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ABSTRACT

DEVELOPMENT OF A NEW TESTING PROCEDURE TO MEASURE
THERMAL FATIGUE PERFORMANCE OF ASPHALT CONCRETE

Shabani, Reza
Doctor of Philosophy, Civil Engineering
Supervisor: Prof. Dr. Murat Guler

September 2020, # 392 pages

In the scope of this study, a new test procedure is developed to investigate the thermal
fatigue performance of asphalt concrete materials. To achieve this, test samples are
compacted using different mixtures to be designed according to the Superpave mix
design method. In the testing program, compacted samples are cut to produce beam
specimens for thermal coefficient tests and semicircular specimens for thermal
fatigue tests. Analysis of variance (ANOVA) and Multivariate analyses are both
used to evaluate the effect of test variables on derived parameters characterizing the
thermal coefficients and the thermal fatigue performance of the specimens. Results
of ANOVA indicate that aggregate type is the most significant factor for the thermal
coefficient of asphalt concrete. Asphalt type, aggregate type, gradation, frequency,
aging and rest time are also significant design factors for thermal fatigue according
to the results of multivariate analyses. However, among the test variables studied,
loading frequency and asphalt type seem to be highly effective factors governing the

behavior of asphalt concrete against thermal fatigue.

Keywords: Asphalt concrete, Thermal coefficient, Thermal fatigue, semicircular

specimen
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ASFALT BETONUN ISIL YORULMA PERFORMANSININ OLCUMU
ICIN YENI BIR TEST YONTEMININ GELiSTIRILMESI

Shabani, Reza
Doktora, Insaat Miihendisligi
Tez Yoneticisi: Prof. Dr. Murat Giler

Eylil 2020, # 392 sayfa

Bu calisma kapsaminda, asfalt beton malzemelerinin 1s1l yorulma performansinin
arastirtlmasi i¢in yeni bir test prosediirii gelistirilmistir. Bu amagla, Superpave
yontemine gore hazirlanan asfalt karisimlar sikistirilarak deney numuneleri
hazirlanmistir. Deney programinda kullanilmak iizere, sikistirilan numenlerden
1s1l genlesme katsayilarinin 6l¢iimii i¢in prizmatik numuneler ve 1sil yorulma
deneyleri i¢in yarim daire deney numuneleri kesilerek elde edilmistir. Deney
numunelerinin 1s1l genlesme ve 1sil yorulma deneylerinden elde edilen
parametreleri icin etkin olan faktorler, varyans analizi ve ¢oklu varyans analiz
yontemleriyle belirlenmistir.Varyans analiz sonuglari, agrega cinsinin asfalt
betonun 1s1l genlesme katsayist i¢in en etkili parametre oldugunu gostermistir.
Coklu varyans analizleri ise, asfalt cinsi, agrega cinsi ve gradasyonu, yikleme
frekanst ve yilik bosaltma siiresi, 1s1l yorulma davranisi i¢in 6nemli faktorler
oldugunu goéstermistir. Bununla birlikte, arastirilan deney parametreleri arasinda
asfalt cinsi ve yiikleme frekansinin, asfalt betonun 1sil yorulma davranisini

belirleyen en etkili faktorler oldugu goriinmektedir.

Anahtar Kelimeler: Asfalt betonu, Is1l katsayi, Is1l yorulma, yarim daire seklindeki

numune
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CHAPTER 1

INTRODUCTION

1.1  Background

In Turkey, asphalt pavements comprise around 95% of the entire roadway network,
28% percent of which is constructed by asphalt concrete pavements in motorways
and intercity highways. In asphalt concrete pavements, distresses caused by the
climatic and diurnal temperature changes are one of the most common reasons for
deterioration after the traffic and moisture related distresses. The decrease in
temperature as low as -20°C in the East and West Interior Anatolian regions and the
increase in the daytime-nighttime temperature cycles will eventually result in the
development of thermally induced cracks, which reduce the useful service life of the
pavements. As a consequence, the infiltration of rainfall and melting water into these
cracks leads to serious structural damages in the subgrade, and also increase the
potential for spalling in the crack regions by the effect of filling debris. As a result,
thermal related distresses will eventually result in degradation in the driving comfort
and traffic safety in addition to elevating the maintenance and rehabilitation costs of

roadways.

Thermal fatigue cracks, as being one of the most important reasons for the thermally
induced distresses in asphalt concrete pavements, becomes a crucial factor leading
to serious structural problems. Thermal distresses in asphalt concrete can be assessed
in two ways: Low temperature cracking and thermal fatigue cracking. Low
temperature cracking occurs because of a drastic drop in pavement temperature in
very cold environments. At low temperatures because of contraction, the induced

tensile stress exceeds tensile strength of asphalt concrete and micro cracks appear in



the pavement. Thermal fatigue cracking is more common in regions with
intermediate temperatures. This thermal distress, unlike low temperature cracking,
does not occur immediately. The main mechanism responsible for the development
of thermal fatigue cracks is the high temperature variations occurring during daytime
and nighttime temperature cycles.When contracted under low temperature
conditions, the wearing course is subject to high tensile stresses during these thermal
changes due to generated restrain between the wearing course and the underlying
layers. After along cycle of these thermal changes, even if no visible cracks develop,
the rigidity of the surface course will be reduced by the inception of micro cracks,
and hence increasing the rate of crack growth under traffic loading. For instance, in
Ankara, it is found that the maximum temperature differentials can increase up to 20
°C, and the maximum frequency of temperature differential is as high as 10°C, being
enough to initiate thermal fatigue cracking in asphalt pavements. In the literature, it
is discovered that only a limited study exists for thermal fatigue cracking
phenomenon. In this research, a new methods has been proposed to develop the
existing thermal fatigue testing procedure and the selection of test parameters
representing the actual field conditions. In the initial step, previous research efforts
regarding the thermal fatigue cracking have been investigated in detail. The
fundamental parameters for the study are identified from two points of view; the
results and the testing time for thermal fatigue tests. These fundamental parameters
include specimen ggeometry, frequency of repeated loading, and computation of
applied loading according to field conditions. This research aims at developing a new
testing method for the thermal fatigue test and also investigating the behavior of

various asphalt mixtures used in Turkey.

1.2 Research objectives

Upon the completion of this proposed research, a new test method will be developed

by selecting not only different specimen size and geometry but also loading condition



to represent the thermal fatigue phenomenon for asphalt concrete pavements. To
achieve this, a semi-circular test specimen is proposed based on the results of finite
element analysis as an alternative to the conventional beam specimen used in a four-
point beam fatigue test. A new approach for loading pattern that simulates the
thermal fatigue phenomenon of asphalt concrete is also developed. In the final phase
of the study, important mixture properties for thermal fatigue performance of asphalt
concrete is investigated using statistical analyses of variance methods. It is believed
that the research outcomes will contribute to the national and international
knowledge considering the fact that there is only a limited study available in the
literature on the thermal fatigue phenomenon of asphalt concrete. The study
outcomes will contribute to the existing knowledge on the thermal behavior of
asphalt concrete pavements, which can help engineers conduct better design
practices for long lasting pavements without frequent maintenance and

rehabilitation.

1.3 Originality of the topic

The originality of this research rests on using different specimen geometry and test
method to investigate thermal fatigue behavior of asphalt concrete. In the literature,
only a limited number of studies is available on thermal fatigue behavior of asphalt
concrete. In the scope of this research, instead of using prismatic beam specimen,
semicircular specimens are obtained directly from the Superpave compactor
samples. Thus, the sample preparation process is simplified, and the problems
associated with standard beam specimens are eliminated.

The other contribution is that the selection loading frequency and the amplitude of
applied loading for thermal fatigue testing. In many of the reported studies in the
literature, loading frequency is selected without any consideration of slow process
of thermal fatigue, and the applied loading and its amplitude don’t represent field
conditions. In this study, however, loading magnitude is determined based on the

maximum frequency of daily temperature variations (AT), This temperature



differential is used together with the thermal coefficient of asphalt concrete to
calculate the loading amplitude, which is assumed to be reached in the field under

daily temperature cycles.

14  Scope

The study for this research was started by preparing asphalt mixture samples to
prepare test specimens. Various mixture samples with different gradations, aggregate
type, asphalt modification, and aging condition were prepared according to the
Superpave design method for this inquiry. Test specimens were obtained directly
from cylindrical samples produced by the Superpave gyratory compactor. In this
study, two types of specimens were used: the beam specimen for thermal coefficient
measurements and semicircular specimen for the thermal fatigue tests.

To simulate the induced thermal strain by daily temperature fluctuations in asphalt
concrete, a thermal coefficient measurement test was conducted. Due to special
requirements of this test a thermal chamber was fabricated in the laboratory, which
is insulated for high temperature range. The thermal coefficient of different mixtures
was obtained by measuring displacements during the contraction of specimens inside
the chamber.

Based on the thermal strain results from the thermal coefficient measurements,
Three-point bending fatigue test in the strain control mode was conducted on
semicircular specimens to assess asphalt concrete performance under thermal
fatigue. Since the strain measurement was the main part of this test, FEM analysis
was employed to investigate stress and strain distribution in the specimens. The
length of strain gauge and required initial load to achieve target strain in the specimen
under bending were determined based on the FEM analysis results.

The thermal fatigue tests were executed at 4°C to simulate an intermediate
temperature environment. Thermal fatigue test included two stages: conditioning and

main loading. The main loading was performed in the strain control mode (applied



load was modified over the test duration to achieve pre-defined strain and remain
constant at that level) at two frequencies and three rest times.

Reduction in stiffness modulus was selected as a criterion to compare various
specimens with different mix design variables. ANOVA and multivariate analysis
were applied to the results of thermal coefficient measurement and thermal fatigue
test, respectively. As a result of statistical analyses, the significance of different
variables, including mix design variables and test loading variables, for the
performance of asphalt concrete under thermal fatigue tests, were investigated.

15 Outline of the research

The background overview, research objectives, scope, and outline of research are
included in Chapter 1. Efforts for thermal fatigue cracking of asphalt concrete is
presented in Chapter 2. The review includes a summary of research outcomes on the
effect of mixture properties, climatic properties, test samples geometries, test set-up
used to measure thermal fatigue cracking, and some modeling efforts to address the
thermal fatigue cracking performance of asphalt concrete pavements.

In Chapter 3, methodology of research and sample preparation procedure in
accordance with the related standards (including data collection tools and analysis
methods) considering reference literature (and, if necessary preliminary studies) is
explained in a consistent manner. Chapter 4 is dedicated to the statistical analysis of
findings obtained from the thermal coefficient measurement and thermal fatigue test.
In addition, significant mix design variables needed to address the thermal fatigue
cracking are identified and incorporated in various statistical models. Chapter 5
highlights the derived conclusions from the study and future works to enhance the

applicability of the proposed method.






CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter delineates the concept and the mechanism for thermal fatigue cracking in
asphalt concrete (AC) pavements. Also explained in this chapter is the factors
important for thermal fatigue, different testing approaches, and general evaluation of
previous studies based on the influential parameters for thermal fatigue tests, such as

specimen geometry, loading frequency, loading wave shape, and rest time.

2.2 Thermal cracking

Asphalt concrete pavements are prone to thermal distresses when exposed to extreme
variation of ambient temperatures. This form of distress is a common issue in northern
climates, is called thermal cracking or transverse cracking. Thermal cracks generally
occur at very cold ambient or under relatively cold thermal cycles. As shown in Figure
2.1, thermal cracks are revealed as groups of transverse cracks that spread across the
AC pavement surface and are perpendicular to the longitudinal direction of the
roadway. Some researchers noticed that thermal cracks appear at 6 m to 9 m intervals,
but this range may change from 1m to 30m (Yoder and M. W. Witczak 1975);
however, it was found that for any specific pavement, spacing of the cracks becomes

consistent.
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Figure 2.1. Thermal cracking plan view (Marasteanu et al. 2004)

After the thermal cracks expand throughout the pavement section, water and fines
move into and out of the pavement structure. The first effect of water presence inside
the pavement is separating the aggregate from the asphalt binder, which damages the
pavement structure. During the cold season, penetration of defrosting solution into the
base layer through the crack can result in thawing of the base layer and depression in
the crack. Upward lipping at the crack edge because of ice formation beneath the crack
is another problem generated by this type of distress, which affects riding quality.
Many researchers consider two types of thermal cracking: low temperature cracking
and thermal fatigue cracking. Low temperature cracking occurs when the induced
thermal stress exceeds the asphalt concrete tensile strength (Figure 2.2). This mode of
thermal distress appears at a cold temperatures like the northern regions. More details
about low temperature cracking is presented in the next section of this chapter.
Thermal fatigue cracking occurs when the daily temperature variations induce fatigue
in asphalt concrete and eventually exceed asphalt concrete fatigue resistance. Thermal
fatigue cracking is a common thermal distress mode in relatively low and moderate

temperatures.
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Figure 2.2. Fracture temperature of asphalt concrete

2.3  Low temperature cracking

Low temperature cracks in asphalt concrete pavements are commonly seen in areas
where air temperature falls below -20 °C, or so low that the developed thermal stress
exceeds the thermal strength of asphalt concrete and cause cracks. Low temperature
cracking reduces the roadway's driving comfort by the increased surface roughness
due to fractures, leading to the seepage of melting snow and rainfall water into the
subgrade through the surface cracks and causes loss of bearing capacity. Combined
with the disruption caused by traffic loading, low temperature cracking weakens the
structural integrity of the pavement and eventually increases roadway maintenance
and rehabilitation costs. According to research conducted by (Witczak et al. 2002),
low temperature cracking is one of the main reasons for pavement deterioration, which

is ranked as a second factor in roadway maintenance and repair costs in the United



States. Low temperature cracking is developed perpendicular to the travel direction

and is usually formed at equal intervals ranging from 1 to 100 m (Figure 2.3).

Figure 2.3. Example of low temperature cracking in asphalt concrete pavement (Minnesota
department of transportation)

The mechanism responsible for low temperature cracking is described by the severe
reduction in field temperature that is low enough to develop low temperature cracking.
In other words, when the air temperature drops, the pavement experiences contraction,
and the friction between the pavement and the base layer resists against the
contraction, causing an increase in the tensile stress. When the tensile stress induced
in the pavement exceeds the strength of the asphalt concrete, micro cracks will develop
at the edge and surface of the pavement (Figure 2.4). At colder temperatures or
repeated temperature cycles, the cracks will propagate through the full depth and the
width of the asphalt concrete layer.

10
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Figure 2.4. The mechanism for developing tensile stress by volumetric shrinkage in wearing
course

2.4 Thermal fatigue cracking

Asphalt concrete pavement is restrained by the base layer, volumetric contraction
because of daily temperature variations, cause cyclic tensile stresses. Transverse
cracking due to cyclic stresses at low temperatures above the glass transition
temperature of asphalt concrete has been referred to as thermal fatigue cracking. In
moderate climates, daily temperature variation occurs at higher temperatures than low
temperature cracking, so thermal stresses are not large enough to cause a quick
fracture. However, over time these thermal stresses can induce fatigue similar to load
associated fatigue in the AC pavements. According to a study by (Carpenter ,1983),
thermal fatigue occurrence is expected at a temperature range between -7°C (20°F)
and 21°C (70°F). At higher temperatures, the pavement is in the stress relaxation
mode, and at temperatures below the -7 © C, low temperature cracking becomes the

prevailing distress mode (Figure 2.5).
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Figure 2.5. Thermal stress versus temperature relationship for different test samples
(Carpenter 1983)

2.5  Factors affecting thermal fatigue cracking

It is known that material, environmental factors, and also asphalt mixture properties
are effective in the formation of thermal cracks in asphalt concrete. Previous studies
indicate that several factors affect the thermal resistance of asphalt concrete against
thermal cracking (Vinson et al. 1989). Among these factors, mixture properties,
environmental factors, and asphalt concrete properties are the most significant ones

that need further discussion, as given in the below section.
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25.1 Component material properties

The components of asphalt concrete consist of aggregate, asphalt binder, and air voids
(Figure 2.6). Asphalt modifier, as an additive to asphalt binder to improve its thermal
behavior or other properties, can also be considered one of the contributing factors for
thermal fatigue. Aggregates constitute 90 to 95 percent of asphalt concrete by mass
of total mixture, and adequate gradation, strength, and toughness are the required
properties for mixture stability. The asphalt binder constitutes 4 to 7 percent of asphalt
concrete by mass. Selecting the proper grade of asphalt binder according to traffic and
climate condition is necessary for AC pavement design. The components of asphalt
concrete control its mechanical response under different conditions. The thermal
behavior of AC is also profoundly affected by the properties of mixture components.
These properties include asphalt binder, asphalt content, asphalt binder modification,
aggregate source, gradation, and air voids. A brief discussion of these factors is given

in the below sections.

Representation

Mix Specimen of Volumes
Compacted _Asphalt with Asphalt in a Compacted
Mix Specimen Removed Asphalt Specimen
PQNPET0. )\ i
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Figure 2.6. Diagram for components of asphalt concrete(Asphalt Institute 2014)
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a) Asphalt binder grading

It is understood that the essential material component in terms of thermal fatigue
cracking of asphalt concrete is the asphalt binder. Notably, it is demonstrated that the
degree of penetration of asphalt binder has a strong relationship with low temperature
cracking strength; the mixtures containing low penetration asphalt have a higher
cracking temperature or lower cracking resistance. In recent years, it is common
practice to improve asphalt concrete's low temperature performance by adding
polymer modified additives to asphalt. One common polymer modified additive to
avoid thermal cracking in asphalt concrete is Styrene Butadiene Styrene (SBS), this
additive by enhancing elastic properties of asphalt binder increases the flexibility of

AC pavements at low temperatures.

100

Figure 2.7. Pavement distresses affected by asphalt binder (SHRP-A-410, 1994)
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b) Asphalt content

Asphalt content must be sufficient to provide adequate workability and durability, and
not so large to cause bleeding, rutting, and instability in asphalt concrete (Harvey et
al. 1995). The acceptable range of asphalt content for different types of distresses is
shown in Figure 2.8. Since asphalt binder's thermal conductivity is greater than that of
aggregate, the higher asphalt content increases the thermal coefficient of asphalt
concrete. At the same time, higher asphalt content results in thicker asphalt film that
transfer stresses through the mixture; therefore, stress and strain in asphalt binder
decrease. It is also known that increased asphalt content reduces the initial stiffness of
the mixture (ASTM STP 1265 1995). As an overall effect, the raised asphalt content

improves the performance of AC pavements against thermal fatigue significantly.

Rut Depth, mm

max

acceptable
range for
all distresses

Fatigue
Cracking, %

Low Temperature
Crack Spacing, m

% Asphalt

Figure 2.8. The acceptable range of asphalt content for different types of distresses(SHRP-
A-410 1994)
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c) Asphalt binder modification

Many modifiers are used in paving applications to improve temperature related
properties of asphalt binder. Generic types of modifiers can be classified into eight
groups: mineral fillers, extenders, polymers, crumb rubbers, oxidants, hydrocarbons,
anti-strips, fibers, antioxidants (Bahia, Hussain 1996). The most common additives
to modify asphalt binders for highways and airports are the polymers, which can be
manufactured in two types, plastomers, and elastomers. Plastomers make binders
stiffer and reduce the binder’s temperature susceptibility, so AC pavements containing
plastomer modifiers would be less useful to resist low temperature and thermal fatigue
cracking. On the other hand, elastomer modifiers improve the elastic recovery of
asphalt binders by using Styrene Butadiene (SB), Styrene Butadiene Rubber (SBR),
and Styrene Butadiene Styrene (SBS), which is also used in this study, are the
conventional elastomers in pavement applications. Epps (1999) found that using a
crumb rubber modifier as an additive also enhances the thermal fatigue performance
of asphalt concrete. Table 2.1 summarize the effect of known additives against

different distresses in AC pavements.

