
A CONTINUOUS PATH PLANNING AND UPDATING ALGORITHM BASED
ON VORONOI DIAGRAMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MELIH ÖZCAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

AUGUST 2020

Approval of the thesis:

A CONTINUOUS PATH PLANNING AND UPDATING ALGORITHM
BASED ON VORONOI DIAGRAMS

submitted by MELIH ÖZCAN in partial fulfillment of the requirements for the de-
gree of Master of Science in Mechanical Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. M. A. Sahir Arıkan
Head of Department, Mechanical Engineering

Assoc. Prof. Dr. Ulaş Yaman
Supervisor, Mechanical Engineering, METU

Examining Committee Members:

Prof. Dr. Bahattin Koç
Industrial Engineering, Sabancı University

Assoc. Prof. Dr. Ulaş Yaman
Mechanical Engineering, METU

Assoc. Prof. Dr. Yusuf Sahillioğlu
Computer Engineering, METU

Assoc. Prof. Dr. Ender Yıldırım
Mechanical Engineering, METU

Assist. Prof. Dr. Ali Emre Turgut
Mechanical Engineering, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Melih Özcan

Signature :

iv

ABSTRACT

A CONTINUOUS PATH PLANNING AND UPDATING ALGORITHM
BASED ON VORONOI DIAGRAMS

Özcan, Melih
M.S., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Ulaş Yaman

August 2020, 97 pages

Coverage of an area is required for a large variety of robotics and manufacturing

applications, such as environment monitoring, home cleaning, search and rescue op-

erations, machining, delivery, additive manufacturing and even for 3D terrain recon-

struction. In this work, we present a highly flexible algorithm that can be used for

coverage and graph traversal. In addition to being applicable to diverse types of engi-

neering problems, proposed method is advantageous to other algorithms, as it never

turns around and traverses the edge it recently traversed. Although the method takes

advantage of variable-sized Voronoi cells, by which regular, irregular and complex

geometries can be easily composed, it is not limited to Voronoi diagrams and can be

applied for any connected graph. Furthermore, path planning algorithm can update

the path to deal with changes in the graph. In some applications, like 3D printing,

path planning must be done for many instances. However, our algorithm calculates

the path at the first layer, and performs only necessary changes at the subsequent

layers, instead of calculating the whole path from scratch. This update mechanism

makes the method very efficient as it is demonstrated with several test cases. In ad-

dition to the path planning algorithm, a G-code file encryption method is introduced,

v

size of G-code files can be greatly reduced. As automation and robotics integrate into

numerous areas everyday, proposed methods can be useful for many applications.

Keywords: robotics, automation, additive manufacturing, 3D printing, Voronoi, Euler

path, G-code

vi

ÖZ

VORONOİ DİYAGRAMINA DAYALI BİR YÖRÜNGE PLANLAMA VE
GÜNCELLEME ALGORİTMASI

Özcan, Melih
Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ulaş Yaman

Ağustos 2020 , 97 sayfa

Alan tarama işlemi robotik ve üretim alanlarında birçok uygulama için gereklidir.

Çevreyi gözetlemek, ev temizliği, arama ve kurtarma operasyonları, parça işleme,

teslim ve 3B arazi rekonstrüksiyonu buna örnek olarak verilebilir. Bu çalışmada, alan

ve grafik tarama uygulamarında kullanılabilecek ve son derece esnek bir algoritma

sunulmuştur. Farklı alanlarda birçok probleme uygulanabilir olmanın yanı sıra, al-

goritmanın diğer yaklaşımlardan üstün özellikleri bulunmaktadır. Örneğin, taramakta

olduğu kenarı tekrar taramak yerine başka bir kenara devam etmektedir. Geliştirilen

yöntem, düzenli ve düzensiz kafes yapılarını modellemek için rahatlıkla kullanılabi-

lecek Voronoi hücrelerinden faydalanmaktadır. Öte yandan, yöntem yalnızca Voronoi

grafikleriyle kısıtlı olmayıp herhangi bir bağlı grafiğe de uygulanabilir. Algoritma,

yörünge planlama dışında, yörünge güncelleme özelliğine de sahiptir. 3B üretim gibi,

onlarca katman boyunca yörünge planlamanın gerekli olacağı bir senaryoda, algo-

ritma ilk katman için bir yörünge planı oluşturup devam eden katmanlar için bu yö-

rüngeyi güncellemektedir, her katmanda yörüngeyi baştan planlamamaktadır. Test-

lerle de gösterildiği üzere, bu planlama mekanizması algoritmayı son derece verimli

vii

yapmaktadır. Yörünge planlama dışında, G-kodu dosyalarıyla aynı veriyi çok daha az

bir depolama alanıyla saklayan bir yöntem sunulmuştur. Otomasyon ve robotik tekno-

lojilerinin sayısız alanda kullanılmasıyla birlikte sunulan yöntemler birçok uygulama

için kullanışlı olacaktır.

