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ABSTRACT

FORMATION FLIGHT DESIGN USING NATURAL DYNAMICS FOR
HALO ORBITING AND EARTH ORBITING SPACECRAFT

Kutlu, Aykut
Doctor of Philosophy, Aerospace Engineering
Supervisor : Prof. Dr. Ozan Tekinalp

September 2020, 360 pages

This thesis presents the studies performed for spacecraft formation flight design and
analyses. Two main design problems are addressed in this thesis: First the formation
flight design of satellites flying near Sun-Earth collinear libration points; the second

the formation flight design of satellites flying at Low Earth Orbit.

Thus, formation flight design near Sun-Earth L1 and L2 libration points is
investigated first, where solar radiation pressure as well as the gravitational
disturbances of the planets are taken into account, for different Julian dates. The
periodicity of the relative motion in formation flight is taken as a design criterion
and convenient initial conditions are computed for each deputy satellite for desired
formation configuration. It is desired that the required formation is maintained

without the need of any correction maneuvers for formation keeping.

In the second part, the method presented in this thesis for formation flight design is
applied to Low Earth Orbit satellites. The results are also compared to the results
obtained using current methods available in the literature. Results show that

proposed method gives more consistent results and provides flexibility on the orbit



design for formation in terms of formation keeping and fuel consumption needs as

compared with the currently available methods.

Finally, it can be stated that the trajectory and orbit computations done using the
method presented in this thesis provide long term formation flight for space missions
at L1, L2 libration points and for Low Earth Orbit missions. The main contribution
of this method is the inclusion of all disturbancing forces acting on the satellite as a
time variant discrete model. The initial conditions are found iteratively that ensures
the periodic trajectory. Here, the usage of time variant discrete model to obtain
periodic relative motion is a feature that distinguishes the current study from the
existing methods in the literature.

Keywords: Spacecraft Formation Flight, Libration Points, Lagrange Points, Halo
Orbit, Low Earth Orbit
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DOGAL DINAMIK KULLANILARAK HALE YORUNGEDE VE DUNYA
ETRAFINDA SEYIR EDEN UZAY ARACLARI iCIN KOL UCUSU
TASARIMI

Kutlu, Aykut
Doktora, Havacilik ve Uzay Miihendisligi
Tez Yoneticisi: Prof. Dr. Ozan Tekinalp

Eylil 2020, 360 sayfa

Bu tez ¢alismasinda uzay araglari kol ugusu tasarimi ve analizleri {izerine yapilan
calismalar sunulmaktadir. Tez iki ana béliimden olusmaktadir. Ilk ana kisim Giines-
Diinya esdogrusal sallant1 noktalar1 civarinda kol ugusu tasarimi {lizerinedir; ikinci

ana kisim Diinya Algak Yoriinge uydularinin kol ugusunu incelemektedir.

Ik ana kisimda, giines 151n1m basinci ile diger gezegenlerin ¢ekim kuvveti kaynakli
bozuntular1 farkli Julian tarihler géz Oniine alimarak L1 ve L2 Giines-Dlnya
esdogrusal sallant1 noktalar1 civarindaki kol ugusu incelenmektedir. Formasyon
ucusundaki goreli hareketin periyodikligi bir tasarim kriteri olarak alinmaktadir ve
her bir vekil uydunun uygun baslangi¢ kosullar istenen kol ugusu konfigiirasyonu
icin hesaplanmaktadir. Kol ugusunun korunmasi icin herhangi bir dizeltme

manevrasina ihtiya¢ duyulmadan hedeflenen ugusun siirdiiriilmesi istenmektedir.

Ikinci kisimda algak Diinya Algak Yoriinge uydular: igin mevcut ydéntemler ile bu
tezde sunulan yontem kiyaslanmistir. Sonuglar kol ucusu korunmasi ve yakit
tiikketimi agisindan bu tezde sunulan yontemin uygun sonuglar verdigini ve yoriinge

tasariminda esneklik sagladigini gostermektedir.

Vil



Sonug olarak, bu tezde sunulan yontemin kullanimi ile tasarlanan ugus yolu ve
yorlingeler hem L1 ve L2 sallanti noktalar1 civar1 uzay gorevleri hem de Diinya
Algak Yoriinge gorevleri i¢in uzun siireli kol ugusu saglamaktadir. L1 ve L2
durumlar1 i¢in, bu c¢alismanin ana katkis1 tiim bozuntu kaynaklarinin zaman
degiskenli ayrik modelde kullanimi ve boylece periyodik yoriingeyi garantileyen ilk
kosullarin bulunmasidir. Diinya Algak Y 6riinge durumunda, periyodik goreli hareket
elde etmek i¢in zaman degiskenli ayrik modelin kullanimi1 6zelligi bu yontemi diger

mevcut yontemlerden ayiran bir 6zelliktir

Anahtar Kelimeler: Uzay aract Kol Ugusu, Giines-Diinya Sallanti Noktalari,
Lagrange Noktalari, Hale Y6runge, Dunya Algak Ydriinge
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CHAPTER 1

INTRODUCTION

1.1. Thesis motivation and definition of spacecraft formation flight

Mystery of deep space and the strong desire of the mankind to discover Earth-like
planets trigger numerous innovations and the development of space technologies. In
last few decades, especially in the last few years, studies on deep space mission have
become even more popular due to number of related projects. In this way, many
related subtopics appear such as interplanetary navigation, orbit design for long
terms navigations in solar system and beyond. In addition, various innovative
mission concepts, such as satellites flying in formation has attracted attention. Other
mission driven technology development activities may be listed as follows: payload
development to explore other planets and stars, development of sensors and actuators
to fulfill more stringent mission requirements, design of specific experiments and
equipment in order to collect data for the resistance of human being in space
environments, studies on plant growing in space environment, etc. In this context,

the studies presented in this thesis are on the formation flight design and analyses.

This thesis study is twofold: First main part is on the formation flight design near
Sun-Earth collinear libration points L1 and L2; and the second main part examines
the formation flight for Low Earth Orbit (LEO) satellites.

The most common definition for the satellite formation flying is the concept that
multiple satellites can work together in a group to perform a specified
mission. NASA’s Goddard Space Flight Center (GSFC) defines the formation flight
as, “the tracking or maintenance of a desired relative separation, orientation or

position between or among spacecraft” [1]. Actually, spacecraft formation flying is



a specific case of more general category called, Distributed Space Systems, also
defined by NASA GSFC as, “an end-to-end system including two or more space
vehicles and a cooperative infrastructure for science measurement, data acquisition,

processing, analysis and distribution” [1].

These definitions raise the question of what kind of advantages can be achieved with
formation flying. Formation fleets may provide many advantages in terms of
redundancy in case of any failure of one or more satellites, manufacturing lighter and
smaller satellites, instead of utilizing one big satellite with huge observation payload,
smaller satellites with smaller payloads, having more launcher possibility and less
launcher cost, having stable and periodic relative motion between members of the
fleet will not require frequent correction maneuvers, so this may increase lifetime of

satellites as well as formation fleet.

1.2. Formation flying missions and literature review

The main motivation of the first main part of this thesis study is the existence of the
many mission concepts that aim to study planet and star formations in order to detect
Earth-like planets and to understand the conditions of early Earth-like planets. The
common payload used for this kind of missions is Far-Infrared interferometer. In
October 2014, FISICA published the report named “Far Infrared Space
Interferometer Critical Assessment” report and the need of high resolution Far-IR is
explained [2]. The technologic developments on Far-IR and optical/NIR (Near
Infrared) are given in a white paper [3] and this white paper mentions how
optical/NIR and Far-IR allow to watch the Universe, to understand the cosmology,

to examine the origin of planetary systems and galaxy formation.

In recent years, numerous formations flying missions have been planned for the
scientific objectives, such an imaging of extra-solar planets and lunar gravitometry.
One of these projects is called DARWIN, is a European mission aims to characterize

Earth-like planets. DARWIN constellation has three to four free-flying spacecraft



that will be at the second Lagrange point of the Earth-Sun system [4]. It is planed
that one of the members of the fleet carry the optics for beam recombination and the
other three members (or more) carry the large collector telescopes. DARWIN is a

part of ESA’s Cosmic Vision 2020 plan and the details on its mission is given in
Ref.[5].

Three other concepts called respectively FIRIT, ESPRIT and TALC are the concepts
presented for the subarcseconds far infrared observatory payload. Among these three
concepts ESPRIT has a formation flight scheme. The trade-off report notices that
ESPRIT has a loose formation flying constraints [3]. The wavelength range of the
Far-Infrared Space Interferometer of the ESPRIT is 0.5 to 6 THz and the phenomena
connected to star and planet formation are best studied in the far-infrared/Terahertz
regime; 0.5 THz to several THz [6]. FIRIT is a spacecraft having two properties in
payload, photometry and spectroscopy, in order to fulfill the mission requirements.
Main goal is to observe star and planetary systems, the targets are given in Ref.[7].
Spacecraft contains one main module, called center hub, and two sub modules
attached by booms at left and right of the satellite. Those attached booms carry two
telescopes and the distance between submodules is 30 meters [8]. TALC is satellite
having deployable mirror stacks forming an umbrella shape after deployment
completed. Mirror stacks form a ring that is supported by the cables from the main
hub of the satellite. Mechanical design is really a challenging topic. Trade off

analyses and details are given Ref.[9].

The WIND spacecraft can be considered as one the first spacecraft sent to L1
Lissajous orbit and it was launched in 1994. WIND was initially in a Lunar orbit.
Then its mission was extended, in November 1996, to be injected in to halo orbit
about L1. WIND mission is to collect data from sun to investigate solar wind, solar
dynamics. In 2014, its mission extended 10 years and WIND is really a venerable
spacecraft since it keeps on performing its mission more than 20 years [10]. One of
the most well-known of the satellites at point L1 is SOHO. SOHO is a joint project
of ESA and NASA. Spacecraft’s integration, testing work packages were on ESA

responsibility. NASA was responsible for the launch and ground-segment services



as well as for in-flight operations following the launch on 2 December 1995 [11].
SOHO is in a quasi-periodic halo orbit around the Sun-Earth collinear point L1
which is a good position for the direct observation of the Sun. SOHO has a suite of
12 scientific instruments as payload. These payloads are imaging sensors used to
study phenomena relating to the solar surface and atmosphere [12]. Science Program
Committee (SPC) of ESA has declared that the operation of SOHO (additional
operation of several satellites: Hinode, Hubble, IRIS, ExoMarsTGO) is extended up
to 2022. Considering the launch date of SOHO, this lifetime is really an admirable
duration [13]. An US satellite, WMAP (The Wilkonson Microwave Anisotropy
Probe) observes deep space from an orbit about the L2 Sun-Earth Lagrange point.
WMAP was launched in 2001, its lifetime was completed in 2010. Its mission was
to measure the properties of the cosmic microwave background radiation of the
universe [14]. WMAP team receives the fundamentals Physics Awards for detailed
maps of the early universe [15]. GENESIS spacecraft was launched in August 2001.
GENESIS navigates around L1 of Sun-Earth system. Its mission is to collect samples
from solar winds and, that is the very interesting part, return them to Earth by its
capsule for detailed analysis. However, unfortunately the parachute of the capsule
failed to deploy on re-entry to Earth atmosphere and capsule crashed in the Utah
desert in September 2004 [16]. TRIANA spacecraft originally planned to launch in
2002, with space shuttle. But, because of the budgetary problems, its launch is
canceled. The budgetary priority was given to 1SS and Hubble Space Telescope.
Then, TRIANA was placed in storage at Goddard Spaceflight Center. In 2003, it
renamed as DSCOVR (Deep Space Climate Observatory) and finally launched in
November 2014 and it is positioned around L1 having a Lissajous orbit. DSCOVR

delivers space weather measurements for the prediction of Sun activities [17].

Orbit design and orbit control near Sun-Earth libration points is also investigated by
researchers. For example, paper by Folta and Beckman present a summary on the
historical missions and the future planned missions [19]. It also gives a description
of the numerical and dynamical orbit and trajectory design techniques for Sun-Earth

libration points proposed for GSFC missions by emphasizing the critical role of



computing the libration trajectories. It is emphasized that the software must integrate
spacecraft trajectories very accurately. This accuracy need force the model to include
up to 100x100 Earth and lunar gravity potentials, solar radiation pressure, multiple
3rd-body perturbation effects [18]. For that reason, in this thesis solar pressure
sourced disturbances and the gravitational effects of the solar system planets are
added into the developed software model. Another challenging issue is the usage of
the integrating method. In Ref. [19], it is stated that various high order variable or
fixed step numerical integrators are incorporated in their software such as Runge
Kutta, Cowell, and Bulirsch-Stoer. In this thesis 4th order Runge Kutta integration
method is selected for simulations and analysis. It is seen that 4th order Runge Kutta
is sufficient for computing trajectories since detailed maneuver performance are not

studied in thesis context.

A detailed overview of formation flight concept for deep space explorations are
given in Leitner’s paper [20]. Formation flight technology needed to perform most
challenging space missions and related projects are given in Leitner’s study. It is
emphasized that formation flying will be only solution to realize improvements in
space-based telescopes and interferometer payloads in order to observe deep space
with high resolution. Another comprehensive report on the missions at Sun-Earth
libration points is prepared by G. Gomez et.al. [21]. Their study summarizes all the
projects related to this topic and the main description on libration points, the
dynamics, and new trends in mission design are commentated. The study of K. C.
Howell and B. G. Marchand is on the formation keeping problem near the vicinity
of the Sun-Earth libration points. The important parts of this study in terms of
formation dynamics, part related to this thesis, it is the comments given for formation
modeling. It is noticed that restricted three body problem is a good starting point for
modeling. However more complete ephemeris model is needed to precisely
determine the periodic orbits [22]. In line with this reccommendation, this thesis adds
the ephemeris model on the periodic orbit computation, such that time dependent
positions of the planets are recursively computed in simulation time. Furthermore,

the solar radiation based disturbances are also added on the models as noticed in



Ref.[22]. So, this provides to obtain naturally existing formations near the libration
points. The study performed by P. Chidambararaj, R.K. Sharma consider also the
oblateness of Earth in the Halo orbit computations [23]. In this paper, the generation
of Halo orbit in three-dimensional photogravitational restricted three-body problem
is presented. Thus, the massive primary is considered as the source of radiation and
the smaller primary is an oblate spheroid with its equatorial plane coincident with
the plane of motion. In this paper, periodic solution of motion is given in terms a
polynomial having sinusoidal functions. This analytical approach is not used in this
thesis because this thesis uses the numerical method to obtain the satellite trajectory.

Reference [23] presents the comparison of analytical and numerical solutions.

Most recent project on exoplanets exploration is called STARSHADES, with the
mission to observe and characterize Earth-like exoplanets in the next decade. Main
requirement is to precisely positioning in formation flight, the lateral formation
sensing and control, is shared in the report released by California Institute of
Technology in 2018 [24]. Technology Readiness Level (TRL) especially related to
the formation keeping is reported. This report focuses specifically on lateral
formation sensing and control technology. Formation flying behavior is given in the
results parts of this reference. It is seen that this kind of relative motion is very similar

to the examples given in this thesis.

One other approach used for Halo orbits design in libration points is the use of elliptic
restricted three body problem instead of circular one. In that case the radius and the
true anomaly of the elliptic motion of two primary bodies are needed to derive the

equation of motion in the ER3BP; the details are given in [25].

The orbit determination for Sun-Earth libation points has a critical role on formation
flight analyses and control. The results from NASA flight (ISEE-3, SOHO, ACE,
and MAP) are collected in the paper prepared by NASA’s Goddard Space Flight
Center [26]. Standard method to determine the orbital position is based on standard
range and Doppler measurement types from ground tracking sites of NASA.

Different orbit determination options are available thanks to advanced technology.



For instance, including onboard navigation using onboard attitude sensor and the use
of Very Long Baseline Interferometry (VLBI) measurement and Delta Differenced
One-Way Range (DDOR). The results obtained using those measurements are
presented in Ref.[26]. It is obvious that the main elements to obtain a good formation
flight during the orbital navigation is to obtain an accurate relative position
measurements between spacecraft. A method based on Laser ranging is presented in
Ref.[18]. Here, extended Kalman filter algorithm is used with laser simulator. The
paper stated that the relative distance measurement performance at millimeter levels
for a distance of 10 km, and it is sub-millimeter levels for the distance less than 1

km.

There exists some studies on natural Halo orbit design and on relative trajectory
design for formation flights. T. Luo, M.Xu and Y. Dong [27] proposes a numerical
searching method based on Poincaré mappings to find natural formation flying on
quasi-halo orbits in a Photogravitational Circular Restricted Three-Body Problem
(PCR3BP). Their paper presents a relative trajectory for natural formation flying in
PCR3BP both for typical and solar sail spacecraft. It also includes a control scheme
since relative trajectory is considered unstable. Héritier and Howell [28] studied on
the regions near the libration points for small distance and large distance formations.
Their study is on the Sun-Earth L2 libration point; circular restricted three-body
problem is used and low drift regions are investigated. They investigated the natural
dynamics in a multi-body regime for formation flying applications in the collinear
libration points [29]. The named article proposes a different dynamical model from
Reference [28], where the position of the Sun and Earth is expressed as sinusoidal
functions to define the relative equations of motion. Unlike, in this thesis satellite
position and relative equations between chief and deputy satellites are written in
nonlinear equations of motion forms; and the ephemeris model is used to add the
planets disturbances depending on the planets position. K. Shahid and K. D. Kumar
[30] present the use of solar radiation pressure for satellite formation reconfiguration
at the L2 of Sun—Bary system. This paper is focused on the adaptive control

techniques to obtain the desired formation where an elliptic restricted three-body



problem is used in modeling. Multi-tethered satellite formations using nonlinear
coupling dynamics is studied by studied by Zhao and Cai [31]. A formation
configuration having three satellites is examined and the stability of the tethered
formation analyzed for Sun-Earth L2. Ilyin et al. [32], unlike other studies, they
compute suitable solution to a circular restricted three-body problem as first step,
than they convert this for a restricted four-body problem with real motion of the Sun,
Earth, and Moon.

Some studies focused on the control of spacecraft formation flying near libration
points. Formation flight reconfiguration near Sun-Earth libration points is
investigated by Gong et.al.[33]. Reconfiguration is performed with impulsive
maneuvers and genetic algorithm is adopted to optimize the fuel consumption.
Another paper is on the use of the solar radiation pressure to maintain the formation
schema near L2 Sun-Earth system. In another paper, authors propose to implement
continuous low thrust using solar radiation pressure in order to reach tight formation
flight [34]. Jung and Kim propose a control method called Hamiltonian structure
preserving control to stabilize the motion of the satellite along the trajectory around
libration point [35] and their numerical solution is used for Earth-Moon system's L2
halo orbit. Taberner and Masdemont propose a method based on finite elements for
formation flight to calculate formation keeping maneuvers [36]. This technique
includes optimal control and collision avoidance method. A new numerical
algorithm for solving the periodic Riccati differential equation to implement
continuous low-thrust to keep the formation near libration points of Sun-Earth
system is proposed by Peng et al. [37]. Zhanga and Li studied station keeping
strategies for the orbits near libration points. The interesting point is that there is no
need the information of the nominal orbit to perform station keeping [38]. They
demonstrated this method on Earth-Moon libration points. YunHe et al. use Floquet
theory to design and control formation flying satellites near libration points [39]. An
orbit control strategy based on an analytical method is proposed by Jing et.al. [40].
In the study they eliminated the dominant unstable components of libration point

orbits. An analytical expression for nonlinear control force is derived on their article.



When such missions are examined, for the future, it is necessary to contemplate a
formation flying satellite fleets that perform mission at L1 and L2, with many
advantages such that redundancy, cost, mission lifetime that the formation flight
fleets can provide. For the reasons mentioned above, the objective of the first main
part of this thesis is to design a formation flight scheme near Sun-Earth collinear

libration points L1 and L2.

The second main part of this thesis is dedicated to the formation flight design and
analyses for the LEO satellites. The motivation source for this examination is the
recent projected prepared for the Earth observation missions using formation flight
concept. For LEO missions, like in the case of deep-space missions, the redundancy
and cost advantages of the formation concept have forced the people work on it for
LEO satellites.

For instance, TECHSAT-21 was a microsatellite cluster that was adaptable to
perform a variety of missions and the initial focus of the TECHSAT-21 program was
on Ground Moving Target Indication (GMTI) and Synthetic Aperture Radar (SAR)
imaging [41]. Another mission called CLUSTER from ESA,; it is a cluster structure
containing four identical satellites having highly elliptical polar orbits around Earth
(19000 km perigee and 119000 km apogee). Their mission is to measure the effects
of the Sun particles to the Earth’s magnetic field. They launched in August 2000 for
nine years mission lifetime [42, 43]. Another example is PROBA low-cost satellites
that are being used to validate new spacecraft technologies. PROBA-3 is ESA’s first
precision formation flying mission and launch date was planned at the 2020 but, as
of 2018, the launch is delayed to the second quarter of 2021 [44]. The mission will
demonstrate formation flying for a science experiment. The paired satellites will
study the Sun’s faint corona. Beside its scientific mission, the experiment will
measure the performance of the precise positioning of the two spacecraft [45]. The
GRACE is also a mission that uses formation flight technology planned by ESA and
NASA. GRACE has two identical satellites orbiting around Earth. Its purpose is to
provide measures in order to generate high accurate model of the Earth’s

gravitational field [46]. The orbit altitude was about 500 km and satellites are



launched at 2002 and the mission lifetime was 5 years, however it is expected to
continue until 2015 [47], likely its mission ends at October 2017 [48].

NASA’s First Autonomous formation flying mission has been successfully
demonstrated by Earth Observing-1 (EO-1) satellite launched in November 2000.
EO-1 mission is flying in formation with LANDSAT-7. Their payloads enable to
study on climatic trends in the Earth’s environment. EO-1 mission demonstrates
Enhanced Formation Flying (EFF) developed by NASA’s Goddard Space Flight
Center (GSFC). EFF provide that satellites can keep their formation without human
intervention. The EO-1 is located 1 minute behind of LANDSAT-7 in the same
ground track, so the distance between them is approximately 450 km. EFF tests are
performed from January 2001 through July 2001 and then in November 2001. The
EO-1 EFF successfully accomplished with ten formation-flying maneuvers that are
combination of reactionary, formation and an inclination maneuvers, and formation
performance was within approximately 3 km [49]. The algorithm used for EFF is
embedded on the spacecraft computer and it propose to save time in maneuver
planning done on ground stations. Another study presents the simulation results of
EFF integrated in an autonomous fuzzy logic control system called AutoCon [50].
AutoCon details and maneuver control algorithm description is given in [51]. The
closed-loop control results of EFF in either constellation is also presented by David
Folta using AutoCon and FreeFyler for simulations with various fidelity levels of
modeling. However, the constellation members taken in this paper have all the same
orbital plane, same inclination value (98.2 degree) and same altitude (705 km) [52].
In this kind of formation configuration, satellites share the same orbit with different
phase angle. The method presented in this thesis provide to find a different orbit
close to the chief satellite, it gives a deputy’s trajectory around chief satellite with

minimum maneuvers for formation corrections, see in section 8.

It is obvious that the fuel consumption is a critical issue for the LEO formation flying
satellites in terms of mission and satellite’s life time. Studies on low thrust
implementation for LEO formation flight can be found in literature. For instance,

Arnot and Mclnnes study proposes continuous low thrust provided by solar electric
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propulsion, since the corrections needed for keeping formation are small. In Arnot
and Mclnnes study, Clohessy-Wiltshire approximation of motion in a rotating frame
is taken and Projected Circular Orbit concept is used [53]. Unlike this reference, this
thesis use nonlinear relative equations of motion and it does not contain any

constraint like usage of PCO or any other assumption, details given in section 8.3.

The formation flight mission analyses of the PROBA-3 are given in Ref.[54].
PROBA -3, having HEO orbit, it is planned to make scientific researches using a
coronagraphic payload to observe the Sun corona. The configuration having two
spacecraft, one carries the sun occulter and the other carries the coronagraph
instrument [54]. The main spacecraft weighs 320 kg, and the second one is 180 Kkg.
The relative distance of the two spacecraft is adjustable and it varies from 25 to 250
meters according to the focal length needs [45]. An overview of the PROBA-3
mission, with a more detailed description of the formation flying preliminary design
and results, is given in Ref.[55]. Here the aim is to orient formation flying satellites
toward Sun in order to examine the Sun corona. So, the formation is computed
regarding to the Sun position with respect to the satellite’s reference orbit. It may be
possible to compute a variety of orbit for deputy satellite using the method given in
this thesis, since circular orbit assumption in not done and the proposed method is
based on the discrete dynamic, so it allows the usage for HEO orbits. Another
example for formation flight around Earth is the TECHSAT-21, and its flight
experiment demonstrates a formation of three microsatellites flying in formation.
Each satellite is identical having 150 kg mass and 550 km orbit altitude. The satellites
initially relatively positioned approximately 5 km to each other. Then, relative

distance slowly decreased to 100-500m [56].
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1.3. Original Contributions

The contributions of this thesis study are collected in two main groups. In the first
part, formation flight fleets near Sun-Earth L1 and L2 points are examined. The
formation flight design method presented in this thesis make it possible to construct
a feasible formation while complying with the mission needs and payload

capabilities. The contributions of this first part may be listed as follows:

e Adding the solar radiation perturbation as well as gravitational perturbations
caused by the planets where the planets positions are computed for every
sampling time in the simulation model, in discrete time, using ephemeris
models for different Julian date intervals.

e The utilization of the periodicity of relative motion in formation flight and
the computation of convenient initial velocity of each deputy to maintain the
desired formation configuration (desired initial relative position).

e Derivation of the nonlinear relative equations of motion: Relative motion
between chief and deputy satellites are written in nonlinear equations of
motion forms.

e Determination of the optimum relative trajectory. In this vein,

o First, planar formations are studied like equilateral triangle shape,
square shape, inclined square shape. Optimum initial condition set is
found that provide minimum deviation in relative motion.

o Second, rectilinear formation is derived. Deputies are aligned and
uniformly equally separated from each other. This linear formation
configuration provides constant relative distances between successive
deputies.

e Providing long-term natural formation flight: Computed initial conditions
guarantee to keep the relative distance between satellites as required during
an orbital period time without the need of any correction maneuver for

keeping formation.
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In the second part of this thesis formation flight design problem for LEO satellites is
addressed. The formation design methods existing in the literature for LEO satellites
are based on some assumptions and constraints like close formations, equal
semimajor axis, projected motion (planar) and they are focused on initial position,
without considering initial velocities. Consequently, the contiributions of this second

part may be listed as follows:

e The usage of the nonlinear relative equations of motion: Nonlinear model
does not contain any constraint like usage of projected circular orbit.

e The proposition of flexibility on formation design in terms of formation
configuration: The method given in the first part is extended for LEO
formation flight and successful formation flight results are obtained for
different formation configurations.

e The use of time variant discrete model to obtain periodic relative motion is a
feature that distinguishes it from the existing methods.

e Ensure the long-term formation flight without any design constraint: It is
possible to obtain a formation for an arbitrary initial relative position having
both azimuth and elevation angle.

e Profit from fuel consumption: This is certainly important for maintaining

formation for extended durations.

1.4. Thesis organization

This thesis is organized into two main parts. First part contains the chapters written
for the formation flight design near Sun-Earth collinear libration points, from
Chapter 2 to Chapter 5. The second part is dedicated to the formation flight for design
for LEO satellites between Chapter 6 and 9.

Specifically, Chapter 2 gives details on three body dynamics and libration points.

Here, the aim is to set all the required sub-components in order to design orbits at
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Lagrange points. For that reason, the explanation and simulations related to the three
body dynamics are given. Restricted three body problem is explained and the general
equations of motion are presented in order to demonstrate the consistency and the
accuracy of the prepared codes, on the software structure. The libration points are
also presented in this chapter with their stability characteristics. The zero velocity
boundaries which are related to the energy level of the spacecraft are presented in
this chapter.

Chapter 3 presents the orbit types and the methodology used to design Halo orbit.
Here, the equations of motion for undisturbed and disturbed cases are given. The
disturbance sources are examined. The effect of the solar system planets and the solar
radiation pressure on the orbit stability are examined in details. A brief subchapter

on the orbital correction maneuver in order to keep the Halo orbit is also presented.

The main goal, “formation flight design” is presented in Chapter 4. Here, the
methodology used is examined. The effects of the selected formation scheme, the
importance of the optimization parameters, etc. are explained. The relative equations
of motion are derived in this chapter. Several formation clusters around L1 and L2
libration points are examined in detail. The relative distance behavior, the change of
the relative distance regarding to the orbital period are presented and the importance
of the selected initial conditions are demonstrated as well. Optimum formation
clusters are presented in this chapter. Chapter 5 summarizes and concludes the results
obtained for formation flight design for L1 and L2. The comments and important

inferences are presented.

The second main part of thesis starts with Chapter 6. This chapter contains the
relative motion modeling approaches for LEO formation flight. The following
Chapter 7 presents the methods used in the literature for formation flight design. This
Chapter also contains the method proposed in this thesis. Chapter 8 presents all the
simulation results obtained by comparing the methods used for different desired
formation schemes. Furthermore, the orbit correction maneuver budgets are also

presented this chapter in order to give a performance index using formation flight
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accuracy, endurance versus required correction, fuel consumption by comparing the
existence method and proposed method in this thesis. The inferences on results
obtained for LEO formation design are presented in Chapter 9. Finally, Chapter 10
summarizes the main results. Conclusions are presented and recommendations for

the future work are also given.
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CHAPTER 2

DYNAMIC MODELING

2.1. Three body problem

The motion of a system having N body can be described with Newton's laws of

motion as;
N N
- 3 mimj 5 . m] .
Fi=mp; = Z G——=pij =pi= z G ——3Pij Eq. 2-1
j=1,j#i |pij| j=1,j#i |Pij|

Here, p;; is the distance between i"" and j™" bodies, G is the universal gravitational
constant, m; is the mass of i the body. The three-body problem is a special case of
the N body problem. The three-body problem determines the motion of three bodies
according to the Newton’s law of motion, for a given initial position and velocity set

of each bodies.

As known, the general problem of the motion of three bodies, moving in the effect
of their gravitational forces’ interactions, cannot be solved in closed form [57].
However, there are ten constants, or said integrals of motion, along the solution
trajectories [58]. It is possible to compute these ten constants for a given set of initial
conditions and then, it is known that they will not change all later times.

Equations of Motion for a system having 3 bodies with respect to inertial frame can
be written as follows. Let three bodies having masses m,, m,, m5 and with position

vectors 1y, 15, 13-
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3 Gm,T,  Gmaty,
11 — - -
- 7323 7353
. GmTh;  Gmglyg
2.0 = >

- 175113 7533
3 Gm17731 Gm27732
’r . =

3 |7731|3 |F32|3

Eq. 2-2

It’s useful to write the system in matrix form for numerical integrations used in the

simulation. When the system is written as a first order differential equation set:

>

1

74 ;] 7:2_i
7;”2_1' [EX:
s ; Gmyty,  Gmsfys
;—;_, =\ Ir2l? 71313
-_-U Gmyty;  Gmstys
Ty — —
. - |75 3 7233
_T3 - Gm1f31 szfgz

L [543 73,3 |

Eq. 2-3

Here, X can be called as the vector field for the Three-Body-Problem. The frame
used in presented in Figure 2-1:
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m:rotating frame centeredat the
Center of Masses

o Xcm

cm:not-rotating frame centered
ot the Center of Masses

U

Yi <

izinertial frame

Figure 2-1. Frames used to describe the mation of the third body

—

Here, the relative position can be written as: 7, =7, — 17 ; T3=13—71] ;
T3 =73 — 77 . Inmatrix form iy = —7y;  |Figl® = 17ul®s  Fig = Fem — Teem
or 7y, =1y ; — Ty ; - Here, subscript i denotes inertial frame, subscript cm represents
the not-rotating frame fixed on the Center of Mass, and finally subscript m represents
the rotating frame fixed to the Center of Mass as shown in the figure above. The
position of the Center of Masses, 7, , it is defined with respect to in inertial frame
as:

. _ T.my +1.my +13.Mm3 Eq. -4
CoM m; + m, + my G-

The position of the bodies with respect to not-rotating frame:
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f'l_cm =n.i— Tcom
To.em = To_i — Tcom Eq. 2-5
T_'3_cm = T_'S_i — Tcom

The position of the bodies with respect to rotating frame:
T_'l_m = ROt . fl_om
‘F'z_m = ROt : fz_om Eq 2'6

'F'3_m = Rot . 7:3_0m

Here;

cos(w.t) sin(w.t) 0
Rot=[—sin(a).t) cos(w.t) 0‘ Eq. 2-7

0 0 1

where, w is the angular velocity of the frame centered at the center of three masses

with respect to the inertial frame: w = JG Y my /T3

As reminded above, the integrals of motion can be computed along the solution
trajectories and they will not change in time in undisturbed environment. The track
of those constants behaves like an indicator and they give an idea about the accuracy
of the numerical integration. If there is a drift from initial value, it means that
numerical results are no longer valid. In a dynamical system point of view, non-
changed integrals of motion provide a sub-trajectory (called manifold) and give
information about the behaviors of the dynamics. These ten integrals of motion can
be computed using conservation of the linear momentum, angular momentum and

energy.

2.1.1. Conservation of the linear momentum

Conservation of the linear momentum states that center of the masses of the N body

system moves with a constant velocity, so its acceleration is zeros [58]:
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‘;:COM =0 Eq 2'8

Instantaneous position of the center of mass for the system having three particles is:

N=3
1
Teom =37 /., Mk ®) Eqg. 2-9
k=1
And where M is the total mass:
N=3
M= Z - Eq. 2-10
k=1

First integration gives three constants of motion.

?COM (t) = ﬁCoM (t) =G EQ- 2-11
1 N=3

& = Peou(0) = 37 Y 7(0) Eq. 2-12
k=1

Explicitly it can be written as:
%Z’,ﬁjf my v (t) = %Z,’Xjf m, 7, (0) = ¢, where 7, is the velocity vector having
three components as:

Up = [Vxk Vyk  Vzk]T

Second integration gives three more constants of motion:

Teom(t) = Cit + G = Teom(t) — Gt =G, Eqg. 2-13
1 N=3
Teom(8) = Do (0t = & = - " 74,(0) Eq. 2-14
k=1
1 N=3 N=3 1 N=3
&= [Z () =t ). mkﬁk(O)] =2 ) 7 Eq. 2-15
k=1 k=1 k=1
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where velocity and position matrices having three components:
U = [Vxk Vyk Vzk]T and 7y, =[xk Tyk  Tzk]T

Thus, conservation of the linear momentum provides six integrals of motion.