Table 2.1. Selection of proper asphalt modifier for thermal fatigue experiment (Shell
Bitumen Handbook- 2003)

Type of Modifier | e Ron | cracking | cracking | damage | A9
Elastomers v v v v
Plastomers v

Tire rubber v v

Carbon black v v
Lime v v
Sulphur v

Chemical v

Antioxidants v
Adhesion v v
Hydrated Lime v v
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d) Aggregate source and gradation

Many studies have been conducted on the effect of aggregate type and mixture
gradation on low temperature cracking, but only a few studies are available in the
literature on the effect of aggregate type and gradation on the thermal fatigue
performance of asphalt concrete. A review of previous studies indicates that there is
no consensus about the significance of gradation and aggregate type for low
temperature cracking resistance; however, it was reported by many researchers that
aggregate with high resistance to freeze-thaw cycles and low absorption is more
resistant against thermal cracking. It is believed that absorptive aggregates reduce the
strength of asphalt concrete at low temperatures because more asphalts would be
absorbed to aggregate, and therefore the film thickness necessary for bonding will be
less as compared to a mixture with non-absorptive aggregate. In a study by (Epps,
1999), the difference between the effect of dense gradation and gap gradation on the
thermal fatigue performance of test samples was evaluated, and the results showed
that the difference was statistically significant. (Arabzadeh 2015) also researched to
investigate how mixture design variables affect the thermal fatigue behavior of asphalt
concrete. Their findings indicated that aggregate type and gradation were highly

influential parameters for asphalt concrete thermal fatigue resistance.

e) Air void content

Air void content plays a significant role in the performance of asphalt concrete. AC
pavements with lower air void content (<3%) are prone to rutting and bleeding. On
the other hand, pavements with very high air void content are susceptible to stripping
and aging because of excessive oxidation. Reduced air void content improves the
performance of asphalt concrete against fatigue (thermal and load associated) for the
following reasons. Lower air void in asphalt concrete results in a more homogenous
mixture. Therefore, stress concentration reduces, especially in contact location of

aggregates. Because of the reduction in size and number of voids, micro-cracks
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development would decrease, and cracks formation would be delayed. Another
explanation for this behavior is related to oxidation. Mixtures with decreased porosity

allow less aging by oxidation(Harvey et al. 1995).

25.2 Environmental factors

a) Temperature

The pavement temperature depends on the ambient temperature (Figure 2.9), so the
air temperature can be considered as the most influential parameter for low
temperature cracking and thermal fatigue cracking. Sudden thermal cracks can be
formed when the pavement surface temperature drops down to the fracture
temperature of asphalt concrete, which is not necessarily higher than its glass
transition temperature. Daily temperature variations cause thermal stresses, and when
the repeated stresses exceed the AC surface layer's fatigue resistance, thermal cracks
will develop. Field experiments (Al-Qadi et al. 2005) showed that temperature
variation could cause a high strain variation of 350 um/m in AC pavements. Since
applying thermal cycles in the laboratory is time consuming, using loading cycles at

low frequency to simulate daily temperature fluctuation seems reasonable.
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Figure 2.9. Air temperature and surface temperature as functions of time(Barber 1957)
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b) Pavement aging

Asphalt concrete aging in the field can be divided into two stages: short term aging
and long term aging. Short term aging occurs when the asphalt mixture is exposed to
very high temperature during the production in the plant and during the compaction in
the field. In this stage, the chemistry of asphalt binder changes because of
volatilization and oxidation. Volatilization occurs due to the evaporation of lighter
components at very high temperatures, and oxidation takes place due to the chemical
reaction of asphalt bitumen with oxygen. The second stage of asphalt concrete aging,
which is also termed as long term aging, continues during the service life of asphalt
concrete, in which case the oxidative aging becomes a dominant factor as the aging
rate gets slower in comparison with the short term aging process.

Figure 2.10 shows how aging changes the asphalt binder rheology in different stress
modes. Aging causes AC layers to be stiffer and more brittle, increasing the potential
for thermal cracks and load associated cracks under traffic loading. It was reported by
Jung & Vinson (1994) that the fracture and the glass transition temperature of AC
layers were significantly affected by aging, and the aged specimen failed at a higher
temperature, and the fracture strength of the aged specimen was lower than unaged
ones. Jackson & Vinson (1992) conduct a study to evaluate thermal fatigue in asphalt
concrete, and they found that in the absence of environmental aging, thermal fatigue
would not be dominant distress in the early years of asphalt concrete pavement. As
shown in Figure2.11, A.h.Gerritsen & et.al (1989) simulated thermal fatigue by
performing a fatigue test at very low frequency and at two temperatures of 0° C and
10°C. One of the objectives of this study was to evaluate the fatigue life of asphalt
concrete subjected to severe aging. A dramatic drop was discovered in the fatigue
resistance of the test samples at 0° C due to aging when loading was performed at high
strain levels which resulted in a brittle fracture rather than cracking propagation by the
thermal fatigue process. However, at low strain levels aged samples outperformed

unaged ones.
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Figure 2.10. Pavement main distress modes in relation to rheological behavior of asphalt
binders before and after aging (ASTM STP 1241, 1995)

Myqy . CORRECTED {CYCLES)

b 6. 3 pha Mgy + CORRECTED (CYCL ES)
=‘=/sa/i 3 oha AGED MIXES
z | \\
EN ) ph:\ a -~ =r .\“\1
46" |- \_ - 3 1\ ‘L
-r N W
s - 53u~s\ a \ B MON - AGED o \¥“l‘
L . i
6.3 pra s \\\ e T lH
. L L 10°C oL ‘h‘-'l 0°C
- \‘“‘
1d | N s " g | \
. b SN . |
53 pha ™ ~
s -, AT \ AGED &
.\ . \ 163 pha
- N - r o
\\J I - ”} e
g " TR 10’10“" 2 - s 8 107
10”3 2 - = s 102 STRAIN {m /m)

STRAIN (m /m)

Figure 2.11. Comparison between fatigue life of aged and unaged asphalt mixtures tested at
0.0004 Hz and different temperatures (Gerritsen and Jongeneel, 1999)
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2.5.3 Asphalt mixture properties

Since the mechanistic based approach was conducted in this study to investigate the
performance of asphalt concrete, the combined effect of asphalt concrete constituents
also becomes very significant for thermal fatigue cracking. The previous studies
indicate that the evolution of thermal stress in asphalt concrete is mainly governed by
the mixture stiffness and its thermovolumetric properties such as thermal
expansion/contraction coefficient, and glass transition temperature. The effect of these
factors is further discussed in the following sections.

a) Stiffness of asphalt mixture

Asphalt mixture stiffness is one of the significant factors for the performance of AC
pavements. A general rule of thumb used by the asphalt pavement practitioners to
accept or reject the mixture is that if the measured stiffness (|G*|) at 40°C and 10 Hz
loading frequency is higher than 250 MPa, then the asphalt mixture is acceptable for
execution in the field. Asphalt mixture performance under thermal and load associated
fatigue can be evaluated with its stiffness modulus. During the performance tests like
constant shear, uniaxial, and flexural fatigue tests, the stiffness modulus reduction
occurs because of crack initiation under the cyclic loading, which gradually
propagates through the thickness. In the past, the flexural fatigue test was utilized by
many researchers to simulate field conditions, in which a beam specimen was
subjected to cyclic bending until failure. Since the test was conducted in the strain
control mode, a complete fracture in the sample could not be a criterion for failure.
So, it was proposed to apply different levels of reduction in stiffness (25%, 50%, 75%)
as failure criteria. Epps (1999) applied 50% reduction in the initial stiffness as a
termination criterion when she employed four points bending test on the beam
specimens in the strain control mode and sinusoidal loading cycles to simulate thermal

fatigue on the field. During the bending fatigue test, the relationship between stiffness
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and the number of the loading cycle can be displayed in two phases: Initial or
adaptation phase and secondary or stationary phase. After starting the test, there is a
dramatic drop in the test sample's stiffness during the first few cycles of the initial
phase. Some researchers relate this drop in stiffness to creep, as a viscous response of
asphalt concrete (Mamlouk et al. 2012b), while heating of asphalt concrete due to the
effect of dissipated energy and the binder thixotropy is considered by other researchers
(Di Benedetto et al. 2004). Despite the different opinions regarding this phenomenon,
there is consensus that mixture behavior in the initial phase is not due to fatigue. In
the second phase of the test, fatigue plays a dominant role in the stiffness reduction of

asphalt concrete, and it continues until the complete failure of the test sample.

b) Thermal properties of asphalt concrete

As the air temperature decreases, the pavement temperature drops, resulting in stress
accumulation due to the surface layer's volumetric contraction. The constant a denotes
the thermal coefficient of AC, and it is the primary thermo-volumetric property
controlling the development of thermal stress in thermal fatigue and low temperature
distresses. Using the thermal coefficient of contraction, the relationship between the

thermally induced strain and temperature change can be computed using Eq. (2.1):

q = dsT(T)

o (2-1)

A list of measured coefficients of thermal expansion/contraction, tested specimen
geometries, measuring sensors, and temperature ranges in previous studies are given
in Table 2.2.
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Table 2.2. Measured coefficients of thermal expansion/contraction for AC in previous

studies
References Test samples Measurement Temperatur CTC
geometry
method e range 10n-5/° C
(Domaschuk and et.al. Beams of 63mm Strain gage
1964) x100mm x 250mm -9.4 10 -31
(Littlefield n.d,1967) Beam sample Extensometer 010 54 16
Dial deflection
(JONES et al, 1968) Beam sample gauge & Glass 2310 60 3.69
dilatometer
(Osterkamp, 1986) Beam sample Lvdt .55 10 10 1.7-22
Beams of 76mm x
(Janoo et al, 1993) 26mmx305mm Lvdt -40to 0 24
Cylindrical samples
(StOﬁe'Slzg%)Kwa”da' of 150mm diameter Strain dages 5o | 133-297
and 50mm height 9ag
Cores of 150mm
(Mehta et al, 1998) dlametgr 50mm Lvdt 25100 1.58-2.33
height
(Zeng and Shields, Beams of 51mm x 135
1999) 51mm x 340mm Lvdt -40 to 40 '
Beams of 50mm x
(Mamlouk et al, 2005) 50mm x 390mm Lvdt 010 60 20-6.3
Beams of 50mm by
(Qadir Adnan, 2010) 65mm by 300mm in Lvdt -80 to 20 3.20-4.3
the TSRST machine
. . Cores of 100
(Xuand Solaimanian, mm diameter 150mm Extensometer -5t0 40 1.85-2.65
2008) height
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2.6 Approaches to measuring the performance of asphalt concrete under

thermal fatigue

Thermal fatigue is a phenomenon for which there is no consensus about modeling this
distress mode yet. Two methods have been proposed to evaluate the performance of
asphalt concrete under thermal fatigue: phenomenological and mechanistic methods,

which are described as follows (Vinson et al. 1989).

2.6.1 Phenomenological approach

In the phenomenological method, different tests are conducted at different levels of
stress or strain to investigate the number of cycles to failure. Some researchers
(Sugawara,T. 1984)conducted tests at temperatures close to the mixture fracture
temperature. They concluded that the fatigue life of hot mix asphalt is shorter in the
thermal mode compared to load associated mode. Miner’s hypothesis is the common
equation used for fatigue analysis. The hypothesis proposes that the damage due to
fatigue is accumulated, and the failure happens when the summation of fatigue life

rates is equal or larger than one.

=1 (2-2)

N;
n;= the number of cycles accumulated at stress or strain level i

N;= the number of cycles to failure

2.6.2 Mechanistic approach

Mechanistic methods correlate between pavement distress and main material
properties such as temperature, loading time, stress, strain. Fracture mechanics
parameters comprise a major part of mechanistic approach models developed for

thermal fatigue cracking of asphalt concrete. Stress intensity factor(K), J integral, and
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Energy release rate integral (C*-line integral) are several fracture mechanics

parameters used for this purpose.

2.7  Summary of previous researches on thermal fatigue cracking

Thermal cracking has been studied since 1960, in the beginning, there was an idea that
thermal fatigue because of its very low frequency cannot initiate and propagate
transverse cracking in flexible pavements until mid-1970’s which pavement engineers
in west Texas observed sever transverse cracking. This was unusual because
pavements do not experience extreme low temperature in that area, so the idea about

the second type of thermal cracking was initiated.

A limited number of studies about thermal fatigue are available. The most important
causes for this distree can be summarized as the effect of thermal fatigue cracking on
the pavement performance is difficult to be understood, and the thermal fatigue test

includes long-term and complicated experiments.

It is evident from some studies in recent years, that the thermal stress is not
individually the reason for the deterioration of the roadways, because thermal stresses
are small and unable to generate immediate fracture. However, it is probable that
cyclic thermal fluctuations above the fracture temperature cause cyclic fatigue in the
pavement and make it more prone to cracking under consecutive thermal and traffic

induced stresses.

An essential part of the work done on the thermal behavior of AC pavement has
focused on sudden thermal cracks formed at low temperatures. The next section covers
the essential elements of thermal fatigue cracking experiments. A summary of
laboratory based studies on thermal fatigue performance of asphalt concrete is given
in Table 2.3.

25



Table 2.3. Recent laboratory studies on thermal fatigue cracking

References Applied method Test type Test samples Geometry chltLL:’E:
Three point
. . - Beam of x25mm
(Sugawara,T. 1984) | Phenomenological bendlr:gsiatlgue 2EmMx250mm Fracture
. Trapezoidal beam of N
(A.h.Gerritsen and T : Reduction in
. wo point 30mmx (25-55)mmx160 :
et.al 1989) Mechanistic bending fatigue mm stiffness
. Cylindrical samples of
(Jackson and . Tension/
. Phenomenological . 254mm(Length)x57.2mm Fracture
Vinson 1992) Compression (diameter)
Four point 50%
(Epps 1999) Mechanistic bending fatigue Beam of x51mm Reduction in
test 64mmx381mm stiffness
(Pérez-Jimeénez et Mechanistic Tension/ Beam of Fracture
al. 2011) Compression 50mmx50mmx60mm
. 35% & 50%
- Tension/ Beam of 50 mmx65 U
(Arabzadeh 2015) Mechanistic Compression MmMx250 mm Regil#:]lgsr; in

2.8  General evaluation of previous thermal fatigue tests in the literature

The studies summarized above are briefly evaluated by taking into consideration the

proposed research subject and scope. After compiling the information obtained from

the literature, the thesis's subject and method have been determined. The assessments

about different determining parameters in thermal fatigue test are as follows.

2.8.1

Sample selection

Gerritsen & et.al (1989) used trapezoid specimens with 160mm length and 20-55 mm

width under two points bending fatigue test to evaluate influential factors on asphalt

concrete's thermal fatigue performance. To model thermal fatigue behavior, Jackson

& Vinson (1992) employed kneading compactor to produce beam specimens of 57mm
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x 57mm x254mm for the DTT test. Epps (1999) subjected 64mmx54mmx381 mm
rectangular beams to flexural fatigue test using a four-point bending device to measure
thermal fatigue resistance of asphalt concrete. Perez & et.al (2011) used Prismatic
specimens with 50 mm width and thickness and 60mm height under cyclic loading to
simulate the combined effect of thermal fatigue and load associated fatigue.

As seen from the studies summarized above, specimens used in fatigue tests were not
selected according to a specific method or standard, and test specimens used in almost
every study had different dimensions. It is known that the sample sizes used in fatigue
tests had a significant influence on the test results.

The beam samples used in many studies required separate compaction equipment
because they could not be produced from cylindrical samples used in the mixture
design. According to the conducted studies in the literature, the reason for the variation
of results in different studies is unknown. It could be a test sample size effect on the
presented results or because the test specimens with different sizes were used. It should
also be mentioned that the air void distribution in the beam specimen is more variable
than cylindrical one, so the extension of air void variability in the reported test results

is unclear.

2.8.2 Loading frequency

The loading frequency used in fatigue tests was different in each study, fast loading
represents fatigue under the traffic load while slow loading is more representative of
thermal behavior, so thermal fatigue modeling requires low frequency loading.
A.h.Gerritsen et.al (1989) conducted fatigue tests at different frequencies (0.004Hz
and 0.0004Hz). The results indicated that the loading speed would significantly impact
the fatigue performance. (Figure 2.12). The reason for this behavior is that the different
regeneration rates of the mixtures would show different healing behavior. In thermal
fatigue tests, since the thermal temperature cycle is replaced by mechanical loading,

the selected loading frequency must reflect the actual thermal stress behavior. Epps
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(1999) also employed a beam fatigue test at a slow frequency (0.05 Hz) to compare
the thermal fatigue resistance of different mixtures.

(Jimenez et al., 2011) applied the loading frequency of 10 Hz for both load associate
and thermal fatigue. However, it was not possible that the obtained response at this
loading rate would represent thermal fatigue. There are significant differences
between the loading frequencies used in previous experiments. It is seen that the
selected loading frequency is from 0.0004 Hz (A.h.Gerritsen et.al, 1989) to 10 Hz
(Jimenez et al., 2011).

mix (%)

100
N—2
50

Ni‘uL "fut

NUMBER OF CYCLES

Figure 2.12. Comparison between high frequency (40 Hz, 1) and low frequency (0.0004Hz,
2) fatigue test (A.h.Gerritsen and et.al 1989)

2.8.3 Type and shape of the loading

In previous studies, to simulate thermal fatigue, both strain and stress controlled
loading was applied, and the preference was more in the direction of the strain-
controlled loading. According to Al-Qadi et al. (2005), the level of stress-strain was

recognized as a critical factor in thermal fatigue cracking. Based on the results
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obtained from the actual field measurements, it was suggested that thermal fatigue
tests should be applied in the controlled strain mode. In previous studies, the amplitude
of stress or strain values were chosen differently for unknown reasons, and the loading
magnitude corresponding to temperature changes in the field conditions was not

examined (Figure 2.13).
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Figure 2.13. Variation of Measured strain under the wearing surface (Al-Qadi et al., 2005)

It is generally accepted that haversine and sinusoidal loading simulates daily
temperature fluctuation the best (Figure 2.14). Most of the researchers used sinusoidal
waveform of loading for the thermal fatigue test, some applied sinusoidal loading
through flexural bending test (Epps 1999) and (A.h.Gerritsen and et.al 1989), while
others implied this wave shape of loading by direct tension test (Jackson and Vinson
1992), and(Arabzadeh 2015).
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Figure 2.14. Illustration of sinusoidal and haversine loading waveform

284 Rest time

Many works have been performed on the effect of rest time on load associated fatigue
life of asphalt concrete. As shown in Figure 2.15, studies show that adding a rest period
to any sinusoidal or haversine loading would increase the fatigue life of asphalt
concrete up to 5 times(Raithby and Sterling 1970). It was also found that there was an
upper limit, which after that, adding more rest time would not affect fatigue life.(Van
Dijk et al. 1972). Rest periods can be applied either by discontinuous loading or by
intermittent loading. In discontinuous loading, loading continuous for a specific period
and then rest time is exerted, in case of intermittent loading, each cycle of loading is
followed by the rest time. It is established by many studies, that rest periods between
consecutive loadings increase the fatigue life in both controlled strain and controlled
stress modes in laboratory tests(Bonnaure et al. n.d.). All of the mentioned studies
were employed to assess load associated fatigue, but no study has been conducted that
includes impact of rest time in thermal distresses. The effect of the rest period, as a

test variable, on thermal fatigue cracking is evaluated in this study.
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Figure 2.15. Number of cycles versus stiffness ratio with and without rest periods in load
associated fatigue (Mamlouk et al. 2012a)
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CHAPTER 3

METHODOLOGY AND MATERIALS

3.1 Introduction

This chapter describes the methodology applied in this research. Significant portion
of this chapter is devoted to the design, fabrication, programming of a thermal
chamber for measuring thermal coefficient, and design of a new procedure for thermal
fatigue test by applying a bending test on a semi-circular specimen. The experimental
design for laboratory tests include the number of specimens needed to be produced,
detailed procedure of the Superpave mix design method, determining mixing and
compaction temperature, mixture conditioning procedure, and calculation of the
volumetric properties of compacted samples. The discussion also includes details
about the preparation of test setup and the formation of a module program in the
control software environment. Figure 3.1 gives a summary of the methodology
followed in this research.