Anahtar Kelimeler: robotik, otomasyon, eklemeli imalat, 3B üretim, Voronoi, Euler

yörüngesi, G-kodu

viii

To anybody who will benefit from the information presented here

ix

ACKNOWLEDGMENTS

No single person can change the world. Science progresses by accumulation of peo-

ple’s contributions, and this study is no exception.

Emerging after the invention of computers, Computational Geometry has been rapidly

developed. Similarly, although it is getting more traction, Additive Manufacturing has

a long way to reach its true potential. We would like to thank every person who has

worked and been working to make our lives better.

Hope is the key ingredient for not giving up, during the difficult times without any

visible light at the end of the tunnel, and hope comes from inspiration. I would like to

acknowledge Carl Hierholzer and Mark de Berg for their great works. Finally, I hope

this study brings inspiration to people, as they and many more have given me.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition 1

1.2 Proposed Methods and Models . 2

1.3 Contributions and Novelties . 3

1.4 The Outline of the Thesis . 3

2 BACKGROUND INFORMATION & LITERATURE REVIEW 5

2.1 Coverage Algorithms . 5

2.2 Eulerian Cycles and Eulerian Graphs 5

2.3 Fast Travels and U Turns . 6

2.4 Voronoi Graphs . 7

xi

2.5 Literature Review . 7

3 CONTINUOUS PATH PLANNING ALGORITHM 15

3.1 Algorithm On a Layer . 15

3.1.1 Hierholzer’s Algorithm . 15

3.1.2 Modified Hierholzer’s Algorithm 16

3.2 Converting a U Turn Heavy Path into a U Turn Free Path 18

3.3 Algorithm Between the Layers . 23

3.4 G-code Encryption . 34

3.4.1 Case of 2.5D Parts . 37

3.5 Complexity Analysis of the Algorithms 39

3.5.1 Hierholzer’s Algorithm . 39

3.5.2 Modified Hierholzer’s Algorithm 39

3.5.3 Path Converter Algorithm . 40

3.5.4 Path Updater Algorithm . 41

3.5.5 G-code Encryption Algorithm 42

4 IMPLEMENTATION & TEST CASES . 43

4.1 Algorithms Utilized in Test Cases for Comparison 43

4.1.1 Naive Algorithm . 43

4.1.2 Improved Naive Algorithm 43

4.1.3 Algorithm of Yaman et al. 45

4.1.4 Hierholzer’s Algorithm . 48

4.1.5 Ultimaker Cura . 48

4.2 Complexity Analysis of the Algorithms 48

xii

4.2.1 Naive Algorithm . 49

4.2.2 Improved Naive Algorithm 50

4.2.3 Algorithm of Yaman et al. 50

4.3 Implementation . 51

4.4 Simulation . 51

4.5 Test Cases . 54

4.5.1 Cube . 54

4.5.1.1 Cube with 100 Random 3D Voronoi Cells 54

4.5.1.2 Cube with 400 Random 3D Voronoi Cells 55

4.5.1.3 Cube with 64 Square Voronoi Cells on XY-Plane 57

4.5.1.4 Cube with 441 Square Voronoi Cells on XY-Plane . . . 57

4.5.2 Sphere . 60

4.5.2.1 Sphere with Randomly Placed 100 3D Voronoi Cells . . 60

4.5.2.2 Sphere with Randomly Placed 400 3D Voronoi Cells . . 61

4.5.2.3 Sphere with 81 Square Voronoi Cells on XY-Plane . . . 61

4.5.2.4 Sphere with 441 Square Voronoi Cells on XY-Plane . . 64

4.5.3 Custom Shape . 64

4.5.3.1 Custom Shape with Randomly Placed 100 3D Voronoi
Cells . 65

4.5.3.2 Custom Shape with Randomly Placed 400 3D Voronoi
Cells . 65

4.5.3.3 Custom Shape with 104 Square Voronoi Cells on XY-
Plane . 67

4.5.3.4 Custom Shape with 416 Square Voronoi Cells on XY-
Plane . 69

xiii

4.5.4 Stanford Bunny . 69

4.5.4.1 Stanford Bunny with Randomly Placed 100 3D Voronoi
Cells . 71

4.5.4.2 Stanford Bunny with Randomly Placed 400 3D Voronoi
Cells . 71

4.5.4.3 Stanford Bunny with 80 Square Voronoi Cells on XY-