2.1.2. Conservation of the angular momentum

Conservation of the angular momentum provides three more constant. Angular

momentum value is constant, the change of the angular momentum in time is zeros
[57, 59]:

h(t) =0 Eq. 2-16

Angular momentum of the system:

N=3 N=3
RO = ) R = ) milie(®) X 5(0)
= ! Eq. 2-17
N=3
= Z my (7 (£) X 73 ()
k=1

First integration of the angular momentum gives h(t) = ¢; , and for initial time é; =

h(0). So, this equality gives three more constants. Three components of integral of
motions:
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2
Il
w

my [fyk (O)Ugp (t) — T (L) ﬁyk (t)] = h,(0)

k=1
N=3

My [T (E) Ve (€) — T (D21 (£)] = h,(0)
k=1

my [ka () ﬁyk ) — fyk () Uxie (t)] = h,(0)
k=1

&y = h(0) = [Ae(0) hy(0) hy(O)]"

2.1.3. Conservation of the energy

Eq. 2-18

Eq. 2-19

Conservation of the energy gives the last constant [58]. The dynamics of the particle

is defined using Newton’s second law:

2

mﬁr =F(r)

Eq. 2-20

Here, vector field is a function of the position of the body. Integrating this equality

along the path for a time t=tr and by choosing arbitrary initial conditions such as

Xo = (7_”0: 7;”0)

where;

Then,
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r(ts) tr 212 2 2
f mrdr = miﬂdt=m|v(tf)| _mlv(O)I =
r

Eq. 2-23
© o dt 2 2 2

This relation gives the kinetic energy description. For three body system it can be
rewritten as:

N=3

T(v) =

N -

mk|vk|2 Eq 2-24

k=1
Let take again the change of the kinetic energy with time can be rewritten as:

dT
dt

ooty ity vt v(0)|?
= mf-fdtzf mf‘drzml (f)| —ml Ol
0 0 r(0) 2 2

Eq. 2-25

r(ty)
= j(o) Fe(n) dne = f(rt)) — fr(0))

Here, f is a potential function related to the position of the particle, called as potential
energy. So, for three body system, we have:

r(ty) 7(ty) / = m,m \
J Fk(rk) drk = j G - 3 T'kj di
r(0) r(0) = |7
j£k
N=3
T(tf) m.,m;:
oy j ( ' 5%) o, Eq. 2-26
=1 r© |Tkj|
j£k
mm, . mpyms . msm, . _
=-G EWE Tig T2 + FME T3 T3t EMEE ‘7”31]
av d rmym m,m msm
AP e L e L Eq. 2-27
dt dt L |7, 73] 734

where the potential energy V of the three body system is:
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mm m,m m-m
V=—G|—24+—22421 Eq. 2-28
|72 73] 7341

t .o . - -
From the equation % "= fotf mr - 1 dt it can be rewritten that the change on the
0

kinetic energy is equal to the change on potential energy, so sum of their change in

time are zeros:

dT dv
= Eq. 2-29
dt * dt 0 “

So total energy is constant: T +V = ¢,

Finally putting all of this together gives the last the tenth integral of motion for the
three-body system:

N=3 2 N=3  N=3
z EARINE LA N Z m,
k 5 k -
- 2 2- & Ry
j*k
= N=3  N=3 Eqg. 2-30
B Z lvi (0)]2 1N Z m;
= K Y k "
k=1 2 2 k=1 =1 | kj(o)'
%k
Left Side, LS is:
B |v1(tf)|2 1 [ mym, myms l |172(1:f)|2
LS = my L2 — 2G| = - NAVER
2 2 {|fatp)| P @) 2
1 [ mym myms l
-5 Eqg. 2-31
27 @] Js )] |
|v3(tf)|2 1 msmy msm,
37— —50mz | + 1=
2 2 |7”31(tf)| |7"32(tf)|
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2 2 2
=m1|”1(2tf)| m [v2(ty)] +m |vs ()]

L
S 22 2
Eq. 2-32
l m;m, myms msmy
|7;12(tf)| |f23(tf)| |f31(tf)|
Same manner, right side, RS is:
v, (0)/? v,(0)]? v2(0)]?
R mm, O L ORI 0)
Eqg. 2-33
_G mim; mayms mzmy
[712(0)]  [73(0)]  |75,(0)]
So;
LS=RS=c, Eq. 2-34
2 2 2
|V1(t )l |V2(t )| |U3(t )|
1 Tf + m2 2f + m3 2f
mim,; myms n mszmq l_
|7_"12(tf)| |f23(tf)| |7_"31(tf)| Eq. 2-35
. Iv1(0)|2+m Ivz(0)|2+m lv3(0)?
G m;m; my;ms msm,
_ _ _ _ =
[712(0)|  [723(0)]  [73,(0)] *
Finally, ten integrals of motion are obtained:
[C1 G2 C3 c4]” Eq.
=[c11 €12 €13 €21 Caz Ca3 C31 C3z C33 C4]T 2-36

2.1.4. Simulation examples of three body dynamics

In this section, the simulation examples are presented using three body dynamics
equations of motion given in the previous section. The main goal is to see the results
of the simulation codes that are prepared and in this way; the simulation tool is

presented and validated.

26



Here, dimensionless unit are used in order to see the effects of the mass distribution
between three bodies. So, simulation time is taken 2w radian = 1 revolution, the
angular rate will be 1 radian/sec, gravitational constant G = 1, and the masses are

taken as the total mass is unit (m; + m, + mz = 1).

First, the motion of the three bodies having equal masses and having equal initial
distances between them is simulated. Secondly the real mass values of the Sun,
Earth+Moon system and satellite are given in order to simulate the motion of this

Sun-Earth+Moon-Satellite three body system.

2.1.4.1. Case study I: Equal masses and equal distances

So, firstly let m; = m, = m3 = 1/3 unit mass and r;, = r;3 = 1,3 = 1 is unit
distance. The distances between bodies and center of mass are defines as: 1y ., =

T2 em = T3.em = 1/V3 = 0.5774 unit.
Let’s take initial positions for masses:
0 —0.5 0.5
f‘l_cm_to = 0.5774 ; 7:2_0‘"7'_t0 = _0.2887 ; f3_cm_t0 = _0-2887
0 0 0

Initial position for the center of mass 7,,,, ;o and initial velocity V,,, ., for the center
of mass, it is given in +X and +Y directions: a motion upwards will be obtained with

a rotation w around center of masses.

0 ) 0.5
0l ch_tO =1

0 0

Tem_to =

The computed initial velocities of the masses for V., ., are:

—-0.0774 0.7887 0.7887
ﬁl_cm_to = 1 ; 1}2_cm_t0 = 05 | 1_73_cm_t0 = 1.5

0 0 0
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The trajectories obtained for each body and for the center of masses expressed in the
inertial frame are seen in Figure 2-2. In Figure 2-3, these trajectories are given with
respect to the not-rotating frame centered on the center of masses and rotating frame

centered on the center of masses.

trajectory in inertial frame
7 T r r

1stBody trajectory gﬁ\
2ndBody trajectory AN
6 3rdBody trajectory e
CoM trajectory
//
/
5
4
@
s 3
>
2 - —
-
1
0

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
X axis

Figure 2-2. Trajectory of three bodies in inertial frame
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CM centered frame (NOT ROTATING)

1 T r
1stBody trajectory
2ndBody trajectory |
0.5 3rdBody trajectory BN

e
—

/

0.5 == e
1
0.8 0.6 0.4 0.2 0 0.2 0.4 0.6

M centered Rotating Frame

2 T T T
+  1stBody trajectory
+ 2ndBody trajectory
1 3rdBody trajectory
+
0
*
-1
-2
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Figure 2-3. Trajectory of three bodies in not-rotating and rotating frame

The motion in inertial frame and not rotating frame will be similar when the initial
velocity of the center of masses is given as zeros. Figure 2-4 and Figure 2-5 show

this result:
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trajectory in inertial frame
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Figure 2-4. Trajectory of three bodies in inertial frame with not-moving CoM
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Figure 2-5. Three bodies in not-rotating and rotating frames, not-moving CoM
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As mentioned at the beginning of this subsection, integrals of motion give an idea
about the stability and/or accuracy of the integration computation. For instance,
integration error accumulation become more pronounced after the third period when
this simulation is run for a long time (See Figure 2-6). In these simulations fourth
order Runge-Kutta method is used. The changes on the integral of motion for long
term trajectories are shared on Figure 2-7 to Figure 2-9. Even so, it is seen that the
changes on integrals of motion are in an acceptable range at first three periods. In
this simulation sample time are taken as dt = 7.1677e-4 revolution, actually when
it’s thought that 1 revolution is a 1 year time, this sample time refers to the 1 hour,

this comparison is given in order to describe the time values taken in the simulation.

CM centered frame (NOT ROTATING)

1 %'\

0 — U

-1 1stBody trajectory
2ndBody trajectory

)l ] ] ] | 3rdBody trajectory

-0. -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

M centered Rotating Frame

2
+ 1stBody trajectory

1 + 2ndBody trajectory

3rdBody trajectory

0

-1

-2 -1.5 -1 -0.5 0 0.5 1 15 2

Figure 2-6. Long term trajectories in inertial frame (sampling time:1 hour)
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Figure 2-7. Linear momentum conservation 1% integral (sampling time: 1 hour)
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Figure 2-8. Linear momentum conservation 2" integral (sampling time: 1 hour)
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Figure 2-9. Angular momentum conservation (sampling time: 1 hour)
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Figure 2-10. Energy conservation (sampling time: 1 hour)

33




Actually, the value of the sampling time also is critical. Regarding to the simulations
run for the different sample times, it is seen that when a larger sampling time value
is selected (i.e. dt=5 hours), the accuracy of the integration degrades but long time
simulation results are more resistant (Figure 2-11), when a smaller sample time value
is selected (i.e. dt=6 minutes), the accuracy obtained for each cycle of the first
periods are more high, integrations are good but, decompositions starts suddenly and
large divergence are seen at a long time simulation (Figure 2-13). In our case, it is
seen that the second integrals of the linear momentum constants are more dominant,
the constants which are related to the velocity (C2). For that reason, the C2’s results

and trajectories are given to show the sampling time value effect.

For a dt=5 hours:

CM centered frame (NOT ROTATING)

1
05 / L— "\\
° S .
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Figure 2-11. Long term trajectories in inertial frame (sampling time: 5 hours)
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Figure 2-12. Linear momentum conservation 2" integral (sampling time: 5 hrs)

For a dt= 1/10 hours=6 minutes:
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Figure 2-13. Long term trajectories in inertial frame (sampling time: 6 min)
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Figure 2-14. Linear momentum conservation 2" integral (sampling time: 6 min.)

2.1.4.2. Case study I1: Sun-Earth/Moon-Satellite simulation

Here, the real mass values of the satellite, Sun, Earth+Moon (considered together),
are given in order to define the motion of these three bodies. Let describe the motion
on rotating frame. Equations of motion expressed at this frame having origin at the

center of masses, in vector form:
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Gm,r Gma,t
_ 2112 313_(2

pas N = N = ~2 —

Tiem = |77,12|3 |T-'13|3 ) 1cm + 0 1cm + 0 rlcm)

» Gmyty;  Gmsiys ~ - X =

2em = TE PNE - (2!2 2em 2 Toem + 'QZTZCm) Eq. 2-37
» Gmy73;  GmyTs, ~ - X =9

3em = THE + E - (ZQ 3em T 02 T3om + 02 r3cm)

Here (2 is the skew symmetric matrix containing angular rate of the frame centered
at center of masses (non-rotating frame) with respect to inertial frame. So, now the
motion can be defined in synodic frame using real mass values and distances of the
Sun first body, Earth and Moon considered together as second body and Satellite is
third body. The synodic reference frame is used, with its origin at the center-of-mass
of the Sun and Earth+Moon (hereafter Earth-Moon pair is called as Bary) system,
the x-axis passing through the Sun and the Bary, and oriented towards the Bary, and
the z-axis perpendicular to the ecliptic plane [59]. The formal representation and the

definition of the synodic frame is given in Appendix-A-ii.

So, the values taken are:

mgyy = 1.9886294261178590 x 103° kg; mpapy = 6.045476730900739 X 10%* kg
mg,r = 1.0 X 103 kg; myorar = 1.98863547655321 x 103° kg

In the simulation, the total mass is taken as equal to 1, unit mass, so;
Msyn unit = 0.999996959987480; mpgry ynie = 3.040012519674380e-6
mSAT_unit - 50285736840830368‘28, mTOTAL_unit - 1

In this case, only rotational motion is considered and simulated to imitate the nature,
for that reason initial translational velocities are given zeros for all of the bodies to
obtain non-translating motion. The distance between two massive bodies is taken as

unit distance, so let initial unit positions for bodies are to be:
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0 1 0.992
f‘l_cm_to =10]; 7_‘2_cm_t0 =10|; 7_":;’_cm_to = 0

0 0 —0.001783

Trajectories obtained from simulation are presented in the following figures. Here,
the results are obtained as expected: the orbital motion of the Bary around the center
of masses (Figure 2-15) and the trajectory of the Sun around center of masses (Figure
2-16). The initial position of the satellite is near libration points between Sun and
Bary, L1. According to its energy level its motion also is obtained as expected as
seen in Figure 2-17. The details about the motions around libration points is

discussed in details in the next chapters.

trajectory in inertial frame

T T T T T T T T T T
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08k — /’\ ]
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o
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Z
7

Figure 2-15. Trajectories for Sun-Earth-Satellite trio
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Figure 2-16. Trajectories of Sun around CoM
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Figure 2-17. Trajectories of satellite around Earth

The simulation stability is checked by examining the propagation of linear

momentum, angular momentum and energy. The results are presented in Figure 2-18.
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Figure 2-18. Integrals of motion

As may be observed from Figure 2-18, total linear momentum, total angular
momentum and total energy are almost constant. This proves the accuracy of
simulation. The trajectory of the third body is quite dependent on the initial
conditions; the details about that subject are presented in Appendix-G through

Poincare Maps.

2.2. Restricted three-body problem

The restricted three body problem is a simplified version and special case of the

three-body problem: One of the bodies has negligible masses compared the two
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others. In this case, the motion of two massive bodies, let’s call them primaries, can
be defined using two-body problem and the third body with negligible mass that
navigates in the field of primaries. Practically it is reasonable to neglect the mass of
the third body when this body is a satellite or an asteroid. For Sun-Earth system, or
Sun-Jupiter, it is also seen that the motion of the planet around Sun is considered
circular. So, in that case, the motion of the third body is studied using “circular
restricted three body problem”. The five equilibrium points of this system, called
libration points or Lagrange points — details given in the next chapters — remain fix
in the reference system which is rotating with primaries. For that reason, it is possible
and useful for computations to use Synodic reference frame to study the motion [57,
61, 62].

2.2.1. Equations of Motion

Equations of motion for circular restricted three-body problem can be rewritten as
follows. As the equations are expressed in the synodic reference frame, first the
angular motion of this reference frame with respect to the inertial frame is computed.

This is related to the primaries’ mass and distance between them.

’G(ml +m,) i
W = —R Eq. 2-38
[ tm(x + x Gm,(x — x5)]
w2x+2(uy— 1( . 1)_ 2( - 2)
£} r
X 2 . Gmyy Gmyy
vl = WYy — 20X ———5————
7 1 2 Eq. 2-39
Gmyz Gm,z
o r;

where;
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1 =~/ +x)2 +y2 + 22 Eqg. 2-40

ry = \/(x —x,)% + y2 + 72 Eq. 2-41

The description of the positions is presented in Figure 2-19:

0>
L2 Xaxis
X EARTH+Moon
(1-mu)*R=x2 Barycenter
mu*R=x1 R = au

Figure 2-19. Representation of Sun-Bary-Spacecraft in synodic reference frame

2.2.2. Dimensionless Equations of Motion

It is also very useful for computations to write these equations with dimensionless

parameters. To do it, conservation of linear momentum is used:

m
—m1x1 + m2x2 = 0 == x1 == _2x2 Eq 2-42
my
R=T2—T1=T12=x2—(—x1)=x2 +x1ﬁx2=7‘12—x1 Eq 2'43
2R -x) ( T2 )R Eq. 2-44
=x,=—R-—x) =x =—2— ]
%1 my 1 & my +m, A
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Let define:

m;
U= (m> Eq. 2-45
So,
X; = UR Eq. 2-46
x, =(1— R Eq. 2-47
and;
my = m,=E Eq. 2-48
my +m, =% Eq. 2-49
oo |GOmtmy) . 'R Eq. 2-50
R3 m,

First properties Eq. 2-46 and Eq. 2-47 are substituted in differential equations, so

we get:
Gmy(x + uR tm,(x—(1—uR))]

wix + 207 — 1( _ U )_ 2( (3 ) ))
.. £} )
x ) . Gmyy G@myy Eq.
y| = WYy — 20X ———5————

Gmyz Gm,z
3 T

Then properties Eq. 2-48 is substituted and x is divided by the distance between mass
R (for Sun-Earth system, R is astronomic unit), so x = XR, y = ¥R ,and z = ZR

here x is unit distance; then r; and r, became:
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r =+ [R(X + W]? + RZy% + R222 = Ry

Eq. 2-52
= (IRG - (L - )]’ + 252 + k222 = R Eq. 2-53
and X = ¥wR, ¥ = ywR ,
Then, differential equations are:
¢ = TR + 20V wR szR(f+u)(1—u)
X = wx wWyw R p
_ Gm,R(x — (1 —p))
R37;}
Eq. 2-54
_ . GmyYR (1 —pu Gm,yR
o 2 2 2
V =w*YR — 2wxwR — R ( p )— R
. Gm,ZR (1 - ,u) Gm,ZR
z= R3.r—.13 U R3.r—.23
Finally, property Eq. 2-50 is substituted:
. w?R3u\ myR (% + ) (1 —
% = w2XR + 2wywR — y (_3 u)( “)
m, R31; U
w2R3p\ myR(x — (1 — W)
m, R37;
: w?R3u\ myyR (1 —
e 2= _ o _
Yy = w*yYR — 2wXwR ( - > 373 ( P ) Eq. 2-55
w?R3u\ m,yR
m, | R3%}

. w?R3u\ m,ZR (1 - ,u) w?R3u\ m,ZR
7 = — — - —
m, ) R3F\ pu m, ) R37;
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So, the dimensionless accelerations are ¥ = Xxw?R, y = yw?R ,

When both left side and right side of the equations set divided by w?R :

5?'=a?+237—<

R%u

1—u

m,

)

myR(X + 1) (

33
Ry

U

)

_ (R2u> myR(x — (1 — W)

m,

33
R>7;

= 2 - Rzl"' mZ}_]R (1 - M) Rzl’l' mZ)_/R
y=y X m, R37:13 u m, R37:23
- R?u\ m,zR (1 - ,u) R?u\ m,zR
Z=— —|— | ==
m, ) R372 \ m, ) R37;

Eq. 2-56

After some simplifications, the dimensionless equations of motion set obtained are:

L (-wE+ £—(1—-©)
ei25 " uzg W u( 53 W)
o n P
X — _
X . (-
[37 ~ 25 LW _ 1 Eq. 2-57
F 7y 7
A-wz pz
7 3

Here, it is important to note that in this equation set, disturbances are not considered
in the motion, let it called this set as non-perturbed equation of motion. And this
equation set is expressed in synodic reference frame having origin at the center of

mass.

It may be useful also to express this equation set by taking L1 libration point (or L2)
as center, when an orbit is designed near L1 (or L2). So, in that case, it is only needed
to transport the frame with a distance of L1 (or L2) with respect to center of mass.
As L1 and L2 are located on the x axis, only the x related parameters will be shifted.

So, new sets obtained for L1 (or L2) originated reference frame are as follows:
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Np: < Xy

(I-—pE+L+pw) p(x+L— (A -p)]

(x+L,) + 2y —

7 7y Eq. 2-58
_ . A-wy uy
= y—2X——F5——=
n f)
A -wz pz
7 i
here;
m=VE+ L+ w2 +yi+22 =1 Eq. 2-59

Eq. 2-60
7‘_2=\/(3E+Lx—(1—u))2+372+z'2 |

where L, is the x position of the collinear libration points with respect to the center

of mass.

So, it is possible to define the shape of orbit of the third body (i.e. maximum and
minimum distances from libration point, etc.) since the X, y, z positions are measured

from the libration point considered.

2.2.3. Jacobi Integral

Jacobi Integral is also an important term used in circular restricted three-body
problem. This is an additional integral of motion related to the energy. The equation
given previous section can be rewritten in terms of potential energy, since
gravitational forces and position of the body can be considered as the elements of the
potential energy [60, 62]. So, let define:
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1 1-—
Ux,y,2) = = (% +y2) + — =+ & Eq. 2-61
2 7 Ty
and;
2*+aU_
. y Oox
5 = |28+ 2Y Eq. 2-62
3:— X 3y q.
z oU
0z

It is well known that the change of the potential energy in time is equal negatively to
the change of the kinetic energy in time. Since the kinetic energy is related to the

velocity square:

K=3 G 45 +22) Eq. 2-63
So;
Integrating this gives:
1
[E (&% +y% + z'Z)] +c=U+c Eq. 2-65
Let define that c, — ¢, = —C/2, so:
20— (x2+y2+z2)=C=
C=(x2+y2)+21_“+2ﬁ—(x2+y2+z'2) Eq. 2-66

n 4

This constant C is called as Jacobi Integral or Jacobi Energy since it is related to the

total energy of the particle. This value is used to recognize some particles such
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comets even after close encounters of them with planets (called Tisserand criterion).
The value of the Jacobi Integral does not change even if orbital parameters of the
comet substantially changed. Jacobi integral is also used to define spatial regions,
called Hill's surfaces of zero velocity that gives the boundaries of the third body

motion. This is described in detailed in the sub-chapter-2.4.

2.3. Libration points

For any two orbiting massive bodies about their center of masses, there exist five
equilibrium (stationary) points where the force acting on a third body (having very
small mass compared to the two others) is zeros. Those equilibrium points are called
Lagrange points, after Joseph Lagrange, Italian-French mathematician, who
discovered those stationary points while studying the restricted three-body problem.
Restricted refers that one of the three bodies have very small and ignorable mass
compared to two others. Since the net force is zeros at those points, when a particle
is initially stay here, it remains here forever. In synodic coordinates, Lagrange points
have zero velocity, it means that the attraction of the massive bodies is exactly
canceled by the centrifugal force and they describe circular orbits. In particular, the
position of the Lagrange points with respect to the two main bodies remains always
the same. Today, it is well-known that, three-body problem cannot be solved in
closed form and it has chaotic properties. Therefore, as Lagrange did, restricted
approximation is a reasonable approach to obtain solution. It is clear that the two
massive bodies are considered as Earth and Moon for space missions related to the
Moon exploration. For deep space missions this set can be taken as Sun and the
Earth-Moon barycenter or Sun and planet that the third particle, for example
spacecraft navigates near it. The following two subsections describe the computation

of the position of the Lagrange points and their stability respectively [60, 63, 64].
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2.3.1. Computation of the Libration Points locations

The force equation can be rewritten as follows by considering that the force acting
on a third body at libration points is zeros. Let M; and M, are two primary masses,
m is the mass of the third body, #, and 7, are their position vector, and 7 is the
position vector of the third body with respect to center of mass. So, the total force

exerted on the third body is:

ﬁ_ GMlm (—> —>) GMZm (—> —>) E 267
TTleRET YT RRT e

Here, the position vector 7, and 7, are the function of time due to M, and M, are
orbiting around their center of mass. As seen from the previous sub-section, the
straightforward way of finding libration points and computing force acting on the
third body is to transform rotating frame to a non-rotating frame that two primary
bodies have fixed positions, in our case is synodic reference frame. So, angular rate

of the system given by Kepler’s law is:

2p3
e M AM) L WR Eq. 2-68
R3 (M + My)

And from the restricted three body dynamics, we know that:

— . GM,(x + x GM,(x — x
E, = M3X = w?x — 1 5 1) _ GMa( 3 2) Eq. 2-69
n b

w?R®  M;(x + x;) w?R3®  M,(x —x;)

Msx = w?x — _
3 @ (Ml + Mz) T13 (Ml + Mz) T23

Eq. 2-70
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M 2 ( M, R?(x + x) M, R3(x — xz))
X =w|x— —
3 (Ml + Mz) 7'13 (M1 + Mz) T23 Eq 2_71
Let define;
_ M _ M
@= (M1+Mp) '’ and ﬁ T (My+My)
_ M, _ — M, —
X1 = (M1+M2)R =aR, and x, = (M1+M2)R = SR
So finally we have;
|F)| 5 BR3(x + aR) aR3(x — BR)
=w*| x — —
" [+ aR)? +y P72 (= BRZ+Y7F1) gy
] = w?(y - BR*(y) _ aR*(y)
v G+ aR? +y7P7 (= BRZ+37T2) g pzg
= —2 —,2
7l = JIEL + 5] o 2

A two-dimensional force map can be obtained by computing force for an interval of

x and y coordinates respectively.
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Figure 2-20. 2D force map of Sun-Earth system

Now, it is so straightforward to compute the coordinates of the collinear libration
points by taking the roots of the equation of motion as follows. First, take the mass

of the Sun and Earth, and define the constants:

mgyy = 1.9886294261178590 x 103° kg

Mpagy = 6.045476730900739 x 1024 kg

MpaRy
u= = 3.040012519674380e-006
Mgyn + Mpagy

3

G = 6.67408*1e-11 >
g s

R = 149.59787066*1e6 km
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From the restricted three body dynamics, it is already stated that the dimensionless

equation of motion for x axis:

1—-u
Gt 7 +y7 + 22 W
_ U _ (x - u)) Eq. 2-75
((x —1-w) +y? +Z2) /

X=x+2y—

This equality is taken because the collinear libration points lies on this x axis. So, it
is needed to consider that the velocities and the y, z coordinates are zeros at these the

collinear libration points. It means that the total force on x axis is null.

x=y=2=0
y=z= 0
So, the equation reduces to:
x—l;us(x+,u)— s 3(x—(1—u))=0
e+ m) (x--w)

=

xOc+ (=1 =)’ + A=W = A=) +pulx + p)?
(x+m2(x— (1)

Eq. 2-76

=0

Here, three different cases must be considered for three collinear points. The
positions of the x coordinate according to the two massive bodies describe the
position of L1, L2 and L3 respectively. So, for L1 x coordinate must be between Sun
and Earth, L2 lies on the axis from Sun to Earth, and towards deep space, the L3 is

behind the sun:

for Li=—-—pu<x<@—-uw ;
for Ly=>—u<d—-p<x ;
for Ly=>x<—u<@—-pw ;

This equality can be written in polynomial form:
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asx® + agx* + azx3 + ax?+a;x +ay=0 Eq. 2-77

The values of the polynomial according to the L1, L2, and L3 are given in the

following table:

Table 2.1. The values of the constant of the polynomial for L1, L2, L3

a; | ForlLl For L2 For L3
as = 1
a, = 2u—1)
az = (1 - w?—4u(1—p) +p?
a; = | 2u(1—w(A—=2p) | 201 - (A —2w) =1 | 2u(1 — (1 —2p) +1
-1+ 2u
a,=| prA-w*+ pA(1—w? + p*(1—pw? +
2w+ (1 -w?» 2(—=p* + (1= w3 2 -1 -w?H
ap=| —-(1-w?+u (1 -3 - 1 —w?+p?

The roots of this polynomial give the location of the collinear libration points. The
position of the triangular libration points can be computed using the equilateral
triangle which its base lies between two massive body. The distance from L4 (and
L5) to the primary bodies is equal to the unit distance, the distance between two

primaries. So, the x and y coordinates will be:

x=—-u+1/2
y =+V3/2

Table 2.2. The position of the libration points
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Distance from CM in

unit value

Distance from Center of

Mass

in km

Distance from Earth

in km

L1

X=0.98998643221187

X=148.0998622411871e+06

De=1.497553639413139e+006

L2

X=1.01007474491390

X=151.1050310465624e+06

De=1.507615165962172e+006

L3

X=-1.00000126667188

X=-149.5980601514165e+06

De=299.1954760320168e+006

L4

X=0.499996959987480

Y= 0.86602540378444

X=074.7984805506003e+06

Y= 129.5555563436187e+06

D= 149.5976432708186e+06

De= 149.59787066000e+006

LS

X=0.499996959987480

Y=-0.86602540378444

X=074.7984805506003e+06

Y= 129.5555563436187e+06

D =149.5976432708186e+06

De= 149.59787066000e+006

The Table 2.2 presents the coordinates calculated for the libration points of the Sun-

Bary system. Asseen, L1 and L2 are approximately 1.5 million kilometers far from

Earth. The details about the orbit design at these points are presented in the chapter-

3. The stability characteristic of these locations is another important issue to be

analyzed and it is given in the following subchapter.

2.3.2. Stability of the Libration Points

Five equilibrium points are computed for Sun-Bary system in the previous section.

Here, the stability of these points is analyzed. Linear stability analysis for each

libration point is carried out by linearizing the equation of motion about each

libration point [61, 63]. So, recall the equation of motion of the third body for the

three-body system:
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f(x,}I:Z,x,y,Z',t) :X =

$: L RN 2. ><:

u
v
w Eq. 2-78
. A=W wx—0A-p)
x+2y— 3 —( 3 )
= 1 2
_p Ammy Wy
y o ;S
(A-wz pz
o T

where;

r =+/(x+w?+y>+2z2 and r2=\/(x—(1—u))2+y2+22
And state vectoris X =[xyzxyz]"

Partial derivatives of differential equation set can be written as:

ofi

So, the partial derivative matrix of the first three equations with respect to position

is a 3x3 zeros matrix, and velocity derivative matrix is a 3x3 unit matrix.

[0 0 O]

Fij=10 0 0] for i=1to3 and j = 1to3 Eq. 2-79
0 0 Ol
1 0 0]

Fij=(0 1 0] for i=1to3 and j = 4to6 Eg. 2-80
0 0 1.
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The partial derivatives for last three equations with respect to position and velocity

components can be written as below:

_G-w 30-wE+w? p 3u(x—(1-w)

F, =1
41 1,13 r15 7‘23 r25
30 - +wy Bulx— 0 —-w)y
L4 )
30 -wWe+wz  Bu(x— 1 —w)z
F43 - 5 + 5
L6} r
30 - +wy 3ulx— 0 —-w)y
Fyy = 3 + 3
1 2
o Q- 30-wO»?* p 3ul)? Eq. 2-81
Fe=1-—05 - > B
1 1 2 2

31 -wyz N 3uyz

o Ty
31— W +wz 3u(x— (1 —p)z
F61 = 5 + 5
L&Y r
3(1—wyz 3uyz
F62 = 5 + 3
n r
o A-pw 30-w@?* p 3u2)?
Fos =— = o B
1 1 2 2

Here F can be called as state propagation matrix. State transition matrix & for
linearized system can be written as ®(t) = e’ for continuous time. So; Taylor series
expansion of @ will give the x(t) state values for specified time. x(t) can be written

as below:
x(t) = ®(t)x(0) = et x(0) Eq. 2-82

x(t) = (I + Ft + F?t?/2' + F3t3/3! + ...+ F"t"/n!) x(0) Eq. 2-83

In this thesis, the simulation is run in discrete time. So, the state vector X, and the

linearized simplified equations can be written in discrete form as below:
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X=[@x vy zx y z] Eq. 2-84

Xk+1 == (I + FAt) Xk == q)Xk Eq 2‘85

Then, the eigenvalues of the linearized state transition matrix give the information
about the stability of the libration points, when this linearization is done about the
point interested. It is well known that the collinear point L1, L2, and L3 with the Sun
and Planet are unstable points. Small differences caused by perturbations from the
equilibrium points will grow dramatically over a time. On the other hand, triangular
points L4 and L5 are stable for a special condition. Here, the mass ratio of the
primary bodies is critical. If this mass ratio is less than 0.0385 the stable condition is
obtained. The Coriolis force provides their stability. An asteroid situated near L4 or
L5 tends to decrease the potential, as a consequence its speed increases. Thanks to
this speed Coriolis force create the force that keep into its orbit around the L4 (or
L5) point. The stable areas of the L4 and L5 are called as Trojan, after the three
asteroids Agamemnon, Achilles and Hector are located at the L4 and L5 points of
Sun-Jupiter system [62]. At July 2011, a total number of asteroids found in Sun-
Jupiter system are approximately between 3168 - 4917around L4 and 1645 around
L5 point. An enormous spread is seen, a distance of more than 500 million km [63].

The details on the stability computations are given in the following two subsections.

2.3.2.1. Stability of the collinear L1, L2, and L3 libration points

In order to analyze the stability of the collinear points, the state transition matrix is
rewritten by adding the state properties of these points;as; y =0;z=0; and y =

z=0.

So, state propagation matrix F become:

1w 30-@We+w? p 3u(x—1-w) Eq. 2-86

3 5 3 5
n £} b £

Fyy =1-—
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F3=0
Fs;1 =0
A-w wu
Fero =1 - —
52 7,13 r23
Fs3 =0
Fg1 =0
Fer =0
1-w wu
Fo = —
63 r13 ‘r23
where;

=4/ (x + p)? and r = \/(x -(1- .“))2

So, by substituting rl and r2 in to F:

2(1 — 2
F41 = 1 + ( 'le + M 3
(X+H) (x—(l—u))
(1-p) 2
Feo =1 — - -
2T ) = 201
__ Q- H
63 (x + u)3 (x _ (1 _ ‘u))3
Let define y in order to simplify the notation:
1-w 2
= Eq. 2-88

_(x+u)3+(x_(1_u))3
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So, we have;

Fry=1+2y
Fs, =1—vy Eqg. 2-89
Fe3 =~y

and

Fro =0; Fis =2; Fie =0;

Fs4 = =2; F55 =0; F56 =0;

Eq. 2-90
Fsqs = 0; Fes = 0; Fgg =0,
Then, the matrix F for collinear points is:
r[7 3l
e Fa Eq. 2-91
where
0 0 O 1 0 O
FE,E=(0 0 0 ; Fp=10 1 0
0 0 O 0 0 1
1+ 2y 0 0 0 2 0
F. = 0 1—-y O] :;F;=|-2 0 0]
0 0 -y 0 0 O

To find the eigenvalues, it is necessary to solve the following equation that gives the
characteristic equation of the system:

det(F — AI) = 0 where A are the eigenvalues.
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) o 0 1 0 0
0 -2 0 0 1 0
0 0o -2 0 0 1
142y 0 0 -2 2 0
0 1-y 0 -2 -1 0
0 0 -y 0 0 -2

=+ (2y -y +y+ 2 +222+1) =0

S A28+ 2(=3y2 4+ 2y + D)+ y(L+y —2y3) =0

The roots of the equation above give the eigenvalues:

The first two roots are:

A1z = i\/__)/

The second two roots:

Yy vy —8)
Aog=+ |24+ X 7 4
34 _j2+ >

The third two roots:

vy vy -—8)
Adee =+ |2 X2 7
56 —jz 2

Eq. 2-92

Eq. 2-93

Eq. 2-94

Eq. 2-95

Eq. 2-96

So, if y is negative the first two roots A, , are real numbers, one positive, one is

negative. This means that the system is unstable.

For A3, , the inner of the square root must be negative in order to not have a real

root, means an unstable condition, so;

— 1 < 0 must be

Yy Vr(9y-8)
2

2

60



After some rearrangement, it gives:
If y2 < VT“ we have imaginary roots

For A5 ¢ the inner of the square root must be negative in order to not have a real root,

means an unstable condition, so;

g——”'(gzy_g)—1<0mustbe

If y2 > VT” we have imaginary roots
So, it shows that at least two of the roots will be real numbers.

In our case, Sun-Earth/Moon(Bary) system is considered. The results obtained are

given in the following table:

Table 2.3. The stability criteria of the collinear libration points

for stability (for imaginary For L1 For L2 For L3
roots), the conditions
y>07? -1.9998 >0 ? 3.9405>07 -1>0°?
No, we have two real | Yes, two imaginary | No, two real
roots roots roots
., _rv+1 3.9992 < -0.4999 ? 15.5277<2.4703? | 1<0
14 T No, we have two No, two real roots No, two real
more real roots roots
3.9992 > -0.4999? 15.5277 >2.4703? | 1>0
25 y+1 ” Yes, two imaginary Yes, two imaginary | Yes, two
2 roots roots imaginary roots
M 1.4141 +1.9851i 1.0000
Y -1.4141 -1.9851i -1.0000
A3 1.2670 2.4843 0.7494
|~ -1.2670 -2.4843 -0.7494
As + 2.3675i +2.0570i +1.8872i
Ao -2.3675i -2.0570i -1.8872i
Stable ? NO NO NO
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2.3.2.2. Stability of the Triangular L4 and L5 libration points

It is more difficult to write the stability conditions for L4 and L5 points. Here, the
state transition matrix is rewritten by adding the state properties of these points; as;
z=0; and y =z = 0. (Not that: y # 0 ). After a lot of mathematical operations,

the following equations are obtained. First let define:

(A =p)
a =

7‘13 + E Eq. 2-97
3(1 -
B = 30 —p) s #) Eq. 2-98
I
3
B, = _g Eq. 2-99
Lp)

where; 7, = /(x + )% + y2 and 1, = \/(x —(1- ,u))z + y2
So, state propagation matrix F become:

Fyp=1—a+ (e +u)? +Bo(x — (1— )’

Fip =pi(x+wy + ﬁz(x -(1- ﬂ))y

Fos =0

Fs1 = Bi(x + Wy + Bo(x — (1 — )y

Fs; =1—a+By* + poy? Eq. 2-100
Fey = 0

Fo =0

Fep =0

Fez = —
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To find the eigenvalues:
det(F — AI) = 0 where A are the eigenvalues.

A; Ay

det(F —AI) = A, A, =0 Eq. 2-101
-2 0 0]
=0 -2 0 Eq. 2-102
0 0 -Al
1 0 O
A, =10 1 0 Eq. 2-103
0 0 1
ai1 Q12 Qi3
Az = [A21 Az ‘123] Eqg. 2-104
a3z dzz dz3
-1 2 0
Ay =|-2 =2 O] Eqg. 2-105
0 0 -2
where;
ap =1—a+pi(x+mw?+B(x— (1 —.U))Z
a;; = Pr(x +py + ,Bz(x -(1- ,u))y
a;3 =0
az, = pi(x + Wy + ﬁz(x -(1- H))y
A2 = 1—a+ piy? + foy? Eq. 2-106
a23 = 0
a31 - 0
a32 = 0
azz3 = —a
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Then, the following equation is obtained:

28+ 2*3Ba — By + 2+ 2B, (x + ) — (By + B}

+ /12{(.31 + Bo)(rE — 2ar?) + B1Boy? + B, + 1 + 3a?