3.2  Thermal coefficient test setup
3.2.1 Design and fabrication of thermal chamber

Although many researchers have conducted the thermal coefficient test for asphalt
concrete, there is no consensus on the test procedure yet. Because of the individual
requirement for measuring the thermal coefficient in this study, a thermal chamber
was designed and fabricated. The manufactured thermal chamber was insulated in
such a way to measure thermal properties at both low and high temperature range from
-70 °C to +85 °C as shown in Figure 3.2 and 3.3.
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Figure 3.2. Test set up for measuring the thermal coefficient of asphalt concrete
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Figure 3.3. General schematic of the thermal chamber for measuring thermal coefficient
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The thermal chamber was manufactured using 66 liters cooler with exterior
dimensions of 750x420x405mm and the interior dimensions of 625x325x325mm.
The cooler was enhanced with fiberglass sheets covered with stainless steel sheets to
prevent deformation due to temperature variation. A flat platform to stand the test
specimen was also constructed using double aluminum plates separated by a fiberglass
sheet, which can prevent uncontrolled heat transfer from the heating resistant to the
specimen. To prevent friction between the specimen and the platform during
contraction while the specimen is cooled down, a 5mm thick Teflon sheet was placed

onto the platform before starting the test (Figure 3.4).

o el
 Heaung resor

N

»

Teflon sheet

Figure 3.4. Thermal chamber components: a) Heating resistor, b) Turbo fan & nitrogen
nuzzle, ¢) Test set up
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A heating resistor was installed below the stand to adjust the chamber temperature that
was required for the conditioning stage. The inside temperature was uniformly
distributed by a fan installed at the bottom of the thermal chamber. In the cooling
stage, the chamber's temperature was dropped at 60 ° C/h by the inflow of LN2 through
a computer controlled solenoid valve. The setup for measuring the thermal coefficients
also included a temperature controller, a LN2 tank (150 liters), compressor, and
resistance temperature detectors (RTD'S). Temperatures at the surface and the core of
the specimen were monitored by RTD’s which were connected to the data acquisition
system. Data obtained from the RTDs controlled the amount of liquid nitrogen
required to adjust the set cooling rate up to the minimum temperature, for which the
measurement was taken. For transferring the liquid nitrogen into the chamber, a
special nozzle system was fabricated from aluminum and installed at the bottom side
of the chamber, so that the LN2 would be sprayed uniformly inside the thermal

chamber (Figure 3.4).

3.2.2 Programming

The data acquisition system consisted of sensors, a DAQ measurement hardware, and
a PC with programmable software. The RTDs and LVDT (also-called transducers)
converted the temperature and the amount of dimensional change (contraction or
expansion) data to measurable electrical signals through the data acquisition system
and stored in PC for further analysis. A user interface program developed in LabVIEW
(also referred to as G) was used to control the measurements and store data into the

computer.
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3.2.3 Measurement of thermal coefficient

The first step in measuring the thermal coefficient of asphalt concrete was to apply
temperature conditioning to achieve a uniform temperature distribution within the test
specimens. The specimens were first heated up to a selected conditioning temperature
for 3 hours, and after temperature stabilization, the cooling step was then started at the
selected cooling rate. During the specimen's contraction, the displacement data
corresponding to the current temperature was recorded at a predefined frequency. The
program interface has two parts: the control section and the indicators section. System
control mode, test control mode, and testing time constitute the control section. In the
indicator section, two graphs are displayed: displacement versus temperature and time
versus temperature. The thermal coefficient of contraction is calculated in real time

and plotted in the displacement versus temperature plot (Figure3.5).

3.2.3.1  The system control

The system control includes buttons to switch on and off the fan, solenoid, and heat
resistor. During conditioning, the button for the heater resistor is switched on. During
the cooling step, the button for the solenoid valve must also be on for transferring the
vaporized nitrogen into the chamber. The fan switch must be on in both cases to apply

air circulation inside the chamber.

3.2.3.2 The test control

In the test control, the temperature control phase is defined by selecting the thermal
conditioning or temperature profile. In the user interface program, after conditioning
at the target temperature for a predefined duration of 3hours, the control button starts

blinking, which indicates that the conditioning period is completed. It is worth
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mentioning that switching from the thermal conditioning to the temperature profile

stage was applied manually. Other controls in the user interface are allocated to
defining the log file path and the logging period for the recorded data. The logging
frequency is defined by a time lag between 2 data points, which was chosen 30 seconds

in this study.
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Figure 3.5. A view of the user interface program in the LabView program for measuring the

thermal coefficient
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3.2.3.3 Temperature control

In this study, conditioning temperature, final test temperature, and cooling rate as
components of the temperature control section were taken as 30°C, -30 °C, and 60 °h,
respectively. Readings from different RTDs were also displayed in this section for

the core temperature, the surface temperature, and the temperature inside the chamber.

3.24 Calibration of linear variable differential transformers (LVDT)

As shown in Figure 3.6, the displacement measurement system consisted of LVDT,
an extension bar, and fixtures. Because these materials also contract during the cooling
phase and affect the thermal coefficient measurement, the deformation sensors need
to be calibrated together with the invar bars and the mounting fixtures. For this
purpose, a modified setup was prepared to obtain the calibration data and then used to
correct the measurements for the thermal coefficient of asphalt concrete samples.
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Figure 3.6. LVDT installation for displacement measurement
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The LVDT used to measure the deformations is manufactured as SM series by
Solartron Metrology Comp. The sensors are of type inductive LVDT with a nominal
linear range of £3 mm and temperature operating range of -40°C to +85°C, the
sensitivity of is 118 mV/V/mm @ 1kHz. Before starting the measurements, the entire
measurement setup was calibrated by using auxiliary fixtures of known thermal
coefficients, i.e., a ceramic beam and steel beam, with a length of 100 mm. To be able
to calculate the thermal coefficient of the LVDT sensor, adummy sample and an invar
bar meeting the LVDT sensor were manufactured from the same steel of known
thermal coefficient. The test was also repeated by using the ceramic sample and the
steel invar bar, so that the unknown thermal coefficient of the LVDT can be calculated
from the equations generated from the two testing’s. The thermal coefficients of the
ceramic and the steel material were reported as 0.81 x 10-5/°C and 1.16 x 10-5/°C by

the manufacturer, respectively (Figure 3.7).

Figure 3.7. Test setup for calibration of LVDT and steel rod using ceramic and steel beam
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After 3h conditioning at 30°C, calibration tests were conducted at a cooling rate of 60
° C /h. The following adjustment was made to displacement measurements: In the test
with a ceramic beam, the total deformation (8;,.4;) Measured is the deformation of
the ceramic beam minus the deformation of the steel rod and the LVDT in Eq.(3.1)
(Figure 3.8).

8total = Bceramic — O steelrod — OLvde (3.1)

The total deformation was also calculated by using the steel dummy sample in the
same way by Eq. (3.2):

Stotal = Osteel beam — Osteel rod — OLvdt (32)
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Figure 3.8. Deformation of steel and ceramic versus temperature variation

The coefficients of thermal contraction for the steel rod and LVDT were obtained by
solving Eq. (3.1) and (3.2) as listed in Table 3.1.
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Table 3.1. Thermal coefficients of LVDT and steel rod sample

Material Coefficient of thermal contraction(/°C)
LVDT 2.55x107°
Steel rod 1.16x1075
3.2.5 Preparation of beam specimens for thermal coefficient test

In this study, the beam specimens needed to measure the thermal coefficients were
obtained from the gyratory compactor samples using a diamond saw cutter. From each
compacted sample, two test specimens could be acquired with a specimen length equal
to the height of the samples produced by the gyratory compactor, which varied
between 120 mm to 125 mm. The obtained specimens had a cross section dimension
of 65 mm x 50 mm. One of the beams produced was aged to test for the effect of aging
on the thermal coefficient. The specimen was placed in an oven for 120 hours at
85°C to be aged according to the AASHTO R30 standard before testing (Figure 3.9&

3.10).
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Figure 3.9. Gyratory specimen section for cutting to obtain beam sample
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Figure 3.10. a) Prepared beam specimens for thermal coefficient measurement, b) Beam
specimens before and after aging according to (AASHTO R30 2006)

3.2.6 Sample preparation for thermal coefficient measurement tests

3.2.6.1 Mounting support pads for LVDT (Linear variable differential
transformer)

Supports for holding LVDT were fixed on the specimen by installing the steel pads
onto a reference steel plate at a distance of 100 mm. The epoxy compound was then
prepared, consisting of two parts: epoxy resin and epoxy hardener. The epoxy
compound was applied to the wider surface of the specimen (65 mm) in previously
marked points. Then, the steel plate with attached steel pads was put on the beam
precisely, so the steel pads could thoroughly go inside the epoxy resin and have
complete contact with the specimen. After 1-hour waiting, the epoxy compound
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hardened, and the plate was separated from the support pads by unscrewing the steel
pads (Figure 3.11).

Figure 3.11. Mounting support pads on beam samples for thermal coefficient measurement

3.2.6.2 Installation of LVDT sensor on test specimens

The LVDT used in this study to measure strain at the bottom surface of the specimen
is an inductive type designed for high resolution position measurement. As shown in
Figures 3.6 and 3.12, an inductive LVDT comprises a core and coil assembly, the core
is made of a very thin iron-nickel cylinder shape and attached to the steel rod coil
assembly consisting of wound coils with three wires. During measurement, two
holders were attached to the steel pads to keep the steel rod and the LVDT sensor
parallel to the specimen's surface. The displacement of the core inside the LVDT due
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to specimen’s shrinkage generates the required displacement for the calculating of the

thermal coefficient of the test specimens.

3.2.6.3 Installation of LVDT sensor on test specimens

RTDs (resistance temperature detector) were used in the test setup to measure the
surface and the core temperature of the test specimens as shown in Figures 3.12. For
each thermal coefficient measurement, a dummy sample was put horizontally inside
the thermal chamber, and a probe RTD was inserted inside the specimen to measure

the core temperature.

Figure 3.12. Mounting LVDT on beam specimen for measuring thermal coefficient
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3.3  Thermal fatigue test setup

3.3.1 Test equipment

Thermal fatigue tests were conducted using a 16 kN capacity dynamic testing system
(DTS 16) equipment, as shown in Figure 3.13. This equipment includes a data
acquisition system (CDAS), and a pneumatic pressure system, which can produce a
maximum of 20 kN static loading and 16 kN dynamic loading. The actuator applies
load to the specimen through a loading frame, depending on the test protocol used.
Further information for DTS 16 system is given in Table 3.2. (Universal Testing
Machine General-PAVETEST 2014). The environmental chamber that was used for
this test is an LMS cooled incubator with internal dimensions of 550x700x 1170 mm
and an operational temperature range between -10°C to +60° C. To gather temperature
data during the thermal fatigue test, a dummy specimen was placed inside the

chamber.

Figure 3.13. Thermal fatigue test setup
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Table 3.2. DTS16 test machine specifications

Item Description
Machine dimensions 450 (d) x 500 (w) x 1020 (h) mm
Static load capacity +/-16KN
Effective vertical space 650mm
Space between columns 345mm
Load cell +/- 20kN
3.3.2 Programming for test protocol

3.3.2.1  Data acquisition system

The data acquisition and the control system (CDAS) used in this test gathered signals from
various transducers through 16 channels with the capability of 200,000 samplings per
second. Technical specifications for CDAS are given in Table 3.3 (Universal Testing
Machine General-PAVETEST 2014).

Table 3.3. Specifications for data acquisition system

Item Description
Acquisition 16CH normalized input, resolution:20 bit
Sampling rate All channels, maximum 200KHz
Smoothing Maximum 64 times through sampling
Calibration Automatically
No of control axis 4
Communication Ethernet or usb
Dimensions 31(d)x 25(w) x10(h) cm
Power 50/60Hz - 90-264v
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3.3.2.2  Closed loop servo control

After starting the test, the transducers transfer the signal to the data acquisition system,

and after the data processing, the difference between the requested input and the

response from the transducer is considered an error, so the servo valve regulates the

air pressure to correct this error. To minimize the error during the test, PID

(Proportional, Integral, Derivative) as a control loop procedure was applied. During

the tests, all PID parameters are adjusted to obtain optimum performance during the

thermal fatigue test (Figure 3.14).
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Figure 3.14. Schematic diagram of a) closed-loop diagram.,b) PID controller

49



3.3.2.3  Programming software

Testlab is a material testing software devised by Pavetest Ltd to interface the CDAS
control and the data acquisition system as well as the servo pneumatic loading device.
There are standard test methods in Testlab program in which scripts are saved to a
customized method file for a particular testing protocol. The method file consists of
transducers, control parameters, calibration allocations, test termination criteria. The
method file used for this study does not exist, so a new method file was written using
the test designer program to carry out the test protocols.

a) Test navigation menu

The test navigation menu consists of several repeated parts allocated for the different
aspects of the test protocol. The main parts of the navigation menu are summarized in
the below sections.

1. General

This section consists of two parts: The first part gives some information about the
project name and operator name. In the second part, the method file name and
description and the directory path are indicated. The method file name used for this

study was called generic fatigue test.

2. Pretest mode

In this section, firstly, specimen dimensions are entered, which are 150 mm for
specimen diameter and 35 mm for its thickness. The test parameters are also presented
in two columns. Target test temperature, support Span, CMOD gauge length, and LLD
gauge length are entered in the first column. The second column consists of assumed

loading cycles for initial stiffness, termination stiffness reduction criterion, maximum
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termination cycle, and maximum displacement of the actuator. Table 3.4 lists

necessary test data for the thermal fatigue test protocol.

Table 3.4.Input test parameters in Pre Test section

Parameters 1 Parameters 2
Target test temperature 4°C Initial stiffness@ cycle 1
Support span (mm) 120 mm | Termination stiffness reduction (%) | 75
Gauge length CMOD (mm) 25 Termination max cycles 2000
Gauge length LLD (mm) 30 Max.actuator displacement (mm) 1
3. Loading

The loading section comprises two parts; the first part is about loading sequence
settings. The thermal fatigue test in this study included two sequences, a conditioning
sequence, and the main loading sequence. Since the conditioning sequence was
considered a zero sequence by software, the number of sequences was assumed 1 in
the related box, but the actual number was two. In this study, the number of loading
cycles for the conditioning sequence was defined 10 cycles, and the number of cycles
to display in the software interface was selected 5. The second part of this section
included more details of loading as initial load for conditioning, Initial main loading
force, peak strain, contact force, load cycle width, load cycle repeat time, frequency,

and adaptation rate.

The Initial loading force for conditioning and main loading sequences were selected
based on FEM analysis. The Initial load was modified through trial and error tests on

a dummy specimen for each mix design.

The applied load for conditioning was chosen to limit output strain in a linear range
(<100 micro-strain), and the initial load for the main loading stage was selected

proportional to an assigned peak thermal strain for each specimen. The peak thermal
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strain was calculated individually for each mix design based on the test results for
thermal coefficients. The contact force was assumed 0.05 kN for all mixtures. Load
cycle width and Load cycle repeat time were determined considering the frequency
and rest times. If the specimen is subjected to under 0.01 loading frequency with 10 s
rest time, then the load cycle width and the load cycle repeat time would be 100000
ms and 110000 ms, respectively. Test specimens were tested at two loading

frequencies: 0.1Hz and 0.01Hz; the adaptation ratio was selected as 0.75 (Figure 3.15).
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Figure 3.15. The loading section in the test navigation menu

4. Test data

The test parameters obtained by different transducers are displayed in this section, so
that the entire progress can be observable throughout the testing. As previously stated,
each sequence up to 10 last cycles could be shown by the software; however, only the

last five cycles are displayed for clarity (Figure 3.16).
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Figure 3.16. A view of the Testlab program showing test data in the test navigation menu

5. Analysis and report

This feature exports data from CDAS to Excel sheet for post-processing, and after the
analysis, the data summary can be displayed in the Test lab again.
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6. Real time tuning

This section comprised two parts; the part in the left displays waveform of the loading
signal along with parameters of y and x-axis of the chart. After each test, the wave
button appeared above the chart. By clicking on it, the chart switched between the first
cycle of the first sequence and the last cycle of the last sequence. In the second part,
real time loading block tuning is shown, which includes PID tuning section and
adaptive control options. In this study, the test procedure was designed as a multi-
sequence, so PID values for different sequences could be edited separately (Figure

3.17).
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Figure 3.17. A real-time tuning in the test navigation menu

7. Chart controls

In the charting section, variables are presented along three axes of a chart. After the
test started, charting option could be selected from the real-time screen. Normally, the
horizontal axis is used to display time fractions when the right and left axes show other

variables. In the current testing program, the right and left axes were used to display
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stiffness modulus and CMOD strain, respectively, and the horizontal axis displayed

the number of loading cycles.

b) Test designer

As previously stated, no pre-defined method file was prepared by the manufacturer of
the TestLab software for a semicircular specimen in the strain control mode, so by
using the test designer application, a new test procedure was developed for the thermal
fatigue test in strain control mode. The generated test module consists of the following

sections:

1. Testsystem

The test layout is the first part of this section. The test layout can be a multi-sequence
or single sequence. It was found that multi-sequence and multi-chart layout more suit
with the test procedure in this study. In the other part of this section, various channels
were assigned to different functions, such as control or data acquisition. Specimen
option is the last part of this section; the shape of the specimen and its volume and

density were defined in this part.

2. Loading parameters

The first part of this section can be shown in two display modes. If the test is defined
as a single sequence, then it has two columns of static parameters. In the case of a
multi-sequence test, one column is allocated to dynamic parameters when the other is
for static parameters. Static parameters refer to material or test parameters that remain
constant during loading, and this constant parameter is whether load or displacement.
In this study, static parameters were initial loading force, peak strain, contact force,
load cycle width, load cycle repeat time, frequency, and adaptation rate, which are
identified by ID numbers of L20 to L27. The loading parameters setting is another part
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of this section. Precision display, units, default value, and value range were specified
in this part (Figure 3.18).
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[ OK l | Cancel |

Figure 3.18. A view of the Testlab program showing loading parameter in the test designer

3. Loading profile

The beginning part of this section is the loading control block, and the loading shape
to apply by the actuator during the test was determined by this part. By adding new
blocks to this part, the sequence of loading can be specified. For this testing program,
the control block comprises three blocks, the test started with zero hold block, and the
second block is the main loading, the test is finalized with an unloading block (Figure
3.19). The next part of this section is the control mode. According to the type of test
to be conducted, actuator displacement, and load could be chosen as a control mode.
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For this study, the first block or zero hold block is in strain control mode, and the
unloading block is applied in the load control mode. Another part of this section is
about the loading function. For each control mode, a loading function must be selected,
such as hold, rate, ramp, and loading waveform. If the waveform is chosen as a loading
function, more detailed options become available under the loading function part. For
the first block in the strain control mode, the ramp was preferred as a loading function.
In the main loading block, the waveform was selected as a loading function, and
haversine is the type of the waveform chosen for the main loading function of the
thermal fatigue test. In the third block, similar to the first block, the ramp was assigned
to the unloading block. In the last part of this section, different conditions for the block
transfer are specified; those conditions are loading cycles, actuator displacement and
load. If the conditions are met for the block transfer, another box appears to address

the next block of the loading procedure (Figure 3.19).
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Figure 3.19. A view of the Testlab program showing loading profile in the test designer

4. Test state sequence

Using this section, complicated tests can be divided into simpler test states, which

seems necessary when zero capturing is required for many channels. The loading

procedure in this study consisted of 5 states, and these states show loading steps in

detail, which starts by block zero. The second state is the initializing state, and no data

acquisition is needed in this step. The third state is zero capture, and the data

acquisition system was in the zero capture mode for actuator displacement (CMOD
LVDT, and LLD LVDT channel). The fourth state is the main loading, and all

acquisition channels were active in this step. The last state is unloading, and no data
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acquisition channel becomes active in this step. In the next part of this section, the
number of sequences and waiting time between two sequences were determined.
There were two sequences for the thermal fatigue test in this study: conditioning
sequence and main sequence, the waiting time between the two sequences was 600s.
Two conditions were defined to end the main loading state: max loading cycles
achieved or reduced stiffness of the specimen meeting the failure criteria. In the case
of this study, the maximum number of loading cycles for the conditioning sequence
was 10 cycles, and for the main sequence was 2000 cycles. Whenever the test
termination criteria are met, the test could go to the next state, which is unloading
(Figure 3.20).
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Figure 3.20. A view of the Test lab program showing test state sequence in the test designer
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5. Functions and formulas

Required functions and formulas to design a test procedure were defined in this
section. Functions are classified into the following types: input channel functions,
input parameter functions, math functions, special functions, and logical operations.
Formulas are given in two types: user pre-defined and user defined formulas, which
according to the new test procedure for this study, were introduced in this section.