Plane . 73

4.5.4.4 Stanford Bunny with 414 Square Voronoi Cells on XY-
Plane . 75

4.6 Results . 75

4.7 Adaptations for the 3D Printed Parts 78

4.7.1 Path Optimization . 78

4.7.1.1 On a Layer . 78

4.7.1.2 Between the Layers 78

4.7.2 Solid Base Creation . 79

4.7.3 Shell Generation . 79

4.8 3D Printed Parts . 80

4.9 Surface Roughness Tests . 80

4.10 Intersection Problems due to Grasshopper 84

5 DISCUSSIONS & CONCLUSION . 91

REFERENCES . 93

xiv

LIST OF TABLES

TABLES

Table 3.1 The nodes and the number of them in each Voronoi cell in Figure 3.3. 27

Table 3.2 The coordinates of all the nodes in the example path, 1-2-0-2-1->-

3-2-3. 35

Table 3.3 The coordinates of all the nodes in the path at next layer, 3-2-3. . . . 36

Table 3.4 Complexity of operations for the Hierholzer’s Algorithm. 39

Table 3.5 Complexity of operations for the Modified Hierholzer’s Algorithm. . 40

Table 3.6 Complexity of operations for the Path Breaker Algorithm. 40

Table 3.7 Complexity of operations for the Path Generator Algorithm. 40

Table 3.8 Complexity of operations for the Path Breaker Algorithm. 41

Table 3.9 Complexity of operations for the Subpath Enlarger Algorithm. . . . 41

Table 3.10 Complexity of operations for the Path Generator Algorithm. 42

Table 3.11 Complexity of operations for the G-code Encryption Algorithm. . . 42

Table 4.1 Complexity of operations for the Naive Algorithm. 50

Table 4.2 Complexity of operations for the Improved Naive Algorithm. 50

Table 4.3 Complexity of operations for the Algorithm of Yaman et al. [1]. . . 51

Table 4.4 The results for the case of cube with 100 Voronoi cells. 56

Table 4.5 The results for the case of cube with 400 Voronoi cells. 57

xv

Table 4.6 The results for the case of cube with 64 Voronoi cells. 58

Table 4.7 The results for the case of cube with 441 Voronoi cells. 59

Table 4.8 The results for the case of sphere with 100 Voronoi cells. 60

Table 4.9 The results for the case of sphere with 400 Voronoi cells. 62

Table 4.10 The results for the case of sphere with 81 Voronoi cells. 63

Table 4.11 The results for the case of sphere with 441 Voronoi cells. 65

Table 4.12 The results for the case of custom shape with 100 Voronoi cells. . . 66

Table 4.13 The results for the case of custom shape with 400 Voronoi cells. . . 67

Table 4.14 The results for the case of custom shape with 104 Voronoi cells. . . 69

Table 4.15 The results for the case of custom shape with 416 Voronoi cells. . . 70

Table 4.16 The results for the case of Stanford Bunny with 100 Voronoi cells. . 72

Table 4.17 The results for the case of Stanford Bunny with 400 Voronoi cells. . 72

Table 4.18 The results for the case of Stanford Bunny with 80 Voronoi cells. . . 75

Table 4.19 The results for the case of Stanford Bunny with 414 Voronoi cells. . 77

Table 4.20 Average Ra and Peak-to-Valley values of the square objects printed

by different algorithms. 85

Table 4.21 Average Ra and Peak-to-Valley values of the boxes printed by dif-

ferent algorithms. 90

xvi

LIST OF FIGURES

FIGURES

Figure 2.1 Obtaining an Eulerian cycle from a general graph. 6

Figure 2.2 The concepts of fast travel (Step 5) and u turn (Steps 7 & 8). . . 7

Figure 2.3 A heterogeneous Voronoi diagram, consisting of 5 Voronoi dia-

grams. 8

Figure 3.1 Hierholzer’s algorithm. 16

Figure 3.2 In presented graphs, it is always possible to have a u turn free path. 18