— 2B, (x + ) — 2aB,(1 - 2(x + )}
+{(B1 + Blar? — a®rE] + 2aB,(x + W) (a — 1)
+apiBoy? +a(l+ B, —a(B, +2) +a*)} =0

The roots of the equation above give the eigenvalues:

The first two roots are:
A1 = £V —a, so a>0 to obtain imaginary roots.

The second two roots, let define o = g1 + B,r# . Then;

B Vo2 — 80 + 16a
?_Of—ﬁzﬂ_ﬁzx+ >
A3q =%

1
+§(ﬁ1 +B)(x2 +u? +y2) + (B + Blux — 1

So, to obtain stable roots:

%‘“‘ﬁz#_ﬁzx<

Vo2-80+16a

— IS (B + B+ i+ ) — (B + Bo)ux + 1

must be

The third two roots:

B Vo2 — 80 + 16a
> @~ Bt = Pox — >
/15,6 ==

1
+§(ﬁ1 + B)(x% + u? +y2) + (By + Blux — 1
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So, to obtain stable roots, the following condition is necessary:

Bz

——a-— — box <
2 Pt = Fo Eq. 2-111
Vo2-8o+16a 1
— ;(31 + B) (% + p? 4+ y*) — (By + Bux + 1
Table 2.4. The stability criteria of the triangular libration points
for stability (for imaginary roots), the | For L4 For L5
conditions
0.0000 - 1.0000i -0.0000 - 1.0000i
A 0.0000 + 1.0000i -0.0000 + 1.0000i
[AZ] -0.0000 - 1.0000i 0.0000 - 1.0000i
(2] -0.0000 + 1.0000i 0.0000 + 1.0000i
(2,1~ 0.0000 - 0.0045i -0.0000 - 0.0045i
As 0.0000 + 0.0045i -0.0000 + 0.0045i
e All roots have imaginary | All roots have imaginary
parts parts
Stable ? YES YES

In this section, the stability characteristics of the libration points are examined and
numerical results for the Sun-Bary system are given. As seen, the numerical results

obtained are consistent with the algebraic stability conditions presented.

2.4. Zero Velocity (Maximum Potential Energy) boundary

The total energy value of the third body in Restricted Three Body Dynamics is a
main key which gives an idea about the boundary of its motion. Regarding to the
law of conservation of the energy, it is well known that when the maximum potential
energy is reached, the kinetic energy is zeros, velocity is zeros — in ideal case, without
any unexpected effect such as disturbance, friction, etc. —. This boundary can be

defined using energy level of the third body. Jocabi Integral equation is used to plot
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this boundary by putting zeros to all velocities terms, and finding implicitly the x

and y coordinates for a selected energy level C, called Jacobi Energy constant.

For a preselected C Jacobi constant, when an initial position and velocity values are
determined for the third particle, the trajectory of this particle will be always inside
of the boundary obtained by this C constant. It will never pass the boundary since
maximum potential energy level is reached. In this way, these Jacobi curves define
the allowable regions of the motion and these regions also are called as Hill’s
Regions.

Recall that Jacobi integral equation for zeros velocity and for planar motion is:

1_
Fr2lo¢ Eq. 2-112

2 2
x“ 4+ + 2
Y L£] Lg)

The following table lists the Jacobi constants values computed for each libration

point of the Sun-Bary system.

Table 2.5. Jacobi constants values of libration points

For L1: CL1 = 3.000897861039225
For L2: CL2 = 3.000893807647872
For L3: CL3 = 3.000003040012327
For L4 & L5: CL4_5=2.999996959996722

Firstly; let see the zero-velocity curve obtained for first libration point, L1, in the
following plots. Actually, four different zones are obtained. It is zoomed around L1,

Earth, L2 zone to see the shape of the curve.

66



0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

0.03~

0.02~

-1

C=

C*1

/!

L4

Sun

v

L1,Earth,L2

K
k
-1 0.5 0

X

Figure 2-21. Zeros velocity curve

C = CL, =3.00089786103923
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Figure 2-22. Zeros velocity curve at L1 and L2 for C = C of L1



Here, at this L1 energy level, four distinct zones are obtained. The first zone is the
area around Sun until the boundary limited and shaped around L1, just left side of
L1. Second zone is the zone limited between L1 and L2, around the Earth. Third
zone is the area having a bagel shape between outside part of L1 and L2. And fourth
zone is the outside zone, towards deep space. So, it shows that a body navigating
around Sun with this energy level can never reach Earth; it cannot pass to the right
side of the L1 point. One the other hand, if a particle starts its motion in Zone2, for

instance near Earth, it will never reach Sun, or never goes to the deep space.

For the L2 energy level, see Figure 2-23, three distinct zones are formed. But, at this
time, the boundary between the Sun and Earth disappears, and a passage appears
near L1. It means that it is possible to have a trajectory between Sun and Earth, in
Zonel. And a body in Zonel will never go towards deep space, there is no gate to
Zone3d, and as well as Zone2. The existence of the gate around L1 means that it is

also possible to have a periodic orbit around L1, in this gate.

C = CL, =3.000893807647872
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X
Figure 2-23. Zeros velocity curve at L1 and L2 for C=C of L2
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For L3 energy level, it is not possible to have distinct zone like the case of L1 and
L2, as seen in Figure 2-24. Here, two boundaries are obtained, one at the upper side
and one symmetric of the first according to the x axis. For L4 energy level, no

boundary is formed, as seen in Figure 2-25.

C = CL; =3.000003040012327

0.8~ /

0.6~ L4
0.4
0.2 L3 Sun L1,Earth,L2

>~0f —

0.2
0.4

0.6 - L5
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Figure 2-24. Zeros velocity curve at L1 and L2 for C =C of L3

C = CL, =2.999996959996722
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O
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Figure 2-25. Zeros velocity curve at L1 and L2 for C = C of L4
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It is possible to form the shape of the boundary L1 and L2, by increasing or
decreasing the energy level around L1 and L2. So, this kind of manipulation provides
to obtain more narrow or wide passages at L1 and L2. For instance, let C =
CL1*0.999998; at this energy level the passage is formed at both point L1 and L2.
So, a body having this energy level can navigate between Sun and Earth and can also
escape toward deep space. But it is possible to have a periodic orbit around both L1
and L2.

C = CL1*0.999998 = 3.000891859243504

0.01-

0.005- - ~
R / Ejrth \
> /\ )
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-0.015+ “i r r r r \T r r
0.985 0.99 0.995 1 1.005 1.01 1.015 1.02
X

Figure 2-26. Zeros velocity curve at L1 and L2 for C = 0.999998xCL1

Now, in Figure 2-27 and Figure 2-28, the trajectory of a body is presented for several
initial conditions providing the energy level given above. First, L1 energy level is
selected:

C =CL1 = 3.000897861039225

Initial position and velocities =

Xo=1[0985 0 0 0 0.013302997062443 0]
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Figure 2-28. Trajectory of a body for C = CL1, Zoomed view
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When an initial position which is between L1 and Earth position is selected, it is seen
that the body navigates in the middle zone, around Earth:
C=CL1= 3.000897861039225

Initial position and velocities =
Xo=1[0992 0 0 0 0.006569304054335 0]

0.015 [
: [
\ £
i ;
0.01- : Earth
{ Initial Position f
0.005 - \ Y
/
;L

/

// L2
-0.005 . %

-0.01 -

|
L

_0.015 r ““L r r r r | r r
0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02

Figure 2-29. Trajectory for C = CL1, initial position between Earth and L1

For an energy level which is less than both L1 and L2, passages are obtained both
around L1 and L2. Let an initial condition having an energy level C =
3.000795757023590, such that initial position and velocities are:

Xo

=[0.991975555663567 0 —0.001885662044598 0 —0.010971356910053 0]

So, atrajectory around L1, passing from right side to left of L1 and vice versa. Figure

2-30 presents the trajectory obtained for this case.
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C =3.00079575702359
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Figure 2-30. Trajectory of a body for C is between L1 and L2

The different trajectories obtained regarding to the energy levels are presented in this
chapter and the importance of energy level is highlighted. Following sections give

the details on orbit design around collinear libration points.
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CHAPTER 3

ORBIT DESIGN AT COLLINEAR LIBRATION POINTS

3.1. Orbit types

Three different types of orbit can be defined according their trajectory characteristic:
A Lyapunov orbit is a periodic orbit in the orbital plane of the primary bodies. A
Lissajous orbit is a periodic orbit in which there is a combination of planar and out
of plane (vertical) components. Halo orbits are special cases of Lissajous
orbits where the in-plane and out-of-plane frequencies are the same [64]. The
trajectory analyses around the collinear libration points of a three-body system show
these three different types of motion depending on the energy level. The computation
of two-dimensional tori around halo orbits that the motion is quasi-periodic is done
by Lindstedt-Poincaré Method [65]. The definition of Poincaré Method is given in
Appendix-G. The following sub-chapters present the details on the Halo orbit
computation performed in this thesis.

3.2. Halo orbit design

The methodology used for computing a periodic orbit in Restricted Three Body
(RTB) problem is presented in this chapter. The concept behind this method is based
on the symmetry property of the RTB dynamic. With the aim of acquiring
symmetrical orbit, appropriate initial positions and velocities can be computed using
the differential corrections method with the advantage proposed by the symmetry
property. Here the Newton’s iteration method is basically used to obtain initial
condition values. A technique for analyzing the stability of the periodic orbits is
presented as well. It is important to notice that these methods are valid for orbit types

having symmetry and periodicity as Halo, Lyapunov and Lissajous orbits [66].
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3.2.1. Symmetry in the RTB dynamics

In synodic reference frame, two primaries and collinear libration points lie along x
axis and this configuration of the RTBP has symmetry with respect to the x-axis [60].
First, this statement can be seen on the positions of the two triangular libration points
L4 and L5, which are symmetric with respect to x axis. The real reason behind this
is the potential function of the RTB dynamics that depends on the distance of the

third body from the two primaries.

A periodic orbit can be defined mathematically as follows: the trajectory curve
obtained by initial conditions X, will provide same conditions after a T period time

in forward dynamic, as well, a -T period time in backward dynamic [66].

LetX = f(X,t) ;and
X(t) = eFtXO = q)(t)XO Eq 3'1

Considering the first expansion of Taylor series of eft, the X values at time t is

approximately can be written as:

X(t) = (I + Ft)X, Eq. 3-2

So, the final states obtained for atime T and -T

X:(T) = (I + FT)X, Eq. 3-3
X;(=T) = (I + F(-T))X, Eq. 3-4
Let take the state vector as:

X=[x v z x vy Z]T=[x1 X X3 X4 X5 Xg]T

Let take dimensionless equations of motion set for RTB dynamics:

Forward dynamics:
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= Xf_forward = f(X; T)

X4
X5
X6 Eq.3-5
Q-+ pulx— 1 —pw)
X1+ 2x5 — 3 - 3
= rl rZ
1—wx; px;
xz - 2x4 - 3 - 3
n r
_ (1= wx; _ Hx3
o T
Backward dynamics:
Xf_backward = f(X: -T) =
1-— X + x; —(1—
~ {x1 ome ( u)(3 1t u(xn (3 u))} Eq. 3-6
£ r

- {(xz) — 2(xy) —

(1-wWx) u(xz)}

1

_ {_ (1 —wxs _ X3

3 3
n £

3 3
¢ )

And finally, due to the symmetry with respect to the x axis, after a time T and T,

the third body must have an opposite the y coordinate; y(T) = —y(—T) . For the

velocity components, the distance took for a time T and —T can be written as:

x = dx/dT , and x will be in the same direction but time is reversed:
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#(T) = dx/dT , and £(~T) = = = —i(T)

For y = dy/dT, y distances are in opposite direction and time as well:

. . -d 8
y(T) = dy/dT ,and y(~T) = =~ = y(T)
z =dz/dT , and z will be in the same direction but time is reversed:

#(T) = dz/dT , and 2(~T) = == = —(T)

So, finally, we obtain the final states as:

X X
y -y
Z Z
X T —x
y y
Z f_forward —Z f_backward

Table 3.1 gives the results of the final states obtained for both forward and backward

dynamics for final times quarter, third, half, and full period. Next, figures show the

trajectory obtained for forward and backward dynamics.

Figure 3-1 presents the forward and backward trajectories for t=T/3. The third body
is initiated from the same initial coordinates and velocities, and the final states

obtained satisfy the symmetry property of the orbit, it is totally symmetric with

respect to x axis.
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Table 3.1. ICs of forward and backward dynamics

time X_final
T/4 |1 0.990744452492618 T 1 0.990744452492618 1
—0.004918736621312 0.004918736621312
0.000518887478346 .| 0.000518887478346
—0.003361097580437 "1 0.003361097580437
0.000557837344515 0.000557837344515
L 0.004329445168714 ¢ forpara 1—0.004329445168714¢ packwara
T/3 |1 0.989863808092535 T 1 0.989863808092535 1
—0.004162743056771 0.004162743056771
0.001522587646915 .| 0.001522587646915
—0.003340473490557 "1 0.003340473490557
0.005224669303005 0.005224669303005
- 0.003422848465568 ¢ forwara 1—0.003422848465568¢ packwara
T/2 |1 0.988877149288380 1 1 0.988877149288380 1
0.000000000001388 —0.000000000001388
0.002450740009211 | 0.002450740009211
—0.000000000008314 | 0.000000000008314
0.009728312882062 0.009728312882062
- 0.000000000001511 ¢ forwarq 1—0.0000000000015114¢ pakcwara
T 1 0.991975555532526 1 1 0.991975555532526 1
0.000000000119871 —0.000000000119871
—0.001916554249932 .|—0.001916554249932
—0.000000000400615 1 0.000000000400615
—0.011028335778654 —0.011028335778654
—0.0000000001081024¢ f6rwarq * 0.000000000108102 ¢ pakcwara

From the values given in the table it is seen that for t=T/2 trajectory pass the y axis,
half period reach y axis. It means that the orbit is a symmetric periodic orbit. Figure
3-2 shows the trajectory obtained for t=T/2. For full orbital period the same final
position is obtained. The trajectories obtained are overlapping. Figure 3-3 shows

final trajectories for t=T.
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Figure 3-3. Forward and backward trajectories for t=T

The next subsection presents how to compute proper initial conditions that satisfy

periodic Halo orbit using the symmetry property given here.

3.2.2. Halo orbit design methods

A halo orbit is a periodic orbit and every periodic motion has a symmetrical geometry
with respect to the axis defined. So, the symmetry property of the RTB problem is
used to design Halo orbit. According to the definition of the Halo orbit, this orbit has
out of plane motion, symmetric with respect to the x axis, near the libration points
L1 and L2. The main target is to find initial states in the xz plane (y(0) = 0) that
satisfy periodic motion. The initial velocity components are takenas x =z =0, S0

we have only a velocity on y axis.

The Initial guess for X, is based on the results obtained from Poincare Map

(Appendix-G). However, this X, does not guarantee to have a periodic orbit. Here
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two main methods are presented that gives a procedure to compute appropriate initial
state for Halo orbit [66, 68].

The first method state that; if the orbit is periodic, after a half period of time the
final positions and velocities must satisfy the symmetry [66]. So, when the initial

positions taken in xz plane and velocities as well, the following relation must be

obtained:

X X0 [ Xf ] [ Xf

y 0 0 0

zZL (% | _| %

X 0 0 0

lyJ 5’0 5’f _3"f

Z-t=0 -0 4= L0 -t=g=f L 0 't=—g=—r

Now, the question formed as: what are the values of x, z and y that ensure that y =
x = z = 0 when time is half orbital period = = T /2. Actually, the orbital period is
not known exactly true from the initial guess. For that reason, it is needed to modify
the problem like that: what are the values of z,z and y that ensurethat y = x = z =

0 for a given fixed x value.

Newton iteration method is used to solve this problem. State transition matrix is also
needed in Newton method. First, dimensionless equations of motion are taken as (the

bar sign indicates dimensionless states):

u

v
_x'__ W
y . 1-— X + x—(1-
I Jevay- 0o _w=lon)

X=fX) =|%|= n "2 Eq. 3-8
x __2;_(1—;1)?_#_?
y VTR TR
'Z' (1-wz pz
7’ 3
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Newton’s method using the first Taylor series approximation gives the following

expression:
-1
Oh 9%
0xy dx,
Xepr =Xpe—| ¢ = (X Eq. 3-9
0xy dx,

Here, the minimization function selected to solve the problemisy = x = z = 0:

0
= H Eq. 3-10

0

f(Xsub) =

<Ll N Ry

As the set searching is x, z and y that ensure minimization function, the differential

variation of f(X,,;,) with respect to searching set is called D, matrix:

Ofi Ofi O

0z 09y Ot

_|9fs 0fs Ofs
=3z o o Eq. 3-11

[0z 0y Ot

We know that:
X(t) = eftXy = d(t)X, » X = d(t)X,

Eq. 3-12

And

(t) = FO(t) = D;®(t) where ®(0) = I is an identity matrix
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CD4-,3 CD4,5 f4-
q)2,3 CDZ,S f2

Finally, Newton iteration can be rewritten as:

=%

z' z L
y | =y —-() |z Eq. 3-14
(AR PFST & P y

This iteration gives the initial condition set as:

X _ffixed_

y 0

,Z-C = Z() and the orbital period will be: T = 27*.
y A

Z¢=0 0

The iteration is terminated when a predefined error between successive results is

reached, this iteration stopping parameter is denoted as €, and it is computed as:

\Z_*
=%
A
*
k+1 T

=%

VA
=%
y

T*

€E =

k Eq. 3-15

The second method also uses the symmetry of the RTB problem [67]. As done in
the first method, the initial conditions are taken as y = x = Z = 0 and expected final
conditions are y = x = z = 0 since we aim to have a periodic orbit. Here; y, =0
is taken as the first intersection of the orbit which passes through y = 0 point, by

initial state X, . Then minimization function is defined again as:

fwww=[§f=ﬁ] Eq. 3-16
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It is possible to take the initial guess for X, from Poincare mapping, as done in the
first method. However, here, the integrations on the curve “s” is done using Adams

predictor. The differential equations of the curve integration are:

dx K, dz K, dy Kz

s K, 'ds K, ds K, Eq. 3-17
where
g 2 0hof: 0f0f,
179z ay 0y oz
_ 00 010/,
2 dx 0y 9y ox
Eq. 3-18
_ 0f10f;  0f10f,
Ks=~%x 9z T oz ox

KO=\/K12+K22+K32

Adam’s predictor (Adams Bashforth method):

According to the order selected the constant of the formulas changes with the values
given in the following table.

Adam’s prediction:

n
Yoo =X+ h ) o fioenn Eq. 3-19
k=1
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Table 3-2 Adams Bashforth coefficients

n\ k|1 2 3 4 5
1 1 - - - -
2 3/2 -1/2 - - -
3 23/12 -16/12 5/12 - -
4 55/24 -59/24 37/24 -9/24 -
5 190/720 -2774/720 2616/720 -1274/720 251/720

X, =X 4—h<ax>
1 — 40 aS

0

3 /ox 1 /0x Eq. 3-20
Xr"”z"(a);zh(a)o
Xy =Xp + -

Performing this method gives the proper initial values of x,z,y. This is an
approximation for periodic orbit; it is needed to refine it. This refinement is done

using Newton method.

f* JZ* .
£ -] -
}—]* }—]* k

(D4-,1 CD4-,3 (D4-,5
Df = q)5,1 q)6,3 cI)6,5 Eq 3-22
cI)2,1 CI)2,3 cDZ,S

Eq. 3-21

<L N Ry

Where Dy :

Actually the main structure of the Newton method is:

[X]k+1 = [X]x + AXy Eqg. 3-23
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The iteration is terminated based on the value of ¢, as given in Eq. 3-15. In reference

[61], a modified Newton method is used by adding a positive definite weight matrix.
Where; AX, satisfy that: G(AX,) = —F(X},)
Minimize the AX, " QAX,

So AXy is taken as:

x
AX, = —QGT(GQ G 'F(Xy) = —Q—lz)fT(DfQ—lpr)_1 z| Eq.3-24
y
If @ = I, unmodified Newton Method:
T=-1 -1 f
AXy = —GTF(X) = —(D;)  FXp)=—(Df) |2 Eq. 3-25
y
This iteration gives the initial condition set as:
x f*_
z |z
|x| =10 Eqg. 3-26
AT A
Zh=0 LO-

In this thesis, Newton method is used to obtain a Halo orbit for chief satellite. The
codes are prepared using Matlab and Simulink 2012a version. The execution time
spent to compute Chief’s halo orbit and the performance of the codes are given in
details in Appendix-I, with the benchmark test of the computer used. For instance,
in the computation of the chief’s halo orbit, the time spent for one iteration is
approximately 4 seconds with simulation having a sampling time that is equal to
3600 sec. In simulation, one iteration is the half period time of the chief’s orbit, and

it is approximately equal to 0.23 year.
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3.2.3. Halo orbit design near L1

The methods described in preceding sub-chapters are used in this section to design a

Halo orbit around L1 point.

3.2.3.1. Computation of Halo orbit near L1

As an initial guess for the X, state vector, the coordinates of the fixed point of the
Poincare section is taken. After that RTB dynamics is run the see the trend of the
trajectory with these initial coordinates. Then, Newton Method is implemented to
find initial conditions that ensure periodic orbit. x position is chosen as 1.22 million
kilometers away from Earth toward Sun, and z position is 0.28 million km. this z
distance is selected according to the roughly orbital radius of a Halo orbit at this x
coordinate, considering SOHO satellite. The distance from Earth to initial position
is approximately 1.25 million kilometers. The orbit velocity in y direction is taken
as 0.35 km/s as SOHO satellite [68]. As an initial guess, the following dimensionless
values are taken:

1 0.991841763696132 1
—0.0018710684394736

0

—0.011750780966904
“t=0 0

N LU R N 2 ><:|

The gravitational constant and mass values of the primaries are taken as follows:

k 3

Gmgsyy = 1.327227188067 » 101
s km?3
GMpapy = 4034799534017 + 10° —

Gmgagy IS the Gravitational constant and mass value of the Earth added Moon:

Gmpary = GMgar + GMypypon
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The parameter u used in the dimensionless equations of motion is the proportion of

the Bary mass to the total mass.

= Gmpary
Gmgyy + Gmpary

The astronomic unit distance, the distance between bary and sun is taken as:
au = 149.597.87066 = 10°km

The iteration for the Newton method is initiated with the initial guess X, and then
Newton method gives new state values X;.,; that try to ensure the periodic orbit. The
iteration is continued until acquiring a position error 0.748 meter (5*1e-12unit
distance) between two successive iteration steps. Figure 3-4 shows the results
obtained on Newton method for each of the iteration steps. This figure is obtained
by running the RTB dynamics for half period of time. The aim is to obtain a passage
at 'y axis, after a half period time. It is seen that at 8" step, the required convergence
is reached. And the final step is around y=0 value. This final trajectory is the first

half of the computed Halo orbit.
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Figure 3-4. Trajectories obtained at L1 for each step of iteration

The following 2 dimensional and 3 dimensional plots given in Figure 3-5 present the
trajectories obtained using initial state X, coming from initial guess (called 1%

trajectory), and using X, obtained from Newton iterations (called 2" trajectory).
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Table 3.3. Initial states

Table 3.3 gives the initial states comparison. In order to obtain a halo orbit for this

fixed x coordinate, it is seen that the z value is decreased.

Guessed initial
state vector X, [unit]

Computed initial
state vector X, for Halo [unit]

Difference in [km] and [m/s]

0.991841763696132 0.991841763696132 0 km
0 0 0km
—0.001871684394736 —0.001543996135220 49021.5 km
0 0 0m/s
—0.011750780966904 —0.010527737547337 36.43m/s
0 0 0m/s
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Figure 3-6. Divergence at trajectory

It is seen that periodic orbit is obtained. Now, the main question is about the stability
and continuity of this orbit. It should be noted that, here all procedure is run under
undisturbed environment. If the trajectory starts to diverge, the main reasons of this
divergence, are the differential matrix used in Newton since it takes the first order
Taylor series expansion (Eq. 3-9) and the iteration stopping criteria (Eq. 3-15). So,
the initial conditions computed using symmetry property for half orbital period of
time does not provide a periodic orbit for long time, since the nature of collinear
libration points is unstable. Figure 3-6 presents the trajectory obtained for three
orbital periods in non-disturbed case, and it is noticed that after 2.5 periods the
divergence begins, the periodicity cannot be sustained. The method used to validate
the computation done on the inhouse prepared software are shared in Chapter 2. In
addition, the simulation is re-run using inertial frame mechanization to have an idea
on the computation accuracy and the results are presented in Appendix-J. The
stability analyses method and the stability figure of the Halo orbit family for different

fixed x coordinates are discussed in the next sections.
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3.2.3.2. Stability of the Halo orbit near L1

In Halo orbit design, the equations of motion are propagated using discrete model,
so the stability analysis can be done using discrete-time system. It is already stated
that X = £ (X, t) and using first order expansion of et can be written in continuous
formas X(t) = (I + Ft)X(0) = ®(t)X(0). The time derivative of @ is rewritten as
&(t) = FO(t) where F is the state propagation matrix. The discrete form can be

rewritten as: X, = (I + Fdt)X, where dt is the sampling rate.

For discrete-time system, the state transition matrix @ gives the information about
stability of the system. For a @ square matrix, it is called “Lyapunov” when spectral
radius is less and equal to one and the modulus of every eigenvalue of @ are equal
to one has equal algebraic and geometric multiplicity; and it is called “Schur” when
spectral radius is less than one [69]. So, a discrete time linear system, here it is
represented by @, is asymptotically stable if and only if all the eigenvalues of state

transition matrix @ are inside the unit circle.

For a periodic motion, the state transition matrix & has always two eigenvalues equal
to unity, because having a periodic motion means that there is always an oscillation
with constant amplitude and frequency. The first unity eigenvalue is related to the
eigenvector that indicates the direction of the flow; it is tangent to the trajectory. The
second unity is related to the energy, it indicates the direction of change in energy.
The rest four eigenvalues describe the dynamics near the orbit. Two of them have
both real and imaginary part, conjugate to each other, they present to the center
direction of the orbit. These eigenvalues have modulus equal to one, so they lie on
the unit circle. It indicates that the orbit is near Halo and will remain near Halo for
all time. The last two eigenvalues are real and reciprocal to each other, it means that
one is too large, the other is too small. They show the stable and unstable manifolds
of the orbit [66]. The determinant value of @& is also a parameter that must be

checked, it should be equal to one.
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Finally, it can be stated that the orbit is unstable if one of the eigenvalues is outside
of the unit circle. A stability parameter v; is also defined in Ref.[67], to see the
characteristic of the system: v; = 0.5(4; + 1/4;), orbit is stable if both |v;| < 1 and
lv,| < 1.

Here, Halo orbit found in the previous section is taken as example to see its stability.

The dynamic is run for one orbital time, tend = T, and & is computed for this end

time.
Table 3.4. ICs for halo orbit
X, for Halo [unit] Xtina = X(T) for Halo [unit] Difference
Xo X, AX
[ 0.991841763696132 [ 0.991841763803963 1 16.13 m
| 0 | |—0. 000000000097927 —14.65m
_|—0.001543996135220 _|—0.001543996125539 _ 1-45@5
| 0 | 0.000000000328306 0978 107> m/s
l_0'010527737547337J l—o. 010527737745419J [—0.590 * 1075 m/s
0 0.000000000068948 0.205 * 10~5 m/s

It is seen that the difference between initial and final states is around 15 m for
distances and negligible for velocities. The determinant of & is approximately one:
|| = 1.000000000360359, and eigenvalues are:

1593.639
1.000003938283
0.980248301428 — 0.1977707449241i
0.980248301428 + 0.1977707449241i
0.999996061732
0.000627494557
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Here the first eigenvalue A, is outside of the unit circle and it shows that the orbit is

not stable. As described above, first eigenvalue is very large and the last one is too

1

small, and they are reciprocal: 1/, = So00erraonEes

= 1593.639 = A,.

These reciprocal eigenvectors correspond to the unstable (4;) and stable (A¢)
manifolds of the orbit. The unity eigenvalues are obtained: 1, and A5, they are on
unit circle, they correspond to the center manifolds. The last two A; and 1, have real

and imaginary parts. The modulus: |15 | = [14] = 1, they are inside unit circle [61].

The stability parameter v; shows also that orbit is unstable.

796.82 > 1
1.000000000007755 > 1
0.980248 <1
0.980248 <1
1.000000000007755 > 1
796.82 > 1

lv| =

Manifolds can be defined as the interplanetary superhighways formed by the
gravitational pull between celestial bodies. Manifolds are the corridors where
spacecraft can travel using little amount of fuel. The existence of stable, unstable,
and center manifolds indicates that it is possible to find special solutions which
converge to libration point, diverge from libration point, or periodically orbit around
libration point [60]. There are orbits which converge to the halo orbit in positive time,
and orbits which converge to them in backward time. The small enough
neighborhoods of the halo orbit make the stable and unstable manifolds. The stable
and unstable manifolds are the trajectories which flow in either positive or negative
time [61]. For instance, Figure 3-7 shows the trajectories obtained in forward
dynamics (in positive time) and backward dynamics (in negative time) and these

trajectories make two tubes symmetrical in xy plane.
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Figure 3-7. Stable and unstable manifolds

3.2.3.3. Halo orbit family for L1 and their stability

In this section, a set of orbits composed of several Halo orbits are taken into
consideration in order to see how the orbital characteristic changes depending on
their initial coordinates. First, the Halo orbit computed in the previous section is
taken as the starting case. Then, the initial x position is increased; the orbit is brought
close to the Earth. And the iteration procedure given above is performed for every
new X coordinate. Then, the eigenvalues of new orbit are checked to see if the orbit
is stable or not. Figure 3-8 presents the Halo orbits obtained for different x values
which approaches to the Earth. Here, the increment given to x coordinate for each
step is approximately 2992 km (unit increment is 2e-5). The initial conditions
computed for the Halo orbit feed the next iteration for new Halo orbit computation,

in this IC set, only the x value is augmented for one step of increment.
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Figure 3-8. Halo orbits family for L1

It is seen that the orbit diameter enlarges as it gets close to the Earth, and orbital
period decreases. The shape formed is like a cone growing towards Earth. So, the
orbital velocities are higher for the orbits near the Earth. Figure 3-9 and Figure 3-10
plot the modulus of every six eigenvalues computed for each of the halo orbit in the

family.
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Figure 3-10. Eigenvalues for halo orbit family of L, zoomed view

For the orbit near L1, first eigenvalues have a large value, and it indicates the
unstability, and it decrease when orbit get closer the Earth. The sixth eigenvalue of
each orbit is near zeros as it is reciprocal of the first one. Other eigenvalues have
modulus one. For the orbits numbered between 395 and 402, it is seen that the

stability is reached, all eigenvalues has modulus equal to one. After that, the results
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start to increase. At 402th orbit, the initial x position coincides with the Earth x
coordinate. So, the stable region is the orbit interval numbered 395-402 and it is
roughly between 0.999855 — 0 .999995 unit x distance, which is 21623.55 km —
679.86 km away from the Earth. One more consequence obtained from the results:
the orbital speed increase when the orbit gets closer to the Earth and the orbital period

decrease as well despite to the increase on orbit perimeter.
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Figure 3-11. Orbital velocity and periods depending on family orbits

One more test is run by adjusting x coordinate increment to 14960 km (unit
increment is 10e-5). In that case, Halo orbit is not obtained after 10" increment. The
second set of orbits is on the XY plane, so they are Lyapunov orbits. As the initial
conditions for the next orbit computation is feed from the previous one, the value of
the increment effects the performance of finding Halo orbit. When increment is large,
the accuracy become weak, it is gone away from the initial guess provided by

Poincare mapping. Figure 3-12 presents the results. The same behavior is obtained
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as the previous case: when it is approached to Earth, the orbit radius increase, for

both Halo and Lyapunov orbits.

M =20/20
Yaxis%

s | Zaxis
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0.98

Figure 3-12. Halo and Lyapunov orbits

The modulus of the eigenvalues, velocity and orbital period are given respectively
in Figure 3-13.
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Figure 3-13. The modulus of the eigenvalues, velocity and orbital period
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From those figures, it is clearly seen that a jump occurred after 10" orbit, it means
that manifold is changed. The orbits are unstable but, as the previous case, the
unstability loses its force when orbit is getting closer to the Earth. Again, the orbit
velocity increase near Earth. However, different results are obtained for the orbit
period values. As seen in the previous case, the orbit period decreases for Halo orbit,
but period is increasing for Lyapunov orbit when it is getting close to the Earth. This
may also be observed from Figure 3-14, where amplitude along Z direction becomes

zero after the 11" orbit.
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Figure 3-14. Amplitude of the orbits

It is not very useful to define this kind of orbits using the orbit radius parameter,

since their shape is not perfectly a circle, or an ellipse (Figure 3-12). For that reason,
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the maximum amplitude obtained on Y and Z axis can be used as a parameter to
make comments about the shape of the orbit [67]. Figure 3-14 above indicates the
change on the amplitudes of the orbit. It is seen that the amplitudes are increasing

towards Earth, even if orbit type is converted to Lyapunov from Halo.

3.2.4. Halo orbit design near L2

In this section, Halo orbit design for L2 point is explained in details. The state vector
used in the Newton method is changed to obtain Halo orbit, the process modified is

given in the following sub-sections.

3.2.4.1. Computation of Halo orbit near L2

The process followed is the same as done for L1 point. The position vector of the
fixed point of the Poincare section is again taken for L2 as an initial guess for the
initial conditions X,. Then RTB is run, Newton method is implemented with same
manner as done for L1 and the trajectories obtained presented below. Initial x
position is between Earth and L2, and it is roughly 1.26 million kilometers away
from Earth and z position is 0.29 million km. The initial orbit velocity in y direction
1S 0.29 km/s. As an initial guess, the following dimensionless values are taken:
1 1.00842815565444 1
0
0.002
0

0.009810393065200
t=0 0

$|- L RN <L ><:|

The Newton method iteration is used to find Halo orbit for L1. Figure 3-15 shows
the results obtained on Newton method for each of the iteration step. This figure is

obtained by running the RTB dynamics for half period of time. Final trajectory is the
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first half of our Halo orbit. Here, the main difference from the case of L1 is to have
an initial velocity in positive y direction. That’s why the trajectory first has a motion

towards +y direction then its turn to complete one-half period.

-3 |eZ|= 8.273e-013, |eyd0t|= 5.3239e-015, e, |= 5.6177e-014 i =13

x 10 tau

-

\ \ \\“ /First step

e

AN

2nd step Final step \

e

2 £
1.008 1.009 1.01 1011 1.012 1.013 1014 1015 1016 1.017
X

Figure 3-15. Trajectories obtained at L2 for each step of iteration

The following 2 and 3 dimensional figures present the trajectories obtained using
initial state X, coming from initial guess (called 1 trajectory), and using X, obtained
from Newton iterations (called 2" trajectory). Here it is noticed that Newton

optimization gives a Lyapunov orbit, an orbit on the XY plane.
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Figure 3-16. Trajectories obtained using initial state X,

In order to find Halo orbit near L2, it is needed to change the state vector used in
Newton method. This time, the z coordinate is taken as a given fixed value and t, x

and y that ensure that y = x = Z = 0 are searched.

x* x* L
y| =y —-() |z Eq. 3-27
T g Loy y
This iteration gives the initial condition set as:
X [ X ]
4 _ Z_fixed _
|x| =10 Eqg. 3-28
A A
Z7t=0 0 -

and the orbital period will be: T = 27~.

Figure 3-17 and Figure 3-18 present the Halo orbit found using this new iteration set.