6. Calculations

The first part of this section is about available resources. By using parameters placed
in this part, new expressions and variables can be generated. Available sources consist
of input channels, input parameters, loading sequences, expressions, and displays. In
the expression builder part, the required expressions are built by dragging formulas
and functions from available resources and placing them inside the if condition box or

the expression box. The details for calculations are attached to Appendix A.
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Figure 3.21. A view of the Testlab program showing calculations in the test designer

7. Charting

In the charting section, variables are presented along with three axes of the chart. After
the test started charting option could be selected from the real time screen. Normally,
the horizontal axis was used to display the time element, while the right and left axes
are used to show other variables. In the test module developed for this study, the right
axis and left axis were used to observe stiffness modulus and strain, while the

horizontal axis displayed the number of loading cycles.
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8. Wizard

Not applied in this study

9. Report

In this section, two methods are proposed for exporting data to Excel file for further
analysis: manual mapping and automatic mapping. For this test, automatic mapping
was selected, so input parameters, the data file info, specimen info, method file info,
loading parameters, test data, and time series data for different sequences were

exported to predetermined positions in the separate Excel worksheets.

10. Sidebar

Not involved in this study

11. Dashboard

Not applied in this study

12. Method parameter seed
Not used in this study
13. Reference locator
Not used in this study

*Detailed information about the above options can be found in Pavetest test designer
manual (Testlab Software Reference - Test Designer-PAVETEST V1.03 2014).
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3.4  The temperature difference for measuring thermal strain of asphalt

concrete

To determine thermal strain in asphalt concrete, the temperature difference between
the maximum and minimum temperature was required. In this research, Ankara
province was considered to evaluate the resistance of asphalt concrete against thermal
fatigue cracking. For this purpose, weather data for 19 years from 2000 to 2019 were
obtained from weather organization, so based on data analysis, 10 °C was found to be
the most frequent temperature difference. The thermal strain calculation to measure

thermal fatigue was then established on the mentioned temperature difference.

3.5  Determination of thermal strains for applying cyclic haversine loading

Applied thermal strain for each mixture is a function of its measured thermal
coefficient. By using equation 3.3, thermal strain due to temperature change was
calculated for different specimens. The cyclic haversine loads were applied on
different specimens at the constant strain amplitude to investigate the resistance of
various asphalt mixtures against thermal fatigue.

€ = alt (3.3)

where:

€ = thermal strain at a specified temperature difference
a = thermal coefficient

At = maximum frequency of temperature differentials
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3.6  Applying constant strain mode for semicircular bending geometry

The thermal fatigue behavior of asphalt concrete under constant strain loading was
already investigated by Arabzadeh and Guler (2015). They conducted thermal fatigue
tests in the strain control mode through the direct tension test. Applying a constant
strain in three-point bending test is a more complicated procedure than a direct tension
test because the strain cannot be directly controlled in the bending test. In the first step,
the initial load is applied (initial load is estimated by trial and error on dummy
specimen) to the top of the semicircular specimen. In the next cycles, considering the
measured strain in the bottom midpoint of the specimen, the load is modified by the
software to reach the target strain. After reaching the target strain, this procedure
continues to keep the induced strain at the desired level during the test until failure of
the specimen or until the maximum number of cycles has been reached (Figure 3.22
&23).
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Figure 3.22. The waveform for applied force on the specimen
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Figure 3.23. The waveform for strain at the bottom center of the specimen

3.7  Preparation of semicircular specimen for thermal fatigue test

In this step of the study, semicircular specimens were produced from SGC samples of
different mixtures. A diamond saw cutter was used to produce two SGC slices with
35 mm thickness from the center of each cylindrical sample. Each slice was then cut
into two identical halves, and the remaining parts of the cylindrical samples were
thrown away. Four semicircular specimens were produced from each SGC cylinder
sample, and each semicircular specimen was used for an individual fatigue test (Figure
3.24).
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Figure 3.24. a) Sliced SGC specimen 35mm from center, b) cutting cylinder sample to
obtain semicircular specimen, ¢) cut semicircular samples

3.8 Preparation of semicircular specimen for thermal fatigue test

To evaluate the resistance of different mixtures against thermal fatigue, the applied
deformations were measured by the CMOD gauge and the LLD gauge during a three-
point bending test. The gauge length for CMOD was selected 25mm, based on the
stress distribution of a semicircular specimen in the bending mode according to the
results of FEM analysis. The main purpose of conducting the FEM analysis is given
in chapter 4. To attach CMOD gauge to the surface of the specimen, two steel knives

were glued to the bottom surface of the SCB specimen in the following steps: The
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midpoint of the bottom surface of the specimen was determined by a caliper and then
the gauge length was marked. In the next step, the steel beam template with 10mm
width was placed over the marked line, so the centerline of the beam was completely
matched to the drawn line. At the final step, two knives were placed in two sides of
the steel beam with an equal distance from the specimen’s side edges. By using 502
Cyanoacrylate Adhesive, steel knives were glued to the specimen surface (Figure
3.25a). To measure LLD, a steel gauge point was mounted on the specimen, and the
gauge length for measuring linear line displacement was adjusted to 30mm. To
properly install the LLD gauge point, a rectangular metal template with 15075 mm
dimensions and a 10mm diameter hole for gauge point was prepared in the laboratory
(Figure3.25b). The template was placed over the SCB specimen, so its longer side
coincided with the bottom edge of the specimen, then a steel pad with 8mm diameter
and 6mm height was placed inside the embedded hole and glued to the specimen
(Figure 3.26).

Figure 3.25.a) Mounting steel knives to CMOD measurement using steel beam, b)
Mounting point gauge for LLD using a template
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To measure CMOD and LLD Amatek Solartron metrology MD/5 and AX/5 series
were used, respectively, and the LVDT for CMOD is the inductive miniature sensor,
and the LVDT for LLD measurement is a spring push type LVDT. Both LVDTs have
a nominal linear range of 5 mm and temperature operating range of -10°C to +85°C;
the sensitivity of LVDTs are 105mV/V/mm.

Figure 3.26. Attachment of gauges and LVDT to measure strains from CMOD and LLD
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Figure 3.27. Schematic SCB test setup to measure thermal fatigue resistance
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3.9  Design of experiment

In this study, the effect of mix design parameters including gradation, aggregate type,
asphalt type, aging, and test parameters involving loading frequency and rest time on
the performance of asphalt concrete under thermal fatigue was evaluated. To assess
the various variables properly, and by considering available sources, an experimental
program was required. Diagram for implied experimental design is shown in Figure
3.28. There are two levels of aggregates, limestone and basalt. For each type of
aggregate, two types of gradation were defined as coarse and fine. Mixtures were
produced by mixing the aggregate with two levels of asphalt modification, unmodified
50-70 asphalt, and modified 50-70 asphalt with 4.5% SBS. Specimens were aged at
two levels: aged and unaged. Specimens were also tested at two levels of loading
frequency, 0.1Hz, and 0. 01Hz, in each frequency tests were conducted at three

different rest times.

Design of experiment

I

Limestone

Basalt

Coarse

Fine

Polymer modified asphalt

Neat asphalt

Aged

Figure 3.28. Diagram of the experimental design
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Since full factorial design consumes a significant amount of time and resources,
fractional factorial design of 251 x 3 was selected for this study. Fractional factorial
experiments use variables of design to reduce the size of an experiment selectively.
Design variables in this research comprised two types of gradations, two types of
aggregates, two levels of asphalt modification, two aging rates, two frequencies, and
three rest times (Table 3.5).

Table 3.5. Details of variables used in the design

S.no | Name of variable Alphabet | Level Symbol | Coded
1 Aggregate type X1 2 L,B +1,-1
2 Gradation X2 2 C,F +1,-1
3 Polymer modification X3 2 N, M +1,-1
4 Aging X4 2 AU +1,-1
5 Frequency X5 2 S, H +1,-1
6 Rest time X6 3 0,510 | +1,0,-1

To reduce the number of required specimens, aggregate type and gradation were
selected as confounding variables. Hence the number of configurations was calculated
48, and considering three replicate for each configuration, the total number of required
specimens for testing was obtained 144. Table 3.6 shows a typical design matrix
needed for the fractional factorial design, with five variables having two levels and
one confounding variable. Table 3.7 indicates the matrix of a design factor having
three levels, which in this study is the rest time. By summing Tables 3.6 and 3.7, the
given data in Table 3.8 were generated, which determined the required specimens for
the thermal fatigue test. It is worth mentioning that at the final step of the experimental
design, specimens were randomized in Microsoft Excel to avoid any bias in the test
results. The summary of specimens prepared for thermal coefficient measurement and

thermal fatigue test is given in Table 3.9.
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Table 3.6. Standard matrix available for the fractional factorial design of 25-1(NIST-
Engineering Statistics Handbook)

Design Matrix for a Fractional Factorial

Seq | X1 | X2 | X3 | X4 | X5=X1X2 | Seq X1 X2 X3 X4 | X5=X1X2
1 -1 -1 -1 -1 +1 9 -1 -1 -1 +1 +1

2 +1 | -1 -1 -1 1 10 +1 -1 -1 +1 1

3 -1 +1 -1 -1 1 11 -1 +1 -1 +1 -1

4 +1 | +1 | -1 -1 +1 12 +1 +1 -1 +1 +1

5 -1 1 +1 | A1 +1 13 -1 -1 +1 +1 +1

6 +1 | -1 | +1 | -1 1 14 +1 -1 +1 +1 1

7 1+ | 1) -1 1 15 -1 +1 +1 +1 1

8 +1 | 41 | +1 | -1 +1 16 +1 +1 +1 +1 +1

Table 3.7. Design matrix for 1 Level 3 factor design

Seq X6
1 -1
2 0
3 1
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Table 3.8. Design matrix as a result of fractional factorial design 25~1 x 3(3 replication)

X6

X4 | X5

X3

X2

X1

X6 | Seq.

X5

X4

X3

X2

X1

Seq.

10
11
12

14
15
16

18
19
20

22
23
24

26
27
28

30
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Table 3.8. Continued

X6

X5

X4

X3

X2

X1

Seq.

X6

X5

X4

X3

X2

X1

Seq.

62

63
64

66
67

68

70
71

72

74
75
76

78
79
80

82

83

84

86
87

88

90
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Table 3.8. Continued

Seq. | X1 | X2 | X383 | X4 | X5 | X6 | Seq. | X1 | X2 | X3 | X4 | X5 | X6
121 -1 -1 -1 1 1 0 133 -1 -1 1 -1 1 1
122 1 -1 -1 1 -1 0 134 1 -1 1 -1 -1 1
123 -1 1 -1 1 -1 0 135 -1 1 1 -1 -1 1
124 1 1 -1 1 1 0 136 1 1 1 -1 1 1
125 -1 -1 1 1 1 0 137 -1 -1 -1 1 1 1
126 1 -1 1 1 -1 0 138 1 -1 -1 1 -1 1
127 -1 1 1 1 -1 0 139 -1 1 -1 1 -1 1
128 1 1 1 1 1 0 140 1 1 -1 1 1 1
129 -1 -1 -1 -1 1 1 141 -1 -1 1 1 1 1
130 1 -1 -1 -1 -1 1 142 1 -1 1 1 -1 1
131 -1 1 -1 -1 -1 1 143 -1 1 1 1 -1 1
132 1 1 -1 -1 1 1 144 1 1 1 1 1 1

Table 3.9. Summary of specimen prepared for thermal coefficient measurement

and thermal fatigue test

S.no Variables Explanation
1 Aggregate type Limestone (L), Basalt (B)
2 Asphalt type Neat (N), Modified (M)
3 Gradation Coarse (C), Fine (F)
4 Shape of specimen Prismatic Semicircular
5 Specimen size 120x65x50mm | 150x75x35mm
6 | No of specimen prepared 16 144
7 SGC specimen prepared 48
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3.9.1 Multivariate analysis of design variables

Multivariate data analysis is an expanded bivariate analysis in which some variables
are assumed to be dependent, and the others are independent variables. Dependent
variables are the parameters that are influenced by the independent variables. The
objective of multivariate analysis is to show whether independent variables are
significant or not; hence, by applying multiple regression, the effect of each
independent variable on dependent variables would be clarified. In this study, the
multivariate analysis of variance (MANOVA) was used to measure the effect of 6 non-
metric independent variables on some dependent metric variables. Independent
variables included: aggregate type, gradation, asphalt type, aging, frequency, rest time.
Metric dependent variables consisted of different levels of reduction in stiffness

modulus of test specimens.
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3.10 Aggregate

3.10.1

The gradations for this study were selected by following the Turkish General Directory
of Highways (TGDH) specification book (Karayollart Genel Midirligi 2013).
According to the TGDH limits for wearing coarse, two types of gradations were
selected: type 1 and type 2. While type 1 represents coarse gradation, type 2 is defined
for fine gradation. The reason that two types of gradation were selected for this
research was to cover a wide range of gradations used in Turkish highway networks.
Figures 3.29 and 3.30 represent the selected gradations plotted on a gradation chart
with sieve sizes scaled to power 0.45. As shown in Table 3.10 and 3.11, TGDH control

points were chosen as criteria for the upper and lower limits of the gradations.

Table 3.10. Gradation type 1

Gradation and maximum density curve

Sieve size KGM Percent passed
control points Basalt Limestone
19 100-100 100 100
12,5 88-100 95 96
9.5 72-90 85 87
4.75 42-52 48 52
2 25-35 29 26
0.425 10-20 15 11
0.18 7-14 10 7
0.075 3-8 55 3
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Table 3.11. Gradation type 2

- - - - Density Line
—— Basalt Gradation Type 1

——— Limestone Gradation Type

KGM control Percent passed

Sieve size points Basalt Limestone
12.5 100-100 100 100
9.5 80-100 98 96
4.75 55-72 60 70
2 36-53 38 46
0.425 16-28 18 16
0.18 8-16 11
0.075 4-8 6 3
100
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2 40

=

"]

A 30
20
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Sieve size (scaled to power 0.45)

Figure 3.29. Selected aggregate gradation type 1 (Coarse)
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Figure 3.30. Selected aggregate gradation type 2 (Fine)

3.10.2  Aggregate properties

Two types of aggregate source were used in this study: Basalt and Limestone. The
specific gravity, water absorption, and Los Angles tests were performed on coarse and
fine gradations of both basalt and limestone aggregates. The measured properties of
aggregates are given in Table 3.12 and 3.13.

Table 3.12. Measured properties of coarse aggregates (larger than 4.75 mm)

Properties Aggregates Standard name/No
Limestone Basalt

Specific gravity (OD) 2.693 2.545 (ASTM C127 2015)

Average H 20 absorption 0.44 2.58 (ASTM C127 2015)

LA abrasion value (%) 30.0 17.3 (ASTM C131 2012)
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Table 3.13. Measured properties of fine aggregates (finer than 4.75 mm)

) Aggregates
Properties
Limestone | Basalt Standard name/No
Specific gravity (OD) 2.725 2.596 (ASTM C128 2015)
Average H 20 absorption (%) 0.52 1.64 (ASTM C128 2015)
Specific Gravity* 2.750 2.664 (ASTM D854 2000)

* (Finer than 0.075 mm)

3.11  Asphalt binder

In this research, 50-70 asphalt binder with two levels of modification was used;
modified and unmodified. The modified asphalt binder was produced by adding 4.5%
SBS to asphalt 50-70. Measured properties of asphalt binders can be found in Table
3.14 and 3.15. To discriminate between the rheological behavior of two asphalt
binders, the viscosity test was implied by Brookfield Rotational Viscometer for both

modified and unmodified asphalt binders. The results for these tests are given in Figure

3.31.

Table 3.14. Measured properties of asphalt 50-70

Properties

Measured value

Standard name/No

Penetration 51 (ASTM D5 2008)

Specific gravity (kg/m3) 1.025 (ASTM D36 2014)
Softening point (ring and ball method) 47.5 (ASTM D 70 2014)
Flash point (°C) +300 (ASTM D92 2005)
Ductility (5 cm/min, 25 °C) +100 (ASTM D113 2007)
Kinematic viscosity @135° (C.P) 372 (ASTM D445 2008)
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Table 3.15. Measured properties of 50-70 polymer modified asphalt binder

Properties Measured value | Standard name/No
Type and percentage of modifier SBS,4.5% -
Penetration 31 (ASTM D5 2008)
Specific gravity (kg/m3) 1.024 (ASTM D36 2014)
Softening point (ring and ball method) 68 (ASTM D 70 2014)
Flash point (°C) +328 (ASTM D92 2005)
Ductility (5 cm/min, 25 °C) +150 (ASTM D113 2007)
Kinematic viscosity @135° (C.P) 2342 (ASTM D445 2008)
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Figure 3.31. Comparison between measured viscosity of neat asphalt and polymer modified
asphalt
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3.12  Superpave method for mix design

Superpave method is a thorough approach to design mixtures based on distinctive
performance criteria constrained by the environmental condition, traffic level, and
structural section for a specific pavement. This method simplifies the procedure for
selecting asphalt mixture components, including asphalt, aggregate, and any
substantial modifier, to reach the necessary degree of pavement performance. One of
the significant aims of design by the Superpave method is to identify a blend of asphalt
binder and aggregate that produces paving mix with sufficient voids and asphalt binder

which can satisfy performance characteristics of the pavement over its service life.

3.13 Mixing and compacting temperature

3.13.1 Unmodified asphalt binder (50-70)

To determine mixing and compaction temperature of unmodified binders according to
ASTM D2493 (Referred to as equiviscous), the viscosity was measured with
Brookfield Rotational VViscometer, DVII+PRO. In order to conduct a test, a script file
in DVII+PRO software was prepared according to ASTM D2493; this code is attached
to Appendix B. The rotational viscosity was determined at constant speed of 20 rpm.
The start and finish temperature of the test were selected as 120°C and 180°C,
respectively, and the viscosity of asphalt binder was determined in 10 degree
increments. The viscometer was programmed to reach the next target temperature in
30 minutes and stay at that temperature for 15 minutes to get stabilized. After the
temperature was settled, the viscosity of the asphalt binder was measured at every 30
seconds interval for 3 minutes. In each temperature, 6 data points were gathered, and
the average value of the data points was set as the viscosity in that temperature. The
viscosities were plotted versus temperature in a logarithmic scale. The temperature
ranges corresponding to 170+20 C.P was chosen for mixing, and the temperature range
corresponding to 280+30 C.P was chosen for compaction. Using the equiviscous
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method, mixing and compaction temperatures were calculated as 141°C and 151°C,
respectively. (Figure 3.32).

1000 T
Compaction range 'R
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& T Mixing range '\\“
@] S e L R T ,_‘“
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£ 100 s
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Figure 3.32. Mixing and compaction temperature for 50-70 asphalt binder(ASTM D2493
2000)
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3.13.2 Polymer modified asphalt binder

Most of the mixtures that are prepared by modified binders should be mixed and
compacted at higher temperatures both in the laboratory as well in the field, so that
around the same degree of workability of mixtures with unmodified binders can be
reached. Applying the equiviscous method to calculate the mixing and compaction
temperatures for the modified binder results in excessive temperatures, which would
dramatically change the rheological properties of modified binders. Most agencies rely
on asphalt binder manufacturers to define mixing and compaction temperature
because there is no certain procedure to follow. In this study, by employing the
Dynamic Shear Rheometer (DSR), the phase angle method was implied to calculate
compaction and mixing temperature of modified binder (NCHRP 648, 2010). In this
approach, the frequency sweep test was applied on asphalt binder at four temperatures
(90 C, 100 C, 110 C, 120° C). Test frequency varied from 0.1 to 100 rad/s with 10
points decade. To see the transition from elastic to viscous behavior over a reasonable
range of frequency, the reference temperature was assumed to be 100 °C. Based on the
reference temperature, a master curve at reduced frequencies was built for the
modified asphalt binder. According to the phase angle method, the part of the master
curve that is placed between & = 85° and 90° shows the transition from visco-elastic
to absolute viscous behavior. The frequency corresponding to 6 = 86° was selected as

the reference point for the required calculations by this technique. (Figure 3.33 &3.34).