Figure 3.3 Two subsequent layers, taken from a cylinder, which is popu-

lated by 3D Voronoi cells. 26

Figure 3.4 Layer 1 with duplicated connections. The subpaths from Layer

0 are shown in color, new connections are shown in black. 28

Figure 3.5 Subpaths are enlarged using available connections. Note that the

green subpath is reversed during the enlargement. 34

Figure 4.1 Naive algorithm, which traverses every cell one by one, without

optimization. 44

Figure 4.2 Improved naive algorithm, which traverses a cell completely,

then considers the closest cell. 45

Figure 4.3 The first rule of the algorithm by Yaman et al. [1]. 47

Figure 4.4 The second rule of the algorithm by Yaman et al. [1]. 47

xvii

Figure 4.5 The third rule of the algorithm by Yaman et al. [1]. 48

Figure 4.6 Simulation for a graph with 80 cells. 52

Figure 4.7 Simulation for two sequential layers of a cube filled with 100

Voronoi cells. 53

Figure 4.8 The cube with 100 randomly placed 3D Voronoi cells. 55

Figure 4.9 The cube with 400 randomly placed 3D Voronoi cells. 56

Figure 4.10 The cube with 64 Voronoi cells at each layer. 58

Figure 4.11 The cube with 441 Voronoi cells at each layer. 59

Figure 4.12 The sphere with 100 randomly placed 3D Voronoi cells. 61

Figure 4.13 The sphere with 400 randomly placed 3D Voronoi cells. 62

Figure 4.14 The sphere with 81 Voronoi cells at each layer. 63

Figure 4.15 The sphere with 441 Voronoi cells at each layer. 64

Figure 4.16 Custom shape with 100 randomly placed 3D Voronoi cells. . . . 66

Figure 4.17 Custom shape with 400 randomly placed 3D Voronoi cells. . . . 67

Figure 4.18 Custom shape with 104 Voronoi cells at each layer. 68

Figure 4.19 Custom shape with 416 Voronoi cells at each layer. 70

Figure 4.20 Stanford Bunny with 100 randomly placed 3D Voronoi cells. . . 71

Figure 4.21 Stanford Bunny with 400 randomly placed 3D Voronoi cells. . . 73

Figure 4.22 Stanford Bunny with 80 Voronoi cells at each layer. 74

Figure 4.23 Section view of the Stanford Bunny with 80 Voronoi cells at

each layer. 74

Figure 4.24 Stanford Bunny with 414 Voronoi cells at each layer. 76

xviii

Figure 4.25 Section view of the Stanford Bunny with 414 Voronoi cells at

each layer. 76

Figure 4.26 If the path is not optimized, many fast travels occur. 79

Figure 4.27 When feedrate of the printer head is not high enough in G0 mo-

tion, fast travels do result in solid lines. 81

Figure 4.28 Bunny after the excessive material caused by insufficient fast

travel feedrate is removed. 82

Figure 4.29 Bunny with 100 Voronois and 2 layers of shell, 3D printed with

transparent filament. 83

Figure 4.30 Bunny with 100 Voronois and 1 layer of shell, 3D printed with

transparent filament. 84

Figure 4.31 Bunny models with 1 layer (left) and 2 layers (right) of shells. . . 85

Figure 4.32 The cube with 36 Voronoi cells, 3D printed with two filaments. . 86

Figure 4.33 Model file and printed parts for a square with 5383 Voronoi cells.

Surface roughness values are obtained along the black lines (Figure

4.34). 87

Figure 4.34 Surface Roughness Profiles for the Square Object. 88

Figure 4.35 3D printed boxes for all algorithms: From left to right; Naive,

Improved Naive, Yaman et al. [1], Hierholzer’s, and Modified Hier-

holzer’s. Due to the fast travels, geometric structure can only be pre-

served using continuous planning algorithms. 88

Figure 4.36 Roughness profiles of the box are measured among the surfaces

in the height direction, twice at each surface, in the area denoted by

yellow. 89

Figure 4.37 3D printed boxes, and a sample surface roughness profile mea-

sured on an edge in the height direction. Both axes are in mm. 89

xix

Figure 4.38 Some grid-type Voronoi cells are missing, which is an intersec-

tion problem. 90

xx

LIST OF ABBREVIATIONS

ABBREVIATIONS

2D 2 Dimensional

2.5D 2.5 Dimensional

3D 3 Dimensional

CW Clockwise

CCW Counterclockwise

DOF Degree of Freedom

FDM Fused Deposition Modeling

FFF Fused Filament Fabrication

STL Standard Triangle Language

BRep Boundary Representation

xxi

xxii

CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Robotics with automation is the next big thing for the civilization. Transferring the