Table 3.5 gives the comparison of initial states guessed and optimized.
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Table 3.5. ICs guess for L2

Guessed initial Computed initial Difference in [km] and [m/s]
state vector X, [unit] state vector X, for Halo [unit]
1.00842815565444 1.007962094945760 [69721-69 km]
0.002 0.002 0 km
0 0 0m/s
0.009810393065200 0.011283741292199 43.88m/s
0 0 L om/s

Finally, a periodic orbit is obtained by modifying the Newton states; however, it is
not possible to maintain this periodicity. Figure 3-18 plots the trajectory obtained for
three orbital periods in non-disturbed case, and it is noticed that near time=2.5
periods the divergence begins, the periodicity cannot be sustained. The stability
analyses tell us the characteristic of this orbit. The eigenvalues belonging to this orbit
are listed as follows:

1423.44
0.999999999985 — 0.000005539455i
0.999999999985 + 0.000005539455i
0.962496910519 — 0.271292641333i

0.962496910519 — 0.271292641333i
0.000702522840

As described in the section of L1, first eigenvalue is very large and the last one is too

1

small, and they are reciprocal: 1/, = YTy

= 142344 = A,

The unity eigenvalues are obtained: 1, 15, and 1, A5 they are on unit circle. In this
L2 case, the unity eigenvalues are not obtained very clearly. The set of A, A5 are very
close to the unity. Here the first eigenvalue A, is outside of the unit circle and it
shows that the orbit is not stable. The stability parameter v; shows also that orbit is

unstable.
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711.72 > 1
0.9999999999847 < 1
0.9999999999847 < 1
0.9624969105189 < 1
0.9624969105189 < 1

711.72 > 1

lv| =

However, since 1, and A¢ are real reciprocal, the volume of the flow is preserved. It
means that this halo orbit has stable and unstable directions. It is possible to obtain
stable or unstable trajectories when the initial position is selected as a small enough
neighborhood of this halo orbit. Eigenvalues A5 and A, ensure that the orbit remain

near Halo.

3.2.4.2. Halo orbit family for L2 and their stability

In this section, a set of orbits composed of several Halo types is considered to analyze
the changes on orbital shape depending on their initial coordinates. The process used
for L1 points is implemented, so, the initial x position is increased. The trajectories
obtained by applying the Newton method are presented in Figure 3-19. For this case

the orbits computed are all Lyapunov orbits, on XY plane.

In order to find Halo orbits for L2, the modified Newton iteration presented in the
previous section is used. Figure 3-19 and Figure 3-20 contain the Halo orbits
obtained for different z value which decrease toward to z=0 and increasing in the
negative direction by passing the z axis. It is expected to obtain a symmetric profile
formed by the Halo orbit family. Here, the decrement given to z coordinate for each
step is approximately 2992 km (unit increment is 2e-5). Then the eigenvalues of new

orbits are checked to see their stability.
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In this case, the computed x position, for given z, increase slightly towards L2 points
and it come back, get close to the Earth after passing z=0 position. So, the eigenvalue
which indicates the unstability also first increases then decreases, symmetrically
(Figure 3-21). The amplitude of the orbits also behaves accordingly to this

symmetrical case.
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Figure 3-21. Eigenvalues for halo orbit family of L2
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Figure 3-22. Amplitude values of halo orbit family of L2

From the results above, it is seen that a stable orbit near L2 is not found, but it can
be stated that the stability may be reached for higher initial z position, because the
value of first eigenvalues become larger for small initial z positions. So, the process

is rerun and the following results are obtained.
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Figure 3-23. Recomputed halo orbits family for L2 by z increment

It is seen that first eigenvalue decreases for the larger initial z, since the x position
computed to have Halo orbit is closer to Earth. As seen in the case of L1, stable orbits
are obtained near Earth. The orbits unstability is strong when it is getting close to the
libration point. Figure 3-24, Figure 3-25 and Figure 3-26 show the changes of

eigenvalues and orbital amplitude regarding to the z, and x positions.
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Figure 3-25. Amplitude of new halo orbits family for L2
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Figure 3-26. Orbital velocity and periods of new halo orbits family for L2

The analyses indicate that the periodicity in orbit is acquired for large initial z
position. When the initial position is close to the Earth, the halo orbits computed has
much larger amplitude. The orbital velocity increases and orbit period decreases

when the orbit is getting closer the Earth.

3.3. Halo orbit design with disturbance sources

The studied presented above are based on circular restricted three body dynamics for
the Sun-Earth/Moon system and the equations of motion derived for a spacecraft
navigating around libration points are ideal equations, they do not contain
perturbation. In this section the perturbation sources and their effects on the

trajectory of the orbit and on the stability of the orbit are elaborated.
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3.3.1. Disturbance sources

The disturbance sources that effect the trajectory of the spacecraft, navigating around

libration points, are presented in this section.

The third body motion is mechanized using the assumption that the Bary (center of
mass of the Earth+Moon) has a circular orbit around Sun, so, circular restricted
equation of motion is used. In the real-world Earth has noncircular motion around
Sun and Moon has a noncircular motion around Earth. However, the noncircular
motion effect will be taken as negligible in the studies performed here [25]. The
second perturbation source is the solar radiation pressure (SRP). The intensity of the
SRP on the spacecraft depends on the cross-sectional area of the spacecraft and on
its reflectivity. The main perturbation source is the solar system planets. The effects
of their gravitational forces have also to be added on the trajectory computations,
since Jupiter has a major effect on the solar system, as it is so massive compared to

the other planets.

The actions taken in the simulation model in order to constitute the disturbed

environment can be listed as follows:

e The sum of the mass of the Earth and Moon are taken in the codes to simulate
the motion of the Bary around the Sun.

e The solar radiation pressure is computed recursively in the simulation
regarding to the position of the satellite with respect to Sun.

e The ephemeris model is constituted to obtain the positions of the planets
regarding to the Sun in synodic reference frame according to the Julian Date.

e The position of each Planet is calculated with respect to spacecraft.

e Finally, all of those disturbances are added to the ideal equations of motion
and disturbance equations of motion are obtained, as given in the following

section 3.3.2.
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3.3.1.1. Solar radiation pressure

Solar radiation pressure is basically defined as a function of solar pressure, cross
sectional area of the satellite exposed to the sun S and the mass of the satellite mg 7.

The acceleration occurred due to SRP can be formulized as [70]:

PSR CRS fSAT

Aspp = Eq 3'29

Mgar  |Tsarl

where; Cy is the spacecraft reflectivity. It is taken zeros for transparent body, 1 for
black body (all radiation is absorbed), and 2 for white body (all radiation is reflected).
Psy is the solar pressure and it is mean solar flux over light speed. Solar flux is a
function of the distance from the sun, so for L1 and L2 different values are computed.

L

- Eg. 3-30
SR ™ 4nR2¢ q

where L = 3.828 x 102 Watt the intensity of the Sun light is, R is the distance
from Sun and c is the speed of light. So, solar radiation pressure computed for L1

and L2 positions is:

N
PSRILI - 4.63267 X 10_6W

N
PSRILZ - 4.45054‘ X 10_6W

In this study S is taken 30 m2 and mass of the satellite is 1800 kg. Figure 3-27 and
Figure 3-28 show SRP acceleration acting on a satellite moving on Halo orbit near

L1 and L2 respectively with its trajectory.
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Figure 3-28. Solar radiation pressure for L2

Form the results it is seen that SRP has an order 1078 m/s? for x axis and 10~1°
m/s? for yand z axes. The SRP x component oscillates around 7.5996 X
1078 m/s? and the two other SRP components y and z have mean zeros with
amplitude of 4 x 1071%m/s? of 2 x 1071%m/s? respectively. Consequently,
the SRP disturbance have an effect on the periodicity of the orbit, orbit life time and

on orbit design. These will be given in Section 4.
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3.3.1.2. Gravitational Disturbances due to the Solar System Planets

The effect of a planet is defined as a function of the distance between satellite and
planet and the gravitational force of the planet. The ephemeris model is constituted
to obtain the positions of the planets regarding to the sun in synodic reference frame
according to the Julian Date in order to compute the accelerations caused by the
gravitational forces of the planets. The details on ephemeris models are given in the
Appendix-H.

Figure 3-29 illustrates the position of the planet, satellite and two primary bodies in
synodic reference frame. The position vector of spacecraft with respect to the Sun is
1, , the position of the planet with respect to the Sun is named as Rp; and the position
of the planet with respect to the spacecraft is noticed as Rp gc which is equal to the
difference of the planet position and spacecraft position with respect to the Sun. So,

it can be formulated as:

Rpx — (x + xl)
Rpsc =Rpi—1 = Rpy —y Eq. 3-31
RPZ —Z

0>
EARTH/Moon L2 Xaxis

Xsc

{1-mu)*R=x2
mu*R=x1

R=au

Figure 3-29. Distance between bodies in synodic reference frame
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In the model, all the sun system’s planets are taken into consideration except Pluto.
As known, there is an argument between astronomers whether Pluto was a planet, in
the late 1990s. At the end, in 2006 the International Astronomical Union ultimately
decided to call Pluto a “dwarf planet”, and the list of “real planets” is reduced to 8
from 9. But it is sure that it is not the reason not to add Pluto in the computation done
here, the main reason is its mass and its distance from Sun compared to eight other
planets; mass is negligible and distance is too far, so pull of Pluto is negligible. One
more interesting item, The Planet-Nine is not also added: On 20 January 2016
astronomers found another planet in our solar system, which is about ten times the
mass of our planet and 5000 times to mass of Pluto, so-called as “Planet Nine” [71].

So, the sum of the acceleration caused by the seven Planets is formulated as follows:

’ ’ Gmm RPxi - (x + xl)
ACCpianets = Z accp; = Z Rpi — 113 Rpyi —y Eq. 3-32
i=1 = e Rp,i — z

As defined above in section 2.2, the Sun-Earth/Moon system is studied in RTB
dynamics. It is also possible to add the Earth/Moon acceleration to the formulas
given above in order to collect all planets caused forces, or as done in this thesis,
Earth/Moon is taken separately and the other 7 planets make another group.

The following figures (Figure 3-30 to Figure 3-36) present the magnitude and the
shape of the acceleration caused by each of the planets to satellite moving around
L1. Here, a periodical Halo orbit around L1 is taken as example and simulation is
run for 25 Halo periods (approximately 12 Earth’s year) to cover one revolution of
the Jupiter, to see its effects as it is the massive planet of the solar system. Julian
Date is selected 01 June 2012, as starting date of the simulation. Orbital periods of

the planets are:
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Table 3.6. Orbital periods of planets

Planet Period

Mercury ~0.24 years (~87.97 days)
Venus ~0.616 years (~224.70 days)
Earth 1 year (~365.25 days)

Mars ~1.88 years (~686.98 days)
Jupiter ~11.86 years (~4332.82 days)
Saturn ~29.45 years (~10755.70 days)
Uranus ~84 years (~30687.15 days)
Neptune ~164.79 years (~60190.03 days)

% 10° Acceleration acting on Spacecraft due to MERCURY

NPT T
ol Fotdodolyd
= AR AATLAR AR
U VUUV v VUUVVUYVY
2012 2014 2016 2018 2020 2022 2024
x 107"
: P 1
% IALAAMALAAAAAANAA AN AN A
5_5,!/ ] f,HIH‘H,{ (YUYWL
2012 2014 20r16 2018 2020 2022 2024
x 107
3
2
1
1S -2 A’ nvh' U Avhvl\v“ "Ar A vﬂyhyl!\\vﬂl\vnl
2012 2014 2016 2018 2020 2022 2024

year

Figure 3-30. Gravitational pulls of Mercury
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Figure 3-32. Gravitational pulls of Mars
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x 107 Acceleration acting on Spacecraft due to JUPITER
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Figure 3-33. Gravitational pulls of Jupiter
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Figure 3-34. Gravitational pulls of Saturn
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x 107 Acceleration acting on Spacecraft due to URANUS
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Figure 3-35. Gravitational pulls of Uranus
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Figure 3-36. Gravitational pulls of Neptune

123



Effects of gravitational pulls of planets on a satellite at L1 are calculated and plotted
in Figure 3-30 - Figure 3-36 for each of the planets. The gravitational pull of the
Mercury has a periodic motion and it has a high frequency since the orbital period is
one fifth of the Earth, and its magnitude is about 3.5 x 107 m/s? in x direction
(Figure 3-30). The acceleration due to Venus has a pick values every 1.6 year and it
is about 2 x 1077 m/s?, as seen in Figure 3-31. Mars shows very interesting
behavior. The maximum gravitational pull of Mars is seen at half of the year 2018 in
- x direction and it is approximately 1 x 1078 m/s2. At the third quarter of the 2020,
one more pick is seen, but after that it decrease again. Mars gets closer to spacecraft
approximately every 2.20 years and maximum pick values occurs (Figure 3-32).
Jupiter, the biggest planet, it has a periodic gravitational pull on the spacecraft and
its magnitude is about 3 X 1077 m/s? in -x and — y directions (Figure 3-33).
Saturn’s pull has an order of 2 X 10~8m/s? (Figure 3-34). Uranus and Neptune
effects are about 3 x 1071°m/s? orders (Figure 3-35 and Figure 3-36). As a
consequence, it is seen that the most disturbance sources are Venus and Jupiter;
Venus due to its distance which is close to the Earth and spacecraft, and Jupiter due
to its huge mass. And the interesting point was the Mars case, for the date 2018 and
2020 it shows the maximum disturbance level. The position of the Mars in synodic
references frame is investigated to understand this effect. It is noticed that, on 2018
June, the minimum distance with respect to the Sun is reached with having near zeros
in y axis, and maximums in x, and z axis. So, Mars is nearly aligned to Earth in that

dates and it shows maximum effect on this line, to the spacecraft also.

The similar gravitational pulls are obtained for a trajectory on L2. The effects of
Mercury, Venus reduce slightly since the distance between spacecraft and planets
increase about 3 million km for the dates run in the simulation. The pulls of the other
planets do not change a lot because the distance from L1 to L2 (approx. 3 million
km) do not have an importance compared to the distance between planets and

spacecraft.
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3.3.2. Equations of motion with disturbances

The acceleration terms occurred due to disturbances based on the solar radiation
pressure and on the gravitational forces of the solar system planets are added to the

equations of motion, and finally the following set of equations is obtained.

. 2 . Gmgyy(x +x)  Gmpagy(x —x2)  a(x +x)
X =wx + 2wy — 3 — 3 +
7 T, n

7
_ Z GMmppaneri (RPix —(x+ x1))

Rp; — 1|3
o1 |Pl 1|

.o . Gmgyyy Gmppryy @y
Yy =w*y —2wx — T — 7 — +t—
7 16 7

Eq. 3-33

7
_ Z GmPLANETi(RPiy - Y)
|Rp; — 113

i=1

7
P Gmsynyz Gmpapyz 0z z Gmpangri(Rpiz — 2)

T13 r23 &1 |Rp; — 1113

i=1

where,

=+ +x)% +y2 + 22

= (x —x3)% + y? + 22
@ = PspACg/(mgqe) and

Rp; is the position of the planet with respect to Sun in synodic reference frame, as

defined in the previous sections.

The dimensionless form of this set can be rewritten as follows:
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7= (X + w2 +y%+ 22

fzz\/(f—(l—,u))z+}72 + 72

|Ep_sc| = \/(RPix - (x+ H))z + (RPiy - 3_’)2 + (Rpi; — 2)?

The following section presents the details on the effect of the disturbances on the
Halo orbit design. The lifetime of the periodic orbit is critically dependent on the
consideration of the disturbances while computation is made. The process is
performed for L1 and L2 libration points in order to see and compare the computation

contents.
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3.3.3. The Effects of the disturbances on Halo orbit computation

Naturally it is not possible to have a stable orbit at collinear libration points L1 and
L2, as mentioned in the previous sections. However, the objective is to obtain a Halo
orbit with a trajectory and an energy level that satisfy the periodicity. As seen above,
this aim is achieved by computing the proper initial positions and velocities of the
third body using symmetry property of the dynamics and Newton’s iteration method
by running the RTB dynamics.

Initial conditions can be computed for undisturbed equations of motion, but it is
obvious that the trajectory will not satisfy a periodic orbit when the disturbances are
added to the simulation code. For that reason, disturbed equations are used in all
computations, with solar radiation pressure and gravitational forces of the other
planets are added. And the process presented above to compute proper initial

conditions are performed.

Figure 3-37 and Figure 3-38 give the comparison between undisturbed and disturbed
motions for both L1 and L2 libration points. When the initial conditions computed
with undisturbed dynamics are used in perturbed environment, the blue colored
motion is obtained for L1 (The trajectory colored cyan is the case obtained for
undisturbed RTB). In the same manner, for L2 the computations are also performed.
The red colored trajectory is the trajectory obtained for disturbed dynamics, the

magenta one is for undisturbed environment.
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Figure 3-38. Comparison between undisturbed and disturbed motions-3D view
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The Halo orbit design results and orbit family behaviors and analyses for L1 and L2

are given in the next sub sections.

3.3.3.1. Halo Orbit Design near L1 and L2 under Disturbances

Trajectories for L1 and L2 are given in Figure 3-39 and Figure 3-40 respectively.
These orbits are computed using both undisturbed and disturbed RTB dynamics. For
undisturbed case, the ICs are computed using undisturbed model and the simulation
is run with the undisturbed EoM. For disturbed case, the model with the solar
radiation as well as the disturbances due to the pulls of the other planets is used in
computation iteratively searching the proper initial conditions. The orbits computed
for undisturbed RTB are given in colors cyan for L1, and magenta for L2. The orbits

colored in blue and red are the orbits computed for disturbed RTB respectively.

au
=)

T
(@]
(@]

Figure 3-39. Orbits computed using RTB with and without disturbances — 2D view
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Figure 3-40. Orbits computed using RTB with and without disturbances — 3D view

Table 3.7. ICs comparison: Undisturbed-disturbed motions for L1

Initial Date taken is: 1/ 6/2018 (dd/mm/yyyy) at 12:00:00 (hh:mm:ss)

Results for L1

Nondimensional ICs of Nondimensional ICs of Differences in km
Undisturbed motion Disturbed motion and m/s
Xy = 0. 9919754554386 Xy = 0. 9919754554386 Ax =0.00 km
yu=0.00 yu =0.00 Ay =0.00 km
z, =-0. 001885431277 z, =-0. 001782835456 Az = 15348.1km
Vy=0.0 Vy=0.0 AVy=0.0m/s
Vy, = -0.01097102715 Vyu = -0.01106286967 AVy =-2.73m/s
V4 =0.0 V4 =0.0 AV; =0.0 m/s
Orbital Period in year: Orbital Period in year: Difference in orbital
T=0. 4863107460643 T=0. 4859685147159 periods:

-3 Hours
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Table 3.8. ICs comparison: Undisturbed- disturbed motions for L2

Initial Date taken is: 1/ 6/2018 (dd/mm/yyyy) at 12:00:00 (hh:mm:ss)

Results for L2

Nondimensional ICs of Nondimensional ICs of Differences in km and
Undisturbed motion Disturbed motion m/s

Xu = 1. 007962094945 Xy = 1. 008007907715 AXx = 6853.5 km

yu =0.00 yu=0.00 Ay = 0.00 km
z,=0.002 z,=0.002 Az =0.00 km

Vi =0.0 Vy =0.0 AVyx=0.0

Vyy = 0. 01128374129 Vyy = 0. 01104182302 AV = -7.206 m/s

V4 =0.0 V=00 AV, =0.0

Orbital Period in year: Orbital Period in year: Orbital period difference:
T=0. 4926990645676 T=0. 4932694501483 5 Hours

The Table 3.7 and Table 3.8 give the difference of the initial conditions computed
with and without disturbances for L1 and L2 halo orbits. The first two columns give
the dimensionless distances and dimensionless velocities computed using
astronomical unit au and angular velocity of the Bary around the Sun w as: x,, =
x/au andV,, =V, /(au.w). Third column gives distance difference in kilometers
and velocity difference in meter per second. From the results it may be observed that
the radius of the orbit obtained for disturbed motion is less than undisturbed for L1
case. And the absolute velocity y component is higher and the orbital period is about
3 hours lower. For L2 the case, the orbit radius is approximately 6850 km further
from the Earth and the initial velocity in the y direction lower, and while the orbital

period is higher.

The projected amplitudes Ay, for L1 and L2 trajectories are given in Figure 3-41 and
Figure 3-42. Here, Ay, is the projected distance of the satellite on YZ plane in
synodic reference frame (Ay, = M). For disturbed case, it is seen that initial
amplitude is about 15000 km less then undisturbed case for L1 (see in Figure 3-42.
as L1 AAy,), while at the quarter orbital period disturbed orbital amplitude is greater

than undisturbed about 5000 km, changing in an oscillating fashion. In L2 case, the
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initial amplitude is always less than the undisturbed case (L2 AAy,). Due to this
difference, equations containing solar radiation pressure and gravitational forces of

the other planets are used in the computations.

P X: 0.9889
x 10 ¥: 3.12e-06
Z: 0.002409

25}

gt I axis

15}

0D.5¢
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Figure 3-41. Representation of the amplitude of the orbit
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Figure 3-42. Amplitudes of the orbits for L1 and L2, undisturbed-disturbed case for L1 and L2

3.3.3.2. Keeping Halo orbit and orbital corrections

Actually, the effects of the disturbance are clearly seen in the periodicity of the Halo
orbit. It is noticed that even if Halo orbit design process is performed, it is not
possible obtain periodicity even for one orbital period. The initial and final positions

are given in following Figure 3-43:
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Figure 3-44. Jacobi energy value
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It is clear that an orbit correction is necessary but it is also needed to define criteria
to determine the maneuver implementation time; when and how? The changes on the
value of the Jacobi energy may give an information about the orbit correction need.

Figure 3-44 gives the Jacobi energy values of the orbit given above.

The y axis label presents the value of the C, Jacobi energy and it is given as Cn =
(C —3) x 10° to make it readable the decimal part of the value. The red line
indicates the initial C value which is the energy level of the initial conditions, it is
denoted as Co. The upper straight line shows the maximum value reached. The lower
straight line is the symmetry of the maximum reached value with respect to the Co,,
and these upper and lower boundaries are indicated as Cup and Ciow. The vertical
straight dashed line shows the critical time, it is the time that energy starts to diverge
from the area determined by extramums, and it is nearly half period time. So, it is
possible to state at this is the time that a maneuver is needed. The Jacobi integral
value (let’s say energy value) is taken into consideration for making a decision to do
orbital correction. After analyzing of the several scenarios, it is obtained that a
periodically orbit correction can provide continuous Halo orbit. One period is nearly
six earth’s months, so if every six months (full period) maneuver is performed, it is
possible to keep Halo orbit. Only the first maneuver is done at 3 moths (half period).
The first maneuver is done at half period time. And the maneuver quantity, delta_V
is computed like that: As a first step, the positions and velocity obtained at half period
is taken. These coordinates are taken as the initial values of the process used for find
Halo orbit. The Newton’s iteration method is used to find initial velocity components
with these positions which ensure periodic orbit. So, the difference between
computed velocity and old velocity is the maneuver quantity delta V to be
performed. After one orbital period the same process is followed to find delta_V for
second maneuver; take positions as initial, perform iteration to find correct velocity
and computed velocity difference. The results with used scenarios are given in the
following figures (Figure 3-45 to Figure 3-47): the orbits end energy obtained with

maneuvers, and delta_V budget.
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Figure 3-47. Orbital deltaV implementation

Table 3.9. DeltaV values of the maneuvers

Maneuvers Unit DeltaV values | DeltaV values in m/s
First Maneuver, DeltaV1: 0.000279072 ~8.3124 m/s
Second Maneuver, DeltaV2: 0.000175115 ~5.21596 m/s

So, finally all the process followed can be summarized as: first maneuver is made at
the half period, the next maneuvers are performed every one full period and such a

maneuvering strategy ensures to have a periodic Halo orbit.
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CHAPTER 4

FORMATION FLIGHT DESIGN NEAR L1 AND L2 POINTS

This chapter presents a design methodology for a formation flight near Sun-Earth
collinear libration points. The satellites operating at L1 and L2 are presented briefly
in the first section. The next section describes the design method used for each of the
deputy satellites to form the formation flight scheme. Finally, simulation results are
given and inferences are shared regarding to the result obtained for different formation
flight configurations.

4.1. Spacecraft at libration points and formation flight concept

There exist many satellites navigating near Sun-Earth collinear libration point and
their missions are composed of observations and researches on our Sun, studies on
star formation, the detection of Earth-like planets and understanding the conditions of
early Earth-like planets. For instance, SOHO is one of the most famous satellites
moving near L1 on Lissajous orbit, it is launched in 1995 [60]. Before SOHO, there
was WIND at L1 Lissajous orbit and launched 1994 [58]. GENESIS, TRIANA,
MAXIM and DARWIN are the other projects for dedicated to L1 missions. ISEE-3,
launched at 1978, it is one of the very interesting; it navigated around L1, then around
L2 and finally it is directed to a Comet. The satellites MAP (L2- Lissajous), NGST
(L2- Quasi Periodic Lissajous), SPECs (L2- Lissajous), Constellation-X (L2-
Lissajous), STELLAR IMAGER and TPS are the projects planned for L2. The
formation flight concept is started to be considered for L1 and L2 missions. SPECSs is
planned to have tethered formation, MAXIM and Constellation-X also contains the
formation. DARWIN is also another formation concept and STELLAR IMAGER is
one of the biggest formation family having roughly 30 satellites [19].
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Among them, DARWIN constellation is taken one of the motivation sources of this
thesis study. It has three to four free-flying spacecraft that will be at the L2. This is an
European mission aims to characterize Earth-like planets. And the project called
ESPRIT also has a formation flight scheme, it will carry subarcseconds far infrared
observatory payload. The trade-off report of ESPRIT notice that it has a loose
formation flying constraints [4], so this also is a motivation source. For future plans,
PLATO and ATHENA are the projects developed by ESA for the years 2024 and
2028. The formation flight can be a reasonable solution for their mission.

All of these projects, which are completed, ongoing, and planned for the future, all of
point out that the formation flight capability is a need for them, formation flight
present abilities in terms of mission redundancy, mission capability, flexibility and so

on.

4.2. Relative equations of motion with disturbances

This section defines the motion of the deputy satellite with respect to the chief satellite
for the formation flight at libration points. First, the relative equations of motion are
written without adding the disturbances. As given in the section 2.2.1, the differential
equations of the chief and deputy satellites described in synodic reference frame can

be rewritten as follows:

) GmSUN(xchief + xl)
= wzxchief + 20‘)ychief - 3

|T'1 chief

xchief syn

B Gmpary (Xchier — X2) N a(xcnies + %1)

3 Eq. 4-1a

|T‘1 chief

|T2 chief

7
Z GMpaNETi RPLx (xchief + xl))
3

i=1 |RPl rlchlef
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Eq. 4-2c

Eq. 4-3

Eq. 4-4

Eq. 4-5

Eq. 4-6

Here, 7y ;. ; is the distance between chief satellite and Sun, T2 chief is the distance

between chief satellite and Bary, and similarly, T gepe distance between deputy

satellite and Sun, r, dept distance between deputy satellite and Bary. Here the suffix

syn denotes that equation is expressed in synodic reference frame. And w is the

angular rate of synodic reference frame with respect to the inertial reference frame:

G(Msyy + Mpagy)
R3
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Where mg,,, is the mass of the Sun, m,,,+, is the mass of the Earth, and R is the
distance between Sun and Bary, called astronomic unit — au —, and G is the
gravitational constant. Let p is the distance between deputy and chief satellite, relative

distance of the deputy satellite with respect to the chief.

p= Fdeputy - Fchief Eq. 4-8

In matrix form deputy position can be define as:

Fdeputy =p+ Fchief Eq. 4-9

In synodic reference frame, the relative differential equation can be described in

matrix form as the following equation:

xdept J.C.chief
ijlsyn = |Ydept — | Ychief Eq. 4-10
Zdept syn Zchief syn

The visualization of the chief and the deputy satellite is given in Figure 4-1 and Figure
4-2. Here, the orbital reference frame defined for chief satellite is shown. The unit
vector of x is aligned toward r position vector of the chief satellite. The position and
velocity vector are known, and it is known that X position vector and V velocity vector
make a plane, so the y axis also is on that plane and y is perpendicular to x. Secondly
z axis is defined and it is perpendicular to the plane defined by X and V. after obtaining
z, the y axis is computed using x and z in order to get orthonormal axis frame according

to the right hand system:
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Figure 4-2. Relative position expresses in chief’s orbital frame

The unit vectors of the chief’s orbital reference frame are computed using following

equations:

5x = ?chief/ |Fchief|
Eqg. 4-11
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é)z = (Fchief X Vchief)/l?chief X Vchief

Orbital reference frame of the chief is illustrated in

Z chief

Sun L1

Figure 4-3. Orbital reference frame of the chief satellite

Eq. 4-12

Eq. 4-13

Here, it is needed to describe the relative motion with respect to the chief satellite’s

orbital frame. So, the angular rate of the chief’s orbital frame with respect to synodic

reference frame, denoted as Q , it will be computed using Direction Cosine Matrix

(DCM) between synodic and chief’s orbital frames. Let define unit vectors of the

synodic frame as I, /, K respectively. DCM can be written using dot product; it means

angular relations between I, /, K and €, é,, €, as:
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1-8, 1-&, 18,
C=Crr=|]é& J-&é J-é Eq. 4-14
K-—)x K.—)y K-—)Z

And the angular velocity Q =[Q; Q, Q3] can be computed using following

equation:
0 _93 QZ
Q=10 0 —-Q|=CTC Eq. 4-15
_QZ Ql 0

So, the relative acceleration of the deputy in chief’s orbital reference frame can be

written in matrix form as follows:

jédept J.C.chief
.. _cT . e
plorb = YVdept Ychief
Zdept syn zchief syn Eq- 4-16

- (Zﬁplorb + ﬁplorb + ﬁzplorb)

In the same manner, the relative velocity can be described as follows:

Xdept Xchief
Plorp = CT | |Vaept — |Ychief
dept syn chief syn

- (ﬁplorb)
Eq. 4-17

The final equation, relative equation of motion expressed in chief’s orbital frame, it is

obtained by subtracting the first two Eq 4-1 and Eq.4-2 in to last Eq 4-16:
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where w is expressed in the orbital reference frame, so:

w = CTa_)Syn =CT[0 O wsyn]T

Eq. 4-19

Tie = Ticory = (Tenier +%1),,, = (Tenier),,,, + C'lx1 0 0] Eq. 4-20
e = rZCOT‘b = (rchief - xz)orb = (Tchief)orb — CT[xZ 0 O]T Eq 4-21
(Yenier) ., = cT(rchief)syn Eqg. 4-22

Finally, relative equations of motion of the deputy satellite with respect to chief

satellite expressed in chief’s orbital reference frame are derived.
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4.3. Formation flight design near L1

Formation flight concept is mainly based on keeping and controlling the relative
distance between each members of the formation. Some propose to control relative
distance with respect to a selected chief satellite (some references called it as leader
satellite), others intend to control the relative position of satellite with respect to the
each of the members which are close to it. In latter approach formation is kept by

following all the neighborhood satellites’ relative positions.

In this section it is aimed to find an orbit for deputy satellite which ensures naturally
long-term formation flight for a desired chief/deputy formation configuration without
need of formation correction maneuver. The meaning of the configuration is the
selection of the relative initial position of the deputy satellite with respect to the chief.
So, the desired relative distance p, the desired relative elevation angle, « and azimuth
angle, S are the parameters that indicate the relative initial position (see Figure 4-2).
Here, the main assumption is that; chief and deputies have periodic orbits. So, it is
expected to be at the same position as the initial position after passing one orbital
period of time. It can be stated that the formation is achieved when the deputy satellite
reaches the same initial relative position after one orbital period. The infrastructure of
the methodology presented here is based on this idea.

In this way, the problem is reduced to find a proper initial velocity that ensures the
final position is equal to the initial desired one. So, the problem may be redefined as:
What is the initial velocity that satisfies the same position at the end of the one orbital
period? As a starting point of the formation design, the main items to be considered
can be listed as follows:
e The initial x coordinate of the deputy satellite will be taken same as the chief
satellite. So, azimuth angle, g is taken constant and it is equal to 90 degrees.
e The initial y and z coordinates will be desirable which are dependent on p
and elevation angle a (p = 1 km and @ = —30 degrees at Figure 4-4).

e The orbital period of the deputy must be the same as the chief’s period.
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e The convenient velocities x,y,Z that satisfy formation flight will be
computed.

e The Newton’s iteration method is used to find optimal initial velocity
components. The minimization function is: after one orbital period the final

positions must be same as the initial positions

Remembering the equations of motion of the satellite in matrix form with velocity and

acceleration components (Eq. 2-39):

fX)=[%y,2%,9,7]" Eq. 4-23

The equation set of X , ¥, Z are given in Eq.4-1 and Eq.4-2.

The minimization function is:

Xfinal — Xinitial Ax 0
fXsup) = |Yrinat — Vinitial | = [Ay] = O] Eq. 4-24
Zfinal — Zinitial AZ 0

Here initial coordinates are the sum of the chief’s positions and desired relative

positions.
Xinitial Xchief + dxdesired
Yinitial | = |Ycnief + AV desirea Eq. 4-25
Zinitial Zchief + dzdesired

where;

dydesired = | Pdesired Cos(adesired) sin (Bdesired) Eq- 4-26

[dxdesired] Pdesired Cos(adesired) Cos (Bdesired)
dzdesired Pdesired Sln(adesired)

And the iteration process is:
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Ax
Ay
Az

f] B o

. Eq. 4-27

Dis P15 Py Eq. 4-28
Df = | P24 P25 Pap
O3, P35 P3p

The iteration is continued until the error between successive results is reached
predefined iteration stopping parameter, it is denoted as e. This process gives the

optimal initial conditions, for that reason it is called as OPTICs that stands Optimal

€, Z—* Z—*

This iteration process is coded using Matlab and Simulink 2012a version. The

Initial Conditions.

execution time spent for computing the initial conditions of the deputy satellite is
analyzed. For instance, the time spent for one iteration is approximately 5 seconds
with a simulation having sampling time that is equal to 1 hour. The details are given

in Appendix-I.

In section 3.3.3.2, the effects of disturbances in Halo orbit design was given. It was
shown that for some of the cases presented the orbit computed using symmetry
property did not give a perfect periodic orbit due to the gravitational pulls of the
planets and solar radiation pressure. For that reason, the initial conditions were
recomputed at the half period in order to ensure periodic orbit (it was the value of the
1% maneuver). In this section the initial conditions are taken for chief satellite since
periodic orbit is achieved for full period. Initial position for the deputy satellite is taken

as the desired relative distance and angles are given, and velocities are computed by
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the process described above. So, the initial conditions, orbit trajectories and the

relative positions are given in the following table and figures respectively.

Figure 4-4 shows the relative trajectory of the deputy with respect to the chief in three-
dimensional view. The following three figures, Figure 4-5, Figure 4-6 and Figure 4-7,

they show the projection of this relative trajectory respectively on xy, xz, yz planes.

Table 4.1. Initial conditions and periodicity check for chief and deputy satellites

Initial conditions of
chief before Newton
iteration

Initial conditions of
chief after Newton
iteration

Initial conditions of
deputy before Newton
iteration

Initial conditions of
deputy after Newton
iteration

chief:

deputy:

0.988863916985417 0.988863916985417 0.988863916985417 0.988863916985417
0.000000190354307 0.000000190354307 0.000000196143330 0.000000196143330
0.002283164826074 0.002283164826074 0.002283161483781 0.002283161483781
0.000000173093585 0.000079282180680 0.000079282180680 0.000079287255726
0.009797574474637 0.009561450590853 0.009561450590853 0.009561447356541
-0.000000137742170 -0.000003813751236 -0.000003813751236 -0.000003817998113

Period of chief’s Orbit | 177.5833 days Period of deputy’s 177.5833 days

in Earth’s day: Orbit in Earth’s day:

Jacobi constant C of 3.000800635360898 Jacobi constant C of 3.000800635469296

Periodicity Check of

Chief:

0.2126376620 meter

Periodicity Check of

deputy:

0.18595558333 meter

Test: Determinant of
chief’s ®:

1.000000000754795

Test: Determinant of
deputy’s @

0.999999999375502

EigenValues of chief’s ®

EigenValues of deputy’s ®:

1529.423095479949
1.014054183326

0.986173253860
0.00653813601

0.969308034388 - 0.245868259983i
0.969308034388 + 0.245868259983i

1529.423802360684
1.014054141623

0.969308134143 - 0.245867866800i
0.969308134143 + 0.245867866800i

0.986173294363
0.000653813298
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Figure 4-4. Relative trajectory of the deputy with respect to the chief
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Figure 4-5. XY projection of the relative trajectory
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Figure 4
Figure 4-8 gives the relative position and its components with respect to the time. Here

it is seen that x component of relative distance p, varies between 0.25km - 0.4km.