Mixing and compaction temperatures were achieved according to the following

equations:
Mixing temperature (°F): 310 w~%01 (3.4)
Compaction temperature (°F): 300 ~0%012 (3.5)

Using equation (3.4) and (3.5), 172°C and 158° C were selected as mixing and

compaction temperatures for the modified asphalt binder used in this study.

84



100,000 100
- 90
0]
~ 10,000
@ L 70
2 I
= 60
T 1000 S0
E ¥
bl
= - 40
[=9
E L 30
v 100
- 20
- 10
of ---8--- 120
10 J 0
0.1 1 10 100 1000
W (Rad/s)
Figure 3.33. Frequency sweep test results at high temperatures
1.E+03 90
° - 88
LY ®
(g~ T T T T TS m s - 86
0.013,86 | %, [ 84
I
= LE+02 ] e, . - 82
= | ° L 80
| [ ]
= | ® ° - 78
= ! °
= I ] 76
£ LE+01 : ° |
- | %
K I LIPS - 72
=% ] °
E ! ., - 70
5 I *e - 68
1.E+00 ; .,
: - B 66
i L 64
I: *l 62
1.E-01 ' . 60
0.001 0.01 0.1 1 10

Reduced frequency (Rad/s)
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3.14  Asphalt mixture conditioning

Short term aging occurs during the production of asphalt concrete in the mixing plant
and then proceeds during storage and transportation stages. To simulate short term
aging, mixtures were conditioned for 2 hours 5 minutes at the compaction
temperature (AASHTO R30 2006). The compaction temperature for mixtures with the
unmodified binder was determined as 141 ° C. This temperature is the average
temperature that corresponds to the kinematic viscosity of 280 + 30 C. P, estimated in
compliance with AASHTO T 316. In the case of mixture with the modified binder,
the conditioning temperature was calculated to be 158 ° C by the phase angle method
(Figure 3.35).

Figure 3.35. Loose HMA conditioned samples in the oven at compaction temperature
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3.15  Asphalt mixture compaction

After the short term aging, the test mixtures were transferred to 300 mm high and 150
mm diameter molds for compaction. The mixtures were compacted using ICT 250
gyratory compactor at temperatures that were previously established. The ICT 250
device compacts test mixtures by applying kneading action generated thru rotational
shear movements. This method of compaction permits particles to move close to each

other to achieve a more densely packed aggregate structure (Figure 3.36).

Vv

Computer

ICT 250 Gyratory compactor o=

Compressor

Extraction jack

Figure 3.36. Sample compaction by gyratory compactor for Superpave design method
(AASHTO T 312 2019)

According to AASHTO T312, the applied pressure must be 600 kPa, the gyratory
internal angle 1.16°, and the speed of gyration 30 rounds per minute. After finishing
the compaction, a specially designed apparatus was employed to extract the sample
from the mold (Figure 3.36). In the last step, the bulk specific gravity of the samples

was measured after reaching the environment temperature (Figure 3.37).
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Figure 3.37. Compacted mix design samples according to the Superpave method

3.15.1  Gyratory compaction parameters

The density of specimens was assessed at three levels through the densification curve
(Figure 3.38 and 3.39). The aggregate gradation and asphalt content of the mixture
were selected such that the densification curve meets 96 percent of the theoretical
maximum specific gravity of the mixture at the design number of gyrations
(Ngesign)-The design number of gyrations is normally selected based on the estimated
traffic level in the project site(Ngesign = 100, for this study), which is shown in Table

3.16.
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Table 3.16. Design number of gyrations based

on traffic levels according to Superpave

method
Design ESALs | Compaction parameters
(Million) i . .
Ninitial N max | N design Typical roadway implementations
<0.3 6 75 50 Implementations cover_roadways with
very low levels of traffic.
03103 7 115 75 Implementations cover many access
streets and collector roads.
Implementations cover many multilane
3t0 30 8 160 100 highways, dual carriageways, and
disciplined access roadways.
Implementations cover the vast majority
>30 9 205 125 of freeway systems.

The specific gravity of the mixture should not exceed 98 percent of the theoretical

maximum specific gravity; in other words, the air void content of the compacted

mixture must be less than two percent. The value of N, is selected from Table 3.16

based on the ESAL level of the project site and can also be obtained from the following

equation:

log Npmax = 1.11og Ndesign (3-6)

The specific gravity of the mixture should not exceed 89 percent of the theoretical

maximum specific gravity at the initial number of gyrations (N;u;.). The value of Nj,;;

can also be either selected from Table 3.16 or calculated from the following equation:

log Nipir = 0.45log Ndesign (3-7)
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Figure 3.38. Compaction curve of a design sample (Mixture ID: BCM)

3.16 Design aggregate structure

In this step of volumetric design, the effect of the aggregate skeleton on mixture
volumetric properties was evaluated. The SGC specimens were produced at Nmax of
160 cycles according to Table 3.16 limits. Superpave requirements for the aggregate
structure according to the AASHTO standard were applied to all mix designs as

follows:

-VMA at 4 percent air voids according to the design number of gyrations
-Bulk density at N;,;; gyrations
-Bulk density N,.x gyrations

Densification curve for one of the mix designs is shown in Figure 3.39.
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Figure 3.39. Densification curve obtained from a compacted sample (Mixture ID: BCM)
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3.17 Optimum asphalt content for the design gradation

The optimum asphalt content is defined as the asphalt content corresponding to 4
percent air voids at Ngesign gyrations. After controlling the aggregate structure design,
mixtures were prepared at four asphalt contents and 4 replications for each asphalt
content, then were compacted to Np.sjgn gyrations. The asphalt content that produced

4 percent air void was selected as the optimum asphalt content (Figure 3.40).
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Figure 3.40. Plots of percent VMA, Percent air voids, Percent VFA, and density versus
percent asphalt content (Mixture ID: BCM)
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It was necessary to measure bulk density and theoretical maximum density to calculate
the optimum asphalt content and other volumetric properties. Standard methods
(AASHTO T166 2010) and (AASHTO T209 2016) were applied to determine the bulk
specific gravity and the theoretical maximum density of the compacted samples.
Volumetric design data, bulk specific gravity, and theoretical maximum densities at

different asphalt contents for one of the mix designs are given in Table 3.17.

Table 3.17. Design data at different asphalt contents (Mixture ID: BCM)

P,(%) | V, | VMA (%) | VFA@6) | Density (kg/m3) Max density
(Kg/m3)
45 | 6.58 14.96 56.01 2352 2474
5 4.48 14.10 68.03 2375 2461
55 | 3.02 13.77 78.05 2378 2444
6 2.38 14.29 83.34 2381 2426

It is worth mentioning that a tolerance limit of £0.05 percent was assumed for air void
content. This strict tolerance considerably increased the number of produced SGC
samples to identify the optimum asphalt content. On the other hand, providing design
samples at optimum asphalt content prevented the interaction of air voids as a new
variable with pre-defined experimental design variables. Totally, 8 mix designs were
prepared at optimum asphalt content and then the volumetric properties including
voids in mineral aggregate (VMA), voids filled with asphalt (VFA) and filler to binder
ratio were calculated as listed in Table 3.18. TGDH and (AASHTO R35 2015)

standards were applied to verify the sample’s volumetric design properties.
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Table 3.18.Volumetric properties for different mixture

Mixture ID AC (%) | VMA (%) | VFA (%) Filler/Binder
BCN 5.3 14.75 72.6 1.04
BCM 5.15 14.0 71.25 1.07
LCN 5 15.5 73 0.60
LCM 4.95 14.6 73.5 0.61
BFN 6 15.6 74.3 1.00
BFM 5.4 14.2 72 111
LFEN 5.3 15.1 73.5 0.57
LFM 5 14.0 71.2 0.60

Symbols used: Aggregate type: L-limestone, B-Basalt; Gradation: C- Coarse,
F-Fine; Size; Modification: N-No modification, M-SBS modification; VMA-
Voids in the mineral aggregate; VFA-Voids filled with asphalt.
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CHAPTER 4

ANALYSIS OF TEST RESULTS AND DISCUSSION

4.1 Introduction

This chapter describes the measurement of thermal coefficient and thermal fatigue in
asphalt concrete mixtures. It also presents statistical analyses of several variables for
144 thermal fatigue and 16 thermal coefficient tests. Different variables are involved
in the mixture design, which affects the thermal coefficient and thermal fatigue life of
the design mixtures. In this chapter, the thermal fatigue performance of asphalt
concrete is also discussed in relation to mixture design variables used as input

parameters in the statistical analyses.

4.2 Results of measurement for thermal coefficient

The procedure for measuring the thermal coefficient has been described in chapter 3.
The test starts at 30 © C followed by cooling at a rate of 60 © C/hour until it reaches -
30°C. The temperature is measured on the surface and inside the center of a dummy
specimen. Deformations of specimens were measured by LVDT, and the thermal
coefficients for different specimens were calculated from deformation-temperature

curve. The results for thermal coefficients are given in Table 4.1.
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Table 4.1. Thermal coefficients of test specimens

Specimen 1D Thermal Specimen 1D Thermal
coefficient(/°C) coefficient(/°C)
BCNU 3.35E-05 BCNA 3.00E-05
BFNU 3.09E-05 BFNA 3.08E-05
BCMU 3.43E-05 BCMA 2.98E-05
BFMU 2.95E-05 BFMA 2.78E-05
LCNU 2.91E-05 LCNA 2.36E-05
LFNU 2.59E-05 LFNA 2.67E-05
LCMU 2.97E-05 LCMA 2.35E-05
LFMU 2.31E-05 LFMA 2.68E-05

4.3  Result of analysis for measured thermal coefficients

The thermal coefficients were measured for 16 specimens, and then to find a
significant mixture variable affecting the thermal coefficient, results were statistically
analyzed. Table 4.2 presents the statistic parameters and probability values calculated
through ANOVA. As is apparent from the ANOVA results, the aggregate type is the
most significant design variable because its p-values for a confidence interval of 95%
was found approximately zero. According to P values, it seems the effect of other

variables on the thermal coefficient of asphalt concrete was negligible.
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Table 4.2. Statistic parameters and ANOVA results for thermal coefficient

Des_lgn Mixture ID Mean S.td'. F-value | P-value

Variable deviation
Basalt 3.08E-05 2.14E-06

Aggregate 16.8 0.001
Limestone | 2.60E-05 2.53E-06
Aged 2.74E-05 2.81E-06

Aging 1.6 0.220
Unaged 2.95E-05 3.70E-06
Coarse 2.92E-05 3.96E-06

Gradation 0.8 0.388
Fine 2.77E-05 2.67E-06
Modified 2.81E-05 6.22E-05

Asphalt type 0.0 0.665
Neat 2.88E-05 6.38E-05

In Figure 4.1, specimens are grouped according to the aggregate type. As shown, the
thermal coefficient for specimens with Limestone aggregate is generally less than the
thermal coefficient for specimens with basalt aggregate. Figure 4.2 shows the test
results for thermal strain () versus specimen temperature (T) measured during the
cooling phase. It can be seen from Figure 4.2 that slopes are steeper at the beginning

of the test and more horizontal at lower temperatures.
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Figure 4.1.Thermal coefficient for different mixtures based on the aggregate type

These two regions are separated by the glass transition temperature; for this study, the
thermal coefficient above glass transition and between 0° C and 10°C was employed
to calculate thermal strains. This is the temperature range that thermal fatigue occurs
in the field. To simulate thermal fatigue in the laboratory environment, the test
temperature of 4° C was selected, which is inside the chosen range to calculate thermal
strain.
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Figure 4.2. Thermal strain versus temperature

The next phase of the study was performing a thermal fatigue test on semicircular
specimens to assess the resistance of different mixtures against this distress mode. To
conduct a thermal fatigue test, the calculation of thermal strain to be applied to each
specimen was necessary. As previously discussed in Chapter 3, the thermal strains
were calculated using Equation 4.1 by assuming that the daily temperature change
with the highest frequency of repetition is 10° C.

£ = alt 4.1)
&= thermal strain at the determined temperature difference
a = thermal coefficient of asphalt concrete;

At = daily temperature changes with the highest frequency of repetition

99



4.4 Stress analysis in semicircular bending test

To simulate thermal fatigue loading, three-point flexural test was implemented by the
application of a concentrated load in the midpoint of the semicircular beam while lying
on two steel roller supports. The loading configuration of the semicircular bending test
is shown in Figure 4.3. Longitudinal tensile strain at the center point of the specimen’s
bottom surface is the main controlling parameter of the thermal fatigue test. In order
to select the proper gauge length for measuring strain, analysis of stress, and strain at
the bottom surface of the specimen was necessary. Stress analysis also gives a
reasonable hint for the magnitude of the initial point load applied on top of the
specimen generating the target strain underneath the specimen’s bottom surface. To
determine the load to be applied, the finite element method was employed for stress-
strain analysis of the test specimen.

O T ©

Figure 4.3. Setup for semicircular bending test

44.1 Finite element analysis

The finite element method through commercial software ABAQUS was utilized to
explore the behavior of semicircular specimens under the bending test. In the FEM

analysis, it was assumed that the asphalt concrete is isotropic and the solution was
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done for both viscoelastic and linear elastic material behavior. The support bars and

loading head are assumed to be rigid during the solution.

In this analysis, the modulus of elasticity of asphalt concrete was estimated 10,250
MPa at test temperature of 4 °C, according to the AASHTO design guide (AASHTO
1993). The analysis was conducted by applying a constant load of P=1,750 N, which
was selected by trial and error for the viscoelastic material model, frequency of

0.01Hz, specimen thickness of t=35 mm, Poisson’s ratio of d =0.30 and friction

coefficient of p = 0.1 between the specimen and the rigid rollers. The diameter of the
specimen and the distance between the supports were selected as D= 150 mm and
L=120mm, respectively. To utilize the viscoelastic material model in the FEM

analysis, a separate procedure was followed, as described in the below sections.

4.4.2 Developing a viscoelastic material model

4421  Developing dynamic modulus master curve

To develop a viscoelastic model for asphalt concrete, it was necessary to build a
dynamic modulus master curve at a test temperature, which was selected as 4°C in this
study. According to AASHTO TP62 (2007) guidelines, dynamic modulus test was
conducted at five temperatures (-10, 4.4, 21, 37, 54) and six loading frequencies
(25,10, 5, 1, 0.5, 0.1 Hz). The mix design used for this analysis included basalt
aggregate with fine gradation and unmodified asphalt. It should be mentioned that the
dynamic modulus test was conducted by the Turkish highway administration
laboratory. In the first step of building a dynamic modulus master curve, experiment
data were fitted to a sigmoidal function given by the mechanistic-empirical pavement
design guide (MEPDG). The reduced frequency was calculated using shift factors by
considering 4° C as a reference temperature. At the final step, by applying numerical
optimization through the Excel Solver function, the master curve for the test specimen
was obtained (Figure 4.4).
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Figure 4.4. Dynamic modulus versus reduced frequency at 4° C

4.4.2.2  Determination of prony series coefficients

To assign viscoelastic properties to the asphalt concrete in ABAQUS software, Prony
series coefficients must first be obtained. This was achieved by fitting the
experimental data (dynamic modulus versus reduced frequency) to the generalized

Maxwell model through the following equations:

G'(wr) =Go(1 -2 g) + G N, —8—12 w2 (4.1)

1=1 1+Ti200i2 1

G"(Wr) = Gg N g—iizriwr (4-2)

i=1 1471w

Where : G’ (w, ) = storage shear modulus, G (W,) = Loss shear modulus,
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G, = instantaneous shear modulus 7;, g; =Prony series coefficients

A total of 10 term Prony series coefficients were calculated for the generalized

Maxwell model, as shown in Table 4.3.

Table 4.3. Prony series coefficients for asphalt mixture

Reference temperature = 4°C Go = 8.5 Gpa
91 0.035 1 1E-05
9> 0.043 12 1E-04
g3 0.060 73 1E-03
Ja 0.078 Ty 1E-02
Js 0.079 Ts 1E-01
Je 0.177 Ts 1E+00
gy 0.141 77 1E+01
Js 0.092 Tg 1E+02
9o 0.084 To 1E+03
910 0.134 T10 1E+04

After meshing and determining the boundary conditions, elastic and viscoelastic
properties were assigned to the FEM model. The haversine loading was employed in
the model at different frequencies to simulate the thermal fatigue test. In this study,
tests were conducted at two frequencies: Low (0.01Hz) and high (0.1Hz) to investigate
the initial loading magnitude, which was one of the objects for FEM modeling. The
magnitude of the applied load was determined by trial and error according to the target
strain in the middle of the bottom surface of the semicircular specimen for one cycle.
As is apparent from Figure 4.5 for the same tensile strain, a smaller load was applied
at low frequency compared to a loading with high frequency. According to the FEM

analysis, to achieve a target strain of 309 ;.¢, 2.25 kN load must be applied at the high

frequency mode, while 1.75 kN load can generate the same amount of tensile strain

when the loading was performed at low frequency.
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Figure 4.5. Haversine loading according to target strain in the middle of the bottom surface
of specimen at different frequencies (from FEM analysis)

Stress versus strain at the bottom surface and the center point of the specimen for
different loading frequencies are illustrated in Figure 4.6. As can be seen, the
maximum strain remains the same; however, the stress becomes different for two
loading frequencies; it is 1.79 MPa for high frequency and 1.32 MPa for low
frequency. The tensile strain developed at the bottom surface of the semicircular
specimen is a combination of elastic and inelastic (viscoelastic) strains. Figure 4.7 and
Figure 4.8 show these components at different loading frequencies. As figures
indicate, when the model was executed at high frequency, the elastic strain was a
dominant portion of the total strain, while at low frequency the inelastic strain played

a major role in the total strain.
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Figure 4.7. Tensile strain components from FEM analysis in the middle of bottom surface of
semicircular specimen at low frequency loading (0.01 Hz)
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Figure 4.8. Tensile strain components from FEM analysis in the middle of bottom surface of
semicircular specimen at high frequency loading (0.1Hz)

44.3 FEM analysis for stress distribution in semicircular bending test

In Figures 4.9 and 4.10, the obtained horizontal stress and strain contours obtained
after the FEM solution are shown, respectively. In the FEM model, the loading wave
shape is haversine, the upper surface of the specimen is under compression, and the
stress sign is negative in that region. It can be seen in Figure 4.9 that toward the bottom
of the specimen, the tensile stress increases, and the maximum tensile stress due to
bending is generated in the middle part of the semicircular specimen, as marked by
red color in the meshed model. Strain distribution also follows the same trend as the
stress distribution, and the maximum strain was found in the middle of the bottom
surface, around 12.5 mm from the centerline in each direction (Figure 4.10). It was
concluded that the measurement of strain should be performed inside this range. The
results of FEM analysis for the horizontal stress and strain distributions at the bottom
surface of the specimen along the X-axis is shown in Figure 4.11. The tensile stress
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and strain reached their maximum value in the center of the specimen; however, they

start to decrease toward the specimen edges.
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Figure 4.9. Finite element meshed model and horizontal stress contour
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Figure 4.10. Finite element meshed model and horizontal strain contour
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For the stress and strain distribution along the Y-axis, it can be observed in Figure
4.12 that toward the loading point the tensile stress decreases, and the maximum
compression stress develops in the upper part of the specimen under the loading head.
Using the FEM analysis, stresses and strains at different points of the semicircular
specimen were determined. Based on the results of FEM analyses, a gauge length of
25 mm (12.5 mm distance from the center of the specimen in each direction of the X-
axis) was chosen for the measurement of the tensile strain from the bottom surface of

the semicircular specimen when conducting the fatigue tests in the laboratory.
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Figure 4.11. Horizontal stress and strain distribution at the bottom surface and along the X
axis
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Figure 4.12. Horizontal stress and strain distribution along the Y axis of the specimen

4.5 Test results for the performance of asphalt concrete under thermal
fatigue

After calculating the thermal coefficients of the beam specimens, thermal strains to be
applied to each semicircular specimen were determined. In the thermal fatigue test,
the longitudinal strain underneath the semicircular specimen was chosen as the target
strain to achieve during testing. This strain level was also considered as a controlling
parameter for the closed-loop servo-controlled testing system. As shown in Figure
4.13, after the first cycle of loading, the applied load was justified to achieve the target
strain. As the test proceeds, the loading continues with the target strain until the
maximum number of 2000 cycles is reached or the stiffness of the mixture is reduced
to 25% of its initial stiffness.
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Figure 4.13. Applied thermal strain at the bottom of semicircular specimen (Specimen ID:
BFMAH10)

The stiffness of the specimen is calculated by dividing the maximum stress to
maximum strain in each cycle. Figure 4.14 gives an example of stiffness reduction for

a semicircular specimen under the target strain loading.
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Figure 4.14. Stiffness versus number of loading cycles for test specimen (Specimen ID:
BFMAHO0)

4.6 Determination of the slope of the line fitted to log-log scale data

In addition to the number of cycles at different stiffness levels and also initial stiffness,
the slope of the line fitted to stiffness versus cycle number in the logarithmic scale can
be used as an alternative method to compare the performance of different mixtures.
The slope of the fitted line to a log-log scale data highly correlates with micro crack
development in each specimen. A smaller slope value shows slower propagation of

micro cracks and, therefore, longer fatigue life for the specimen (Figure 4.15).
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Figure 4.15. Slopes of fitted lines in a logarithmic scale for two different specimens

From Figure 4.15, the difference between the slopes of two lines fitted to the
logarithmic scale data can be easily distinguished. The specimen with the continuous

line has a better fatigue performance because of its smaller absolute slope value.