mundane, dangerous and repetitive jobs to the robots will give humans more prosper-

ous lives. Additionally, the jobs will be performed by a higher quality. In order to

contribute to this milestone as a species, methods are developed that can be utilized

in two separate, but related domains as area coverage and additive manufacturing.

There are numerous coverage applications. These are listed as below.

• Surveying drones watch their respective territories.

• Vacuum cleaners clean the rooms of an apartment.

• Lawn mowers mow the grass inside the garden.

• Autonomous farming robots seed plants, water the trees, and harvest the crops.

• CNC machines remove a layer of material, by covering the specified area.

Similarly, 3D printers print a material, again, by covering the specified area. A cover-

age algorithm for such applications is proposed. In some cases, coverage of a recently

covered segment might not be possible, or desirable. For instance, if a farming robot

is to be used, driving it forward all the time may be required. Similarly, if a drone is

used for monitoring, instead of directing it to a recently monitored segment, it would

be a better choice to direct it to another segment. This problem is addressed by the

proposed algorithm.

1

Additive Manufacturing (AM) is being widely adopted by the industry and the con-

sumers. Many people and facilities have 3D printers, which are especially useful

for rapid prototyping purposes. One drawback of the AM processes is the surface

quality of the finished product. Usually, a finishing operation is applied to obtain a

smoother surface. However, it is believed that this issue can be mitigated by contin-

uous printing. In continuous printing, the printer covers all the layer while extruding

the filament. Since there are no breaks between the extrusions, the surface quality

gets better and the thermal stress effects become less problematic. By the proposed

algorithm, this problem is addressed, and all layer is printed continuously.

While printing an artifact, path planning must be done for all the layers. However,

this is a costly operation. If a path is already available, updating it for the next lay-

ers would be a better approach. That’s another problem addressed by the proposed

algorithm.

Lastly, an improvement about the structure of the G-code, which is an industry stan-

dard, is desired to be made. The same information can be stored in a much smaller

space, by which a significant storage capacity can be freed.

1.2 Proposed Methods and Models

Before the coverage to begin, the area must be discritized, for which Voronoi graphs

are used. Numereous 2D and 3D cell structures can easily be constructed using them.

Due to their flexibility, Voronoi graphs are utilized in various studies.

To achieve continuous printing, Eulerian graphs and cycles are constructed. An Eule-

rian cycle starts a path, covers all edges, and then ends at the starting position. Graphs,

which have Eulerian cycles are called Eulerian graphs. Therefore, it is needed to con-

vert a Voronoi graph to an Eulerian graph, by duplicating its edges. Actually, any

connected graph can be converted into an Eulerian graph, by this approach.

2

1.3 Contributions and Novelties

The contributions are as follows:

• A method to convert any connected graph into an Eulerian graph is proposed.

• Given an Eulerian graph, a continuous path planning method that eliminates

covering a recently traversed edge again is introduced.

• A path updating method is offered, for many instances of path planning cases,

like 3D printing.

• An encryption method for G-code files is developed, resulting in a significant

decrease in the storage.

1.4 The Outline of the Thesis

In Chapter 2, background information is given and relative subjects for the study are

explained, and the studies that are comparable to presented work are reviewed. In

Chapter 3, proposed algorithms are explained, where examples are given to make

the understanding easier, and pseudocodes are also provided. In Chapter 4, imple-

mentation details are given, then the algorithms used for comparison are introduced.

Afterwards, test cases and their results are covered. In Chapter 5, the conclusion for

the study is drawn.

3

4

CHAPTER 2

BACKGROUND INFORMATION & LITERATURE REVIEW

In this chapter, the necessary background information is given, and critical concepts

are explained. Furthermore, related work to the presented study is discussed.