Actually, it is not a symmetric. The regular motion, under the effects of gravitational
pulls of planets orbiting, changes positions with respect to the chief satellite. For
example, p,, the relative position changes from 1 km to -1 km. However, it may still
be stated that the motion is nearly periodic along the y axis. This kind of harmonic

motion is also seen in z component. Thus, a quasi-harmonic motion is obtained.

0.5
T TN
= 0 \‘\ b>
& "M.___H /
\H____,.../
-0.5
0 005 01 015 0.2 0.25 0.3 035 04 045 0.5
tin Years
1 Fe [ — >
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-
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p, [km]
o

0 005 01 015 02 025 03 035 04 045 05
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15
E . — .
o 005 01 015 02 025 03 035 04 045 05
tin Years

Figure 4-8. Relative position and its components with respect to the time

Required formation is kept during one orbital period of time. It is seen that relative
distance has a periodic motion and formation periodically narrows and expands around
the required relative distance. As a result, it may be stated that it is not possible to

obtain a constant relative distance for this type of formation configurations where the
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relative position varies between 1 km-0.5 km. It is also interesting to note that the
required p is reached at every half period and this is the maximum limit obtained, then
it decreases up to 0.5 km, at odd quarter periods, and then it goes back to 1 km at half

period again.

The following section contains three different formation schemas in order to analyze
the relation between the initial relative position and the shape of the relative trajectory
obtained. It is intended to obtain an idea on how to obtain nearly constant relative

distance by examining these various configurations.

4.3.1. Different formation clusters and simulation results

In this section different formation clusters are analyzed in order to understand the
effect of the initial relative position to the relative trajectory. The first example is
composed of three deputy satellites forming an equilateral triangle; the second cluster
has four deputies with a planar square shape, and the third one has also same form as

second but in this case the plane has an inclination with respect to the yz plane.

4.3.1.1. Equilateral triangle formation (ETF)

The first formation cluster is motivated from the DARWIN and ESPRIT projects, a
cluster having three to four flying satellites. The three satellites positioned on the
corner of an equilateral triangle and the chief satellite is on the center of this triangle.
This chief satellite can be considered as a hypothetical satellite for a formation of three
satellites. Figure 4-9 shows the deputy satellites and chief (hypothetical) is located on
the center.
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Figure 4-9. Equilateral triangle shape formation

The desired relative distance p between deputy satellites and chief is 1 km. and the

relative initial positions with respect to the chief are:

Table 4.2. Relative positions of the deputies for ETF around L1

Deputy Satellite 1

Deputy Satellite 2

Deputy Satellite 3

p=1km
B = 90°
a =90°

p=1km
B =90°
a =210°

p=1km
g =90°
a = -30°

The chief’s orbit has already computed in previous section. In fact, the initial values
and trajectory for third satellite is also already computed in the previous section. Now
the initial velocities and trajectory for the first and second satellites will be computed.
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Table 4.3. ICs and periodicity checks for ETF around L1

Initial conditions of

Initial conditions of

Initial conditions of

Initial conditions of

chief deputy_1 deputy_2 deputy_3
0.988863916985417 0.988863916985417 0.988863916985417 0.988863916985417
0.000000190354307 0.000000190354307 0.000000184565285 0.000000196143330
0.002283164826074 0.002283171510662 0.002283161483781 0.002283161483781
0.000079282180680 0.000079282450908 0.000079276835433 0.000079287255726
0.009561450590853 0.009561457021163 0.009561447394770 0.009561447356541
-0.000003813751236 -0.000003813623039 -0.000003809632559 -0.000003817998113
Period of chief’s Period of deputy_1 Period of deputy_2 Period of deputy_3
Orbit in Earth’s day: | Orbitin Earth’s day: Orbit in Earth’s day: Orbit in Earth’s day:
177.5833 days 177.5833 days 177.5833 days 177.5833 days
Chief’s Jacobi deputy_1’s Jacobi deputy_2’s Jacobi deputy_3’s Jacobi
Constant: Constant: Constant: Constant:
3.000800635360898 3.000800635143107 3.000800635470291 3.000800635469296

Periodicity Check of
chief:
0.2126 meter

Periodicity Check of
deputy_1:
0.5332 meter

Periodicity Check of
deputy_2:
0.1550 meter

Periodicity Check of
deputy_3:
0.18595 meter

Test: Determinant of
chief’s ®@:
1.000000000754795

Test: Determinant of
deputy_1’s @:
1.000000000555292

test Test: Determinant
of deputy_2’s @:
1.000000000286739

Test: Determinant of
deputy_3’s ®@:
0.999999999375502

EigenValues of

EigenValues of

EigenValues of

EigenValues of

chief’s ®: deputy_1’s ®@: deputy_2’s ®@: deputy_3’s ®:
1529.42309 1529.42168 1529.42379 1529.42380
1.01405 1.014054 1.014054 1.0140541
0.96931- 0.245868i 0.969308- 0.2458690i 0.969308- 0.24586787i 0.969308- 0.24586787i
0.96931+ 0.245868i 0.969308+0.2458690i 0.969308+0.24586787i 0.969308+0.24586787i
0.986173 0.986173171 0.986173295 0.986173294
0.006538 0.000653814 0.000653813 0.000653813
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Figure 4-10. Trajectories of the deputies with respect to chief for ETF around L1

The trajectory of each deputy satellite with respect to chief is given in Figure 4-10.
Following Figure 4-11, Figure 4-12 and Figure 4-13 are the set of multiple sub-figures.
The left part contains three sub-figures showing the projection of the trajectory
respectively in xy, xz, yz planes. The first three figures of the right part present the
components of relative distance change with time. The last figure of the right part
contains the resultant relative distance, the distance between deputy and chief

satellites.
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Figure 4-11. ETF-L1, Deputy #1: Projected and time dependent views
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Figure 4-12. ETF-L1, Deputy #2: Projected and time dependent views
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Figure 4-13. ETF-L1, Deputy #3: Projected and time dependent views

From the results, it is seen that the relative trajectory of the first deputy has a different
characteristic from the two others. In xz plane it has quasi one-dimensional motion,
and it has a quasi-elliptical motion in yz plane. However, the second and the third
deputy satellites has symmetric relative trajectory with respect to the y axis and their
motion has non-regular motion on projection. For all of them, the relative distances

are not constant, they oscillate between 1 km and 0.5 km, narrowing and expanding,

although the periodic relative motion is obtained for one orbital period time.
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Figure 4-14. ETF-L1: The relative distances between deputies

The relative distances between deputies are given in Figure 4-14. The objective

distance between them is+v3p = 1.732 km. An oscillating relative motion is
obtained; the acquired formation shape shrinks and expands between aimed distances
which is roughly 1.732 km and 1 km. The shape change of the triangle is illustrated in
the following Figure 4-15. The bold green colored triangle is the starting
configuration, the bold blue one is the last positions. The plane is colored from green
to blues according to the time changes. The inclination angle of the plane formed by
deputy satellites varies and the distance between them start narrowing until 1% and
third quarter period then it expands at half and full period; last plane and 1% plane

coincide since motion is periodic.
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Figure 4-15. ETF-L1: The plane formed by deputies

The results obtained for this kind of triangular shape configuration shows that the
deputy located at the top of the Chief (1% deputy) does not have a harmonious motion
compared to the two other members of the formation. The other two deputies have
symmetric motion with respect to y axis, so Chief, 2" and 3" satellites make a
harmonic formation flight configuration. So, a question has occurred for the deputies
located at just left/right/top and down of the chief. For that reason, the next formation

configuration focuses on this kind of schema.

4.3.1.2. Square formation (SF)

This section presents the results obtained for a formation flight cluster composed of
four deputy satellites having a square shaped configuration, as given in Figure 4-16;
four deputy satellites are located at the corners of the square and chief is located on

the center. Here too, the chief can be thought as a hypothetical satellite.
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Figure 4-16. Square shape formation

The desired relative distance p between deputy satellites and chief and the relative
initial azimuth and elevation angles with respect to the chief are listed in the following
table.

Table 4.4. Relative positions of the four deputies, SF around L1

Deputy Satellite 1

Deputy Satellite 2

Deputy Satellite 3

Deputy Satellite 4

p=1km
B =90°
a=0°

p=1km
B =0
a =90°

p=1km
B =-90°
a=0°

p=1km
B =0
a=-90°

The chief’s orbit is the same as used in the precedent section. The initial velocities and
trajectory for the deputies are computed and given in the following Table 4.5 and

figures from Figure 4-18 to Figure 4-21.
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Table 4.5. ICs and periodicity checks, SF around L1

Initial conditions

Initial conditions

Initial conditions

Initial conditions

Initial conditions

of chief of deputy_1 of deputy_2 of deputy_3 of deputy_4
0.988863916 0.988863916985 0.988863916985 0.988863916985 0.988863916985
0.000000190 0.000000197038 0.000000190354 0.000000183669 0.000000190354
0.002283164 0.002283164826 0.002283171510 0.002283164826 0.002283158141
0.000079282 0.000079288196 0.000079282450 0.000079276164 0.000079281910
0.009561451 0.009561450568 0.009561457021 0.009561450612 0.009561444160
-0.000003813 -0.000003818581 -0.000003813623 -0.000003808921 -0.000003813879
Period of chief’s Period of Period of Period of Period of

Orbit in Earth’s deputy_1 Orbitin | deputy_2 Orbitin | deputy_3 Orbitin | deputy_4 Orbitin
day: Earth’s day: Earth’s day: Earth’s day: Earth’s day:
177.5833 days 177.5833 days 177.5833 days 177.5833 days 177.5833 days
Chief’s Jacobi deputy_1’s Jacobi | deputy 2’s Jacobi | deputy_3’s Jacobi | deputy_4’s Jacobi
Constant: Constant: Constant: Constant: Constant:
3.0008006353 3.0008006353603 3.0008006351431 3.0008006353614 | 3.00080063557869
Periodicity Check | Periodicity Check | Periodicity Check | Periodicity Check | Periodicity Check
of chief: of deputy_1: of deputy_2: of deputy_3: of deputy_4:
0.2126 meter 0.1965 meter 0.53326 meter 0.025213 meter 0.31738 meter

Test: Determinant
of chief’s @:
1.000000000755

Test: Determinant
of deputy_1’s ®:
0.99999999949297

Test: Determinant
of deputy 2’s ®@:
1.00000000055529

Test: Determinant
of deputy_3’s @:
1.00000000000331

Test: Determinant
of deputy_4’s ®@:
1.00000000044442

EigenValues of

EigenValues of

EigenValues of

EigenValues of

EigenValues of

chief’s ®: deputy_1’s ®@: deputy_2’s ®@: deputy_3’s ®@: deputy_4’s ®:
1529.42309 1529.4231 1529.4216852 1529.423093 1529.424505
1.01405 1.0140542 1.014054268 1.0140542 1.0140541
0.96931-0.24587i 0.96931-0.245868i | 0.96931-0.245869i | 0.96931-0.245868i | 0.96931-0.245867i
0.96931+0.24587i | 0.96931+0.245868i | 0.96931+0.2458i 0.96931+0.24586i | 0.96931+0.2458i
0.986173 0.9861732 0.9861732 0.9861732 0.9861732
0.006538 0.0006538 0.0006538 0.0006538 0.0006538

The trajectory of each deputy satellite with respect to chief is given in the figures

below. Figure 4-18 to Figure 4-21, they are composed of multiple sub-figures. The left

part has three sub-figures showing the projection of the trajectory. The right part has

four figures; the first three of them present the components of relative distance change

with time, the fourth one gives the resultant relative distance.
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Figure 4-17. SF-L1, The trajectory of the deputy satellites with respect to chief
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Figure 4-18. SF-L1, Deputy #1: Projected and time dependent views
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Figure 4-21. SF-L1, Deputy #4: Projected and time dependent views

Regarding to the results, it can be stated that the deputies initially located at y axis
(+y and -y with equally distancing), the 1% and 3" satellites, has a symmetrical
trajectory with respect to the xz plane located at Chief position, it can be called skew-
symmetric or diagonal symmetric. The 2" and 4" satellites, initially located at z axis
(+z and -z with equally distancing) also form different types of symmetry with

respect to the xz plane fixed on Chief position. In xz plane they have quasi one-

dimensional motion, and it has a quasi-elliptical motion in yz plane.

For all of them, the relative distances between deputies are not constant; they are given
in Figure 4-22. The objective distance from 1% to 2", 2" to 3", 3 to 4™ and 4™ to 1%
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deputy isv2p = 1.414 km. The objective relative distance between 1% and 3™
deputies is 2p = 2 km, same for 2" and 4" ones. The acquired formation shape
narrows and expands between this distance which is roughly 1.414 km and 0.75 km.
this numbers are between 2 km to 1 km for the relative distance between 1% and 3"
(2" and 4™M). The constant relative motion is not obtained; however, a harmony is
acquired between the deputies and Chief; a stable formation flight is made for one

orbital period, which is approximately 0.5 Earth’s Year for L1 point.
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Figure 4-22. SF-L1: The relative distances between deputies
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Figure 4-23. SF-L1: The relative distances between deputies-2

171




Last , Plane

0.5
g o
N
[oN
-0.5
S=———r 7
14

Figure 4-24. SF-L1: The plane formed by deputies

The shape change of this square formation schema is illustrated in Figure 4-24. The
bold green colored square is the starting configuration, the bold blue one is the near
last positions. The plane is colored from green to blues according to the time changes.
The inclination angle and the size of the plane formed by deputy satellites varies; it is
narrowing until first and third quarter period, then it expands at the half and full period;
last plane and first plane coincide since motion is periodic. The results for this kind of
square shape configuration shows that the deputy initially located at y axis and at z
axis form different type of formation trajectory. If it is required not to transverse the
xz plane located at Chief position; on the other words, when it is not required to pass
from the left side of the Chief to its right side, the deputies must be initially located
on z axis. Ifitis required to transverse xz Chief’s plane, according to the mission, it
IS necessary to initially locate the deputies on y axis. According to the mission
requirements and needs, a formation cluster can be formed by initially locating the
deputies only on y axis or on z axis. Finally, a question about the possibility to have

constant relative distance by natural way (without performing any control maneuver)
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for a special initial relative position is occurred. Next formation configuration focuses

on this kind of formation cluster.

4.3.1.3. Inclined square formation (ISF)

The formation cluster presented in this section has also four deputy satellites with on
Chiefs on its center. However, in this case, unlike from the previous cluster, the
deputies on z axis are initially located with an inclination angle: The 2nd and 4th
satellites are placed on a plane defined with an inclination angle (Figure 4-25). Here
this inclination angle is computed regarding to the quasi-plane formed by Chief’s
orbit. It is called quasi-plane because the shape occurred in not perfectly planar. The
inclination angle of this quasi-plane with respect o the xy plane is computed by the
initial and half orbital position values, indicated in Figure 4-26, as 1%t and 2" points.
This inclination angle is @, = 126.7775° regarding to the xy plane, and this number
will be taken as the elevation angle of the 2" deputy. The complement of this angle

t0 180° is a, = 53.2225° is the elevation angle for 4™ deputy.

Xorb

chief's orbit /‘

Figure 4-25. Inclined shape formation
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Figure 4-26. Orbital plane inclination angle representation

The desired relative distance p between deputy satellites and chief is taken p =
1 km, and the relative initial azimuth and elevation angles with respect to the chief are
listed in the following Table 4.6.

Table 4.6. Relative positions of the four deputies, ISF at L1

Deputy Satellite 1

Deputy Satellite 2

Deputy Satellite 3

Deputy Satellite 4

p=1km
B =90°
a=0°

p=1km
B=0°
a=126.7775°

p=1km
B =—90°
a=0°

p=1km
B =0°
a = —53.2225°

The chief’s orbit is the same as used in the precedent section. The initial velocities and
trajectory for the deputies are computed and given in the following table and figures.

Notice that the values for the chief, 15 and 3 deputies are the values computed on the
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previous formation cluster, they are taken exactly same. The trajectory of the 2" and

4™ deputy satellites with respect to chief, the projection views of the trajectories, the

components of relative distance change with time, and the resultant relative distances

are presented respectively in the following figures, Figure 4-27, Figure 4-28 and

Figure 4-29.

Table 4.7. ICs and periodicity checks, ISF at L1

Initial conditions

Initial conditions

Initial conditions

Initial conditions

Initial conditions

of chief of deputy_1 of deputy_2 of deputy_3 of deputy_4
0.988863916 0.988863916985 0.988863912983 0.988863916985 0.988863920987
0.000000190 0.000000197038 0.000000190354 0.000000183669 0.000000190354
0.002283164 0.002283164826 0.002283170180 0.002283164826 0.002283159471
0.000079282 0.000079288196 0.000079289072 0.000079276164 0.000079275289
0.009561451 0.009561450568 0.009561470652 0.009561450612 0.009561430528
-0.000003813 -0.000003818581 -0.000003813831 -0.000003808921 -0.000003813670
Period of chief’s Period of Period of Period of Period of
Orbit: deputy_1’s Orbit: | deputy 2’s Orbit: | deputy_3’s Orbit: | deputy_4’s Orbit:
177.5833 days 177.5833 days 177.5833 days 177.5833 days 177.5833 days
Chief’s Jacobi deputy 1’s Jacobi | deputy 2’s Jacobi | deputy 3’s Jacobi | deputy 4’s Jacobi
Constant: Constant: Constant: Constant: Constant:
3.0008006353 3.0008006353603 3.0008006349859 | 3.0008006353614 | 3.0008006357358
Periodicity Check | Periodicity Check | Periodicity Check | Periodicity Check | Periodicity Check
of chief: of deputy_1: of deputy_2: of deputy_3: of deputy_4:
0.2126 meter 0.1965 meter 0.3724 meter 0.025213 meter 0.4302 meter
Test: Determinant | Test: Determinant | Test: Determinant | Test: Determinant | Test: Determinant
of chief’s @: of deputy_1’s ®: of deputy 2’s ®: of deputy_3’s ®@: of deputy_4’s @:
1.000000000755 0.99999999949297 | 0.99999999988630 | 1.00000000000331 | 1.00000000100169
EigenValues of EigenValues of EigenValues of EigenValues of EigenValues of
chief’s ®: deputy_1’s ®: deputy_2’s ®@: deputy_3’s ®@: deputy_4’s ®:
1529.42309 1529.4231 1529.42001 1529.423093 1529.426181
1.01405 1.0140542 1.01405486 1.0140542 1.014053506
0.96931-0.245868i | 0.969308- 0.969307- 0.969308- 0.969308-0.24586i
0.96931+0.245868i | 0.2458682i 0.245869i 0.2458682i 0.969308+0.24586i
0.986173 0.969308+0.24586 | 0.969307+ 0.969308+0.24586 | 0.9861744
0.006538 82i 0.245869i 82i 0.0006538

0.9861732 0.98617259 0.9861732

0.0006538 0.00065381 0.0006538
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Figure 4-27. ISF-L1, Trajectory of 2nd and 4th deputies with respect to chief
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Figure 4-28. ISF-L1, Deputy #2: Projected and time dependent views
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Figure 4-29. ISF-L1, Deputy #4: Projected and time dependent views

The symmetric relative trajectories are obtained for 2" and 4" deputies. However, in
that case the relative distance obtained enlarges compared to the results obtained in
the precious section. Here, the relative distance varies between 1 km to 1.45 km with
a sinusoidal form. The relative distance behaviors, and the planed behaviors formed
by those 4 deputies are given in Figure 4-30. It is seen that, the spaced area between

satellites are wider regarding to previous case. Two cases are shared in order to notice

the difference, as follows:
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Figure 4-30. ISF-L1: The plane formed by deputies

The acquired formation shape expands and narrows within those numbers, 1 km to
1.45 km. Still, the constant relative motion is not obtained, but it is seen that for a
given inclination value to the initial plane, the relative distance increases compared to
the decreasing results obtained in the previous sections. In that case next question
occurred is: how the relative distance change according to the initial inclination given
to the plane? Is there any fixed inclination value that provides nearly constant relative
distance? Here, the plane inclination is given by the initial elevation angle of the
deputy. So, the next subsection presents the relation between initial elevation angle

and relative distance.
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4.3.2. Optimum formation clusters and simulation results

This section contains the results of the analyses performed to find optimum relative
initial position of the deputy that provide the minimum deviation on relative distance
p defined with respect to the chief satellite. As a first step, both elevation angle a and
azimuth angle g are scanned from 0° to 180° with 10° increments, and the relative
distance plots are given in the following figures for each of § with changes of «
(e =[0°:10°:180°] , and B = [0°: 10°: 180°]).
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Figure 4-31. Relative positions depending on ICs, o and P angles for L1
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Figure 4.31. Relative positions depending on ICs, o and B angles for L1 (cont’d)
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Figure 4.31. Relative positions depending on ICs, o and p angles for L1 (cont’d)

Regarding to the results, as first impression, an a between 100° and 110° gives
minimum deviation in p for a g between 0° to 90°. And for B less than 40°, a =
100° — 110° gives a one minimum point is seen at half period. But when B greater
than 40° and less than 160°, two minimum points are seen in first and third quarter

orbital period as minimum p , and one maximum point at half period.
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These results are re-evaluated statistically. So, in that case, it is needed to obtain a
statistical parameter to choose suitable B and a. One method to qualify the orbit is to
compute standard deviation o of the relative distance p for all of the a, B set. This o
gives an idea about how the p oscillates around its mean value. The second
computation is to calculate the standard deviation from required relative distance,
which is 1 km for the cases considered here; It is denoted as o,geq. AS a third orbit
qualification parameter, the maximum value of p during one orbit may be used
(Amax)- Figure 4-32 presents the three deviation qualification parameters defined
above. It shows that minimum deviation is obtained for g = 0°(with a = 100° —
110°), and for B = 180°(with a = 70° — 80°). This result is also valid for
o computation. But, opreq Statistic gives different results for some cases: g =
309(with a = 100° — 110°) and B = 150°(with a = 70° — 80°). The summary of
the results is given in Figure 4-32 and Table 4.8. Figure 4-32 gives minimum deviation
obtained in p for a given S value, and Table 4.8 indicates the corresponding o value
for this minimum deviation. For that reason, it is needed to make more fine analyses

between those angle values, they are given as follows.
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Figure 4-32. Statistical results of the relative position for 3 values around L1
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Table 4.8. « that statistically provide minimum deviation for given 5 at L1

alpha values\ for beta: O 10| 20| 30| 40| 50| 60| 70| 80|90 (100|110 | 120 | 130 | 140 | 150 | 160 | 170 | 180
sigma results STD: | 100 | 100 | 100 | 100 | 110 | 110 | 110 | 110 | 110 (90| 70| 70| 70| 70| 70| 80| 80| 80| 80
sigma to rhoReq : 110 | 110 | 110 | 110 | 110 | 110 | 120 | 120 {130 |50 | 50| 60| 60| 70| 70| 70| 70| 70| 70

dA(rho-rhoReq): 110 | 110 | 110 | 110 | 110 | 110 | 120 | 120 | 120 |90 | 60| 60| 60| 70| 70| 70| 70| 70| 70

Table 4.9. Selected cases of B’s for fine analyses around L1

Case-1:

B =[0°1°:10°] with a = [100°: 1°: 110°]

Case-2:

B =[170%1°:180°] with a = [70°: 1°:80°]

For case-1 the minimum value of p is obtained for § = 0° , and the « values that gives

the minimum deviation is a=102° — 104° , as seen in Figure 4-33 and Figure 4-34:
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Figure 4-33. Deviation statistics for different 0 to 10 degree for L1
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Figure 4-34. Deviation for zero 3 and o 100 to 110 degree for L1

For case-2 the minimum value of p is obtained for B = 180°, and the a values that

gives the minimum deviation is a=76° — 78° , as seen in the following figures,
Figure 4-35 and Figure 4-36:
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It is obvious that the results obtained for the Case-1 and Case-2 are symmetric, in other
words they are geometrically the same positions. For formation clusters having more
than two deputies, it is also possible to choose a location near g = 90° and near § =

—90° to have quasi constant relative distance between all deputies.

4.3.2.1. Inclined square shape formation with optimum elevation and azimuth

The initially inclined plane formed by deputies can be defined as a plane which is not
on yz plane. It means that deputies are initially located at z axis. So, the inclined plane
is obtained by giving an elevation angle different from 90° degree for the initial
position of the deputies. First, an interval from 0° to 180° with 10° increments is
given to the simulation to see the trajectories and relative distance obtained with
respect to the chief. So, for a = [0°:10°:180°], we have 19 different cases. The
trajectories obtained are shown in the following Figure 4-37, in 3-dimensional view,
and the projected views in Figure 4-38, relative distances with its components in
Figure 4-39 and Figure 4-40Figure 4-38.
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—%— 12.Dept.
13.Dept.
T 14.Dept.
15.Dept.
16.Dept.
—#F— 17.Dept.
—%— 18.Dept.
—%— 19.Dept.
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p, km]

Figure 4-37. 3D view of 19 different cases for L1: o from zeros to 180 degree

186



py tkm]

p, k]

p, lkm]

-1

p, k]

p, [km]

p, lkm]

o kml

py [km

Figure 4-38. 2D view of 19 different cases for L1: o from zeros to 180 degree
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Figure 4-39. Relative position for a zeros to 180 degree around L1
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Figure 4-40. Relative position for a 80 to 130 degree around L1
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Here, it is obviously seen that the inclination of the plane affects the deviation of the
relative distances. As seen in Figure 4-40 showing the resultant relative distances, the
less deviation is obtained around a = 100°, p changes between 1 km to 0.85 km.
All p coincides around 0.60 km — 0.85 km at half period, and forms extrama at 1%
quarters and 3" quarters, in positive and negative direction depending on the a value.
But, around a = 100° the extrama disappear and smoothest deviations are acquired

at half period, maximum deviation is about 0.15 km.
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tin Years

Figure 4-41. Relative position for a 90 to 110 degree around L1

As a second step around a = 1009 is refined and analyzed by an interval from 90° to
110° with 2° increments. Here it is seen that for the a greater than 1049 the relative
distance has an value greater than required distance p. it can be stated that p has only
one extremum point just only at half period for an a between 98°and 104°. the only
difference among them is the change of p towards this extramum. For instance, when
a = 104° p begins to deviate from required value at 0.1 years’ time. Approximately

linear changes before and after half period is obtained around a = 102°. The
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deviation starts rapidly and downsizing for a < 100° and rapidly growth
for a > 104°.
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Figure 4-42. Relative position for o 100 to 105 degree around L1

From this refined analyze, it is seen that the most resistant result is get for @ = 1049,
but the rate of change toward minimum point p = 0.84 km s high. The most
uniformly change is obtained for « = 102.5°, decreasing rate to minimum and
increasing rate form minimum distance are nearly linear. Here after, for the formation
clusters given in the next subsections, the elevation angle is taken as @ = 102.5° and
its complement to 180° a = —77.5° for a constant azimuth § = 0°. So, two deputies
with these initial conditions form a formation flight as presented in the following

figures.

The 3D view of the deputies’ trajectory:
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Figure 4-43. 3D Trajectory of 1st and 2nd deputies for Optimum ISF around L1
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Figure 4-44. Relative position of 1st and 2nd deputies, optimum ISF around L1
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It can be stated that the minimum relative distance deviation for one deputy that can

be obtained is approximately 0.16 km for the formation designed at L1.

Finally, it is possible to obtain a formation having four deputies by adding two more
satellites on y axis (f = 90° and B = —90°), as done in the previous sections. The
dynamics of the plane formed by these 4 deputies is shared in Figure 4-45. The
distances between deputies can be seen in Figure 4-45 and in following Figure 4-46

and Figure 4-47 as well, that time dependent values are given.

Last , Plane
0.8 1 A

p, Tkml

Py [km] py [km]

Figure 4-45. Plane formed by four deputies for optimum ISF around L1
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Figure 4-46. Relative trajectories for optimum ISF around L1
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Figure 4-47. Projected and time dependent views for optimum ISF around L1
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Figure 4-48. The relative distances between deputies for optimum ISF around L1

The relative distances between deputies are given in Figure 4-48, it changes between
1.5 km to1.0 km. Geometrical initial relative distance isv2p = 1.414 km.
Compared to the results obtained at previous formations, the previous formation varies
between 2.0 km to 1.0 km. So, thanks to the optimum elevation angle 0.5 km is

corrected.

Same scanning method is used for g azimuth angle and in first step it is seen that
minimum deviation for relative distance is get at near g = 90° for a = 0°. It is shown

in bold green line in Figure 4-49.
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Figure 4-49. Relative distance changes for § scanning around L1

A complete scanning for both § and « to find optimum relative distance is also
performed. In this section an optimal elevation angle for deputy satellite is computed
and as a consequence of this, the next section proposes the formation schema
composed of multiple satellites initially located at this elevation angle with different

initial relative distances.

4.3.2.2. Aligned and uniformly equally separated formation

In that part, a formation composed of again four deputy satellites, but aligned and
initially positioned at 1.0 km distance from each other successively, is given. The
initial desired elevation angle is taken optimum elevation angle with zeros degree
azimuth angle. So, the formation configuration is given in the following Table 4.10.

hereafter uniformly aligned formation is denoted as UAF.
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Table 4.10. Relative positions of the four deputies, UAF around L1

Deputy Satellite 1 | Deputy Satellite 2 | Deputy Satellite 3 | Deputy Satellite 4
p=1km p=2km p=3km p=4km
g =0° g =0° g =0° B =00
a=1025° a=1025° a =102.5° a =1025°
The trajectories obtained are:
—#%— Chief
—Te— 1. Dept.
—#+— 2. Dept.
—%¢— 3. Dept.
7t 4. Dept.

p, lkm]
o
!

p, km]

p, lkm]

Figure 4-50. Trajectory of the deputies with respect to chief for UAF around L1
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Figure 4-51. Projected and time dependent views for UAF around L1
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Figure 4-53. Relative distances between deputies for UAF around L1-2

Here, the relative distance changes between satellites that are positioned consecutively
are similar, and these changes are between 1.0 km to 0.85 km as the optimum
elevation angle is selected as initial relative position. This kind of formation cluster is
really very useful for missions required a constant distance changes between each

successive satellite, for each member of formation, as well as for chief satellite.

As seen above, the minimum changes on relative distance is acquired for a formation
having a plane with an inclination angle defined by elevation angles equal to the
a =102.5° and a = —77.5° for L1 point. For missions that requires to maintain the

relative distance between satellites consecutively, the formation given above is ideal,
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and the same number of satellites can be positioned symmetrically at « = —77.5°.
For example, the results obtained for a formation cluster having 6 satellites, three of
them initially located at @ = 102.5° and the last three @ = —77.5° gives a formation
as presented in the following figures. This kind of formation can be called as formation

with successive pairs.
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Figure 4-54. Trajectories of deputies for UAF-L1
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Figure 4-55. Projected and time dependent views for UAF-L1
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Figure 4-56. Relative distance between satellites for UAF-L1

In this case, the minimum relative distance between each satellite is different,
regarding to the distance step given for each successive satellite. It is clear that, it is
useful to use this kind of formation schema for a mission that requires quasi-constant

relative distance with respect to the chief, for each pairs of formation.

4.4. Formation flight design near L2

This section contains the explanations about the design of formation around L2 and
the analyses of several types of formation configuration, as given in case of formation
design around L1. The same purpose is still valid: find an orbit for deputy satellite
which ensures naturally long-term formation flight without need of control maneuver.
The OPTICs method given in section 4.3 is used to find proper initial velocity that

satisfies the formation for the desired position.

The formation dynamics and relative positions of the deputies with respect to chief
and with respect to each other are given in the following sections for several types of

formation configurations as done for L1 case.
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4.4.1. Different formation clusters and simulation results

This section presents analyses of different formation configurations in order to see the
effect of formation schema for L2 case. The chief’s orbit is computed regarding to the
remarks given in the previous section 3.2.4 and section 3.3.4, so in a first step, a
periodic Halo orbit is designed for Chief. The following figures, Figure 4-57 and
Figure 4-58, give the Chief’s orbit around L2.
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Figure 4-57. Orbit obtained for L2 — 3D view
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Figure 4-58. Orbit obtained for L2 — 2D view

The following subsections present several formation configurations. The first example
analyzes a formation having an equilateral triangle; the second has four deputy
satellites forming square shape, and the third has a modified form of the second, with

an inclined plane, as done for L1 case.

4.4.1.1. Equilateral triangle formation (ETF)

This formation configuration has four satellites. The three satellites positioned on the
corner of an equilateral triangle and the chief satellite is on the center of this triangle.
The desired relative distance p between deputy satellites and chief is 1 km. and the
relative initial positions with respect to the chief are given Table 4.11. The initial

conditions for the Chief and deputies are given in the following Table 4.12.
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Table 4.11. Relative positions of deputies for ETF around L2

Deputy Satellite 1

Deputy Satellite 2

Deputy Satellite 3

p=1km p=1km p=1km
B =90° B =90° B =90°
a =90° a = 210° a =-30°

The trajectory of each deputy satellite with respect to chief is given in the following
figures (Figure 4-59 to Figure 4-63). The second and third deputies are symmetrical
to each other trajectory with respect to the xz plane. The following figures are the set
of multiple sub-figures. The left part contains the projection of the trajectory
respectively in xy, xz, yz planes. The first three figures of the right part show the
components of relative distance depending on time. The last figure of the right part

contains the resultant relative distance, the distance between deputy and chief
satellites.
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1 —— 1. Dept.
“— 2. Dept.
05 == 3. Dept.
E o
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0.5
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Figure 4-59. Trajectories of the deputies with respect to chief for ETF around L2
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Table 4.12. ICs and periodicity checks for ETF around L2

Initial conditions of

Initial conditions of

Initial conditions of

Initial conditions of

chief deputy_1 deputy 2 deputy_3
1.011239967214949 1.011239967214949 1.011239967214949 1.011239967214949
0.000000255658354 0.000000255658354 0.000000249869332 0.000000261447376
-0.000850376654007 -0.000850369969420 -0.000850379996301 -0.000850379996301
0.000122281872260 0.000122281899255 0.000122276470366 0.000122287247118
-0.009166722628605 -0.009166719971525 -0.009166723990221 -0.009166723923963
-0.000000965801832 -0.000000965672931 -0.000000964111545 -0.000000967621020
Period of chief’s Orbit | Period of deputy_1 Period of deputy_2 Period of deputy_3
in Earth’s day: Orbit in Earth’s day: Orbit in Earth’s day: Orbit in Earth’s day:
180.5000 days 180.5000 days 180.5000 days 180.5000 days
Chief’s Jacobi deputy_1’s Jacobi deputy_2’s Jacobi deputy_3’s Jacobi
Constant: Constant: Constant: Constant:
3.000818743599308 3.000818743683121 3.000818743558123 3.000818743556683

Periodicity Check of
chief:
0.193 meter

Periodicity Check of
deputy_1:
0.099 meter

Periodicity Check of
deputy_2:
0.357 meter

Periodicity Check of
deputy_3:
0.02812 meter

Test: Determinant of
chief’s ®:
1.000000001863806

Test: Determinant of
deputy_1’s ®@:
0.999999999124470

Test: Determinant of
deputy_2’s ®@:
1.000000000751922

Test: Determinant of
deputy_3’s ®:
0.999999999495909

EigenValues of chief’s
®:

EigenValues of
deputy 1’s @:

EigenValues of
deputy 2’s @:

EigenValues of
deputy 2’s @:

1673.1903149
1.0457613- 0.0446915i
1.0457613+ 0.0446915i
0.9545161- 0.0407903i
0.954516+ 0.040790i
0.000597637836

1673.19088
1.04576159-0.0446911i
1.04576159+0.0446911i
0.95451595-0.0407900i
0.95451595+0.0407900i
0.00059763

1673.19003043
1.04576128-0.0446916i
1.04576128+0.0446916i
0.95451620-0.0407905i
0.95451620+0.0407905i
0.00059763

1673.19003217
1.04576128-0.0446916i
1.04576128+0.0446916i
0.95451619- 0.0407905i
0.95451619+ 0.0407905i
0.00059763
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Figure 4-60. ETF-L2, Deputy #1: Projected and time dependent
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Figure 4-61. ETF-L2, Deputy #2: Projected and time dependent views
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Figure 4-62. ETF-L2, Deputy #3: Projected and time dependent views

The results show that the first relative trajectory has a different characteristic from the
two others. In xz plane it has quasi one-dimensional motion, and it has a quasi
elliptical motion in yz plane. However, the second and the third deputy satellites has
symmetric relative trajectory with respect to the y axis and their motion has non-
regular motion on projection. For all of them, the relative distances are not constant,
they oscillate between 1 km and 0.25 km for the first deputy and, 1 km to 0.35 km for
the second and third one. Relative distance is narrowing and expanding, although the

periodic relative motion is obtained for one orbital period time.