4.7  Fatigue life extrapolation for reduced stiffness using the power model

Thermal fatigue tests were conducted up to 2000 cycles, and some specimens were
more resistant and did not reach 75% reduced stiffness at the end of the test. Hence,
extrapolation was needed to predict the number of loading cycles at 75% reduced
stiffness. Different functions like exponential, power, and logarithmic have been used
by researchers to extrapolate the fatigue failure cycles. In this study, power model,
which is a preferred method for fitting data in load-associated fatigue, was selected

for extrapolation as follows:
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Figure 4.16.Power model fitted for stiffness versus number of loading cycles (Specimen
ID:BFMAHO0)

Figure 4.16 shows fitted power model to data obtained from one of the specimens
which did not reach 75% reduction in stiffness at the end of 2000. In Figure 4.17 the
number of loading cycles in the log scale versus stiffness has been plotted. The discrete
points at the beginning of the path is an indicator of nonlinear portion in stiffness
versus cycle number. This part was eliminated in the extrapolation because it will

cause overestimation for the number of loading cycles by the power model.
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4.8  Multivariate analysis for the number of loading cycles at different levels

of reduced stiffness

Multivariate analysis at three different levels of reduction in stiffness (25%,50%,75%)
versus the number of loading cycles and also at 50% reduced stiffness modulus was
applied to investigate the significant variables affecting the thermal fatigue life of
asphalt concrete. For each stiffness level, statistical parameters and significant
variables are determined and then the average number of cycles for each specimen is
given in another table. Bar charts and boxplots for the significant variables are given
for the number of cycles at 50% reduction in stiffness, and also for 50% reduced
stiffness, as shown in the following sections. The trend of bar charts and box plots for
the number of cycles at 25% and 75% reduction in stiffness is very similar to the trend
at 50% reduction in stiffness. The charts for these reduction levels are given in
Appendix E and F.
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4.8.1 Multivariate analysis for the number of loading cycles at 50%

reduced stiffness

The number of loading cycles for 50% reduced stiffness for different mixtures are
given in Table 4.5. Since 50% reduced stiffness modulus have been conventionally
used as a failure criterion in load associated fatigue tests. The effect of a design
variable in this level of reduced stiffness was also evaluated by using multivariate
analysis. P-values given in Table 4.4 shows that all the design variables are significant
for thermal fatigue behavior of asphalt concrete. According to f-values, the sequence
of significant variables was: asphalt type, frequency, aggregate type, gradation, rest
time, aging. In addition to the main effects, the significance of the interaction between
the test variables was also investigated. The interaction between asphalt type and
aggregate type and interaction between asphalt type and frequency are the most
significant interactions. Besides, asphalt type, and frequency are individually the most
significant variables. Considering the fact that the viscosity of the asphalt decreases
with increase in loading frequency and because of the large difference in the viscosity
of the neat asphalt and the modified binder, the interaction of these two variables also
become important. The next significant interaction was between aggregate and asphalt
type; the adhesive bond is a determinant factor for the interaction of these two
variables, which is mostly affected by aggregate type. Hence, the significance of this
interaction is likely due to variations in the mineralogical structure of aggregates and
adhesive properties of asphalt binders. The interaction of asphalt type and gradation
and the interaction of rest time with asphalt type, aggregate type, frequency, and
gradation constitute other significant interactions, respectively. In the next section, the
effects of these design variables on thermal fatigue performance of 144 asphalt
concrete specimens for the number of loading cycles at 50% reduced stiffness would
be evaluated. These comparisons are made between two specimens with similar ID
but different for a particular variable, i.e. asphalt type, aggregate type, etc. Then, the
overall performance of all the specimens against thermal fatigue according to a

particular significant variable for 50% drop in the initial stiffness are compared
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statistically. To evaluate the results in a more detailed manner, bar charts and boxplots
are utilized. Using boxplots helps to compare maximum, median, minimum, first and

third quartile between paired design variables.
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Table 4.4. Multivariate analysis for number of loading cycles at 50 % reduced stiffness

Design Variable Levels Symbol | Mean Std. F- P-
Deviation Value | Value
Asphalt Type Modified M 195.3 202.4 155.1 0.000
Neat N 35.5 31.8
Frequency High H 177.8 209.4 94.6 0.000
Low S 53.0 56.4
o Aggregate type Basalt B 164.5 213.6 58.5 0.000
§ Limestone L 66.3 66.7
° Gradation Coarse C 74.0 62.7 415 | 0.000
‘T Fine F 156.8 218.1
= 0 second 0 90.1 109.7
Rest time 5 second 5 100.9 1272 08 0.000
10 second 10 155.2 228.7
Aging Aged A 130.2 166.1 5.3 0.023
Unaged U 100.6 164.0
Frequency*Asphalt Modified M 195.3 202.4 49.7 0.000
type Neat N 35.5 31.8
Asphalt type* _Basalt B 164.5 213.6 39.9 0.000
Adggregate type Limestone L 66.3 66.7
Asphalt type * Coarse Cc 74.0 62.7 24.4 0.000
Gradation Fine F 156.8 218.1
Asphalt type * Rest 0 second 0 90.1 109.7 83 0.000
c time 5 second 5 100.9 127.2 ' '
2 10 second 10 155.2 228.7
S Rest time* Basalt B 1645 2136 79 | 0001
£ Aggregate type  Limestone | L 66.3 66.7
g Rest time High H 177.8 209.4 6.2 0.003
xS *Frequency Low S 53.0 56.4
E Rest time Coarse C 74.0 62.7 5.0 0.008
*Gradation Fine F 156.8 218.1
Aging*Asphalt type Modified M 195.3 202.4 2.1 0.151
Neat N 35.5 31.8
Rest time*Aging Aged A 130.2 166.1 0.83 0.437
Unaged U 100.6 164.0
Aging*Gradation Coarse C 74.0 62.7 0.5 0.476
Fine F 156.8 218.1
Aging*Frequency High H 177.8 209.4 0.001 0.974
Low S 53.0 56.4
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Table 4.5. The average number of loading cycles at 50% reduced stiffness

Specimen ID | Cycle | Specimen ID | Cycle | Specimen ID | Cycle | Specimen ID | Cycle
BFMAHO0 369 BCMASO 83 LCMAHO 205 LFMASO 116
BFMAH5 415 BCMAS5 144 LCMAH5 129 LFMASS5 93
BFMAH10 670 BCMAS10 148 LCMAH10 153 LFMAS10 125
BFMUHO 218 BCMUSO 78 LCMUHO 80 LFMUSO 35
BFMUH5 364 BCMUS5 62 LCMUH5 113 LFMUS5 31
BFMUH10 758 BCMUS10 111 LCMUH10 167 LFMUS10 43
BFNAHO 48 BCNASO 15 LCNAHO0 28 LFNASO 31
BFNAH5 129 BCNAS5 19 LCNAH5 27 LFNAS5 22
BFNAH10 95 BCNAS10 18 LCNAH10 42 LFNAS10 43
BFNUHO 39 BCNUSO 12 LCNUHO 55 LFNUSO 17
BFNUH5 53 BCNUS5 18 LCNUH5 23 LFNUS5 12
BFNUH10 62 BCNUS10 21 LCNUH10 35 LFNUS10 16

4.8.1.1  Asphalt type

Figure 4.18 shows the trend for stiffness reduction for two specimens fabricated with
different asphalt binders: neat and modified asphalt (4.5% SBS). It can be noted that
a considerable deviation exists in the thermal fatigue performance for the specimens
of different binder types; the specimen with neat asphalt reached the failure point at
390 cycles while the specimen with modified asphalt did not even fail until the 2000
loading cycles. The number of cycles at 50% reduced stiffness as shown in Figures
4.19 and 4.20 indicates that all the specimens have a similar trend. This difference in
behavior results from the fact that the SBS modifier drastically increases the asphalt
mixture's elastic properties, leading to a longer thermal fatigue life for the specimens.
According to Table 4.4, adding SBS modifier increases the fatigue life five times at
50% reduced stiffness level. This result also agrees with the conclusions of (Epps,
1999)and (Khattak and Baladi, 2001) that use of elastomers (CRM,SBS)increases the

fatigue life of asphalt concrete.
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Figure 4.18. Stiffness reduction versus number of loading cycles for two mixtures with similar
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Figure 4.19. The average number of loading cycles for different mixtures at 50% reduced

stiffness, grouped based on the asphalt type
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Figure 4.20. Box plot for number of loading cycles at 50% reduced stiffness, grouped based
on the asphalt type

4.8.1.2 Frequency of loading

Loading frequency is the next test variable, whose effect on different mixtures' thermal
fatigue resistance was investigated. Haversine loading was applied at two frequency
levels: High (0.1 Hz) and Low (0.01 Hz). Figure 4.21 compares the effect of loading
frequency on two identical specimens; the specimen, which was test with high loading
frequency, failed at 1227 cycles while the other specimen,tested with low frequency,
failed at 630 cycles. It seems that the specimens under high frequency of loading

perform better, as given results in Table 4.5 verify this conclusion.
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Figure 4.21. Stiffness reduction versus number of loading cycles for two mixtures with
similar ID and different loading frequency

A similar trend can be seen in Figures 4.22 and 4.23, in which specimens are divided
into two groups based on the loading frequency, and comparison is made based on the
number of cycles at 50% reduction in stiffness. It is obvious from figures that the
specimens under higher loading frequency show more resistance to thermal fatigue.
This conclusion is also compatible with the previous findings of (A.h.Gerritsen and
et.al 1989). This finding can be expected because the specimens tested at low
frequencies are subjected to loading time longer, which causes development of micro

cracks, on the other hand, healing becomes more prevalent due to extended time
period.
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48.1.3 Aggregate type

Figure 4.24 shows the influence of aggregate type on thermal fatigue performance of
the test specimens. It can be observed that the specimen fabricated with basalt
aggregate does not fail up to 2000 cycles, and the specimen with limestone reached to
failure condition at 1222 cycles. This example and the number of loading cycles for
50% reduction in stiffness given in Table 4.5 show that basalt aggregate outperforms

limestone aggregate against thermal fatigue.

'\ — Basalt Limestone

™
-50 M

-75

Reduction in stiffness modulus (%)

-100

0 500 1000 1500 2000 2500
Number of cycles

Figure 4.24. Stiffness reduction versus number of loading cycles for two mixtures with
similar ID and different aggregate type

In Figures 4.25 and 4.26, specimens are divided into two groups based on the type of
aggregate that have been used for their fabrication. It can be seen that specimens with
limestone aggregate reach to 50% stiffness earlier than those with basalt aggregate.
According to Figure 4.26 and given data in Table 4.4, for 50% reduced stiffness level,
the mean number of cycles for specimens with basalt is 207 while it is only 67 for

those with limestone aggregate. This outcome is compatible with the finding of (Kim
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et al. 1992) that aggregates that are very hard and tough can demonstrate higher

fatigue-resistance.
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Figure 4.25. The average number of loading cycles for different mixtures at 50% reduced

stiffness, grouped based on the aggregate type
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Figure 4.26. Box plot for number of loading cycles at 50% reduced stiffness, grouped based
on the aggregate type

4814 Gradation

An example of the effect of gradation on thermal fatigue resistance of asphalt concrete
IS given in Figure 4.27. It seems the specimen with finer gradation has a lower rate of
stiffness reduction than that of a coarse graded specimen. This example and given data
in Table 4.5 show that fine graded specimens outperform coarse ones. In Figures 4.28
and 4.29, specimen’s performance at 50% reduction in stiffness modulus is compared
between coarse graded and fine graded specimens. According to Table 4.4, the mean
cycle number at 50% reduction stiffness level for fine and coarse graded specimen are
157 and 74, respectively. The reason for better performance of fine graded specimens
against fatigue is that fine aggregates have a larger surface area and provide better
bonding with asphalt binder. Besides, fine graded specimens have a better aggregate
interlock within the mixture structure, thereby increasing the overall fatigue
performance. This finding also agrees with the results of (Kim et al. 2002; Nejad et
al. 2010) study.
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Figure 4.27. Stiffness reduction versus number of loading cycles for mixtures with similar

ID and different gradations
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stiffness, grouped based on the gradation
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Figure 4.29. Box plot for number of loading cycles at 50% reduced stiffness, grouped based
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48.15 Rest time

Figure 4.30 shows an example for the effect of rest time on the asphalt concrete's
performance under thermal fatigue. Three specimens of the same design mixture were
tested with different rest times. Rest time was applied at three levels: 0s, 5 s, and 10
s. As shown in Figure 4.30, the specimen with 10 s rest time outperformed ones with
5 s and no rest time, as well. Figure 4.31 and 4.32 compare the effect of rest period
on the performance of all specimens at 50% reduction in the stiffness modulus. It can
be seen that specimens tested with higher rest periods generally show better fatigue
performance. This can be related to asphalt concrete's relaxation behavior during the
rest time, which causes micro crack healing and improves the stiffness modulus and
hence fatigue life of asphalt concrete. Detailed information regarding the effect of rest

time can be found in (Zeiada et al. 2014) study.
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stiffness, grouped based on the rest time
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Figure 4.32. Box plot for number of loading cycles at 50% reduced stiffness, grouped based
on the rest time

48.1.6  Aging

Figure 4.33 shows the effect of aging on stiffness of two identical specimens prepared
with different aging conditions. It can be noticed that the aged specimen performed
slightly better than those of unaged ones. However, it is also apparent that aging is not
as significant variable as asphalt type or frequency. Figure 4.34 and 4.35, in which
specimens are divided into two groups according to aging condition, show the
response of each specimen to variations in aging condition. The responses are the
number of loading cycles at 50% reduction in stiffness. The mean cycle numbers are
given in Table 4.4 showing that aged specimens with 130 cycles outperform unaged
specimens with 100 cycles. This outcome is, however, controversial to findings of
(Raad et al. 2001) in that aging makes asphalt binder more brittle and reduces the
fatigue life of beam samples at low temperatures. However, based on the study of
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(Harvey et al. 1995), long-term oven aged samples have a slightly better performance
than aged ones because of increased stiffness. These findings are compatible with
those of (A.h. Gerritsen and et.al 1989) that fatigue life of aged samples tested at low
strain level near 0° C is generally higher than for unaged samples.
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Figure 4.33. Stiffness versus number of loading cycles for mixtures with different aging
condition
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4.8.2 Multivariate analysis for the number of loading cycles at 25%

reduced stiffness

In order to find significant variables affecting the thermal fatigue performance of
asphalt concrete, a total of 144 specimens were tested and the number of loading
cycles at 25% reduction in stiffness are calculated. Statistic parameters and
multivariate analysis results for 25% reduced stiffness are given in Table 4.6. Besides,
the effect of design variables and the interaction between these variables were also
evaluated using multivariate analysis. As apparent from the p-values in Table 4.6, all
the test variables were found to be significant. Since the probability value for all the
factors was less than 0.05, F (Fisher) value as a determinant criterion was used to sort
out the design variables based on their significance levels. Generally, the greater the f
value, the more significant the test variable. Results of the multivariate analysis
indicated that loading frequency, asphalt type, aggregate type, gradation and aging are
all significant variables for thermal fatigue performance. However, the calculated F
values indicate that the rest time is the least significant variable in terms of number of
loading cycles. On the other hand, there are interaction of variables appearing
relatively less significant at 50% reduced stiffness. The interaction between gradation
and aging was not considered significant in the previous analysis for 50% reduced
stiffness, but it was placed among the significant interactions in this analysis. The
interaction of rest time with asphalt type, frequency, and gradation has been also
removed from the significant variables for the same reason. The interaction between
aging and gradation is added to significant variables as gradation plays a dominant
role for thermal fatigue behavior of asphalt concrete. More detailed explanations about
the interaction of the design variables are given in the previous sections for 50%
reduction in stiffness level. The average number of loading cycles at 25% reduced
stiffness is given in Table 4.7. Statistical comparisons of different levels of design
variables for the number of loading cycles at 25% reduced stiffness using bar charts,

and box plots are given in Appendix E.
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Table 4.6. Multivariate analysis for number of loading cycles at 25% reduced stiffness

Design Variable Levels Symbol Mean S_td'_ F- P-
Deviation | Value | Value
Frequency High H 30.6 24.6 78.8 | 0.000
Low S 12.6 6.7
Asphalt type Modified M 28.8 252 | 50.4 | 0.000
Neat N 14.4 8.5
o Aggregate type Basalt B 26.6 25.9 24.3 0.000
§ Limestone L 16.6 9.8
- Gradation Coarse ¢ 16.9 105 | 218 | 0.000
‘T Fine F 26.3 25.7
=
Unaged U 18.7 16.1
0 second 0 19.9 15.5
Rest time 5 second 5 20.3 20.2 2.1 0.124
10 second 10 245 23.8
Aggregate type * Modified M 28.8 25.2 183 | 0.000
Asphalt type Neat N 144 8.5
Asphalt type * High H 30.6 24.6 18.2 | 0.000
Frequency Low S 12.6 6.7
Gradation * Aging Aged A 24.5 23.2 10.4 | 0.002
Unaged U 18.7 16.1
Gradation * Asphalt Modified M 28.8 25.2 7.8 0.006
type Neat N 14.4 8.5
Rest time * Basalt B 26.6 25.9 41 0.020
< Aggregate type Limestone L 16.6 9.8
'*::,6 Aggregate type * Aged A 245 23.2 35 0.065
= Aging Unaged U 18.7 16.1
E Aging*Asphalt type Modified M 28.8 25.2 25 0.117
= Neat N 14.4 8.5
.S
= Asphalt type * Rest 0 second 0 19.9 15.5 >
> time 5 second 5 203 202 : 0.117
10 second 10 245 23.8
Rest time*Gradation Coarse ¢ 17.75 11.6 19 | 0.157
Fine F 31.33 30.4
Aging * Frequency High H 30.6 24.6 1.7 0.196
Low S 12.6 6.7
Rest time*Aging Aged A 24.5 23.2 0.9 0.427
Unaged U 18.7 16.1
Rest time * High H 30.61 24.6 0.4 0.641
Frequency Low S 12.57 6.7
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Table 4.7. The average number of loading cycles at 25% reduced stiffness