2.1 Coverage Algorithms

Given an area, coverage is the application of spanning the full domain. In many

real life applications, coverage is used. For instance, environment monitoring by

drones, house cleaning by robotic vacuum cleaners, machining by CNC machines,

farming by autonomous vehicles, etc. are all done with the help of coverage algo-

rithms. Similarly, while 3D printing an artifact, depending on the intensity setting, a

grid structure is constructed. Then, the printer head covers the whole layer by follow-

ing the lines of the corresponding grid. Various algorithms are developed according

to the application-specific requirements. The number of agents and their movement

constraints (e.g. whether they’re holonomic or not) are also considered.

2.2 Eulerian Cycles and Eulerian Graphs

Eulerian cycle is a path for a connected graph that starts and ends at the same vertex.

It traverses every edges of the graph exactly once [2]. A graph that has an Eulerian

cycle is called as an Eulerian graph. In order for an undirected graph to have an

Eulerian cycle, two conditions must be satisfied:

• The graph must be connected.

5

a

b

c

d

e

f

g

h

i

j

(a) Original graph

a

b

c

d

e

f

g

h

i

j

(b) With duplicated edges

Figure 2.1: Obtaining an Eulerian cycle from a general graph.

• Every vertex must have an even number of edges.

Additionally, if the graph is directed, the number of incoming and outgoing connec-

tions must be equal for each vertex. A general graph example is given in Figure

2.1a. As seen from the figure, not all the vertices have an even number of edges.

Consequently, an Eulerian cycle cannot be generated for this graph. Following the

methodology of Yaman et al. [1], each edge is duplicated (Figure 2.1b). Therefore,

the graph becomes Eulerian. Taking advantage of the Eulerian graph, one can start

extruding the material at a vertex and end at the same place in Fused Filament Fabri-

cation (FFF) process, eliminating fast travels.

2.3 Fast Travels and U Turns

While covering the edges of a graph, if there is no connection left at the current

node although the graph is not fully covered, one needs to move into another node

to continue with the coverage (Figure 2.2). That movement is called as a fast travel,

originating from rapid positioning motion (G00) of CNC machines. On the other

hand, if there are two connections between two nodes and if both of those covered

one after the other, that motion is called as a u turn (Figure 2.2). Note that, u turns

require a full stop. Thus, if possible, they must be eliminated for a more efficient

6

operation.

a b

cd

e f

1

2

3

4
5

6

7

8

Figure 2.2: The concepts of fast travel (Step 5) and u turn (Steps 7 & 8).

2.4 Voronoi Graphs

Given a list of sites, Voronoi diagrams decompose an area or a volume into smaller

pieces such that each resulting Voronoi cell consists of the points that are closest to

the given Voronoi site [3]. By choosing uniformly or non-uniformly generated sets

of sites, diagrams with distinct patterns can be created, which makes Voronoi dia-

grams a useful tool for coverage. For example, rectangular, triangular, and hexagonal

grid structures can be easily obtained. Using Voronoi diagrams, not only fully uni-

form or random structures, but also a combination of them can be produced. This is

demonstrated by forming different Voronoi patterns into a square (Figure 2.3).

2.5 Literature Review

Coverage algorithms are used in many applications, such as vacuum cleaning [4],

painting [5], mapping [6], demining [7], lawn mowing [8], harvesting [9], window

cleaning [10] and structure inspecting [11]. They can be classified according to var-

ious criteria. The ones that guarantee the complete coverage are called complete,

whereas the others are called as heuristic [12]. If the area to be covered is required

to be known in advance, they are called offline; and if that is not the case, they are

called textit online, or sensor based coverage algorithms [13]. Most algorithms are

developed for the planar space, whereas some of them consider the 3D space since

7

(a) A Voronoi diagram with different Voronoi in-

fill patterns

(b) 3D printed version

Figure 2.3: A heterogeneous Voronoi diagram, consisting of 5 Voronoi diagrams.

the applications dictate that. The majority of the algorithms divide the space into

subregions, such as the trapezoidal decomposition [14, 15] or morse-based cell de-

composition method [16]. On the other hand, grid-based algorithms represent the

area as a collection of uniform grid cells, whose values can be a binary or a proba-

bility [17, 18]. Some algorithms consider multiple agents, where some of the agents

are assigned to exploration and the remaining ones are responsible for exploitation,

i.e., coverage [19]. Overall, many algorithms are developed and used for numerous

applications.