209



The relative distances between deputies are given in Figure 4-63. The aimed relative

distance between deputies is v3p = 1.732 km. The acquired formation shape shrinks
and extends between aimed distance which is roughly 1.732 km and 0.5 km, an

oscillating relative motion.
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Figure 4-63. ETF-L2: The relative distances between deputies

The shape change of the triangle is illustrated in Figure 4-64; bold green colored
triangle is the starting positions; bold blue one is the last configuration. The plane is
colored from green to blues according to the time changes. The inclination angle of
the plane formed by deputy satellites varies and the distance between them start
narrowing until 1% and third quarter period then it expands at half and full period; last

plane and 1% plane coincide since motion is periodic.
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Figure 4-64. ETF-L2: The plane formed by deputies

For this kind of equilateral triangular shape configuration, the deputy located at the
top of the Chief (1 deputy) does not have a harmonious motion compared to the two
other members of the formation. The other two deputies have symmetric motion with
respect to y axis, so Chief, 2" and 3" satellites make a harmonic formation flight
configuration. For that reason, the next subsection contains the analyses for the
deputies located at just left/right/top and down of the chief.

4.4.1.2. Square formation (SF)

The results obtained for a formation flight cluster composed of four deputy satellites
around L2 and having a square shaped configuration are presented in this section.
Four deputy satellites are located at the corners of the square and chief is located on
the center. The desired relative distance p between deputy satellites and chief and the
relative initial azimuth and elevation angles with respect to the chief are listed in the
following Table 4.13.
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Table 4.13. Relative positions of the four deputies, SF around L2

Deputy Satellite 4

Deputy Satellite 1 | Deputy Satellite 2 | Deputy Satellite 3
p=1km p=1km p=1km p=1km
B =90° g =0° B =—90° B =0°
a=0° a =90° a=0° a=-90°

The chief’s orbit is the same as used in the precedent section. The initial velocities and

trajectory for the deputies are computed and given in the following Table 4.14 and

Figure 4-66 to Figure 4-69.

p, Tkm]

0.5

p, [km]

—%— Chief
—%— 1. Dept.
—%— 2. Dept.

7+ 3. Dept.

p, [km]

Figure 4-65. SF-L2, The trajectory of the deputies with respect to chief
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Table 4.14. ICs and periodicity checks, SF around L2

Initial conditions

Initial conditions

Initial conditions

Initial conditions

Initial conditions

of chief of deputy_1 of deputy_2 of deputy_3 of deputy_4
1.011239967214 1.01123996721 1.01123996721 1.01123996721 1.01123996721
0.000000255658 0.00000026234 0.00000025565 0.00000024897 0.00000025565
-0.000850376654 -0.00085037665 -0.00085036996 -0.00085037665 -0.00085038333
0.000122281872 0.00012228809 0.00012228189 0.00012227565 0.00012228184
-0.009166722628 -0.00916672259 -0.00916671997 -0.00916672266 -0.00916672528
-0.000000965801 -0.00000096782 -0.00000096567 -0.00000096377 -0.00000096593
Period of chief’s Period of Period of Period of Period of

Orbit in Earth’s deputy_1 Orbitin | deputy 2 Orbitin | deputy_3 Orbitin | deputy_4 Orbitin
day: Earth’s day: Earth’s day: Earth’s day: Earth’s day:
180.5 days 180.5 days 180.5 days 180.5 days 180.5 days

Chief’s Jacobi deputy_1’s Jacobi | deputy 2’s Jacobi | deputy_3’s Jacobi | deputy_4’s Jacobi
Constant: Constant: Constant: Constant: Constant:
3.00081874359930 | 3.00081874359847 | 3.00081874368312 | 3.00081874360014 | 3.00081874351549

Periodicity Check
of chief:
0.193 meter

Periodicity Check
of deputy_1:
0.421 meter

Periodicity Check
of deputy_2:
0.099 meter

Periodicity Check
of deputy_3:
0.125 meter

Periodicity Check

of deputy_4:
0.093 meter

Test: Determinant
of chief’s @:
1.00000000186380

Test: Determinant
of deputy_1’s @:
1.00000000054402

Test: Determinant
of deputy 2’s ®:
0.99999999912447

Test: Determinant
of deputy_3’s ®:
1.00000000203944

Test: Determinant
of deputy_4’s @:
1.00000000088200

EigenValues of

EigenValues of

EigenValues of

EigenValues of

EigenValues of

chief’s ®: deputy 1’s @: deputy 2’s ®@: deputy 3’s @: deputy 4’s @:
1673.1903149 1673.19031550 1673.1908822 1673.1903141 1673.1897479
1.04576-0.04469i 1.04576-0.04469i 1.04576-0.04469i 1.04576-0.04469i 1.04576-0.04469i
1.04576+0.04469i 1.04576+0.04469i 1.04576+0.04469i 1.04576+0.04469i 1.04576+0.04469i
0.95451-0.04079i 0.95451-0.04079i 0.95451-0.04079i 0.95451-0.04079i 0.95451-0.04079i
0.95451+0.04079i 0.95451+0.04079i 0.95451+0.04079i | 0.95451+0.04079i 0.95451+0.04079i
0.000597637836 0.0005976 0.0005976 0.0005976 0.0005976
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Figure 4-66. SF-L2, Deputy #1: Projected and time dependent views
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Figure 4-67. SF-L2, Deputy #2: Projected and time dependent views
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Figure 4-68. SF-L2, Deputy #3: Projected and time dependent views
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Figure 4-69. SF-L2, Deputy #4: Projected and time dependent views

The results show that the deputies initially located at y axis (+y and -y with equally

distancing), the 1% and 3" satellites, has a symmetrical trajectory with respect to the

xz plane. It can be called skew-symmetric or diagonal symmetric. The 2" and 4%

satellites, initially located at z axis (+z and -z with equally distancing) have

different types of symmetry with respect to the xz plane. In xz plane they have quasi

one-dimensional motion, and there is a quasi-elliptical motion in yz plane.

The relative distances between deputies are not constant; they are given in Figure 4-70

and Figure 4-71. The objective distance from 1 to 2", 2" to 3, 3 to 4™ and 4™ to

1t deputy is vV2p = 1.414 km. The objective relative distance between 1% and 3™

deputies is 2p = 2 km, same for 2" and 4" ones. The acquired formation shape
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narrows and expands between this distance which is roughly 1.414 km and 0.50 km.
This numbers are between 2 km to 0.75 km for the relative distance between 1% and
39 and from 2 km to 0.50 km for the 2" and 4" deputies. This indicates that deputies
located on y axis provide more acceptable formation flight behavior; they have less
amplitude on relative distance oscillation. The constant relative motion is not
obtained; however, a harmony is acquired between the deputies and Chief; a stable
formation flight is made for one orbital period, which is approximately 0.5 Earth’s
Year for L2 point.
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Figure 4-70. SF-L2: The relative distances between deputies

218



P a1 (kM
o

0.5

P 31, [km]
o

p 31 k]

Position between Dept 1 & Dept 3

t in Yeare

0
\ - s
<
/ <
-0.4
0 0.1 0.2 0.3 0.4 0.5
tin Years
0.5
/\ 'g‘
/ N =
” ~ >
Q
-0.5
0 0.1 0.2 0.3 0.4 0.5
tin Years
[ [ 2
g 0
T N
¥ 2
{ Q
L 4
0 0.1 0.2 0.3 0.4 0.5
tin Years
3
N =
7N\ / £ ?
/ N\ &
Vs < l
v Q
0
0 0.1 0.2 0.3 0.4 0.5

Position between Dept 2 & Dept 4

AN /

N~

0.1 0.2 0.3 0.

tin Years

VRN

N

t in Yeare

Figure 4-71. SF-L2: The relative distances between deputies-2

219

0.1 0.2 0.3 0. 0.5
tin Years
[ [
0.1 0.2 0.3 0. 0.5
tin Years
//'\\\/‘
0.1 0.2 0.3 0.4 0.5



p, lkrm]

p, [km] py tkm]

Figure 4-72. SF-L2: The plane formed by deputies

Figure 4-72 illustrates the change of the square formation schema. The bold green
colored square is the starting and the bold blue one is the near last positions. The plane
is colored from green to blue depending on time. This plane is narrowing until first
and third quarter period, then it expands at the half and full period; last plane and first
plane coincide since motion is periodic. A square shape configuration shows that the
deputies initially located at y axis and at z axis provide different type of formation
flight. For a mission that it is not required to transverse the xz plane located at Chief
position; the deputies must be initially located on z axis. If the mission requirements
force to transverse xz Chief’s plane, it is necessary to initially locate the deputies on
y axis. So, a formation cluster can be formed according to the mission needs by

initially locating the deputies only on y axis or on z axis.

The next section contains the studies on finding the optimum initial elevation and
azimuth angles; it presents the analyses about the relation between relative distance
and optimum angle sets. For that reason, in this section, inclined square shape
formation analysis for a constant inclination angle is not considered for formation

around L2 as done for L1 case.
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4.4.2. Optimum formation clusters and simulation results

This section presents the analyses carried out in order to find optimum relative initial
position of the deputy; initial position that ensure the minimum deviation on relative
distance p with respect to the chief satellite. First step, both elevation angle a and
azimuth angle g are scanned from 0° to 180° with 10° increments, and the relative
distance plots are given in Figure 4-73 for each of g with changes of «
(a = [0°:10°:180°] , and B = [0°:10°: 180°]) .
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Figure 4-73. Relative positions depending on ICs, a and B angles, around L2
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Figure 4.73. Relative positions depending on ICs, a and  angles, around L2 (cont’d)
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Figure 4.73. Relative positions depending on ICs, a and  angles, around L2 (cont’d)
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Figure 4.73. Relative positions depending on ICs, o and f angles, around L2 (cont’d)

First impression gets from the results, a between 110° and 130° gives minimum
deviation in p for a g between 0° t0 90°. For 8 less than 30° , a = 110° — 120° gives
a one minimum point is seen at half period. However, for B greater than 30° and less
than 160° two minimum points are seen in first and third quarter orbital period as
minimum p, and one maximum point at half period. Again, one minimum point at
half period is obtained for B greater than 160° and for a = 70°. These results are re-
evaluated statistically, as done in L1 case. For B less than 30°, a = 110° — 120°
gives a one minimum point, it is seen at half period. However, for B greater than 30°
and less than 160° two minimum points are seen in first and third quarter orbital
period as minimum p , and one maximum point at half period. Again, one minimum

point at half period is obtained for B greater than 160° and for a = 70°. The following
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Figure 4-74 and Table 4.15 summarizes results obtained using those statistical

parameters.
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Figure 4-74. Statistical results of the relative position for f values around L2

Table 4.15. « that statistically provide minimum deviation for given 8 at L2

alpha values\ for beta: 0| 10| 20| 30| 40| 50| 60| 70| 80| 90100 | 110|120 |130 | 140|150 | 160 | 170 | 180

sigma results STD: | 110 | 110 | 110 | 110 | 110 | 120 | 120 | 120 | 130 | 140 | 50| 60| 60| 60| 70| 70| 70| 70| 70

sigma to rhoReq : 50| 50| 120|120 | 120|130 | 130|140 | 150 (180 | 30| 40| 50| 50| 60| 60| 60| 130 | 130

dA(rho-rhoReq): 120 | 120 | 120 | 120 | 130 | 130 | 130 | 140 | 150 0| 30| 40| 50| 50| 50| 60| 60| 60| 60

Results shows that minimum amplitude is obtained for g = 0° (with a = 110° —
120%and for g = 180° (with a = 70°). This result is also valid for standard
deviation o computation. But, o,req Statistic gives different results for some cases:
p = 0°—10°(with a = 50°)and for = 170° — 180° (with a = 130°). For that
reason it is necessary to perform more fine analyses between those angle values, they

are given as follows.
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Table 4.16. Selected cases of B’s for fine analyses for L2

Case-1: B =10°1°10°] with a = [105°:1°:115°]

Case-2: B =1[170°:1°:180°] with a = [65°:1°:75°]

For case-1 the minimum value of p is obtained for § = 0° , and the a values that gives

the minimum deviation is a=110° — 1129, as seen in Figure 4-75 and Figure 4-76:
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Figure 4-75. Deviation statistics for different p 0 to 10 degree for L2
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Figure 4-76. Deviation for zero B and a 105 to 115 degree for L2

For case-2 the minimum value of p is obtained for = 180°, and the a values that
gives the minimum deviation is a«=68° — 70° , as seen in Figure 4-77 and Figure
4-78:
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Figure 4-77. Deviation statistics for different f 170 to 180 degree for L2

227



B: 180 deg

. o:65
TN N,
oo 2\ // — | =
R NN\ 77
g ‘ | 0:72
“omr N\ 7 o
08 \\ / V\--/ fi w75
0.75 \_// b//
0.7
0 0.1 0.2 0.3 0.4 0.5

tin Years

Figure 4-78. Deviation for zero 3 and o 65 to 75 degree for L2

As indicated in L1 case, for L2 also the results obtained for the Case-1 and Case-2 are
symmetric, in other words they are geometrically the reciprocal points on the same

plane.

4.4.2.1. Inclined square shape formation with optimum elevation and azimuth

angles

This section presents the result obtained for a formation schema having inclined plane
with an elevation angle regarding to the xy plane. Here, firstly, elevation angle from
0° to 180° with 10° increments is analyzed to examine the relative distance obtained
with respect to the chief. There exist 19 different cases for a = [0°: 10°: 180°] with
B = 0°. The trajectories obtained in three dimensional views are shown in the

following figures, and the projected views, relative distances with its components.
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Figure 4-79. 3D view of 19 different cases for L2: o from zeros to 180 degree
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Figure 4-80. 2D view of 19 different cases for L2: a from zeros to 180 degree
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Figure 4-81. Relative position for a zeros to 180 degree around L2
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Figure 4-82. Relative position for a from 50 to 130 degree around L2

Figure 4-82 shows that the inclination of the plane affects the deviation of the relative

distances, less deviation is obtained around @ = 110°, p changes between 1 km
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t0 0.82 km. All p coincides around 0.75 km — 0.82 km at half period, and forms
extrama at 1% quarters and 3" quarters, in positive and negative direction depending
on the a value. Around a = 110° the extrama disappear and smoothest deviations
are acquired at half period, maximum deviation is about 0.2 km for this elevation

value.
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Figure 4-83. Relative position for o from 100 to 120 degree around L2

As a second step, « = 110° is refined and for an interval from 100° to 120° with 2°
increments. Here, it can be stated that p has only one extramum point just only at half
period for an a between 108°and 114°. The only difference among them is the
change of p towards this extramum. For instance, when a = 114° p begins to deviate
from required value at 0.1 years. Approximately linear changes before and after half
period is obtained around a = 110° — 112° The deviation starts rapidly and
downsizing for @ < 110° and rapidly growth for @ > 114°.The relative distance has

a value greater than required distance p for a greater than 114° .
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Figure 4-84. Relative position for a from 108 to 113 degree around L2

This refined analyze shows that the most resistant result is get for « = 113°, but the

rate of change toward minimum point p = 0.82 km is high. The most uniformly

change is obtained for @« = 110.5°, decreasing rate to minimum and increasing rate

form minimum distance are nearly linear.

Here after, for the formation clusters given in the next subsections, the elevation angle
is taken as a = 110.5° and its complement to 180° a = —69.5° for a constant

azimuth 8 = 0°. So, two deputies with these initial conditions form a formation flight

as presented in Figure 4-85 and Figure 4-86.

The 3D view of the deputies’ trajectory:
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Figure 4-85. 3D Trajectory of 1st and 2nd deputies for Optimum ISF around L2
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Figure 4-86. Relative position of 1st and 2nd deputies, optimum ISF around L2
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For the formation designed at L2, it can be stated that the minimum relative distance
deviation for one deputy that can be obtained is approximately 0.20 km. Finally, it is
an option to add two more satellites on y axis in order to form a formation
configuration having four deputies, as done in the previous sections. The behavior of
the plane formed by these 4 deputies is given in Figure 4-87. The distances between
deputies can be seen in Figure 4-87 and in Figure 4-88 to Figure 4-90 as well, that

time dependent values are given.

1 Last ; Plane

p, k]

p, [km] p, [km]

Figure 4-87. Plane formed by four deputies for optimum ISF around L2
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Figure 4-88. Relative trajectories for optimum ISF around L2
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Figure 4-89. Projected and time dependent views for optimum ISF around L2
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The relative distances between deputies are given in Figure 4-90, distances between
neighborhood deputies (1-2, 2-3, 3-4 and 4-1). Neighborhood distances vary between
1.5 km 100.75 km. Geometrical initial relative distance is 2p = 1.414 km.
Scanning method is used for § azimuth angle and it is obvious that minimum deviation
on relative distance is get at near § = 90° for a = 0°. It is shown in bold gray line in
Figure 4-91.
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Figure 4-91. Relative distance changes for B scanning around L2

A complete scanning for both g and «a to find optimum relative distance is also
performed. This section has presented the studies performed to find an optimal
elevation angle for deputy satellite and as a consequently, the next section proposes
the formation schema composed of multiple satellites initially located at this elevation

angle with different initial relative distances.
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4.4.2.2. Aligned and uniformly equally separated formation

This part presents a formation composed of four deputy satellites, but aligned and
initially positioned at 1.0 km distance from each other successively. The initial
desired elevation angle is taken optimum elevation angle with zeros degree azimuth
angle. So, the formation configuration is given in the following Table 4.17. Again, the

abbreviation UAF is used for uniformly aligned formation.

Table 4.17. Relative positions of deputies, UAF around L2

Deputy Satellite 1

Deputy Satellite 2

Deputy Satellite 3

Deputy Satellite 4

p=1km
B =0°
a =110.5°

p=2km
B =0°
a =110.5°

p=3km
B =0°
a =1105°

p=4km
B=0°
a = 110.5°

The trajectories obtained and relative distances are given in Figure 4-92 to Figure
4-95:
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Figure 4-92. Trajectory of the deputies with respect to chief for UAF around L2
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Figure 4-93. Projected and time dependent views for UAF around L2
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Figure 4-95. Relative distances between deputies for UAF around L2 - 2

As seen from the results, the relative distance behavior of the satellites positioned
consecutively are similar, and the drifts are between 1.0 km to 0.80 km as the

optimum elevation angle is selected as initial relative position. This kind of formation
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cluster is really very powerful for the missions aimed a constant distance changes

between each successive satellite.

In this section it is obtained that minimum changes on relative distance is acquired for
a formation having a plane with an inclination angle defined by elevation angles equal
to the a = 110.5° and a = —69.5° for L2 point. For missions that requires to
maintain the relative distance between satellites consecutively, the formation given
above is a ideal solution, and the same number of satellites can be positioned
symmetrically at a« = —69.5°. For instance, for a formation cluster having 6
satellites, three of them initially located at @ = 110.5° and the last three « = —69.5°
gives a formation as presented in Figure 4-96 to Figure 4-98. This kind of formation

can be called as formation with successive pairs.
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Figure 4-96. Trajectory of deputies for UAF-L2
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Figure 4-97. Projected and time dependent views for UAF-L2
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Figure 4-98. Relative distance between satellites for UAF-L2

Here, the minimum relative distance obtained for each satellite varies regarding to the
distance step given for each successive satellite. It is seen that, this is a useful
formation schema for a mission that requires quasi-constant relative distance with

respect to the chief, for each pairs of formation.
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CHAPTER 5

SUMMARY OF L1 AND L2 FORMATION FLIGHT DESIGN

This first part of this thesis contains the studies performed for the formation flight
design near Sun-Earth collinear libration points L1 and L2. The main objective is to
compute an orbit for deputy satellite which ensures naturally long-term formation
flight without need of orbital maneuver to achieve desired formation configuration.

Several formation clusters are analyzed in order to understand the effect of the initial
relative position to the relative trajectory. Equilateral triangle shape, square shape,
inclined square shape formation schemes are obtained. At the end, an initial condition
set that provide minimum deviation is found. For instance, for a formation around L1,
the minimum deviation on relative distance is obtained for azimuth angle of g = 0°,
and the elevation angle @=102° — 104°. Furthermore, it is seen that the inclination
of the plane, formed by the relative position vector between deputy and chief, affects
the deviation of the relative distances. Minimum deviation is obtained for « = 100° ,
p is 1 km t00.85 km. All p coincides at half period, and at 1% quarters and 3™
quarters extrama are formed. However, around & = 100° the extrama disappear and
smoothest deviations are acquired at half period, maximum deviation is
about 0.15 km. Fine analyses around a = 100° shows that the best result is
for @ = 1049, but the rate of change toward minimum point p = 0.84 km is very
high. Most uniform change in the relative deputy distance is obtained for « = 102.5°,

decreasing and increasing rates has a linear form.

Same procedure is applied to the formation design around L2 and similar results are
obtained. Minimum deviation in p is obtained for elevation angles o
between 110° and 130°. For B = 0°, and the a values that gives the minimum
deviation is a=110° —112% arounda = 110°, p changes between 1km

to 0.82 km. All p coincides at half period, and reaches extramum values at 1% quarters
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and 3 quarters. Around @ = 110° smoothest deviations are acquired at half period;
maximum deviation is about 0.2 km for this elevation value. This refined analyze for
L2 shows that the most resistant result is get for @ = 113°. However, the rate of
change toward minimum point p = 0.82 km is high. The most uniformly change is

obtained for @ = 110.5°, decreasing and increasing rates are nearly linear.

After computing optimal elevation angle for the deputy satellite, it is also a possible
to create a formation schema having multiple satellite aligned and uniformly equally
separated, namely a rectilinear formation. For this kind of formation, it is seen that the
relative distances between successive deputies remain constant and this may be a good
property depending on the mission that requires quasi-constant relative distance with

respect to the chief, for each pairs of formation.

All different formation schemas given here indicate that it is possible to modify and
/or create a formation regarding to the mission need and payload capabilities. The
method presented in this thesis will provide a reasonable formation flight by
computing convenient initial velocities for desired initial relative positions, that is

mean designing a convenient orbit for formation structure.
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CHAPTER 6

MODELING RELATIVE MOTION OF THE LEO FORMATION
FLYING SATELLITES

The second part of this thesis includes the formation flight design and analyses for the
Low Earth Orbit satellites. This section includes the details on the modeling of the
relative motion of the low Earth orbit satellites on formation flight. First formulation
gives the nonlinear equation of motion by using Keplerian two body dynamics and the

second formulation use orbital elements of the satellites to obtain the relative position.

6.1. Modeling Relative Motion Using the Keplerian Formulation

In this section, two coordinate systems are used in order to define the motion of the
Chief satellite. First one is the perifocal coordinate system; centered at the Earth, x
axis points to the perigee of the Chef’s orbit, z is normal to the orbital plane and it is
positive in the direction of the orbital angular momentum vector and y axis completed
the set according to the right hand rule. The second coordinate system used is orbital
coordinate system; it is also called as Local Vertical Local Horizontal (LVLH)
reference frame. Orbital coordinate system is centered at the satellite, x axis is aligned
radially form Earth to the satellite and it is directed from satellite outward, z axis is
normal to the orbital plane, positive in the direction of the angular momentum vector,
and y axis completes the set via right hand rule. The following figure illustrates these
coordinate systems and shows the relative distance according the Chief’s orbital
frame. In Figure 6-1 the perifocal frame is denoted by x, y, z unit vectors centered at
the Earth and orbital frame is defined by Xo,Yo,Zo unit vectors centered at the

satellite. Here, 7zp0f is position vector of the chief satellite from Earth, and 7;¢py¢y
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is the deputy satellite position, p is the relative distance of the deputy with respect to
chief expressed in orbital reference frame.

orbital frame

Figure 6-1. Perifocal and orbital coordinate systems

First, the chief’s position is computed using an orbit propagator including the variation
of the mean classical orbital elements. The perturbations due to non-spherical Earth
(J2), due to Moon and Sun are included on the computations. The details on orbit

propagator are presented in Appendix-D. As known, Kepler’s equation states that [72]:

M = M, +n(t —t,) = E — esin(E) Eq. 6-1

where, M is the mean anomaly, E is the eccentric anomaly, n = \/u/a3 is the orbital
mean motion, t, is the epoch and M, is the mean anomaly at epoch. After solving this
equation, the perifocal position vector of the chief satellite written in terms of the

eccentric anomaly is:
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a(cos(E) —e)

chief |p = — e?sin - 0
[renier] a1 — e?sin (E) Eq. 6-2

0

The relative motion of the deputy is derived using the equations of motion of the chief
and deputy satellites that are defined by Keplerian two-body problem:

3 #?chief Edq. 6-3
Tchief = — 73 3 g.
|Tchief|
E _ _ Hdeputy Eq. 6-4
deputy N 3
|rdeputy|

The position of the deputy relative to the chief is denoted as g , and it is obtained by

using Eq. 6-3 and Eq. 6-4 that are written for chief and deputy satellites.
,5 = 7_:deputy - 7_:chief Eq. 6-5
_ .u(f)chief + ﬁ) .u?chief

_>| _
Pt |Fchief + .5|3 |Fchief|3

Eq. 6-6

The Eq. 6-6 is expressed in chief’s perifocal frame. However, Chief’s orbital frame
has an angular motion with respect to perifocal frame. So, the relative acceleration in
the orbital frame can be expressed as [73]:
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. %
plOrb T dt?

Prf Eq. 6-7

da - — — >
+——X plOrb +w X (w X plOrb)
orb dt

where, suffix Orb denotes orbital frame and Prf denotes perifocal frame, and & orbital

angular velocity of the chief satellite expressed in orbital frame and it is normal to the

. . . . T
orbital plane. It can be expressed in matrix formasw = [0 0  Bpzer| . In vector

form Eq. 6-7 can be written as follows:

T| .u(rchief + ,0) .urchief
|Tchief + ,D|3 |rchief|3 Prf Eq. 6-8

ﬁlOrb =

- (25p|0rb + aﬁplOrb + @? plOrb)

where, C is the transformation matrix from orbital frame to perifocal frame, and @ is
dyadic form of the angular rate. So, Eq. 6-8 is in matrix form and it is expressed at
orbital reference frame. The following component wise relative motion equations in
the orbital frame may be written as,

. Au(rchief_OTb + x) u . .
X =— + 2 + ZHChiefy

/ .
[(rChief_Orb + X)Z +y?+ 22]3 ? Tohier_orp

+ Ochiery + Hzchiefx +dy +uy

Uy . L
3/2 2echiefx - Hchiefx

[(rchief_Orb + x)z + yz + Zz] Eq. 6-9

+ ézchiefy + dy + uy
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. Hz
i=- 3/2+dz+uz

2
[(rchief_Orb + x) + yz + Zz]

In the above equation 7.;,; = T.p; chief position expressed in chief’s
chief_Orb chief orb p p

orbital frame, plo, =[¥ ¥ 2|7, d; are the disturbance vector components and u;
are the control forces. The orbital disturbances are given in Appendix-D as they are
added on the orbit propagator model. Appendix-E contains the equations with
disturbances for a special case of J2 effects. The computation of the control inputs in

order to keep satellite on formation is presented in Appendix-F.

The block diagram of the model developed to simulate the relative motion using

Keplerian formulation is given in Figure 6-2:

Chiefs Chiefs
Orbital = Orbit
Parameters Propagator

Paosition Accel.eralion Initial

of Chief of Chief Conditions

in perifocal in perifocal frame

frame ?=Ch|9f|prf

rcki'efl

prf _ . .
Equations Transformation 0\0,,5 plcrb plorb
of Relative Motion from perifocal frame + Iil Iil
p‘p;—f Acceleration to orbital frame Relative Relative Relative
of Deputy + accelerationin  velocity in position in

in perifocal rdoput)’| + orbital frame orbital frame orbital frame

frame ot DeitaV Uy Hy Uz
Implementation
J2 Disturbances T
< dy- dz

+

Transformation Plors
from orbital frame
to perifocal frame

Figure 6-2. Block diagram of model that use the Keplerian equations of motion

In this model, the orbital parameters of the chief satellite are selected and are given to
the model as input. Orbit propagator is used to compute the chief’s position depending
on time. After those equations of motion given in Eq. 6-7 is used to obtain the deputy

relative position and velocity for a given relative initial position and velocity. The
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disturbances and control forces, if there exist, are also given as input. So, the
component wise velocity and position elements are computed by integrating the
acceleration obtained from Eq. 6-7. Finally, the orbital parameters of the deputy
satellites are calculated in order to compare the orbits of chief and deputy satellites.
The formulas used to compute orbital parameters are presented in Appendix-B.

6.2. Modeling Relative Motion Using Orbital Elements

The relative position of the deputy may also be expressed using orbital elements. This
method, originally suggested by G.W. Hill [74], and it has been widely used in the
analysis of relative satellite motion. One of the main advantages of the orbital elements
approach is to obtain a non-differential relative position equation and incorporate
straightforwardly the orbital perturbations. The relative deputy’s position, defined

using orbital elements, is obtained (subscript x.denotes x.p;.rand x, denotes
xdeputy)-

rC
p=CUIT (e, ic, AT (g, id'-Qd)[rd]Pd - lol Eg. 6-10
0

z
inertial

e
/r eputy

e

Y
inertial

I plan

Equatorial Plane

LONG LONG
chief deputy

X
inertial

Figure 6-3. Orbital elements
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The block diagram of the model developed to simulate the relative motion using

Orbital Elements formulation is given in Figure 6-4:

Chief's Chief's

Orbital — Orbit

Parameters Propagator
X
-
Relative | v
Position -

aDmT:sliI{Le[ge Deputy’s Deputy’s
and —> Orbital — Orbit
phase angle Parameters Propagator

Figure 6-4. Block diagram of model with orbital elements.

In this model, the orbital parameters of the both chief and deputy satellites are given
as input to the model. Orbit propagator is run for both of satellites to compute the
time dependent position of the satellites. After that, relative position of the deputy with

respect to the chief perifocal frame is calculated using Eq. 6-10.
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CHAPTER 7

MODELING FORMATION FLIGHT ORBITS FOR LEO
SATELLITES

This section contains the methods used to design the orbit of the deputy satellite that
provides the formation flight around the chief. The main subject on orbit design for a
formation flight is the selection of the initial condition of the deputy satellite. In this
section, two main approaches existing in the literature are briefly given and offered
approach here is presented. Those methods based on the energy matching approach.
The main requirement for formation flight is that: the energy level of the chief and
deputy satellite must be equal; it means that their semi-major axis must be equal [73].
So, it is possible to compute directly the velocity and position components of the

deputy satellite with matched energy by using the following equality:

Echief — Edeputy = 0 Eq. 7-1
where;
1 . . . 2 . . 2
Edeputy = E{(x - Qchiefy + rchief) + [y + gchief(x + rchief)]

L) 7 Eq. 7-2

\/(rchief + X)Z + y2 + Z2

and

_ u
2achief

Echief = Eqg. 7-3
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This equation has six unknowns, with five of them must be known to solve for the
unknown parameter. Let, as initial positions, the desired relative position components
x,y and z are taken. And the two of the velocity components x and z are taken as
zeros. Then, it is now possible to compute analytically initial velocity component y.

The straightforward computations are given in detail at Appendix-C.

These two methods in the literature, they have computation techniques with some
assumptions and constraints: small formations are considered, semimajor axis are
taken equal, projected motion is considered, it is focused on initial position, not on the
initial velocities, etc. Here, the method proposed in section 4.3 is used to design long-
term formation flight for LEO satellites. So, those three methods can be listed as

follows:

e Along Track and Cross Track ICs for Projected Circular Orbit (PCO-ICs) [62]

e Geometrical Relative Orbit Modelling (GROM) [75]

e Optimal ICs, performs optimization to determine the Initial Conditions
(OPTICs) (See section 4.3 )

The following subchapters give the details about these three methods.

7.1. PCO-ICs

This technique is based on the linear equations of motion written by Clohessy-
Wiltshire (CW). It is also known as Hill’s equations. CW equations describe a
simplified model of orbital relative motion assuming that motion is circular. This
model is a first-order approximation of the motion [76]. In the previous section, the

component wise equation of motion is given in Eq. 6-9. By considering that angular

. . . . . T
rate of the orbital frame with respect to perifocal frame is constant, [0 0 Hchief] =

[0 0 n]T, Ochier = 0; assuming that chief’s orbit is circular and position vector

of the chief is equal to the semimajor axis value, and ignoring the disturbances and

control inputs, this equation set can be rewritten as:

256



Au(achief + x) + u

2 3/2 2
g )y 4 2] r

¥ =2ny +n’x —

wy

[(achief + X)Z + yZ + 72

y = —2nx + n?y —

]3/2 Eq. 7-4

; Kz
i=- 3z Tdz t U,

[(achief + x)z +y2 + Zz]

Clohessy-Wiltshire equations are derived by expanding the right side of the Eq. 7-4
set in to first order Taylor series about the origin. This gives:

¥ = 2ny + 3n’x
j = —2ni Eq. 7-5

7 =—-n*z

Forastatevector X =[x ¥y z x y x]|7;

X(t) = AX(t) Eq. 7-6
with:
A= [zeros(3x3) I(3x3)]
A21 A22 Eq. 7-7
3n2 0 0 0 2n O
A21=10 0 O and A22=|-2n 0 O Eq. 7-8
0 0 -n? 0 0 O

The solution of this above set can be written in form of the transition matrix as follows:

X(t) = eAt=t) X(t,) Eq. 7-9
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And the following component wise expression is obtained [77]:

2y X 2y
x(t) = <4x0 + %) + fsin(nt) - <3x0 + %) cos(nt)

2x 4y
y(t) = —(6bnxy +3y,) t + (yo - —0> + <6x0 + ﬂ) sin(nt)
n n
_ Eq. 7-10
2x,
+ —cos(nt)
n

z(t) = %Osin(nt) — z, cos(nt)

Here, it is seen that y(t) has time depending drift component, it is required to select

as initial condition y, = —2nx, in order to prevent this drift. So, the new set is:
x(t) = p, sin(nt + a,.)
y(t) = py + 2pycos (nt + ay)

Eq. 7-11
z(t) = p,sin (nt + a;,)

where;

Px = < ’9’502 + x§n2> /n

Py = Yo — 2Xo/n

pr = < /Z'oz + Z§n2> /n Eq. 7-12

a, = atan(nx,y/x,)

a, = atan(nzy/z,)
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Here, p, is the amplitude of the along track motion, a, is the in-plane phase angle,
p, is the amplitude of the cross-track motion and a, is the cross-track phase angle.

The illustration is given in Figure 7-1 for initial case where t = 0.

Figure 7-1. Along track, cross track amplitudes and phase angles.

This gives a three-dimensional ellipse centered at (0, p,,, 0). The following conditions

can be defined [73]:

- whena, = % + a, it gives elliptic projection on xz plane.

T - - - - -
- whena, = St ay and p, = p,.: it gives circular projection on xz plane.

This is called as General Circular Orbit (GCO) conditions.