Spe::li:)men Cycle | SpecimenID | Cycle | SpecimenID | Cycle | SpecimenID | Cycle
BFMAHO 62 BCMASO 16 LCMAHO 28 LFMASO 12
BFMAH5 77 BCMAS5 20 LCMAH5 22 LFMASS 20
BFMAH10 85 BCMASI10 18 LCMAH10 22 LFMASI10 22
BFMUHO 29 BCMUSO 12 LCMUHO 27 LFMUSO 12
BFMUH5 35 BCMUS5 13 LCMUH5 27 LFMUS5 9
BFMUH10 67 BCMUS10 25 LCMUH10 27 LFMUS10 11
BFNAHO 20 BCNASO 8 LCNAHO 15 LFNASO 18
BFNAHS5 28 BCNASS 9 LCNAH5 14 LFNASS 13
BFNAH10 26 BCNAS10 8 LCNAH10 19 LFNAS10 11
BFNUHO 14 BCNUSO 7 LCNUHO 27 LFNUSO 10
BFNUH5 20 BCNUS5 8 LCNUH5 13 LFNUS5 6
BFNUH10 21 BCNUS10 10 LCNUH10 13 LFNUS10 9
4.8.3 Multivariate analysis for the number of loading cycles at 75%

reduced stiffness

After fitting a power model to stiffness modulus, the number of loading cycles for
specimens whose stiffness did not reduce 75% after 2000 cycle was calculated and
listed in Table 4.9. As shown in Table 4.8, the results of multivariate analyses show
that all the test variables are significant. The sequence for the significance of variables
according to F values is similar to those calculated at 50% reduced stiffness except for
aging and rest time, in which the order of two variables is interchanged. All of the
two-level interactions between asphalt type and the other variables are significant, as
for the interaction between gradation and aging. More details about the interaction of
variables can be found in the previous section for the multivariate analyses of loading
cycles at 50% reduced stiffness. Statistical comparisons of different levels of design
variables for the loading cycles at 75% reduced stiffness using bar charts and box plots

are given in Appendix F.
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Table 4.8.Multivariate analysis for number of loading cycles at 75 % reduced stiffness

. . Std. F P-
Design Variable Levels Symbol Mean Deviation | Value | Value
Asphalt type Modified M 1328.7 1549 151 0.000
Neat N 107.5 117
Frequency High H 1167.4 1615 81.8 | 0.000
Low S 268.8 387
o Aggregate type Basalt B 1095.9 1623 57.8 0.000
E Limestone L 340.3 494
2 Gradation Coarse ¢ 3816 442 459 | 0.000
'cE?s Fine F 1054.7 1656
Unaged U 581.2 1005
0 second 0 672.4 1287
10 second 10 905.9 1477
Asphalt type * High H 1167.4 1615 58.7 0.000
Frequency Low S 268.8 387
* Basalt B 1095.9 1623
Asphalt type . 42.9 0.000
Aggregate type Limestone L 340.3 494
ésphalt _ Co_arse C 381.6 442 344 0.000
type*Gradation Fine F 1054.7 1656
Asphalt type * Aged A 855.0 1456 5.8 0.018
Aging Unaged V] 581.2 1005
Aging * Gradation Coarse ¢ 381.6 442 4.2 0.042
S Fine F 1054.7 1656
& | Resttime *Asphalt | Modified M 1328.7 1549 33 | 0042
2 type Neat N 107.5 117
8 Rest time * High H 1167.4 1615 20 0.134
S Frequency Low S 268.8 387
‘;° Rest time *Aging Aged A 855.0 1456 1.9 0.159
Unaged U 581.2 1005
Aging*Aggregate Basalt B 1095.9 1623 16 0.207
type Limestone L 340.3 494
Rest time* 0 second 0 672.42 1287
est time
Aggregate type 5 second 5 576.04 943 12| 0316
10 second 10 905.87 1477
Aging*Frequency High H 1167.42 1615 1.1 0.301
Low S 268.81 387
Rest time* Coarse C 381.6 442 0.3 0.750
Gradation Fine F 1054.7 1656
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Table 4.9. The average number of loading cycles at 75% reduced stiffness

Spe::IiDmen Cycle Spe::é)men Cycle Spelcli:)men Cycle Spe::lijmen Cycle
BFMAHO 4686 BCMASO 439 LCMAHO 1094 LFMASO 932
BFMAH5 2902 BCMASS5 751 LCMAH5 527 LFMASS 498
BFMAH10 4883 BCMAS10 807 LCMAH10 942 LFMAS10 619
BFMUHO0 1802 BCMUSO 401 LCMUHO 561 LFMUSO 199
BFMUH5 2843 BCMUS5 275 LCMUH5 532 LFMUS5 129
BFMUH10 3823 BCMUS10 773 LCMUH10 1388 LFMUS10 221
BFNAHO 222 BCNASO 32 LCNAHO 80 LFNASO 60
BFNAHS5 340 BCNASS 69 LCNAH5 94 LFNAS5 36
BFNAH10 373 BCNASI10 46 LCNAH10 118 LFNAS10 221
BFNUHO 161 BCNUSO 19 LCNUHO 81 LFNUSO 24
BFNUH5 215 BCNUS5 64 LCNUH5 36 LFNUS5 17
BFNUH10 331 BCNUS10 46 LCNUH10 71 LFNUS10 25
4.8.4 Multivariate analysis for stiffness modulus at 50% reduction

In addition to the number of loading cycles, stiffness modulus itself can also be used
as a response variable for comparison of fatigue performance. For this purpose,
multivariate analysis for the number of loading cycles were performed at three levels
of stiffness reduction of 25%, 50%, and 75%. Since the stiffness of specimens in each
reduction level is a coefficient of specimen’s initial stiffness, multivariate analysis for
the stiffness modulus was performed only at 50% reduced stiffness level. Measured
stiffness modulus for the test specimens are given in Table 4.10. According to P and
F value’s asphalt type, aggregate type, frequency, aging, and gradation are significant
variables. Since p-value for the rest time is slightly greater than 0.05, this variable is
the least significant one among the other main effects. The number of significant
interactions for stiffness modulus is limited to interaction between asphalt type and
gradation by small variations in p-value, and also the interaction between aggregate
type and rest time (Table 4.11). From Figure 4.36 to 4.45, all the test variables were

statistically compared through bar charts and box plots at 50% reduced stiffness

136



modulus. The significant variables and difference between their levels would be

investigated thru bar charts and boxplots in the following sections.
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Table 4.10. Multivariate analysis for stiffness (50% reduction)

; ; Std. F- P -
Design Variable Levels Symbol Mean Deviation | Value | Value
Asphalt type Modified M 34135 1271.7 201.2 0.000
Neat N 1923.7 998.7
Aggregate type Basalt B 3303.5 1389.8 146.2 0.000
Limestone L 2033.7 995.5
" Frequency High H 3248.3 1385.8 121.8 | 0.000
3 Low S 2088.9 1066.9
iz Aging Aged A | 29451 | 13893 | 27.7 | 0.000
‘T Unaged U 2392.1 1286.4
= Gradation Coarse C 2450.0 931.0 17.3 0.000
Fine F 2887.2 1666.2
) 0 second 0 2499.8 1304.5
Rest time 5 second 5 27438 | 15086 26 | 0079
10 second 10 2762.2 1276.2
Gradation * Asphalt type Coarse C 2450.0 931.0 14.4 0.000
Fine F 2887.2 1666.2
. Osecond 0 2499.8 1304.5
Aggregate type * Rest time 5 second 5 57438 15086 3.1 0.051
10 second 10 2762.2 1276.2
Gradation * Aging Aged A 2945.1 1389.3 25 0.117
Unaged U 2392.1 1286.4
Aggregate type * Aging Basalt B 3303.5 1389.8 2.3 0.136
Limestone L 2033.7 995.5
Asphalt type * Frequency High H 3248.3 1385.8 1.6 0.203
s Low S 2088.9 1066.9
g Asphalt type * Rest time Modified M 34135 1271.7 1.0 0.372
£ Neat N 19237 | 9987
E Aggregate type * Asphalt Basalt B 3303.5 1389.8 0.8 0.376
g type Limestone L 2033.7 995.5
‘;‘5 Asphalt type * Aging Aged A 2945.1 1389.3 0.3 0.610
Unaged U 2392.1 1286.4
Gradation * Rest time Coarse C 2450.0 931.0 0.1 0.901
Fine F 2887.2 1666.2
Aging * Rest time Aged A 2945.1 1389.3 0.0 0.960
Unaged U 2392.1 1286.4
Aging * Frequency High H 3248.3 1385.8 0.0 0.905
Low S 2088.9 1066.9
. Osecond 0 2499.8 1304.5
Frequency * Rest time 5 second 5 57438 15086 0.0 0.996
10 second 10 2762.2 1276.2
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Table 4.11. Stiffness modulus of specimens at 50% reduction

Specimen Specimen Specimen
ID Stiffness ID Stiffness | Specimen ID | Stiffness ID Stiffness
BFMAHO 3626 BCMASO 2562 LCMAHO0 2295 LFMASO 1228
BFMAH5 3794 BCMAS5 2250 LCMAH5 2147 LFMAS5 1917
BFMAH10 3298 BCMAS10 2400 LCMAH10 2104 LFMAS10 2119
BFMUHO 3162 BCMUSO 1613 LCMUHO 1684 LFMUSO 1639
BFMUH5 3694 BCMUS5 1766 LCMUH5 1744 LFMUS5 1440
BFMUH10 3301 BCMUS10 1531 LCMUH10 1720 LFMUS10 1672
BFNAHO 2051 BCNASO 1081 LCNAHO0 1321 LFNASO 683
BFNAH5 2385 BCNAS5 1993 LCNAHS5 1168 LFNASS 531
BFNAH10 2318 BCNAS10 1513 LCNAH10 1641 LFNAS10 1672
BFNUHO0 1703 BCNUSO 899 LCNUHO0 832 LFNUSO 503
BFNUH5 1823 BCNUS5 1262 LCNUH5 942 LFNUS5 390
BFNUH10 1894 BCNUS10 1173 LCNUH10 1516 LFNUS10 561

In Figures 4.36 and 4.37, the test specimens are divided into two groups based on
asphalt type used. A comparison of 50% reduced stiffness for two groups shows that
specimens with modified asphalt have higher stiffness values. According to Table
4.10, specimens with modified binder and mean stiffness value of 3413 MPa
outperform the unmodified ones with a mean value of 1923 MPa. The stiffness of
asphalt mixture is highly correlated to the stiffness of the asphalt binder used in its
fabrication. Since the stiffness modulus of polymer modified asphalt binder is much
higher than the neat asphalt binder, the outcomes in Figures 4.36 and 4.37 are highly
expected.
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Figure 4.36. The average stiffness modulus at 50 % reduction grouped based on asphalt type
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Figure 4.37. Box plot of average stiffness at 50% reduction grouped based on asphalt type
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In Figures 4.38 and 4.39, the specimens are divided into two groups based on
aggregate type used. The 50% reduced stiffness is the criteria for comparison of basalt
and limestone aggregate. As can be observed from Figures 4.38 and 4.39, the
specimens with basalt aggregate have higher stiffness and longer fatigue life. It seems
that basalt aggregate due to its angular shape, rough surface texture, and high
toughness leads to have higher stiffness modulus. The mean stiffness for these
specimens with basalt aggregate is produced 3,303 MPa stiffness as can be seen in

Table 4.10, while it is only 2,033 MPa for ones prepared with limestone aggregate.
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Figure 4.38. The average stiffness modulus at 50 % reduction grouped based on aggregate
type
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Figure 4.39. Box plot of average stiffness at 50% reduction grouped based on aggregate type

In Figures 4.40 and 4.41, the effect of loading frequency on specimen’s fatigue life is
investigated. It is apparent that the mean stiffness of the specimens is larger at high
frequency (0.1Hz) than at low frequency (0.01 Hz). These measured stiffness values
are 3,248 MPa for high frequency loading and 2,088 MPa for low frequency,
respectively. The reason for this behavior is that the loading at very low frequencies
gives sufficient time to the development of micro cracks and when combined with
relatively low environment temperature (4° C), the recovery by healing becomes
difficult.
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Figures 4.42 and 4.43, showing the specimen group based on aging level, reveal the
response of specimens to different aging conditions. For loading up to 50% reduced
stiffness, aging contributes to increase in specimen’s stiffness, as confirmed by the
data presented in Figure 4.42 and 4.43. However, the mean stiffness values for the
aged and unaged samples (2,945.1MPa and 2,392.1MPa) don’t show a noticeable
difference (Table 4.10).
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Figure 4.42. The average stiffness modulus at 50% reduction grouped based on aging
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Figure 4.43. Box plot of average stiffness at 50% reduction grouped based on aging

In Figure 4.44 and 4.45, specimens' performance is compared based on the gradation
type used. The results indicate that the terminal stiffness at 50% reduction is higher
for finer gradation. The reason is that higher binder content exists in fine graded
mixtures, and they have a larger surface area, leading to a better interlock in the
aggregate structure and, therefore, produce denser mixtures. As a result, the mean
stiffness of the fine graded specimens showed improvement (2,887 MPa) as compared
to coarse one (2450 MPa).

145



i

4000

3500

3000

=
=]
w
~1

(edjn) ssaupgys

0 0
O O
W =
— —

2000

500

0

OTHNNODT
SHNNODT
OHNNOT
O0IHVINOT
SHVYNOT
OHVNOT
OTHNINDT
SHNNODT
OHNNOT
O0THVIND'T
SHVINOT
OHVINO'T
OTSNNOY
SSNNOY
0SNDEH
0ISVNOH
SSVYNOY
0SVYNOH
0ISNNOH
SSNOY
0SNINDE
0ISVINDH
SSVYINDH
0SVINDH
OTISNNAT
SSANAT
0SINAT
OISVNAT
SSYNAT
0SVYNAT
OTSNINAT
SSANAT
0SINAT
OISVINAT
SSVINAT
OSYINA'T
OTHNNAL

=

v
£
A
=
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4.8.5 Multivariate analysis according to total dependent variables (number
of loading cycles at 25%+50%+75%+reduced stiffness at 50%0)

In previous sections, the analysis of variance for the number of loading cycles at each
level of reduced stiffness (25%, 50%,75%) and the effect of design variables on
stiffness modulus at 50% reduction was performed separately. In this section,
multivariate analysis was performed to investigate the effect of design variables on all
the dependent variables together. According to the p-values computed (Table 4.12),
all the design variables seem to be significant for the main dependent variables and
based on the F values, asphalt type seems to be the most significant effect among the
other test variables. It can be seen that two-level interactions of asphalt type with the
other design variables are also significant. Two level interactions for aging-gradation,

rest time-aggregate type, and aging-aggregate type were also found to be significant.

Table 4.12. Multivariate test results for test variables (number of loading cycles at
25%+50%+75% reduced stiffness +reduced stiffness modulus at 50%)

Design Variable F-Value P-Value
Asphalt type 105.3 0.000
2 Frequency 72.53 0.000
g Aggregate type 56.48 0.000
k= Gradation 23.62 0.000
§ Aging 10.85 0.000
Rest time 3.49 0.001
Frequency*Asphalt type 24.6 0.000
% Asphalt type* Aggregate type 194 0.000
§ Asphalt type * Gradation 15.3 0.000
§ Aging*Gradation 6.03 0.000
£ Rest time* Aggregate type 3.1 0.003
% Aging* Aggregate type 2.94 0.022
& Asphalt type * Rest time 2.98 0.006
c>5 Aging*Asphalt type 2.4 0.055
Rest time *Frequency 1.89 0.062
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49 ANOVA results for rate of reduction in stiffness

144 specimens were evaluated on the basis of slope of the line in the log-log scale for
stiffness versus the number of cycles. They were then statistically analyzed for finding
the significant design variables for the rate of stiffness reduction. Since only one
dependent variable was involved in this analysis, ANOVA method is selected to
determine the significance test variables. Table 4.13 presents the probability values
calculated through ANOVA. As it is obvious from the ANOVA results that asphalt
type, aggregate type, and frequency are the most significant design variables as their
p-values are less than 0.05. The gradation with a p value of 0.077 can also be
considered as important test variable, although its p-value is slightly higher than 0.05.
Table 4.14 lists the average slopes related to each type of mixture. Interaction between
asphalt type and aging and interaction between asphalt type and aggregate type seem
to be the most significant ones affecting the rate of reduction in stiffness. The
interaction between aggregate type and aging also can be assumed as a significant

interaction, as well.

Table 4.13. ANOVA results for slope of the fitted line

Design Variable F-Value P-Value
Asphalt type 460 0.000
Aggregate type 67.8 0.000
g Frequency 9.93 0.002
g Gradation 3.2 0.077
= Aging 14 0.235
Rest time 0.86 0.423
o £ Asphalt type * Aging 7.27 0.008
‘i; '% Asphalt type* Aggregate type 4.28 0.041
§ ‘g‘ Aggregate type * Aging 3.27 0.073

* just significant variables interaction is mentioned in the table
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Table 4.14. The averaged measured slope for different specimens

Specimen Specimen Specimen Specimen

P D Slope P o Slope P 0 Slope P D Slope
BFMAHO 0.20 BCMASO 0.25 LCMAHO 0.22 LFMASO 0.23
BFMAH5 0.22 BCMAS5 0.23 LCMAH5 0.23 LFMASS 0.23
BFMAH10 0.19 BCMAS10 0.21 LCMAH10 0.21 LFMAS10 0.25
BFMUHO 0.22 BCMUSO 0.24 LCMUHO 0.29 LFMUSO 0.27
BFMUH5 0.23 BCMUS5 0.26 LCMUH5 0.28 LFMUS5 0.28
BFMUH10 0.18 BCMUS10 0.18 LCMUH10 0.27 LFMUS10 0.27
BFNAHO 0.31 BCNASO 0.37 LCNAHO0 0.37 LFNASO 0.43
BFNAHS5 0.30 BCNAS5 0.34 LCNAHS5 0.36 LFNASS 0.41
BFNAH10 0.32 BCNASI10 0.34 LCNAH10 0.41 LFNAS10 0.39
BFNUHO0 0.32 BCNUSO 0.36 LCNUHO 0.40 LFNUSO 0.38
BFNUH5 0.33 BCNUS5 0.30 LCNUH5 0.38 LFNUS5 0.37
BFNUH10 0.31 BCNUS10 0.34 LCNUH10 0.35 LFNUS10 0.39
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Figure 4.46. The average slope for specimens grouped based on asphalt type
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Figure 4.47. The average slope for specimens grouped based on aggregate type
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Figure 4.48. The average slope for specimens grouped based on loading frequency
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Figure 4.49. The average slope for specimens grouped based on gradation
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In Figure 4.46, specimens are divided into two groups based on asphalt type, and the
calculated slopes (rate of stiffness reduction) are plotted as a response variable. The
magnitude of slopes indicates how fast the micro cracks develop within different
asphalt concrete specimens. It can be seen that a modified asphalt binder increases the
elastic properties of asphalt concrete and improves its thermal fatigue life. As shown
in Figure 4.47, changes in aggregate type affects the slope of the fitted lines. The result
related to the aggregate type are highly correlated with the findings for analysis at
different levels of reduction in stiffness obtained from the fatigue tests on semicircular
specimens. Changes in the loading frequency is also influential on the slope of the
fitted lines (see Figure 4.48). The results show that the specimens which are loaded
under high frequency have a smaller slope and hence a longer fatigue life regardless
of asphalt type, aggregate source, and gradation. Figure 4.49 shows grouped
specimens for aggregate gradation. It can be noticed that the specimens with fine
gradation outperform coarse graded ones by having smaller slopes, i.e., rate of

stiffness reduction.