One of the most functional and popular technologies of the present age is unmanned

aerial vehicles. There are interesting coverage algorithms developed by considering

their needs [20]. For instance, while covering an area, it would be advantageous to

have a short path. On the other hand, the energy requirement of UAVs is much crit-

ical. Changing the direction frequently is seemed to be energy wasting. For that

reason, energy-aware algorithms are developed [21, 22]. In those methods, instead

of lots of sharp turns, like seen in Hilbert curves, more straight paths are preferred.

Another class of algorithms aim multi-robot coverage. For instance, in decentral-

ized algorithms, drones exchange information only with the other drones that are

8

close to them, and every drone covers their respected area [23, 24]. Also, there are

methods inspired by the nature. For instance, mimicking the ants’ communication,

pheromone-based algorithms are introduced, in which the area is divided into grids,

and the number of visits for each grids are stored [25, 26]. As one can see, different

requirements lead to various methods.

In Fused Deposition Modeling (FDM) processes, the quality of the part is determined

by two critical factors that control the final shape of the product, namely slicing and

path planning [27]. Some slicing approaches require a device with higher capabili-

ties. For instance, instead of a conventional cartesian 3D printer, a robotic arm with 3

DoF or another one with 5 DoF might be necessary. After slicing is done, path plan-

ning takes place, which determines the precision of the product. Therefore, in order

to have a more precise part, the boundary of the part is printed following contour-

parallel lines with a relatively slower feedrate. On the other hand, the inside of the

part is filled following a zigzag pattern, which allows faster printing [28]. Although

this is the most common practice for the available 3D printers, it does not consider

the continuous deposition issue, which is a widely studied concept in AM. To obtain a

uniform material density and mechanical properties, researchers developed methods

that utilize various infill patterns and path planning algorithms. Jin et al. [29] first

decomposed the area into what they call simple areas that can be traversed without

retraction, using direction-parallel and contour-parallel polygon decomposition meth-

ods. Then they calculated a continuous subpath for each segment, which starts and

ends at the same point. In the end, they connected all the subpaths to form a single and

continuous path for the whole area. Zhao et al. [30] utilized Fermat spirals. Unlike

the space filling curves, such as Hilbert curves which have lots of corners and sharp

turns, Fermat spirals are constructed by low curvature paths. They first decomposed

the given area into subregions that can be continuously filled with a Fermat spiral. By

doing so, they ensured that the start and end points of the spirals are very close to each

other. After forming the paths for all subregions, they connected the paths and ob-

tained a single continuous path. Nevertheless, as they mentioned, their method is not

guaranteed to cover any arbitrary region. Shaikh at al. [31] used Hilbert curves for 3D

printing. They took an area and then filled it with a Hilbert curve. Then, if there are

any contours in the area, they removed the corresponding regions from the curve and

9

printed the final shape. Nevertheless, their final product is not homogeneous in terms

of infill material. Gupta et. al. [32] utilized Euler transformation to obtain a graph

that is continuously printable, i.e., a graph in which every vertex has an even num-

ber of edges. As they pointed o, while traversing such a graph, one might encounter

traversing a vertex many times, which they call crossover. They avoided crossovers

by offsetting the path around the necessary vertices. Lin et. al. [33] applied a continu-

ous path planning method for finishing processes of compound surfaces, during which

many retractions are made. First, they created a curvature map. Then, they generated

the cutter contact points. They used those points as cities of a TSP problem, and used

LKH algorithm to traverse all of them. They argue that cutter contact point genera-

tion is a highly time consuming process since all triangles inside the object must be

searched in order to find one point. Feng et. al. [34] used triply periodic minimal

surfaces (TPMS) for designing porous structures. Normally, TPMS structures cannot

be printed as they define open surfaces. Therefore, they provided a method to make

a printable object from a TPMS structure, in which Marching Squares algorithm is

utilized during slicing. Ding et al. [35] stated that although widely used for AM, the

contour paths, which start from the boundary of the geometry and proceed inwards,

do not guarantee filling the geometry completely. To deal with this problem, they

applied the methodology developed by Kao [36], in which the medial axis transfor-

mation (MAT) is used. Given a geometry, first the skeleton is generated by medial

axis transformation. Based on the skeleton, they created branches to fill the geometry,