On the other hand:
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- whena, = a, and p, = 2p,: it gives circular projection on yz plane.
This is called as Projected Circular Orbit (PCO)

The following formulas are given in order to compute the proper initial condition for

the relative motion is based on PCO approach. For instance;

- letx, =z, = 0 and x, = nz,, this yields circular xz projection and linear
yz projection
- letxy = Z, = 0 and z, = 2x,, this yields circular yz projection and linear xz

projection

An approximate solution to determine the initial conditions for near circular orbit is
derived using Eq. 7-11. So, the component wise equations may be rewritten as follows
to define the amplitudes and phase angles of the along track and cross track motion

(subscript x, denotes x ;. and x4 dENOteS Xgepyty )

x = 6a+ pysin(M; + a,)

y = a.[(6M + Sw) + §Q cosi.]
— ac[eqe. sin My + 2p,cos(M, + a,)] Eq. 7-13

3
z=p,sin(M, + 0w, + a,) — > Pzec sin(w, + a;)

Here, in order to define the initial conditions of the deputy orbit regarding a desired
formation flight scheme, the approximate solution given in Eq. 7-13 is considered and
it is assumed that the change in the semimajor axis da does not impact on the
formation design for near circular orbit and for the formations having small relative
distance. In this way, the along track and the cross track initial condition may be

obtained as:

Yo = Po COS (Mchiefo t Wcnief , + 0‘0) Eq. 7-14
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Zy = Po [ sin (Mchiefo + wchiefo + “0)

Eqg. 7-15
3 a

~ 5 Echief, SI (wchiefo + “o)]

where, p, Is the desired initial distance between two satellite and « is the desired
initial phase angle in the yz plane. The related equations and the computation derived
for the initial values of the deputy’s orbital elements are given in details by Alfriend
K.T., Vadali S.R et al,as [73]. So, the initial values of the deputy’s orbital elements

can be computed for the desired p, and «, using the following set of equations:

ideputyo = ichiefo + COs g Eq. 7-16

achief

Po
achiefo sin lchiefo

Qdeputyo = Qchief0 - sin a Eq. 7-17
Mdeputyo = Mchief0

Po _
Zachiefo €08 (wchlefo * 050) Eq. 7-18

__Po
2achiefo

+ atan

€chief sin (wcm'efo + “0)

Po ( )
55— —COS | W,pi +a
zachiefo chlefo 0

. _ Eq. 7-19
deputy sin(6M,)

Po
— ef )
Zachiefo Cos (wchlefo aO) Eq. 7-20

2
Rearth 3nchief + 4
Ageputy = Achief T 0.5 acpjer (a s e
chie chief

(*)deputyo = (‘)chiefo - 6M +

Eq. 7-21

X [(1 — 3 cos?( ichigf)) on — nchiefSin(zichief)5i]
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where; n = |1—eZ,;

At the end the initial relative distance values are obtained using Eq. 7-14 and Eq. 7-15.
These values can be used in the first model given in section 6.1 to get the relative
dynamics between chief and deputy satellite. Furthermore, the orbital parameters of
the deputy satellite are obtained using Eq. 7-16 to Eq. 7-21. So, the second model

given in section 6.2 can be used directly in order to get relative motion.

7.2. GROM

This approach, by S.S. Lee [75], is based on the spherical coordinates representation
of the relative motion and compute initial orbital elements for a desired initial relative
position. The main assumptions in this method are that the semimajor axes of the both
satellites are equal, both orbits are circular (eccentricities are zeros) and mean
anomalies are equal. The following figures and equations are taken from Ref.[75]. The

spherical coordinates are given in Figure 7-2.

projected orbit of the
North chief satellite

projected orbit of the
deputy satellie

Earth's —{
equator

Figure 7-2. Geometrical relative orbit modeling [75]
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Here chief satellite is denoted by suffix “c” and deputy by suffix “d”. Regarding to the
figure above, the relative position of the deputy satellite with respect to chief satellite

is written as:

T cosé sina

r cosd cosa
7=
r sind

Eq. 7-22

The spherical triangle formed by AQ4Q.Ip is used to calculate the angle i, showed in

following Figure 7-3:

projected orbit of the P

deputy satellie \ /chief satellite

Earth's
equatar

Figure 7-3. Projected orbits

Here, note that i,. is not equal to the difference of i. and ig4, since spherical coordinates

are used. So, the i, can be computed using following equation:
cos(i,) = cos(ig) cos(i.) + sin(iy) sin(i.) cos (AQ) Eq. 7-23
where

AQ = —Q4 + Q. Eq. 7-24
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So, along track and cross track distances can be written using follwoing equations:
a = ¢g— wg — vy +atan(cos(i,) tan(—¢, + w, +v,));0° < a
< 3607 Eq. 7-25

& = asin(sin(i,) sin(—¢, + w, + v.)); —90° < § < 90° Eq. 7-26

Then, the relative position and velocity can be written in matrix form as follows:

7, oSO cosa — 1y
= [ 1. cosé sina ] Eq. 7-27
7. sind
T, c0s8 cosa — 1, 8Sind cosa — 1, ¢coss sina — 7y
V= l 7, cos8 sina — 1, 8siné sina + 1, @coss cosa ] Eq. 7-28
7, sind + 1.6coss

So, finally a set of equation is obtained to determine the orbital parameters of the
deputy satellite for the desired relative orbit size (along track (Ay) and cross track (Az)
distance) and the relative phase angle y. Note here the assumption is semimajor axis,

eccentricity and mean anomaly of both satellites are equal; Aa = Ae = AM = 0.

6i = A, cos(w. +)/ a, Eq. 7-29
80 = A, sin(w, +¥)/ (a,sin(i,)) Eq. 7-30

A, A, sin(w, +Y)

b= - (ace.) (a. tan(i.))

Eq. 7-31

The second model given in Section 6.2 can be run by using those initial orbital

elements to get relative motion.
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7.3. OPTICs for LEO Formation Design

Methods presented in the previous subsections propose a computation technique with
some assumptions and constraints (formations having small relative distance are
considered, semimajor axes are taken equal, projected motion is considered, near
circular orbit is assumed, etc.). At the end of analyses performed, it is seen that these
methods give reasonable results for some specific conditions. For that reason, an
optimization method is proposed with a suitable minimization function in order to find
a formation flight solution without considering any assumption and constraint. The
OPTICs method is implemented for the LEO formation flight design. The definition
and details of OPTICs are given in chapter 4.3. In the examples given in chapter 4.3
and chapter 4.4, recall the main assumption: Chief and deputy satellites have periodic
orbit. So, it is expected to reach same orbital position after passing one orbital period
of time. It may also be expected that the deputy satellite will have the same relative

position after one orbital period. Desired relative position is illustrated in Figure 7-4.

orb

chief's'

%bit

Figure 7-4. Relative desired position of deputy with respect to chief

265



Finally, the optimal initial velocity is computed for desired initial relative position.

The minimization function can be rewritten as follows (subscript x. for xcp;.r and

Xq TOr Xgeputy ):

_.X'._
y
; Z
X=f&) =
5
X
y
7 Eq. 7-32
L . u(r, + x) U
20 7] 0% .x — —
— [Py F Oy T O [(r; + %)% + y2? + 22]3/2
C . wy
—20.x — 0 6% .y —
X X+ 0%y [(r, + %)% + y2 + 22]3/2
uz
[(r, +x)2 + y? + 22]3/2
Xfinal — Xinitial Ax 0
fXsup) = |Yrinat — Vinitial | = [A:)_/‘ = O] Eq. 7-33
Zfinal — Zinitial AZ 0
where;
Xinitial Xc Pdesired Cos(adesired) cos (lgdesired)
Yinitiat | = |Yc |*| Pdesired Cos(adesired) sin (Bgesirea) Eq. 7-34
Zinitial Zc Pdesired SIN(Agesireq)

And the iteration process is:

Al

Ax
Ay
AZ

— (0"

Eq. 7-35
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0f 0fi Of
dx dJdy 0z
af a;/ af (D14 (I)l,S CD16
Dy = =2 22 22Dy, dy5 Dy Eq. 7-36
dx 0dy 0z
Gz, P35 Psp
[0x Jdy 0z

Unlike the first two methods, this approach provides this initial position values and
velocities. The positive effects of this method are seen at the simulation results given
in the next sections.

The execution time of the code prepared for LEO formation flight design is examined.
Here, the sampling time of the simulation is taken as 1 second. Simulation time is
taken as 1 orbital period and it is approximately equal to the 99 minutes. The execution

time of one iteration is approximately 8 seconds. The details are given Appendix-I.
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CHAPTER 8

SIMULATION AND RESULTS FOR LEO FORMATION FLIGHT

This section contains the results of the methods presented in the previous section and
the comparisons between them are presented. The advantage of the third method is

seen very clearly in the following detailed results.

Here, the orbit given in the [73] is selected for the chief’s orbit in order to make a good
comparison environment. The orbital parameters of chief satellite are given in the

following table:

Table 8.1. Orbital parameters of the chief satellite

Chief Satellite:

Altitude (km): 713.863 km
Semimajor axis (km): 7092 km
RAAN (deg): 45°
Inclination (deg): 70°
Argument of Perigee (deg): 0.00°

Initial Mean Anomaly (deg): 0.00°
Eccentricity: 0.00

The orbital parameters of the deputy satellite, in other words its initial position and
velocity, are computed by the PCO, GROM and OPTICs methods. The following

results contain four different cases based on the PCO method: the phase angles
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(azimuth  angle on projected yzplane) selected are respectively
90°,60°,30° and 0° . The simulation is run for 30 chief satellite’s orbital period in
order to sense the drift in time. As given in Ref.[73], PCO gives the best solution for
a phase angle that is equal to 90°. However, thanks to the method presented in this
thesis, by combining with some inference given in Ref.[73], it is possible to obtain
stable formation flight for different phase angles unlike the PCO and GROM method.

In the first subsection, the PCO and GROM results are shared for 90 degree phase
angle case. And it is seen that GROM is not very successful for J2 added cases. So,
the main purpose of this section is to present the performance of the OPTICs method,
for that reason, the following subsections (written for 60°,30° and 0° phase angles)
contains only the results of PCO and OPTICs.

8.1. Design with 90 degree phase angle

The results obtained for a phase angle equal to the 90° are given in this section. First
PCO results are presented in Figure 8-1 to Figure 8-4, for both undisturbed and
disturbed (J2 added) environment. Note that the disturbance model used is shared in
Appendix-E. Figure 8-1 indicates the relative distance of the deputy satellite with
respect to the chief. Here, the requirement for the relative distance is taken as 1 km.
The second figure, Figure 8-2, it gives projected view on XY, YZ, and XZ plane of
the relative motion around chief satellite. The last subfigure of Figure 8-2 (right-down)

is the three-dimensional vision of the relative motion.
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Results without adding J2 to the simulation:

= A
< BARRLRARRAAR RN V |

0 5 10 15 20 25 30
P [Orbital Period]

Figure 8-1. PCO: Relative distance, phase 90 deg. without disturbance

1 1
£ o \ J £0
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N 2.4
2
1
] A : o 0.5
-0.5 0 0.5 ykml -2 4 ey
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Figure 8-2. PCO: Projected views for phase 90 deg. without disturbance
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Simulation results with J2 effect added:

1.3

1.2

1.1 'u' "N Vl'r‘ MVMUMUMUMU (] UN;' WI l\

0 5 10 15 20 25 30
P [Orbital Period]

p [km]

———

0.9

Figure 8-3. PCO: Relative distance for phase 90 degree with J2
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Figure 8-4. PCO: Projected views for phase 90 deg., with J2

Results show that PCO provides a good formation flight for 90 degree phase angle.
As mentioned in the related previous section (Section 3.1) PCO is based on the design
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on YZ plane. Here, relative distance has an oscillation and it diverges slightly

depending on time. The oscillation amplitude is between 0.9 km to 1.2 km.

Unlike PCO, the GROM method gives more stable result for the case without J2
disturbance, but J2 added results shows that the deputy satellite gets very closer to the

chief and it has an oscillated relative motion. The comparison of PCO and GROM is

given in Figure 8-5 to Figure 8-8.

Simulation results without J2 effect:

PCO
14 f ‘ ~=e=:- GROM
1.2 tadea2gdjdéatedtodtjlpataealy H!l.“i&l.:, & ;
R HH R HIHATHT R Y
E
o i‘.!!i.igliiil-!."-lsh !
NECE LB e e e L
SRLASCELE BN 6 A
SOHHIHIHHR I B i E
0 5 10 15 20 25 30

P [Orbital Period]

Figure 8-5. PCO/GROM: Relative distance, phase 90 deg. without disturbance
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Figure 8-6. PCO/GROM: Projected views, phase 90 deg. without disturbance

Simulation results with J2 effect added:

P [Orbital Period]

Figure 8-7. PCO/GROM: Relative distance, phase 90 deg. with J2
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Figure 8-8. PCO/GROM: Projected views, phase 90 deg. with J2

According to the results, it is obvious that GROM does not provide a good formation
flight when J2 is added. At 12" — 13" period, deputy satellite is very close the chief,
it is not possible to obtain a stable and constant relative distance with initial conditions

computed using GROM.

Figure 8-9 and Figure 8-10 present the results of the OPTICs compared to the PCO.
Here, the initial relative position is selected according to the desired phase angle 90°
and p =1 km and the initial relative position is forced to obtain circular motion on
YZ plane: x, = Z, = 0 and z, = 2x,, this yields circular yz projection and linear xz
projection The initial position and computed velocity component values obtained by
OPTICs are :

xo = —=500m,y, =0m,z, = 1000 m,
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Xg=29=0m/s ,y, =1.057m/s
And the initial elevation and azimuth angle computed form these initial positions:
a, = 63.4351°, Bo = 180° or 0°

The iteration process given in section 7.3, called as OPTICs, it is initiated with these
values and the computed results are given in Table 8.2. These values force to start the
relative motion on xz plane, having no component on y axis, and it gives best
formation flight scheme, similar to PCO case. Figure 8-9 and Figure 8-10 show the
comparison of PCO and OPTICs forced to have circular relative motion on YZ plane,
with J2 disturbance added.
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Figure 8-9. PCO/OPTICs YZ: Relative distance, phase 90 deg. with J2
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Figure 8-10. PCO/OPTICs YZ: Projected views, phase 90 deg. with J2

These results prove that OPTICs method which is based on well-known Newton’s
iteration method is consistent and gives approximately similar results; obtained with
PCO method for 90 degree phase angle. This is a good verification of the OPTICs.
The following Table 8.2 contains the initial conditions values computed by PCO and
OPTICs. There exist very small differences between PCO and OPTICs initial
conditions. On the other hand, OPTICs provides less deviation on oscillation between
10" and 20™ orbits. Regarding to those differences, it can be stated that the relative
motion is really dramatically sensitive to the small differences on the initial conditions,

especially on initial velocities.
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Table 8.2. ICs of PCO and OPTICs YZ for 90 degree phase angle

PHI=90 PCO OPTICS force circular YZ
Xo [m] -500.0705 | -499.9978

Yo [m] -0.021394 |0

Zy [m] 999.9611 | 1000

Xo[m/s] 8.38E-06 |0

Yolm/s] 1.0567 1.057

Zo[m/s] -4.38E-05 |0

Q [deg] 63.4308 63.4351

B [deg] 1800r0  |1800r0

Unlike the PCO method, OPTICs will provide a formation scheme having circular XZ
projection and YZ projection. However in that case, even if a non-diverged relative
motion is achieved, it is not possible to get nearly constant relative motion; an
oscillation from 1 km to 4km is obtained (Figure 8-11) Recall that for circular xz
projection and linear yz projection it is required to set initial conditions as: x, = Z, =
0 and x, = nz,. Results indicated that it is possible to achieve circular motion in XZ
plane with J2 disturbance added. However, the linear motion obtained on the YZ plane
is oscillatory. The relative motion component p,, changes from -4 km to 4 km. The
initial position and velocity components computed by OPTICs method for circular XZ

are:
Xo =0m,y, =0m,z, = 1000 m, Xo = 1.057m/s, yo =2, = 0m/s
And the initial elevation and azimuth angle computed form these initial positions:

ay, =90°, Bo = 180° or 0°
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Figure 8-12. PCO/OPTICs XZ: Projected views, phase 90 deg. with J2

According to the results obtained it can be stated that PCO and OPTICs forced for
circular YZ motion give approximately similar results, i.e., a stable formation flight.
This verifies the success of OPTICs. Moreover, OPTICs helps to design another type
of formation having circular motion on XZ plane. However, this formation may not
be acceptable for the missions requiring constant relative motion. This design
flexibility of the OPTICs will provide advantages for the phase angles different

then 90°. These cases are considered in the following subsections.
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8.2. Design with 60 degree phase angle

This section contains the results for a phase angle 60° obtained using PCO and
OPTICs methods. First part presents the comparison between PCO and OPTICs force
for YZ circular motion. The second part gives PCO versus OPTICs force for XZ

circular motion.

Results without J2 disturbance:
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Figure 8-13. PCO/OPTICs YZ: Relative distance, phase 60 deg. without J2
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Figure 8-14. PCO/OPTICs YZ: Projected views, phase 60 deg. without J2

Results with J2 disturbance added:
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Figure 8-15. PCO/OPTICs YZ: Relative distance, phase 60 deg. with J2
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Figure 8-16. PCO/OPTICs YZ: Projected views, phase 60 deg. with J2

Figure 8-13 and Figure 8-14 show that undisturbed results are obviously very different
and OPTICs give better formation performance. After 15" orbit the divergence starts
for PCO, but OPTICs stay stable. The drift seen on y axis for PCO is not present for
the orbits obtained by OPTICs. However, the performance difference between PCO
and OPTICs is not as much pronounced when J2 disturbance is added (Figure 8-15
and Figure 8-16). The changes on amplitude of the oscillation of the relative motion
are observable for both propagated orbits of PCO and OPTICs. The simulation is re-
run for 90 orbits, in order to see the difference. Figure 8-17 gives the answer for this

question.
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Figure 8-17. PCO/OPTICsYZ: p for 90 Orbits, phase 60 deg. with J2

The initial conditions computed by the two methods are presented in Table 8.3. From
Figure 8-17, it is seen that the relative error has an oscillating behavior with increasing
and decreasing amplitude for both of the methods. But, the amplitude of the PCO
increase substantially with time, as opposed to OPTICs results. Consequently, it can
be stated that OPTICs provide more resistant results in the long term as compared with
the PCO results.

Table 8.3. ICs of PCO and OPTICs YZ for 60 degree phase angle

PHI=60 PCO OPTICS force circular YZ
X [M] -434.7454 | -433.0108
Yo [m] -500.0303 | -500

zy [m] 865.9962 866.0254

Xo[m/s]  |-0.26419 |6.11E-05

Yolm/is]  |0.91622 0.91555

Zo[mis] | 0.5276 0

o [deg] |52.5795 52.6288

Bo[deg] |-131.0049 |-130.8934
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When the phase angle is equal to 60 degree, the OPTICs give an opportunity to design
a formation for 60 degree phase angle having a circular XZ motion. But in that case,
the relative distance obtained has an osculating motion with varying amplitude from

1 km to 3 km. the results are given in the following figures:
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Figure 8-18. PCO/OPTICs XZ: p for phase 60 deg. with J2
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Figure 8-19. PCO/OPTICs XZ: Projected views of p, phase 60 deg. with J2

OPTICs force for XZ circular motion successively provide this relative motion, but in
y axis the position changes are between +/- 3 km, Y axis has an osculation with an
amplitude of 2 km. despite to this osculation the relative motion is stable, no

divergence is seen. The initial conditions are:
Xo = 0m,y, =433.0127 m, z, = 866.0254 m,
Xy = 0.91547 m/s, yo =z, = 0m/s
And the initial elevation and azimuth angle computed form these initial positions:
ay = 63.4349°, o = 90°

So, it can be stated that, here, OPTICs propose to design two different type of
formation; 1% a formation having circular motion on YZ plane like PCO, and OPTICs
is more stable to the time depended drifts. 2"%: a stable formation having circular

motion on XZ plane is also achieved.
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8.3. Design with 30 degree phase angle

The results obtained for the 30° phase angle is different from the cases presented in
the preceding sections. Here it is seen that OPTICs is forced for circular XZ motion
gives the best solution. The following figures gives respectively the results obtained
from pure OPTICs (without modifying the initial position, the position is taken from
desired phase angle and velocities are computed), OPTICs YZ (circular YZ motion is
forced), OPTICs XZ (circular XZ motion is forced).
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Figure 8-20. PCO/OPTICs for 30 deg. phase angle
1.&23 A r“ | AR A E)E?leYz
MR

o [km]
-

—

—_—

\
RN ERAN A
YW

0 5 10 15 2
P [Orbital Period]

I

25 30

Figure 8-21. PCO/OPTICsYZ for 30 deg. phase angle
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Figure 8-22. PCO/OPTICsXZ for 30 deg. phase angle

The initial conditions computed using the methods are given in the Table 8.4.

Table 8.4. Initial condition for 30 degree phase angle

OPTICS force OPTICS force
PHI=30 PCO circular YZ circular X2
Xo [m] -252.9385 | 216.5054 0.00E+00
Yo [m] -866.0593 | 866.0254 866.0254
zgy [m] 499.9394 | 433.0127 433.0127
Xo[m/s]  |-0.45757 |0 0.45774
Yolm/s]  |053016  |-0.45786 0
Zo[m/s] 091382 |0 0
Qg [deg] |28.9912 25.8767 26.5651
Bo[deg] |-106.2808 |75.9638 90

OPTICs which is not forced for obtaining any circular planar relative motion, is called
“Pure OPTICs” in the following. It does not provide a good formation flight; the
deputy gets closer to the chief satellite at approximately 13" orbit (Figure 8-20).

OPTICs forced for circular planar relative motion in YZ plane, it is not successful to
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have an acceptable formation (Figure 8-21). However, OPTICs forced for circular
planar relative motion in XZ plane, it gives stable motion for this phase (Figure 8-22).
The constant relative distance is not achieved, the relative distance changes between
0.5 km and 1 km like a sinusoidal signal, but the stability is obtained. Figure 8-23
presents projected views of PCO and OPTICsXZ in order to compare them. Here,

simulation time is 30 orbital period.
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Figure 8-23. PCO/OPTICs XZ: Projected views of p, phase 30 deg. with J2

A long term simulation is also run for 90 orbital periods in order to have a good
comparison based on the divergence characteristic of the relative motion, as seen in
Figure 8-24. PCO divergence can be seen very clearly, unlike PCO, the time drift of
the OPTICs XZ is more reasonable. The only disadvantage of these results, constant
relative distance is not achieved, it varies between 0.5 km — 1 km, but it is stable, more
robust to time drifts.
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Figure 8-24. PCO/OPTICs XZ: 90 Orbits, p for phase 30 deg. with J2

Finally, it may be stated that OPTICS method forced for XZ circular relative motion
gives the best formation flight scheme if a 30 degree phase angle is required. It is seen
that when the magnitude of the y component of the relative motion is increase, the
circular XZ motion forced formation design gives the better solution. This will be seen

more clearly for zero phase angle, in the following section.

8.4. Design with Zero degree phase angle

The results obtained for the 0° phase angle is given in the following figures. Like the
phase angle 30 degree case, here OPTICs forced for circular XZ motion gives the best
solution. Pure OPTICs, OPTICs YZ, OPTICs XZ results are given respectively by
comparing them with PCO.
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Figure 8-27. PCO/OPTICsXZ: p for 0 deg. phase angle
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Table 8.5. Initial conditions for 0 degree phase angle

OPTICsXZ
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0
X [km]

OPTICS force OPTICS force
PHI=0 PCO circular YZ circular XZ
Xo [M] 0 250 0
Yo [M] 1000 1000 1000
zy [m] 0 500 500
Xo[m/s] 0.52832 0 0.52855
Yolm/s] 0 -0.52871 -0.00011179
Zy[mis] 1.0551 0 0
@ [deg] 0 25.8767 26.5651
Bo [deg] 90 75.9638 90
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Figure 8-28. PCO/OPTICs XZ: Projected views of p, phase 0 deg. with J2
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Figure 8-29. PCO/OPTICs XZ: 90 Orbits, p for phase 0 deg. with J2

A long-term simulation (for 90 orbital periods) is also run to see the divergence of the
relative motion (Figure 8-29). Drift of PCO can be seen very clearly. Unlike PCO, the
drift of the OPTICs XZ is smaller. The only disadvantage of this result, constant
relative distance is not achieved, it varies between 0.5 km and 1 km, but it is more

robust to time drifts.

8.5. Comparison for an arbitrary phase angle, initial position

In that case, an arbitrary initial formation position is selected in order to analyze the
performance of PCO versus OPTICs. The phase angle is chosen as 70 degree.
Actually, the computed phase angle is approximately 75 degree, the initial position
obtained from PCO and OPTICs computation gives this value. The selected elevation
angle and azimuth angle of the relative position and the initial position and velocity
values computed by PCO and OPTICs are given in the Table 8.6.

292



Table 8.6. ICs for arbitrary selected phase angle

OPTICS force OPTICS force
PHI=70 PCO circular YZ circular XzZ
Xo [M] -485.1216 |-262.0015 -469.8442
Yo [m] -249.2703 |-219.8463 -219.8463
zg [m] 968.4123 | 939.6926 939.6926
Xo[m/s]  |-0.13169 |0 0
Yolm/s] | 1.0239 0.55399 0.99329
Zo[m/s]  10.26298 |0 0
ag[deg] [60.6115 |70 61.1002
Boldeg] |[27.1955 |40.0001 25.0755
Xo [m] 75.56 76.8 76.8

The results obtained are given in Figure 8-30 - Figure 8-34: Pure OPTICs, OPTICs
YZ are given respectively by comparing them with PCO.
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Figure 8-30. PCO/OPTICs: p for 75 deg. phase angle with J2
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Figure 8-31. PCO/OPTICs: Projected views of p, phase 75 deg. with J2
PCO
" " " OPTICsYZ
W ﬁﬂnﬁn Anh“ ,,,, . ,i,,,,,,, ,.
H"! l’[” | AT
, ' | | [ f B [ | ] ’ Y
0 5 10 15 20 25 30
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Figure 8-33. PCO/OPTICsYZ: Projected views of p, phase 75 deg. with J2
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Figure 8-34. Long-term simulation, p for 150 orbital periods

A long-term simulation is also run for 150 orbital periods in order to compare the
divergence characteristic of the relative motion, as shown in Figure 8-34. PCO
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divergence can be seen very clearly, unlike PCO, the time drift of the OPTICs YZ is
smaller. And pure OPTICs nearly does not have a divergence but in that case the
relative motion has osculation between 0.5 km and 1 km. Depending on the mission
requirements, if less deviation is required, OPTICs YZ results can be selected. On the
other hand, if the long-term stability is important for the mission in order to not spend

fuel to correct orbit, the pure OPTICs results can be used.

8.6. Orbit corrections and Maneuver Budgets Comparison

In this section, one of the conditions mentioned above is used in order to compare
orbit correction budgets for PCO and OPTICs cases. The condition with a phase angle
of 30 degree and PCO versus OPTICsXZ results are selected.

Figure 8-35 and Figure 8-36 show deltaV values required for the formation correction,
for both propagated orbits of PCO and OPTICs XZ. For instance, for the orbit obtained
using PCO method, the magnitude of deltaV needed is roughly 5e-3 m/s when the
formation correction is done at 20th orbit. But, for the orbit obtained using OPTICs
XZ method, the deltaV needed doesn’t vary a lot, it can be considered as a constant
value. Maximum magnitude of deltaV required is about 5e-3 m/s for PCO and 1e-3
m/s for OPTICs. The dominant component for orbital correction is on Y axis for both

cases (Figure 8-35).

Figure 8-36 gives only OPTICs deltaV values in order to display clearly the values
computed, since those values are not clearly visible in the first part of the figure when
they are compared with PCO. The ratio between PCO and OPTICs is around 1/5 to
1/10.
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Figure 8-37 and in Figure 8-38 present the relative distance for 30 orbital periods when
periodic firing is applied, it means that in every orbital period required deltaV is
applied. The required deltaV computation is based on the energy matching approach.
The details on this computation are given in the Appendix-F. The following figures
give the comparison of uncorrected and periodically corrected formation for PCO and
OPTICs respectively. The deviation which is about 0.5 km decreases to the 0.25 km
due to periodic deltaV correction. Figure 8-39 presents the consumed deltaV in each
orbital period and the total consumed deltaV. Here, it is seen that total deltaV is about
0.0402 m/s for the PCO case.
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Figure 8-37. p without/with periodically formation correction for PCO
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Figure 8-38. Projection views of p without/with periodically formation correction for PCO
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Figure 8-40, Figure 8-41 and Figure 8-42 present the results obtained for OPTICs case.
The first figure gives the relative distance behavior during 30 orbital periods. The
projected views of relative distance show that there is no significant difference
between uncorrected and corrected formation, it means that it is not actually very
critical to implement any control input to keep the formation for the OPTICs case.
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Figure 8-40. p without/with periodically formation correction for OPTICs XZ
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Figure 8-41. Projection views of p without/with periodically formation correction for OPTICs
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Figure 8-42. DeltaV budget for periodically formation correction in OPTICs XZ

The consumed deltaV for each orbital period is about 4e-4 magnitude and the total
consumed deltaV is roughly 0.02465 m/s for OPTICs case and it is approximately half
of the PCO case (Figure 8-42). Furthermore, the relative distance does not change
substantially. Consequently, the implementation of the correction may be ignored

regarding to the mission requirements.
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CHAPTER 9

SUMMARY OF LEO FORMATION FLIGHT DESIGN

Studies performed for LEO formation flight design are presented in the second main
part of this thesis. The existing methods and the method presented in this thesis are
compared in detailed. According to the results obtained it may be stated that the
presented method, called OPTICs, it provides much better formation flight
performance in terms of formation duration and fuel consumption as well, and it

provides flexibility on the orbit design for formation flight.

The simulations are run for different phase angles. As a first step, the simulations
performed with both unperturbed and perturbed case (J2 disturbance added models)
for 90 degree phase angle. Here, these results prove that the method presented in this
thesis is consistent and gives approximately the similar results with the method
proposed in literature, called PCO. Then, several phase angle conditions are examined
to see the performance of the proposed method, OPTICs. According to the results, it
can be stated that OPTICs provides several types of design and offer more stable
solutions for a lot of cases, as shared in the previous sections. However, for some of
the cases, it is seen that PCO is more successful, but by changing the initial position
set of OPTICs, it means forcing for a selected plane, OPTICs gives more stable
solutions compared to the PCO. Long term simulations are also run (90 or 150 orbital
periods) in order to examine the divergence characteristic of the relative motion.
Finally, fuel consumption budget used for formation keeping presents a good
performance index to compare the methods. It is seen that the fuel consumption value
computed for every orbital period in usage of OPTICs case is approximately half of
the PCO case and the implementation of those corrections may be canceled since the
relative motion is not disturbed a lot. Here, the deviation obtained on relative distance

is in an acceptable interval thanks to the initial conditions computed by the OPTICs.
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CHAPTER 10

CONCLUSION

Designing formation configuration that guarantees long-term formation flight with
minimum or without correction maneuvers to maintain the formation is addressed.
Two different formation cases are examined: trajectories near Sun-Earth system
libration points and orbits around Earth. Therefore, this thesis consists of two major
parts. The first main part contains the explanations on the three body dynamics,
libration points of Sun-Bary system, Halo orbit computation and finally formation
flight design near collinear libration points L1 and L2. The second main part is
dedicated to the formation flight design for LEO satellites, the orbital dynamics
around Earth.

In first part, the main goal is to design halo orbits for each of the formation fleet
members by computing the proper relative initial conditions between chief and
deputy satellites, such that the computed orbits ensure naturally long-term formation
flight without need of orbit correction maneuvers to maintain the desired formation
configuration. For this reason, the main disturbances sources are added on the
discrete model: solar radiation pressure and gravitational force due to the solar
system planets. In first step, it is seen that the gravitational forces due to planets have
a significant effect on the spacecraft trajectory near L1 and L2 and it depends on the

periodic orbital motion of the planet, as expected.

Differently shaped formation clusters are analyzed in order to understand the effect
of the initial relative position on the relative trajectory. The results show that the
relative initial condition set creates different relative distance characteristic. Some
results have high deviation from desired relative distance, some results have peaks
and valleys like a sinusoidal motion, some of them have high deviation rate while

other have low, some of them have only one summit or bottom, etc. Finally, an initial
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condition set that provide minimum deviation is found for both near L1 and L2
trajectories. It is noticed that various type of formation schema can be formed using
computed optimal relative initial conditions. Minimum deviation obtained for both
L1 and L2 is around 0.15 kmfor a desired relative distance of 1 km. All formation
configurations given in this thesis show that it is possible to modify or create a
formation cluster according to the mission requirements. The method presented in
this thesis, named OPTICs, makes it possible to obtain an effective formation flight
by computing convenient initial velocities for desired initial relative positions. In
summary, square shaped planar and rectilinear formations are generated and
investigated. Inclined square shaped planar formation may be useful for the mission
requiring quasi-constant relative distance with respect to the chief since deputy pairs
make periodic relative trajectory around chief. This formation configuration may be
considered for the concepts similar to those of DARWIN and ESPRIT projects.
Rectilinear formation on the other hand may be good for mission that requires
aligned multiple satellites since identical relative motion is obtained for each
successive deputy satellite. For instance, this may offer great advantages for the post-
processing operations done on the payload measurements. Furthermore, this
rectilinear formation is more flexible in terms of multiplying the number of satellites,
it allows to expand the formation fleet. In terms of performance, it is seen that
computed formations are maintained roughly for one orbital period of time,
approximately half Earth’s year, without the need for any correction maneuvers for

formation keeping.

The second main part of this thesis contains the formation flight design and analyses
for the LEO satellites. OPTICs is reconfigured for LEO dynamic. OPTICs, PCO and
GROM methods are compared. It is observed that OPTICs gives consistent results

and provides flexibility on the orbit design for formation.

Fuel consumption is a critical issue for LEO formations. Therefore, long term
simulations are run (90 and 150 orbital periods) to examine the divergence
characteristic of the relative motion. So, fuel consumption budget used for formation
keeping is a good performance index to compare the methods. Results indicate that
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fuel consumed for formation maintenance is almost halved by the OPTICs method
compared to the implementation of the PCO method. Furthermore, the formation
corrections may be canceled since the deviation of the relative motion is not at a
critical level, it is in an acceptable interval due to the initial conditions computed by
the OPTICs.

Finally, it may be stated that the trajectory and orbit computation done using the
method given in this thesis provide long term formation flight. For L1 and L2
mission cases, the important parts of this method are the usage of all disturbance
sources in the time variant discrete time model for different Julian date intervals and
find the initial condition set iteratively that ensure the periodic trajectory. For LEO
mission case, the usage of time variant discrete time model to obtain periodic relative

motion is a feature that distinguishes it from the existing methods.

Possible future studies that can be performed may be listed as follows: The
disturbance characteristic of the solar system planets may be defined as a polynomial
in trigonometric form, using Fourier series, depending on the Julian date and they
can be added on the equation of mation in this form. In this way, it may be possible
to compute analytically the initial conditions ensuring less deviated relative distance
between chief and deputy satellites. Proposed procedure may be used for triangular
libration points L4 and L5. Formation flight fleets can be design for different three-
body systems, for instance Sun-Jupiter-Spacecraft using the methodology given in
this thesis.
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APPENDICES
A. Reference Frames

i. Heliocentric Coordinate System

In Heliocentric system, since the Helios was the personification of the Sun in Greek
mythology, the sun is at the center of the system. The unit vector x is directed from
Sun’s center towards vernal equinox, the unit vector z is the normal of the
fundamental plane named as ecliptic plane and it is directed towards celestial north

positively. The unit y vector completes the setup according to the right-hand rule.

Winter solstice
Springquinqit‘_ B~ et it T -~

(e Y_heli

RN

g Earth
:‘ ~
Summeréblstice
Ny '-,:\

&) - X_heli

e _.-="  Eart 3
Earth Rl I P s, 8 S T Vernal equinox

Autumn equinox

Figure A.1. Heliocentric Coordinate System
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ii. Synodic Reference Frame

Synodic reference frame is defined for two massive primaries, for example for the
Sun and Earth-Moon Bary. The center of mass of those primaries is the center of the
synodic reference frame. The x axis is passing through the Sun and Bary (Earth +
Moon), it is aligned towards the Bary. The z axis is perpendicular to the ecliptic
plane. The y-axis completes the right-hand Cartesian coordinate system. The main
property of this frame is that: This frame has a same angular velocity as that of the
primaries. For that reason, it is this very useful for three-body dynamics studies: The
primaries are fixed, and additionally Lagrange points of this three-body system is
also fixed, since they rotate with same angular velocity of the second primary around
the main primary regarding to the inertial reference frame. And the motion of the
third body can be easily defined using this fixed reference frame regarding to the

primaries. The following figure illustrates the synodic reference frame.

Figure A.2. Synodic Reference Frame
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iii. Earth-Centered Inertial (ECI) Reference Frame

The ECI frame is assumed to be a non-accelerated frame used for navigation, which
is fixed in space with respect to the fixed star defined by the axes X;,Y;,Z;. The
origin of the ECI is located at the center of the Earth with the z-axis pointing towards
the North Pole. The x-axis is in the vernal equinox direction, the point where the
plane of the Earth’s orbit about the Sun, crosses the Equator going from south to
north. The y-axis completes the right-hand Cartesian coordinate system. The motions
of the satellite, the velocity of the Orbit frame and the motion of the Sun is directly
compared to this frame. This reference frame is sometimes called as Geocentric

Reference Frame.