It is believed that fine graded mixtures behave relatively more ductile as compared to
coarse graded mixtures under repeated fatigue loading by dissipating applied energy
from the cyclic loading. The calculated slopes in the log-log scale for 144 specimens
are given in Appendix G.

4.10 Analysis of force — load line displacement (LLD) data

4.10.1 Determination of stiffness from load line displacement

Analyses of the relationship between the number of loading cycles and stiffness were
already presented in the previous sections. Since the induced strain underneath the test
specimen in the bending mode is the main controlling factor for fatigue failure, priority
was given to the analysis of fatigue based on this loading mode. In this section, an
alternative method has been proposed to analyze the thermal fatigue performance of
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the test specimens. In this approach, so called load line displacement (LLD), stiffness
is calculated from the load-line displacement picked during the testing using a separate
displacement sensor. In normal three-point bending tests with semicircular specimens,
load line displacements were also recorded using a separate LVDT mounted on the
specimen’s side face. The stiffness of the semicircular specimens based on the load
line displacement-force relationship is calculated from the slope of the curve in the

linear portion as shown in Figure 4.50.
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Figure 4.50. Load versus load-line displacement relationship for a test specimen

Since the target strain calculated from the thermal coefficient of the specimen is
unique for each mixture sample, the applied load and the load line displacement can

also be expected different from one specimen to another as shown in Figure 4.51.
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Figure 4.52 shows the stiffness modulus and strain versus the number of cycles
calculated from LLD. It can be noticed that the trend for stiffness degradation is very
similar to one calculated from the strain measured in the three-point bending test
except that the measured strains are considerably higher in this case. The results for
stiffness path versus the number of cycles obtained from LLD method for all

specimens are attached to Appendix H and I.

BFNAH10-LLD —BFNAH10-CMOD
-10

20 BFMAHI10-LLD —BFMAH10-CMOD
-30
-40
-50
-60

=70

-80

Reduction in stiffness modulus (%)

-90

-100

0 500 1000 1500 2000 2500

Number of loading cycles

Figure 4.53. Stiffness versus number of loading cycles calculated from LLD and CMOD for
specimens with similar ID and different asphalt type

An example to compare the results from these two methods is given in Figure 4.53.
Black colored curves are indicators of stiffness path measured from the bottom surface
of specimen with similar ID and different asphalt type. Gray colored curves denote
the stiffness path for the same specimens but measured from force-load line
displacement curve. As can be seen from Figure 4.53, the stiffness reduction path for
the two methods are quite similar. The correlation between the outcome of the two

methods will be investigated in next sections.
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4.10.2 Multivariate analysis for the number of loading cycles at different

levels of reduced stiffness from load-line displacement curve

In order to find the significant variables for LLD, multivariate analysis was performed
on 144 specimens for different levels of stiffness reductions (25%,50%,75%)
calculated from LLD. Results of the analysis show that according to the p-values for
test variable, all the design variables except the rest time are significant for thermal
fatigue resistance. Asphalt type and frequency are the most significant variables for
all levels of analysis (Table 4.15). Most of the results are very similar to those obtained
from the stiffness reductions versus number of loading cycles calculated from the
semicircular specimens (CMOD), details of which are presented in the previous
sections. In the next section, statistical parameters for the two procedures are
compared in detail, and the correlation between them is investigated.
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Table 4.15. Multivariate analysis for number of loading cycles at different level of reduced
stiffness calculated from LLD curve

Reduced stiffness Design variable Mean Std.deviation | F-Value P-Value
Frequency 20.397 0.000
Asphalt type 17.154 0.000
2506 Aging 312 39 9.615 0.002
Gradation 6.559 0.012
Aggregate type 5.980 0.016
Rest time 2.430 0.092
Asphalt type 51.782 0.000
Frequency 23.839 0.000
50% Aggregate type 160.5 254 13.111 0.000
Aging 8.491 0.004
Gradation 7.282 0.008
Rest time 0.686 0.506
Asphalt type 73.559 0.000
Frequency 41.533 0.000
75% Aggregate type 758.8 1248 24.636 0.000
Gradation 16.447 0.000
Aging 4.533 0.035
Rest time 0.370 0.691
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4.10.3 Statistical comparison of the results between two approaches

The number of loading cycles corresponding to the stiffness reductions at 25%, 50%,

and 75% was calculated from both three-point bending tests and LLD measurements.

Comparisons for the two methods are presented in Figure 4.54 to 4.56. Except for a

few specimens, the number of loading cycles from the two methods seems quite

similar. The statistical parameters calculated from the both approaches are also listed

in Table 4.16. It can be noticed that the mean and the median values are quite close

to each other. This is also verified by the calculated Pearson correlation values of
0.666, 0.664, 0.815 at 25%,50%, and 75% reduction levels, respectively, indicating

that the results of the two procedures at different levels of stiffness reduction are

strongly correlated.
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Figure 4.54. Comparison of number of loading cycles at 25% reduced stiffness obtained

from CMOD and LLD for all specimens
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Figure 4.55. Comparison of number of loading cycles at 50% reduced stiffness obtained
from CMOD and LLD for all specimens
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Figure 4.56. Comparison of number of loading cycles at 75% reduced stiffness obtained
from CMOD and LLD for all specimens
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Table 4.16. Comparison of statistical parameters for number of loading cycles at different
levels of stiffness reductions for CMOD and LLD

Stiffness Stiffness Standard Pearson
measuremen | reduction | Minimum | Maximum deviation Mean | Median correlation
t procedure level

CMOD 4 136 20 21.6 14.5

25% 0.666
LLD 7 345 39 31.8 20
CMOD 10 906 165.1 115.4 52.5
50% 0.664
LLD 12 1800 254 160.5 66.5
CMOD 13 7236 1254 718.1 236
75% 0.814
LLD 17 7650 1248 758.5 249
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5.1

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

This chapter sums up the findings of this research and makes some
recommendations for future works. Although the testing procedure was
employed in this study to measure the thermal coefficient and the thermal
fatigue resistance of asphalt concrete was innovative, the results of this study
largely depended on experimental design, used material for the fabrication of

test specimens, and procedure of the tests.

According to the previous studies in the literature, most of the researchers
used beam specimens of varying sizes causing size dependent variations in
the measured properties. The other factor affecting the test results is the high
variations in air void content produced during the specimen fabrication
process. To eliminate the variability associated with thermal fatigue tests, all
the test samples were produced by the Superpave design method using a
standard gyratory compactor with very restricted criteria for air void content,
4+0.05 %, and volumetric requirements. These samples were utilized in the
testing program to produce specimens for both thermal coefficient and

thermal fatigue tests.

In the first phase, 16 beam specimens with dimensions of
65mmx50mmx120mm were produced from the compacted samples to
measure their thermal coefficients to calculate thermal strains. The
temperature range for thermal coefficient measurements was selected
between-30 to 30 with a cooling rate of 60° C/h.
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In the second phase, a total of 144 semicircular specimens with 35mm
thickness were produced from the gyratory compacted samples to conduct
thermal fatigue tests. Haversine waveform was used for loading in a three-
point bending mode to apply constant thermal strain calculated from the

specimen’s thermal coefficient.

In several studies, different levels of stress and strain were employed to
simulate thermal fatigue in asphalt concrete pavements; however, no specific
procedure for selecting the appropriate strain or stress level was proposed. In
this study, loading mode and magnitude were selected based on the
developed thermal strain for each mixture based on the thermal coefficient

and the most frequent temperature difference in the research location.

While direct tension-compression test in the strain control mode has been
applied in some studies to evaluate the thermal fatigue performance of
asphalt concrete, a three-point bending with strain control loading was first
time used for a semicircular test specimen. The applied strain at the bottom
of the specimen in the bending mode cannot be controlled instantly; it needs
few cycles to regulate the response strain by modifying the applied load using
a closed-loop PID control of the test frame. In conventional tension-
compression tests, the applied strain is zero at the start and finish of each
cycle, but in the flexural fatigue test, after the test started, the applied strain
never declines to zero, and the residual strain gradually increases during the
test because of the viscoelastic response of asphalt concrete. This behavior is
more compatible with the performance of asphalt concrete in the field under
thermal cycles due to daily temperature fluctuations.

Experimental variables selected in this study can be divided into two groups:
Independent variables and Dependent variables. The independent variables
include asphalt type, gradation, aggregate type and aging as design variables,
and the rest time and frequency as the test variables. Stiffness and number of

loading cycles at different stiffness reduction levels were selected as
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1-

dependent variables. ANOVA and Multivariate analysis were both employed
to investigate the significance of the independent variables for thermal
coefficient and thermal fatigue resistance of the asphalt concrete samples. In
addition, a separate multivariate analysis was also conducted for 50%
stiffness reduction for the evaluation of the thermal fatigue test results. .
Based on the results of these statistical analyses, the findings of this study

can be summarized as follows:

ANOVA results showed that aggregate type is a determinant factor for the
thermal coefficient of asphalt concrete. Because aggregates constitute a
major portion of the mixtures, it should be expected that aggregates with
different thermal properties would lead to different thermal behaviors and
hence distinctive thermal coefficients for each mixture sample. However, the
effect of other test variables on thermal coefficient was found to be

negligible.

FEM analysis using the viscoelastic material model for asphalt concrete was
employed to investigate the stress-strain distribution in a semicircular
specimen. This analysis facilitates the selection of appropriate strain gauge
length and location to measure the induced strain underneath a semicircular
specimen and also help to estimate initial loading to be applied at different

loading frequencies.

The multivariate analysis result showed that the asphalt type plays an
important role in the performance of asphalt concrete under thermal fatigue,
and the samples with polymer modified asphalt outperformed ones with neat
asphalt by a considerable effect on their measured fatigue life. The
explanation for this behavior can be related to the improvement in asphalt

concrete's elastic properties because of using a modified asphalt binder.
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4-

The effect of loading frequency in thermal fatigue resistance was shown to
be highly significant. Reducing loading frequency caused a drastic drop in
the number of loading cycles. The mechanism responsible for this response
can be related to the viscoelastic properties of asphalt concrete.

The aggregate type was found to be a significant factor for the thermal fatigue
life of asphalt concrete, and specimens with basalt aggregate outperformed
ones fabricated with limestone. The reason for this response can be related to
the adhesion strength between aggregate and asphalt, which highly depends

on aggregate source and its related mineralogical structure.

Gradation was recognized to be significant variable in the thermal fatigue
performance of asphalt concrete. Specimens with finer gradation had longer
fatigue life, which can be attributed to a better interlocking and increased

packing of mixture aggregates.

In this study, asphalt binder aging was also found to be important; the aged
samples outperformed unaged samples and had a longer fatigue life, which
was contrary to the previous studies that unaged samples were less
susceptible to thermal fatigue. It is believed that the laboratory accelerated
aging procedure employed in this study (AASHTO R30) does not exactly

simulate the field aging process, which takes place over a long period of time.

The effect of rest time between the sequential loading cycles was another test
variable whose function in the thermal fatigue performance of asphalt
concrete was investigated. It is known that applying rest time between
loading cycles facilitates healing of developed microcracks. In the testing
program, each type of specimen was tested without rest time and with two
different rest times. The finding indicate rest time is also a significant

variable for the thermal fatigue performance of asphalt concrete.
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9- In addition to the main effects, interactions between the design and test
variables (independent variables) were also investigated. The interaction
between asphalt type and frequency and between asphalt type and aggregate
type were found as the most significant 2nd level interactions. Asphalt type
and frequency gave rise to individually the most significant variables. Since
the viscosity of asphalt decreases with an increase in the loading frequency,
and because of the major difference in the asphalt binder's properties used,
the interaction of these two variables become also important. The next
significant interaction was between aggregate and asphalt, as the adhesive
bond between aggregate and asphalt is a defining factor that is mostly
influenced by aggregate type. This outcome could be expected due to
combining different of aggregate sources with rheologically different asphalt

binders.

10- ANOVA results for the rate of stiffness reduction (slope of the fitted line)
show that the asphalt type, aggregate type, and frequency are the most
significant variables. The gradation is also important, although its p-
values is slightly more than 0.05. The magnitude of slopes indicates how
fast the micro cracks develop within different asphalt concrete specimens.
It was found that modified asphalt binder, basalt aggregate, fine gradation,
and high loading frequency are test variables decreasing the rate of

stiffness reduction and extend the thermal fatigue life of asphalt concrete.

11- Another approach used for measuring the stiffness reduction was based on
load line displacement. Multivariate analysis results for the measurements
were quite similar to those obtained from the three-point bending test
results except that the rest time was not included among the significant

variables by this method.
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5.2 Recommendation for future works

The following recommendation for future studies can be made based on the

findings of this study:

1. Specimens used in this study were aged according to the long term
oven aging (LTOA) procedure. The results of the study show that aged
samples have a longer fatigue life than unaged ones. This finding is in
contrast to the previous load associated fatigue studies in the field and
laboratory. The first reason that can explain this outcome is that the
LTOA does not simulate field aging conditions thoroughly. The
second reason may be related to conditions of the thermal fatigue test,
which is different from load associated fatigue tests. The low strain
level and relatively low temperature are the components of thermal
fatigue test, which can be the reason for this controversy. Future
studies should be conducted to investigate the aging process in the
field combined with strain control loading at low frequencies.

2. In the case of haversine loading applied in this study, in which the
permanent deformation is not removed from the specimen, as opposed
to conventional four-point beam fatigue or push-pull direct tension
tests, the difference in creep behavior of specimens affects the test
results. The dramatic difference between the performance of modified
and unmodified asphalt concrete can be partially related to this
phenomenon. Remained tensile strain in the semicircular specimens
makes the laboratory simulation of thermal fatigue more realistic. But
to simulate field condition exactly, even if it seems complicated and
difficult to execute, the remained tensile strain should be controlled

and limited like maximum target strain.
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APPENDICES

A. Test designer code for thermal fatigue test

Ref Name Expression

V00 Non Zero 1.00E-100

V01 Test Cycles Cycles()

V03 Load First(C01)

V04 Peak Load MAX(C01)

V05 Actuator Deformation MAX(C00)-MIN(CO00)

V06 Min Load MIN(CO01)

V07 Temp AVG(C04)

V08 Min CMOD MIN(C02)

V09 scan time L25

V12 LLD Displacement MAX(C03)

V13 Max CMOD MAX(C02)

V20 Gauge Length IF(P03>0,P03,Length)

V30 Sampling Time L24/100

V31 Frequency 1000/L24

V40 Peak SCB Stress 6*(V04-V06)*1000*P02/(length*diameter2)

V41l Peak SCB Stress 2 6*\V04*1000*P02/(length*diameter”2)

V49 Stiffness Modulus (\VV40/v50)*1000000

V50 Peak CMOD strain 1000000*(\V13/P03)

V51 SCB Resilient Modulus | V40/((V55-V54)/1000000)

V52 Peak LLD Strain 1000000*V12/P04

V53 LLD Stiffness V04/V12

V54 MIN CMOD strain 1000000*Vv08/P03

V55 MAX CMOD strain 1000000*V13/P03

V60 Modify Control IFC(V01>9,CyclicModify(1,2,L23,V61))

V61l Adjust Loading IFC(V01>9,L20+L20*L27*ADAPT(0,L22,V50,V65))
V62 Request Load IF(V01>0,Vv61,L21)

V64 Average Load avgrunning('vV04',10)

V65 Secondary Load IF(V01<=15,0.1,1)

V70 Initial Stiffness IFC(V01=P13,v49)

V71 Termination Stiffness IFC(V01=P13,Vv70*(1-(P14/100)))

V72 Stiffness Ratio IFC(V01>10,Vv49/V70)

V96 termination on IFC(humseq(1)&(v01=10),nextseq())

V97 Max Cycles IFC(V01>=P15,stop('Test Stopped -- Max Cycles detected"))
Vo8 Max Displacement :jl;&((:\{e(éSI)?—PlS,stop(Test Stopped -- Max Displacement
V99 Termination On IFC((V01>P13) & (V49<=VT71),stop('Test Stopped -- Terminated

Stiffness

on Stiffness detected"))
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B. Programming code for Brookfield rotational viscometer
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Rheocalc V2.7 Brookfield Engineering Labs

Filename: C:\Documents and Settings\user\My Documents\REZA\main code files\T316-06.RCP

Line# Command Command Description Parameter 1

i STM Set Temperature 120: .

3 STM Set Temperature 112 .

5 STM Set Temperature 114, ..

T STM Set Temperature 116 .

9 STM Set Temperature T18 -

1, STM Set Temperature 120 .

13 WTI Wait Time 10:00

15 WDP Wait for Data Points 6

1% SSN Set Speed G 3

19 WTI Wait Time 06:00

21 WTI Wait Time 08:00

23 WTI Wait Time 08:00

25 WTI Wait Time 08:00

217 SSN Set Speed 20 .

29 DCI Data Interval 00:30

Page 1 12/25/2015 4:04:14 AM
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Rheocalc V2.7 Brookfield Engineering Labs

Line # Command Command Description Parameter 1

31 DSD Stop Data Collection

33 STM Set Temperature 32

35 STM Set Temperature 134

3T STM Set Temperature 136

39 STM Set Temperature 138

41 STM Set Temperature 140

43 WTI Wait Time 10:00

45 WDP Wait for Data Points 6

47 SSN Set Speed 0

49 WTI Wait Time 06:00

51 WTI Wait Time 08:00

53 WTI Wait Time 08:00

55 WTI Wait Time 08:00

57 SSN Set Speed 20

5.9 DCI Data Interval 00:30

61 DSD Stop Data Collection

Page 2 12/25/2015 4:37:09 AM
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Rheocalc V2.7 Brookfield Engineering Labs

Line # Command Command Description Parameter 1

63 STM Set Temperature 152

65 STM Set Temperature 154

67 STM Set Temperature 156

69 STM Set Temperature 158

74, STM Set Temperature 160

73 WTIL Wait Time 10:00

75 WDP Wait for Data Points 6

T4, SSN Set Speed 0

79 WTI Wait Time 06:00

81 WTI Wait Time 08:00

83 WTI Wait Time 08:00

85 WTI Wait Time 08:00

87 SSN Set Speed 20

89 DCI Data Interval 00:30

91 DSD Stop Data Collection

93 STM Set Temperature A2

Page 3 12/25/2015 4:37:09 AM
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Rheocalc V2.7 Brookfield Engineering Labs

Line# Command Command Description Parameter 1
95 STM Set Temperature 174 .
97, STM Set Temperature 176 .
99 STM Set Temperature 178

101 STM Set Temperature 180

103 WTI Wait Time 10:00

105 WDP Wait for Data Points 6

Page 4 12/25/2015 4:04:14 AM
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C. Stiffness calculated from bottom surface of the specimen (CMOD)
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D. Reduction in stiffness calculated from bottom surface of the specimen (CMOD)
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E. Bar charts and boxplots for cycle number at %25 reduced stiffness level (144

specimens)
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Figure E. 1.The average number of loading cycles for different mixtures at 25% reduced stiffness

grouped based on loading frequency
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Figure E. 3. The average number of loading cycles for different mixtures at 25% reduced

stiffness grouped based on asphalt type
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Figure E. 7. The average number of loading cycles for different mixtures at 25% reduced

stiffness grouped based on gradation
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Figure E. 9. The average number of loading cycles for different mixtures @25% reduced
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F. Bar charts and boxplots for cycle number at %75 reduced stiffness level (144

specimens)
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Figure F. 1. The average number of loading cycles for different mixtures @75% reduced

stiffness, grouped based on the asphalt type
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Figure F. 3. The average number of loading cycles at 75% reduced stiffness, grouped based on
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Figure F. 5. The average number of loading cycles at 75% reduced stiffness, grouped based on

aggregate type
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Figure F. 7. The average number of loading cycles at 75% reduced stiffness, grouped based on
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Figure F. 9. The average number of loading cycles at 75% reduced stiffness, grouped based on

asphalt binder aging
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Figure F. 11. The average number of loading cycles at 75% reduced stiffness, grouped based on

the rest time
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G. Stiffness reduction ratio calculated from bottom surface of the specimens
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H. Reduction in stiffness, calculated from LLD-force curve
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