2324.18 9145.12

TIME 3.35 2.5 5.08 3.54 8.54 5.57 17.3 14.12

E-10
CUT 665.61 2461 1222.98 4351.10 1975.16 7831.34 2300.82 9300.75

TIME 3.73 2.69 5.67 3.7 9.32 6.19 17.22 15.75

PARMETIS
CUT - 1192.5 - 6030.97 - 9015.48 - 10861.2

TIME - 0.07 - 0.079 - 0.09 - 0.22

CHACO
CUT - 323.1 - 3918.39 - 8674.84 - 10044.9

TIME - 0.07 - 0.09 - 0.1 - 0.22
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Table B.11: Results obtained from the partitioning of FEM_3D_thermal1

NPROC 2 4 8 16
LAP W U W U W U W U

SPEC

E-2
CUT 3.58 82531.8 5936.78 162424 6883.76 191996.21 7606.36 273786.44

TIME 4.37 1.88 5.66 1.95 17.37 3.63 36 15.78

E-4
CUT 6.50 87664.44 5646.61 164832.6 7045.44 192814.29 7877.52 272248.2

TIME 6.91 2.05 7.88 2.16 17.36 4.07 35 14.5

E-6
CUT 3.38 96077.6 5444.14 161212.73 6537.87 192500.22 8519.99 209367.71

TIME 8.99 2.24 9.27 2.37 19.75 4.33 40.55 17.29

E-8
CUT 4.88 88925.8 4629.26 158303.10 6331.74 191827.52 8157.62 210908

TIME 10.15 2.5 11.57 2.55 23.24 4.64 41.29 18.5

E-10
CUT 4.33 94653.11 5033.79 159361.14 7090.62 191703.41 7899.69 201653.43

TIME 12 2.65 12.65 2.76 25.23 4.75 44.1 20.14

PARMETIS
CUT - 108160 - 140489 - 233764 - 204192

TIME - 0.61 - 0.49 - 0.42 - 0.56

CHACO
CUT - 122573 - 140988 - 210583 - 232781

TIME - 0.68 - 0.59 - 0.56 - 0.66

Table B.12: Results obtained from the partitioning of Zhao1

NPROC 2 4 8 16
LAP W U W U W U W U

SPEC

E-2
CUT 8505.36 59824.7 15122.27 92118.83 18101.9 113814.56 19534.71 123243

TIME 4.38 5.23 5.39 5.89 12 9.29 41.86 46

E-4
CUT 9688.05 63947.88 13007.34 93127 17891.54 114094.44 19601.18 122528.57

TIME 7.73 6.3 9.08 7.10 19.29 12.33 56.6 56.43

E-6
CUT 9022.98 62347.2 11981.19 98811.13 17883.05 114532.11 19611.05 123302.71

TIME 9.95 7.74 12.03 7.97 28.12 12.55 74.5 61.43

E-8
CUT 9090.23 60492.5 15187.34 97716.87 18081.9 113819.7 19648.6 122180.86

TIME 12.3 8.79 14.11 8.97 41 15.8 112 51.57

E-10
CUT 9210.666 60288 14989.20 97960.96 18303.63 114061.5 19666.88 123110.14

TIME 14.5 8.61 15.97 9.7 42.86 16.5 121.43 57.29

PARMETIS
CUT - 61144.2 - 96234.2 - 104099 - 108267

TIME - 1.4 - 0.92 - 0.64 - 0.97

CHACO
CUT - 61821.9 - 96860.3 - 103972 - 108230

TIME - 1.3 - 0.87 - 0.62 - 0.71

Table B.13: Results obtained from the partitioning of ns3Da

NPROC 2 4 8 16
LAP W U W U W U W U

SPEC

E-2
CUT 8449.75 764245.4 12736.39 1156616.21 15138.3 1405029.26 16323.83 1529212.22

TIME 7.87 8.91 4.4 5.17 6.26 6.55 26 25.55

E-4
CUT 8475.48 612952.33 12941.87 1161404.48 15151.03 1409480.4 16320.29 1528741.11

TIME 8.53 9.37 4.95 5.64 6.43 7.06 33.67 24.11

E-6
CUT 8115.13 762546.2 12993.67 1168459.11 15148.18 1413132.38 16292.01 1528748.75

TIME 9 9.74 5.23 5.92 7.02 7.81 22.88 26.88

E-8
CUT 8490.44 747369.38 13009.4 1165376.33 15116.47 1390162.31 16282.37 1531977.78

TIME 9.04 10.12 5.42 6.47 7.85 8.33 31.83 26.55

E-10
CUT 8231.30 755795.67 13010.19 1170253.08 15139.90 1418514.64 16336.81 1530112.86

TIME 9.41 10.78 5.66 6.78 8.21 8.19 27.12 25.86

PARMETIS
CUT - 745817 - 1204450 - 1404950 - 1399100

TIME - 1.7 - 1.4 - 1.1 - 1.3

CHACO
CUT - 746896 - 1204720 - 1404300 - 1399910

TIME - 2 - 2 - 2 - 2.5
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Table B.14: Results obtained from the partitioning of chem_master1