T —

- Yeci

Right Ascention" >~

- ™ |
-
- — -
e i i i e -
Rl i

Xeci
Vernal equinox

Figure A.3. Earth-Centered Inertial (ECI) Reference Frame
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iv. Earth-Centered Earth Fixed (ECEF) Reference Frame

The ECEF frame has its origin at the center of the Earth and axes which are fixed
with respect to the Earth (X,, Y., Z.). The x-axis lies along the intersection of the
plane of the Greenwich meridian with the Earth’s equatorial plane. The y-axis
completes the right hand system. The earth frame rotates, with respect to the inertial
frame, at a rate w, = 7.2921 X 10~ °rad/s (15.0417 °/h) about the z-axis. The
ECEF frame can be used to express the geomagnetic field around the Earth, along

with an orbit estimator to create a reference model.

Xeci
Vernal equinox Xecef

Figure A.4. Earth -Centered Earth Fixed (ECEF) Reference Frame
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v. Perifocal Reference Frame

Perifocal reference frame is centered at the Primary bodies of two (or three) body
system. The fundamental plane is the orbital plane. The x-axis lies along the periapsis
form the center of the Primary. The z unit vector is normal to the plane and y

completes the right-hand system.

Figure A.5. Perifocal Reference Frame

vi. Orbit (ORB) Reference Frame

The ORB frame has its origin at the mass center the satellite, defined by the axes
Xorvr Yorn, Zorp- This origin rotates relative to the ECI frame, with a rate of w,,,
depending on the altitude of the orbit. The z-axis lies towards the center of the Earth.
The x-axis points in the direction of motion tangentially to the orbit. It is important
to note that the tangent is perpendicular to the radius vector only in case of a circular
orbit. In case of a elliptic orbits, the x-axis does not align with the satellite’s velocity
vector. The y-axis completes the right hand system. The satellite attitude is described
in this frame. This frames is also called as Local vertical Local horizontal (LVLH)

frame is some references.
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Figure A.6. Orbit (ORB) Reference Frame

vii. Polar Rotating Reference Frame

It is centered at the primary and the plane is the orbital plane. The unit vector r is
directed radially towards out from center of the primary. The angle 6 is the angular

position from perigee to the secondary (satellite) position, this is the angular path

and its direction is counterclockwise.

Satellite

Figure A.7. Polar Rotating Reference Frame
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B. Orbital Parameter Computation

The position and the position change of the deputy expressed in ECI reference frame
is needed to determine orbit parameters. The deputy position in ECI is computed as
follows:

Position vector of the deputy expressed in chief LVLH frame.

r s
Chlefl Eq A-1

rdeputyLVLH =p+t [ 8

Finally, the deputy's position vector that is expressed in LVLH frame of the chief

satellite is transferred to the ECI frame:

rdeputyECI = rdECI = T(]IE}(lziIefLVLH rdeputyLVLH Eq' A2
And;
: _ . _ Eg. A-3
Tdeputypep = Tdger = (rdECIt+At - rdECIt) /At a
Latitude and Longitude of the deputy:
: — - Eqg. A-4
longitudegepyyy = A = tan™! (ry—dECI/rX—dECI) q
latitudegepury =Y = sin‘l(rz_dECI/|rdECI|) Eg. A5
a. semi-major (a) axis computation:
1. 2 W -
Energy = €geputy = 3 |rdECI| e e Eq. A-6
|rdECI|
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__r
2 €deputy
6378137
\/1 + 0.0818191908426%sin?(y)

adeputy =

REarth =

AltitUdedeputy =H= Adeputy — REarth

b. Right Ascension of Ascending Node (1) computation:

0
Kgcr = |0
1
h = r'deputyECI X I"deputyECI
h
Kger X Thi
1 i
p h
Kgep X —|
ECT ™ TR
I
Q=tan?! (ﬁ)
Ip,

c. Inclination (i) computation:

h
i=cos™1! (K T —)
BCL g

d. Argument of perigee (w) computation:

1 . 2 u i
ey = m ('rdECI| - ﬁ) Tdger — (rdECI ' rdECI)rdECI
dgcI
e = _levl

w = cos™* (sign(ey " Kgc) Ip" ey) — /2
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Eq. A-7

Eq. A-8

Eqg. A-9

Eq. A-10

Eq. A-11

Eq. A-12

Eq. A-13

Eq. A-14

Eq. A-15

Eq. A-16

Eq. A-17



e. True anomaly (f) computation:

0 = cos™1| IpT (—rdECI ) Eq. A-18
|rdECI|
P Eq. A-19

f. Eccentric anomaly (E) computation:

1—e f
E = 2tan~! T5e tan (E) Eq. A-20

g. Mean anomaly (M) computation:

M = E — e sin(E) Eg. A-21

C. Initial Condition Computation via Energy Matching

Here, there are 6 unknowns for initial condition computation; 3 position components
and 3 velocity components. It is possible to make equal chief and deputy energy by
taking five of six unknowns as given and computing one unknown using the

following equation.

Echief — €deputy = 0 Eq. A-22
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1 . _
_E{(x — Ochiery + 7"chief)z + [V + Ocnies (x + rchief)]z + Z'Z}
H 1 0 Eq. A-23

2Q.1;
2 chief
\/(rchief-l_x) +y2 +Z2

a. For x,vy,2,y,zare given, x is computed using following equations:
Let:
T = Tchief
X=x+r
A=(t—by+7)
B2 Eq. A-24
E =p/a,
D = y? + z2

2u —0
VX2 +D

yields

S A+B+[y+0x] +E- Eq. A-25

yields X6(94) +X5(4}} 93) +X4(6}729 + DO* + ZFQZ)

+X3(49°%0 + 4Dy6° + 4Fy0)
+ X2(F? + y* + 6Dy?6 + 2Fy? + 2FD§?) EQ. A-26
+X(4Dy3 + 4FDyb )
+ (DF? + Dy* + 2FDy? — 4u?) =0
Solution of this 6™ order equation gives the value of X
b. For x,y,Z2, x,zare given, y is computed using following equations:
Let:
T = Tchief
: 2 -
A=(y+0Gc+1) Bq. A-27

B = 72
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E =u/ao
C=x+r71
D=(x+71)?+z?

yields . 2 2/1
— (C-6y)"A+B - ———
(€~ 6) D

yields

— y°(6*) + y5(—4C03) + y*(2F6% + 6C262 + D6*)
+y3(—4FCH — 4C30 — 4CD6?®)
+y%(F? + 2FC* + 2FD6?* + C*
+6DC?6%) + y(—4DFCO — 4DC36 )
+ (DF? 4+ 2FDC? + DC* — 4u?) = 0

Solution of this 6" order equation gives the value of y

Eq. A-28

Eq. A-29

For x,vy,2,x,y are given, z is computed using following equations:

Let:
r= rchief
A=(x-6y+7)
B = (3'/ +0(x +r))2

E=p/ag

C = z?

D=(x+1)+y?
yields 2 4#2

z?% + D?

ield 442
s,y 4

Solution of this equation gives the value of z

=0
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Eq. A-30

Eq. A-31

Eq. A-32



d. For y,zx,y,zare given, x is computed using following equations:
Let:

r= Tchief
A= (y +0(x +r))2

B = z?

_ 2 Eq. A-33
JE+1)2+y2 + 22

D=r-0y
E=yp/a,
F=A+B—-C+E

ield

Y G+D)?+A+B-C+E=0 Eq. A-34
ield

e ¥ +%2D+ (D> +F) =0 Eq. A-35

Solution of this equation gives the value of x

e. For x, z,x,y,zare given, y is computed using following equations:
Let:
r= rchief
A=(x—6y+7)°
B =72

_ 2u
Jax+1)2+y2 + 22
D=6(x+r)

Eq. A-36

E=—
Qo

F=A+B—-C+E

ield
S Y24+ 92D+ (D*+F) =0 Eq. A-37
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Solution of this equation gives the value of y

f. For x,y,x,y,zare given, z is computed using following equations:
Let:

r= rchief
A= (J'c—éy+r')2
B = (y+9(x+r))2

2 Eq. A-38

CJa+r2 2422

E=yp/a,
F=A+B—-C+E
yields
— 22+F=0 Eq. A-39

Solution of this equation gives the value of z

z=+VF Eq. A-40
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D. Orbit Propagator Model

Keplerian orbit, in other word Kepler’s equation is used to model the orbital motion
of the LEO satellites. As known; the physical laws describing the motion of planets

were first described by Johann Kepler. Kepler’s three laws state that:

1. The orbit of each planet is an ellipse, with the Sun at one of the foci.

2. The line joining the planet to the Sun sweeps out equal areas in equal times.
3. The square of the period of a planet is proportional to the cube of its mean
distance from the Sun.

Kepler’s laws are the basis for the Keplerian elements, called also orbital elements,
which are used in predicting a satellite’s orbit and position. The Earth is at one focus
of the ellipse. The two foci coincide with the center in the case of the circular orbit
and as a result, the Earth takes its place at the center of the ellipse [80]. The Orbit
Propagator Model used in the simulation is given in Keplerian elements. See Figure

A.8 and Figure A.9 for visual description of all the Keplerian elements [81]:

1. Orbital Inclination

2. Right Ascension of Ascending Node (R.A.A.N.)
3. Argument of Perigee

4. Eccentricity

5. Mean Motion

6. Mean Anomaly
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i Inclination
0 Righ! Ascension of ascending node
w Argument of perigee
v True arnomwahy

YVarnal
equinox

Satellite

maridian

Line of
MNodes

Figure A.8. The Keplerian Elements [80]

ECM Earth's Cenler of Mass
A SEMmimajonr-axs

b semiminor-axs

& eccentriciy

v True anomabhy

E Eccanlrie anamaky

ECM

Figure A.9. The Keplerian Elements in plane [80]

These elements describe the position of the satellite at a specific time. The most

widely used format for this time is called epoch (Julian Date) that gives the year and

day of the year as a decimal number. Based on this time, the ascension of the zero
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meridians (0), can also be calculated. The rotation between ECI and ECEF reference

frame given by:

cos@ sin@ O
Eq. A-41

Ci=Cpp = [— sinf cos6 0
0 0 1

The following four Keplerian elements specify the orientation of the orbital plane,
the orientation of the orbit ellipse in the orbital plane, and the shape of the orbit
ellipse [80]:

Orbital Inclination (i):

The inclination is the angle between the orbital and equatorial plane. By convention,
inclination is a number between 0 and 180 degrees. Orbits with inclination near 0
degrees are called equatorial orbits and orbits with inclination near 90 degrees are
called polar. The intersection of the equatorial plane and the orbital plane is a line
which is called the line of nodes. The line of nodes is more thoroughly described

below.

Right Ascension of Ascending Node (Q):

The line of nodes intersects the equatorial plane two places: One of them the satellite
passes from south to north, this is called the ascending node and the other node where
the satellite passes from north to south is called the descending node. The angle
between the ascending node and the vernal equinox is called the right ascension of
ascending node. By convention, the right ascension of ascending node is between 0
and 360 degrees. The combination of the right ascension of ascending node and the
inclination defines the orbital plane in which the elliptic orbit lies.
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Argument of Perigee (w):

In the ellipse, the closest point to the focus point, in which the earth lies, is called
perigee, and the farthest point from the earth is called apogee. The angle between
the line from perigee through the center of the earth to the apogee and the line of
nodes is the argument of perigee. This angle is defined as the angle from the

ascending node and by convention it is between 0 and 360 degrees.

Eccentricity (e):

The eccentricity is given as

e= [1-2 Eq. A-42

where a is the semimajor-axis and b is the semiminor-axis. The semimajor-axis is
half the distance between the apogee and the perigee, and semiminor-axis half the
length between the edges perpendicular to a. For an ellipse, e is between 0 and 1.

For a perfect circle a = b and thus e = 0.

The following Keplerian elements is time varying and specify the position of the

satellite in orbit using the previous four elements describing above [78].

Mean Motion (n):
The mean motion is the average angular velocity describes the size of the ellipse. It

is related to the semimajor-axis using Kepler’s third law:

= \/% Eq. A-43

where u, = G.M,, G is the Earth’s gravitational constant and M, is the mass of the
Earth.
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Mean Anomaly (M):

Mean Anomaly defines the position of the satellite in the ellipse. It is an angle that
marches uniformly in time from 0 to 360 degrees during one revolution. It is defined
to be 0 degrees at perigee and 180 degrees at apogee. There is an important point to
note that in a non-circular ellipse, this angle does not give the direction towards the
satellite except at perigee and apogee. This is because satellite does not have a

constant angular velocity.

The direction from the earth center towards the satellite is called true anomaly (v)
and the direction from the center of the ellipse towards the point on a circle is called
eccentric anomaly (E). The relationship between true anomaly and eccentric

anomaly is:

cosE—e

cosv = Eq. A-44
1-ecosE
V1 — e2qj
sinvy = ﬂ Eq A-45
1—ecosE
And the relationship between mean anomaly and eccentric anomaly is:
M =FE —esinE (t) Eq. A-46

The orbit propagotor model can now be made by using the cahnge of the mean
anomaly in time. The prediction of the future position becomes relatively straight
forward tahnks to keplerian elements for a single point in time. Given the Keplerian

elements for a time, t,, a prediction of the orbit is:
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where t is the time passed since t,. Eq.13-47 describes the motion of the spacecraft
in ECOF, coordinates. To transform this to ECEF frame it is required to solve

Kepler’s equation which relates the eccentric anomaly to the mean anomaly.

E(t)=M(t) +e-sinE (t) Eq. A-48

This equation can be solved iteratively such as:

Ei,1 =M+ esink; Eq. A-49

It is taken E, = 0 for the initial condition as does Newton method and finally the

following solution is obtained:

M+esinE;—E;
1—ecosE;

Eji =E + Eqg. A-50

Finally, the vector from the center of the Earth to the satellite expressed in the ECOF

is formulated by using the eccentric anomaly as follows:

cosE —e

ro¢ = a|Vi—=eZsinE Eq. A-51
0

The orbit propagator can now be implemented in ECI frame and ECEF frame:

rl = Cl.r%¢ = C,(-0) C. (i) C,(—w) 7°¢ Eq. A-52

rE = CE.r9C = C,(—0 + 6) Co(—i) C,(—w) r°€ Eq. A-53
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where Q is the Right Ascension of Ascending Node, i is the inclination of the

satellite, o is Argument of Perigee and 0 is the ascension of the zero meridians.

An orbit propagator based only on the Keplerian elements will degrade in accuracy
over time. In order to prevent from this error, certain improvements utilizing known
irregularities can be made. The biggest source of degradation is the nonspherical
shape of the Earth. The deformation is often parameterized by the geopotential
function as described in Wertz and Larson (1999), which uses the deformation
coefficients J; for it" order deformations. The other error sources which are less
influence on the perturbations of the spacecraft’s orbit can be listed as gravitational
forces from the sun and the moon, tidal earth and ocean, and different
electromagnetic radiations [82]. In the following sub-sections, the descriptions of

these perturbations are given respectively:

Perturbations due to the nonspherical Earth

The earth has not a perfect spherical shape; actually, it has a bulge at the equator, is
flattened at the poles and is slightly pear-shaped. This imperfect form leads to
perturbations in all Keplerian elements. In the second order deformation of the Earth
it is considered that the Earth is partly flattened, and leads to the largest perturbations
in the Keplerian elements. According to the Lagrange planetary equations, the
flattening factor J,is governed by using the time derivatives functions of the right

ascension of the ascending node and the argument of perigee:

: 3 cosi

Q2 = = 31Raren gy )2 Eq. A-54
) 3 5cos?i—1
Wy = ZnRgarth m]z Eq. A-55

= 3 Rearth 2 . 2
n—n+4]2n(a(1_ez))\/1 e?(2 — 3 sin*(i)) Eqg. A-56
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where R,,+,1S the Earth radius, and the numerical value of J, for the Earth is
1.08284 - 1073,

Perturbations due to the sun and the moon

The Sun and the moon cause periodic variations in all Keplerian elements. There are
only secular perturbations to the right ascension of the ascending node and the
argument of perigee. An approximation is suggested by Wertz and Larson (1999) for
nearly circular orbits as [82]:

cosi

Qg = —0.00154 - Eq. A-57
. cosi
Dmoon = —0.00338 Eq. A-58
And
25
@sn = 0.00077 22 Eq. A-59
, 5cos?i—1 Eq. A-60
Dmoon = 0.00169 ———— q. A-

where n is the number of the revolution per day and £ and @ units are given in

degree/day.
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E. Equations of Motion Added J2 Effects

The perturbation model due to J2 is derived using the mean orbital elements. The
following model gives a method to add J2 perturbation for the nearly circular orbit.

The equation of the relative motion can be written in matrix form as follows [73]:

T|_ :u(rchief + p) .urchief

ﬁlOrb =C 3 3
|Tchief + P| |Tchief| Prf Eqg. A-61

_(25p|0rb + @ plOrb + 52 plOrb) + ACC]Z

where p is the relative position vector, w is the angular velocity vector of the orbital

frame with the component:

w=[0x Wy W] Eq. A-62

Wy = Qchier SiN(ichier) SIN(Ochier) + ichier €0S(Bchier) Eq. A-63
@y = Qechier SIN(ichier) €OS(Bchier) — ichier SIN(Ochier) = O Eq. A-64
®; = Qcnier COS(ichier) S + Ochier Eq. A-65

Here, O.pjer IS the argument of latitude, i.pjer is the inclination of the chief’s orbit,

Qcnier 1S the longitude of the ascending node.

The acceleration due to J2 perturbation is denoted as Acc;, and the Linearized

differential acceleration vector of this can be written as follows:

1—352(i) s%(6) s2(i)s(26) s(20)s()
7 1 1
Accp —or| S5O SO Go@-3)-7  -ozsseos® |, Eg.
20)s(6 0.255(20)s(8 20 (2 s20) 4 2) - A-66
s(2i)s(0) —0.255(2i)s(0) s(L)(ZS()_|_E)_Z
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Where sin (x) is denoted by s(x) and cos (x) is denoted by c(x) and

r = Rgarth
=2k \ =3 Eq. A-67

Tchief

On the other way, this J2 model added equations of motion can be written as follows
[79]:

X 3 R? z?
P 1-)5 ;“”"(5 . —1)
m|x| Tchief \ Tchief
3 R? 72
j=——t2 1= ;“”"(s . —1) Eq. A-68
m|x| rchief rchief
z 3 R? z2
P 1-)25 ‘;“”h<5 . —3)
mlxl rchief rchief

This J2 model is added to the simulation in order to see relative motion characteristic

under disturbed environment.

F. Control Force Computation to Keep LEO Formation

The computation of the control forces required for keeping formation is based on
the energy matching approach: the energy of the chief and deputy satellites must be

equal.
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1
E{(vx + Av)? + v, + Avy]z + [v, + sz]z}
p L _,  EqA69

\/(Tchief + X)z + y2 + z2

2achief

Where; v,, v, v, are the current velocity components of the deputy satellite. And
Av,, Avy, Av, are the required deltaV values in order to keep the formation. The

current velocity components of the deputy satellite can be written as follows:

Uy X — Qchiefy + f'chief
Zy = |7 + Ocnier (X + Tenier) Eq. A-70
: .
A

And finally, required deltaV is computed using following equation set:

Av, Uy
Avy | = [Vy] I Eq. A-71
AUZ Uz
where;
DA —
r=—-1 + 1 ll( Achief 1"deputy) Eq. A-72
Vdeputy Achief Fdeputy
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G. Poincaré Maps

Henri Poincaré invented a new mathematical method in order to answer the stability
question using geometric arguments, rather than analytic methods [84]. This method
produces the modern fields of differential geometry and topology. Poincaré prove
that the three-body problem is stable due to the existence of periodic solutions [89].
So, Poincare maps are a fundamental tool for analyzing flows in the dynamical
systems. This map gives much more global picture of the dynamics of a system than

the linear analysis [83].

The choice of Poincare map can reduce the dimension of the system. The discrete
dynamical system generated by the Poincare map gives a lower bound on the
complexity of the dynamics of the flow. Period points in the Poincare map expose

periodic orbits in the flow.

X4
X
15t period

M1 M2 x
@ ; @ —

)

< \m3

2 !

X

Figure A.10. One period run to visualize first period

The procedure to construct Poincare Map can be listed as follows:
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e The mass of the third body is negligible compared to the primary bodies:
M1>>m3 and M2>>m3

e The third body, m3 is placed on the z axis with the initial velocity parallel to the
axis as well

e then, the motion of the third body will be restricted to the z axis

e Itis needed to know the position of the primaries (rl1 and r2) and the position and
velocities of the third body (r3 and v3) in order to describe the states of the dynamical
system

e For an Initial Condition of the system, the angular variable and the velocities of
the third body every time it crosses xy plane is marked. An Initial Condition has to
be integrated as long as necessary to find i number of intersections within the xy
plane. Finally, the angle of the primaries and the magnitude of the velocities are
plotted).

¥4
:
1st period

e

Figure A.11. Two periods run to see unperiodicity

e The intersection marks which seems to be filled densely correspond to periodic
motion which is not a rational multiple of the period of the primaries,
e While “spotted” filling (every time the same location on xy plane is crossed) is

periodic motion whose frequency is a rational multiple of the primary period.
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Two examples with equal M1=M2 having an orbit with an eccentricity value 0.5
and 0:

intersection time

Figure A.12. Poincare map for primaries having equal mass with e=0.5

R R e

B e .

bessses ; eweesw

I e St b ——:. ... |

e

[0 mam—" s sontn  —— S —— . —— SoRE=

0 i i i i i i
o 1 2 3 4 5 B 7
Intersection Time

Figure A.13. Poincare map for primaries having equal mass with e=0
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This methodology is used to get Poincare map for the primaries Sun and Bary
(M1=Sun and M2=Bary), and the following results are obtained, given in Figure
A.14, Figure A.15, and Figure A.16. Here the iteration process is run for an x interval
0.978au to 1.006au. the “dot” markers are obtained when the same position is
obtained for every orbital time period. The lines formed by adjacent points shows

that different positions are crossed every orbital time period.
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Figure A.14. Poincare map for L1 of Sun-Bary system
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Figure A.15. Poincare map for L1 of Sun-Bary system- Zoomed view-1
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Figure A.16. Poincare map for L1 of Sun-Bary system- Zoomed view-2
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H. Ephemeris Model

The ephemeris model is constituted to compute the positions of the planets regarding
to the Sun in synodic reference frame by using Julian Date in order to computes the
accelerations caused by the gravitational forces of the planets. Julian Date is a kind
of time measurement system for scientific use by the astronomy community. It is
the interval of time in days and fractions of a day since 4713 BC January-1
Greenwich noon, that is at 12:00 Universal Time [87]. In order to get the position of
a planet for a specified date, it is needed to convert the calendar date to the Julian

date. The following steps are done for this conversion:

JD = bias + 1720994.5 + day + int(30.6001 x (month + 1)) Eq. A-73
+int(365.25 X year)

Here, note that the value of year and month must be modified for January and

February using the following equations:

if month =1 or month = 2
month = month + 12 Eq. A-74

year = year — 1

And if the date selected is equal of greater than 15 October 1582 (dates in Gregorian
calendar) the bias must be calculated as (bias = 0 for the date before 15 October

1582):
N . (year\ . year Eq. A-75
bias = 2 — int (—100 ) + mt(—400 )

This Julian date value is used to compute the time measured in Julian centuries of

36525 ephemeris days from the epoch January 1900, that is:
Time = (JD — 2415020)/36525 Eq. A-76
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Here Time value is expressed in centuries, and it is negative for the dates before
1900.

The positions of the Planets are defined using its orbital elements and those orbital
elements are expressed in time dependent polynomial form:

Orbital Element = Orb, = ¢y + it + c5t? + c5t3 Eq. A-77

Orbital elements can be listed as:

L: mean longitude of the planet (deg)

a: semimajor axis in AU

e. eccentricity

i: inclination on the plane o f the ecliptic (deg)
w: argument of perihelion (deg)

Q: longitude of ascending node (deg)

The following table presents the values of the polynomial’s constants for orbital

elements for each of the planets [86]

Table A.1. Polynomials constants for orbital elements of planets

MERCURY L a e i ) Q
Co 178.179078 0.3870986  0.20561421  7.002881 28.753753 47.145944
c 149474.07078 O 2.046e-5 0.0018608  0.3702806 1.1852083
() 3.011e-4 0 -3.0e-8 -1.83e-5 1.208e-4 1.739%-4
C3 0 0 0 0 0 0

VENUS L a e i W Q
Co 342.767053 0.7233316  6.82069%-3  3.393631 54.384186 75.779647
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Table A.1. Polynomials constants for orbital elements of planets (cont’d)

c 58519.21191 0 —4.774e-5 1.0058e-3 0.5081861 0.89985
Cy 3.097e-4 0 9.1e-8 —1.0e-6 —1.3864e-3 4.100e-4
Cs 0 0 0 0 0 0
EARTH (*) L a e i M® 48
Co 99.69668 1.0000002 1.675104e-2 O 358.47583 L-M
(o 36000.76892 0 -4.18e-5 0 35999.04975 L-M
Cy 3.025e-4 0 -1.26e-7 0 —1.5e-4 L-M
C3 0 0 0 0 -3.3e-6 L-M
MARS L a e i W Q
Co 293.737334 15236883  9.33129e-2 1.850333 285.431761 48.786442
(o 19141.69551 0 9.2064e-5 —6.750e-4  1.0697667 0.7709917
Cy 3.107e-4 0 —7.7e-8 1.26e-5 1.313e-4 -1.4e-6
C3 0 0 0 0 4.14e-6 —5.33e-6
JUPITER L a e i ) Q
Co 238.049257 5.202561 4.83347e-2 1.308736 273.277558 99.443414
c1 3036.301986 0 1.64180e-4 —5.6961e-3  0.5594317 1.0105300
Cy 3.347e-4 0 —4.676e-7 3.9e-6 7.0405e-4 3.5222e-4
C3 —1.65e-6 0 -1.7e-9 0 5.08e-6 —8.51e-6
SATURN L a e i W Q
Co 266.564377 9.554747 5.58923e-2 2.492519 338.307800 112.790414
c 1223.509884 0 —3.4550e-4  -3.9189%-3 1.0852207 0.8731951
cy 3.245e-4 0 —7.28e-7 —1.549e-5 9.7854e-4 -1.5218e-4
c3 —5.8e-6 0 7.4e-10 4e-8 9.92e-6 —5.31e-6
URANUS L a e i ) Q
Co 244197470 19.21814 4.63444e-2 0.772464 98.071581 73.477111
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Table A.1. Polynomials constants for orbital elements of planets (cont’d)

c1 429.863546 0 —2.658e-5 6.253e-4 0.9857650 0.4986678
Ccy 3.160e-4 0 7.7¢-8 3.95e-5 —1.0745e-3 0.0013117
c3 -6.0e-7 0 0 0 —6.1e-7 0
NEPTUNE L a e i w Q

Co 84.457994 30.10957 8.99704e-3  1.779242 276.045975 130.681389
(o 219.885914 0 6.330e-6 —9.5436e-3  0.3256394 1.0989350
Ccy 3.205e-4 0 —2e-9 —9.1e-6 1.4095e-4 2.4987e-4
C3 —6.0e-7 0 0 0 4.113e-6 —4.718e-6

(*) Earth’s orbital elements is defined differently from the other solar system planets, because inclination of
the Earth’s orbital plane is taken zero as it is on the ecliptic plane. For this reason, the value of w and Q are
not determined.
The initial position of the planets can be computed by using the equations and
constants given above. Then orbit propagator can be run for each of the planets. The
orbital period and the mass of the planets of the solar system is represented in the

following table.

Table A.2. Period and mass of the solar system planets

Planet Period Mass

Mercury | ~0.24 years (87.97 days) 3.3022x1e23 kg

Venus ~0.616 years (224.70 days) 48.685x1e23 kg

Earth ~1 year (365.25 days) 59.720x1e23 kg
(60.455x1e23 with Moon)

Mars ~1.88 years (686.98 days) 6.4185x1e23 kg

Jupiter | ~11.86 years (4332.82 days) 18986 x 1e23 kg
Saturn ~29.45 years (10755.70 days) | 5684.6x1e23 kg
Uranus | ~84 years (30687.15 days) 868.10x1e23 kg
Neptune | ~164.79 years (60190.03 days) | 1024.3x1e23 kg
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In the Ref.[85] the list and the details about the dynamical model of planetary

ephemeris model are shared.

The detailed equations and explanations on Hemispheric coordinate system are given
in Ref.[88]. These references present Keplerian elements for planetary orbits and

determine their precision for the dates from 1950 to 2050.

I. Execution Times of the Algorithms

Benchmark Tests:

The algorithms, models used in this thesis are coded using Matlab 2012a version.
The simulation environment and graphics are constituted using Matlab editor and
Simulink. The following steps are performed in order to analyze the performance of

the computer used and the codes prepared.

Benchmark test of the computer is done. This benchmark test is performed by
“bench” command of the Matlab. The command “bench” run six different Matlab
tasks and compares the execution speed with the speed of several other computers.
The six tasks are listed in the Table A.3:

Table A.3. Tasks used in Matlab Benchmark test

LU: LAPACK; Floating point, regular memory access.

FFT: Fast Fourier Transform; Floating point, irregular memory access.
ODE: Ordinary differential equation; Data structures and functions.
Sparse: Solve sparse system; Sparse linear algebra.

2-D: plot(fft(eye)); 2-D line drawing graphics.

3-D: MathWorks logo; 3-D animated OpenGL graphics.

A bar chart is obtained and it shows speed. Here, longer bars indicate faster

machines, shorter bars indicate slower.
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The properties of the computer used:

System
Rating: Systemn rating is not available
Processor Intel(R) Core(ThA) 15-2450M CPU @ 2.50GHz 2.50 GHz

Installed memorny (RAM): 800 GE
Systern type:

64-bit Operating Systermn

Figure A.17. Computer properties

The benchmark results of the computer are given in the Figure A.18 and Figure A.19.

Computer Type Lu FFT 0ODE Sparse 2-D 3-D
Linux (64-bit) 3.47 GHz Intel Xeon 0.0582 0.0541 0.1458 0.1208 0.1969 0.0889
Windows 7 Enterprise (64-bit) 3.47 GHz Intel Xeon 0.0664 0.0722 0.1056 0.1305 0.2772 0.7000
Windows 7 Enterprise (54-bit) 2.7 GHz Intel Core i 0.0834 0.1147 0.0902 0.1424 0.2927 0.6880
This machine 0.1037 0.1505 0.0872 0.16886 0.3547 0.7585
Mac OS5 X Lion (64-bit) 2.66 GHz Intel Xeon 0.0445 0.1251 0.1829 0.1858 0.6658 0.6193
Windows 7 Enterprise (54-bit) 2.66 GHz Intel Core 2 Quad 0.1201 0.2605 0.1493 0.2565 0.4723 0.7182
Windows XP (32-bit) 2.66 GHz Intel Core 2 0.2307 0.2666 0.1323 0.2341 0.3719 0.5556
Mac 05 X Snow Leopard (64-bit) 2.66 GHz Intel Xeon 0.1395 0.3060 0.2042 0.2990 0.8073 0.9341
Figure A.18. Matlab benchmark test results-1
Relative Speed
Linux (64-bit) 2.47 GHz Intel Xeon
Windows 7 Enterprise (64-bit) 3.47 GHz Intel Xeon E
Windows 7 Enterprize (64-bit) 2.7 GHz Intel Core i7 ‘ E
Mac OS X Lion (64-bit) 2.66 GHz Intel Xeon ‘ E
Windows 7 Enterprise (64-bit) 2.66 GHz Intel Core 2 Quad ‘ E
Windows XP (32-bit) 2.66 GHz Intel Core 2 | E
Mac OS X Snow Leopard (64-bit) 2.66 GHz Intel Xeon ‘ E
L 1 L L L L 1 L L L L
0 0 20 30 40 50 60 70 80 90 100 110

Figure A.19. Matlab benchmark test results-2
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Execution time for halo orbit computation:

The execution time spent for the computation of the initial conditions of the chief’s

halo orbit is obtained. Simulation properties and the results are given in Table A.4.

Table A.4. Chief’s halo orbit computation performance

Simulation sampling time: 1 hour = 3600 sec
Simulation time: 0.231 year
Elapsed time to run simulation: 32.75 sec
Number of iterations: 9

(Newton method iteration)

Performance: 3.6 secfiteration

Execution time for halo formation design computation:

The results obtained for the computation of the initial conditions of the deputy

satellite’s orbit is given Table A.5.

Table A.5. Deputy’s halo orbit computation performance

Simulation sampling time: 1 hour = 3600 sec
Simulation time: 0.46 year

Elapsed time to run simulation: 19.25 sec
Number of iterations: 4

(Newton method iteration)

Performance: 4.8 secliteration

353



Execution time for LEO formation design computation:

The simulation prepared in order to design formation flight for LEO satellite is
analyzed. The execution time spent for the Newton method used to compute initial

conditions for deputy is given in the Table A.6

Table A.6. Deputy’s LEO orbit computation performance

Simulation sampling time: 1sec
Simulation time: 99 min

Elapsed time to run simulation: 47.5 sec
Number of iterations: 6

(Newton method iteration)

Performance: 7.9 sec/iteration
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J. Synodic and Inertial Reference Frame Comparison

This section is prepared to give an idea on the consistency of the computations given
in the thesis. This may be considered as a validation method of the computations. In
chapter-2, the details of the dynamic model and the results obtained from simulations
are presented to demonstrate the accuracy of the codes developed. In addition to this,

this section gives the simulation results run in inertial reference frame.

The equations of motion expressed in inertial reference frame are coded for
simulation and similar simulations are performed. The initial condition set used for
synodic reference frame is converted to the inertial reference frame and simulations

are carried out

Finally, synodic reference frame-based results are converted to the inertial reference
frame by using Eq. A-78 and Eq. A-79 in order to compare with those of the inertial

reference frame computations.

X=0)|, = o X =0, Eq. A-78

)?(t=0)|i = C, )?(t=0)|s + C§ @j((t=0)|s Eq. A-79

Initial conditions computed for inertial reference frame-based simulation are:

~ 0.988863916985417
X@=0)|, = [0.000000190354307
0.002283164826074

au

. 0.052770697952
X—oy| = 9.633777243277
" 1-0.004351902636

X103 au w

Equation of motion of the spacecraft written in inertial reference frame where the

origin is the center of mass of the Sun+Bary system:
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[ Gmi(x+x1) Gmy(x —xy)]
- 3 B 3

1 r;
X cmi(y+y,) Gmy(y—y,)
H =l-— - — ;e 2 Eq. A-80
7l 1 2

_ Gml(Z + Zl) _ sz(z - Zz)

3 3
L) T3

where; position of Sun with respect to center of mass of Sun+Bary system expressed

[*1
i 015

Position of Bary with respect to center of mass Sun+Bary system expressed in

Z3 i 0 s

Following figures and table present the results obtained for the simulation run in

in inertial reference frame is:

X1

Y1
Z1

inertial reference frame is:

inertial reference frame. Xsatg,;, Ysaty;, Zsat,; arethe x, y, z position of the satellite
computed at synodic reference frame and expressed in (converted to) the inertial
reference frame by wusing the transformation given in Eq. A-78.
VXsatg;, VYsat, VZsatg; are the vx, vy, vz velocity of the satellite computed at
synodic reference frame and expressed in (converted to) the inertial reference frame

by using the transformation given in Eq. A-79.

Xsat;, Ysat;, Zsat; are the x,y,z position of the satellite computed at inertial

reference frame and expressed in inertial reference frame by using Eq. A-80.
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Figure A.20. Position Comparison

The divergence starts at the half period of the satellite orbit and this is due to

computation performance of the discrete-time integration of the computer (i.e.

sampling time is 1 s., integration method is RK 4™ order).
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Figure A.21. Velocity Comparison
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The position and velocity differences at quarter, half, third quarter and one orbital

period are presented in Table A.7:

Table A.7. Difference between position and velocities

At first quarter At half orbit At third quarter | At one orbit
orbit orbit
AX|; 0.11553 [0.67803 [—2.9682 [—36.519]
= 0.06203 | 1076 | =|0.82594| 10°¢ | =|6.3639 [ 1076 | =| 15.314 |10°¢
[au] —0.00748 0.08703 [ 0.8751 [ —2.400 |
AR 0.21149 [ 0.8812 [—14.723 (—96.162]
i | =| 011886 [107¢ | =[3.07267|107¢ | =] 10461 |107° | =] 10.128 [107°
—0.024084 [ 0.60770 [ 0457 [—13.393]
[au w]

From the results presented in the table, it may be stated that computation-based errors
accumulate and start show itself up at the half period, in 0.25 Earth’s year, for the
simulation run with the parameters given above. It is obvious that sampling time of
the integration is the dominant factor of this kind of error and shall improve with
smaller integration time step. However, the difference between two simulations is

quite small and negligible.
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