NPROC 2 4 8 16
LAP W U W U W U W U

SPEC

E-2
CUT 47395.73 37084.25 113098.54 68315.58 2541911.67 65168.2 4995050 72436.86

TIME 4.42 11.88 5.44 13.08 12.33 19.2 30.2 61

E-4
CUT 46925.84 22600.6 112034.41 68483.04 213577.44 71096.6 8497460 72714.67

TIME 4.7 15.1 5.38 15.96 9.17 23.4 35.12 143.33

E-6
CUT 46526.87 37219 152669.74 69289.36 1185086.5 66079.73 7963524.29 73519.71

TIME 4.82 19.2 6.04 17.46 9.66 43.22 35.57 148.57

E-8
CUT 43565.46 41214.22 156653.79 67643.57 1862043.22 72831 10398187.5 73089.25

TIME 5.11 22.22 6.25 20.39 10.89 62.5 38.38 180

E-10
CUT 46659.86 22467.8 151536.81 69602.83 1242225.71 72190.89 9364298.57 73470.29

TIME 5.29 25.2 6.42 53.38 10.86 69.33 36 138.57

PARMETIS
CUT - 6796.8 - 57652.3 - 72358.2 - 85775.4

TIME - 1.7 - 1 - 0.66 - 0.68

CHACO
CUT - 42096.6 - 47692.3 - 72144 - 86443.2

TIME - 1.7 - 1.1 - 0.72 - 0.7
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APPENDIX C

FIGURES

In this appendix, graph and spy representations of the partitioned small-sized matrices

are given. For spy representation, MATLAB is used, whereas for graph representa-

tions, GraphViz is used. Each color in representations show different cluster.
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(a) Unweighted, nproc = 2, graph rep.
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(c) Weighted, nproc = 2, graph rep.
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(d) Weighted, nproc = 2, spy
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(e) Unweighted, nproc = 4, graph rep.
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(g) Weighted, nproc = 4, graph rep.
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Figure C.1: Graph and spy representations of the partitioned can_24 by spectral par-
titioning with k-means clustering
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(a) Unweighted, nproc = 2, graph rep.
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(b) Unweighted, nproc = 2,
spy rep.

(c) Weighted, nproc = 2, graph rep.
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(d) Weighted, nproc = 2, spy
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(e) Unweighted, nproc = 4, graph rep.
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(f) Unweighted, nproc = 4,
spy rep.

(g) Weighted, nproc = 4, graph rep.
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Figure C.2: Graph and spy representations of the partitioned GD01_b by spectral
partitioning with k-means clustering
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(a) Unweighted, nproc = 2, graph
rep.
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(b) Unweighted, nproc = 2,
spy rep.

(c) Weighted, nproc = 2, graph rep.

0 5 10 15 20 25

nz = 105

0

5

10

15

20

25

Poisson5 w/ Spectral wgh n2

(d) Weighted, nproc = 2, spy
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(e) Unweighted, nproc = 4,
graph rep.
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(f) Unweighted, nproc = 4,
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(g) Weighted, nproc = 4, graph rep.
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Figure C.3: Graph and spy representations of the partitioned Poisson(5) by spectral
partitioning with k-means clustering
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(a) Unweighted, nproc = 2, graph rep.
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(b) Unweighted, nproc = 2,
spy rep.

(c) Weighted, nproc = 2, graph rep.
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Figure C.4: Graph and spy representations of the partitioned Ragusa18 by spectral
partitioning with k-means clustering
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(a) nproc = 2, graph rep.
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Figure C.5: Graph and spy representations of the partitioned can_24 by ParMETIS

(a) nproc = 2, graph rep.
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Figure C.6: Graph and spy representations of the partitioned GD01_b by ParMETIS
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(a) nproc = 2, graph rep.
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(b) nproc = 2, spy rep.

(c) nproc = 4, graph rep.

0 5 10 15 20 25

nz = 105

0

5

10

15

20

25

Poisson5 w/ PARMETIS uwg n4

(d) nproc = 4, spy rep.

Figure C.7: Graph and spy representations of the partitioned Poisson(5) by ParMETIS
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Figure C.8: Graph and spy representations of the partitioned Ragusa18 by ParMETIS
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(a) nproc = 2, graph rep.
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Figure C.9: Graph and spy representations of the partitioned can_24 by CHACO

(a) nproc = 2, graph rep.
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Figure C.10: Graph and spy representations of the partitioned GD01_b by CHACO
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(a) nproc = 2, graph rep.
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Figure C.11: Graph and spy representations of the partitioned Poisson(5) by CHACO
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Figure C.12: Graph and spy representations of the partitioned Ragusa18 by CHACO
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