and then trimmed them. For the boundary, though, they made extra deposition, which

makes the path discontinuous. Their method is developed mainly for Wire and Arc

Additive Manufacturing (WAAM). Hergel at al. [37] argue that there is a fundamental

difference between printing thermoplastic materials and clay. Deposited thermoplas-

tic material solidifies rapidly after extrusion whereas the filament inside the extruder

is still liquid. Therefore, moving without extrusion enables the printed part to detach

from the extruder immediately and results in only minor artifacts. However, when

clay is printed, it requires much longer time for solidification. Thus, if a movement

without extrusion is made, the extruder will pull the printed part, causing the shape to

deform. As those deformations are repeated, the failure of the shape becomes more

probable. In order to cope with this, they introduced a continuous extrusion method.

Firstly, they took the geometry to be printed and add support structures. Then, they

10

calculated a continuous path for the all shape, and made optimizations for support

parts in order to reduce their complexities. Their method is used for 3D printing of

complex shapes with clay. Nevertheless, sometimes their part could be collapsed as

there is no methodology for considering the physics and the mechanical structure of

the part. In addition, their path planning takes about 10 minutes. Overall, it is a suc-

cessfull step for 3D printing using clay. Kapil et al. [38] used fractal curves for hybrid

machining operations with the minimum number of retractions. After filling a given

area with Hilbert curves, they removed the portions of the area that must be empty

from it. Then, they connected the trimmed paths and made a path with minimum

number of retractions, although not guaranteed to be zero. As another methodology,

they put the largest fractal curves into an area and then filled in the remaining portions

with zigzag curves, which resulted in a path with no retractions. They argue that the

toolpaths from fractal curves result in better heat dissipation processes for AM of the

metallic objects. Nonetheless, the parts they produced don’t seem precise. Also, they

point out that there exists lots of sharp turns and corners in the generated paths. To

conclude, although the continuous deposition methods are not perfect yet, they are

getting better and surpassing the traditional coverage algorithms in the field, in their

respects.

Like continuous deposition, Voronoi diagrams are widely utilized in AM for numer-

ous reasons. Martinez et al. [39] formed Voronoi diagrams based on not Euclidean,

but polyhedral distances, which have foam shapes. They were able to create Voronoi

infill patterns with distinct mechanical properties by tuning the distance parameters.

They could control the deformation directions of the part under a specific load and

make a part flexible in some directions, whereas rigid in another direction. How-

ever, in terms of the strength, their method is less effective than plane tessellations.

In another study, the same team used Voronoi diagrams to achieve different Young’s

modulus values, while keeping the Poisson’s ratio constant [40]. After a Young’s

modulus value is set, Voronoi foams are generated on the fly. Therefore, there was no

need for producing the full geometry of the object, like a mesh or voxels. Neverthe-

less, as they point out, their method cannot provide a way of Poisson’s ratio’s change.

Tran at al. [41] utilized 2D Voronoi cells to mimic the composite structure of the nat-

ural nacre, which already has a Voronoi-shaped polygonal architecture. They formed

11

the diagram by setting Voronoi centers at random spots, whose ranges are limited.

Afterwards, they filled the boundaries between the cells with a cohesive element in

their model. Similarly, they connected each layer with another layer via an adhesive

element. Then, they 3D printed their designs and made compression tests on them

and were able to follow the crack propagation using the Voronoi boundaries. Chen

and Zhai [42] developed a path planning strategy for porous structures, which are

hard to produce by conventional production techniques and advantageous due to their

weight and structural properties. First, the porous geometry is sliced. At each slice,

they divide the geometry into subdomains, each of which include one hole, using the

generalized Voronoi diagram (GVD) and dual operation. Then, a route to connect

all subdomains is computed using a genetic algorithm, and during the traversal sub-

domains are merged with their neighbours along the path. Afterwards, subdomains

are filled using Fermat spirals, and the smoothness of the path is optimized. Like

connected Fermat spirals (CFS)[30], their method generates a continuous path for the

whole geometry. However, since they used a contour-parallel filling method, their

parts are affected by nonhomogeneous filling, i.e., overfill and underfill issues. Pham

at al. [43] mimicked the crystal structure found in metals and alloys, by creating

lattice cell structures. Different lattice cells, such as face-centered-cubic and body-

centered-cubic, are implemented by Voronoi diagrams. Afterwards, they oriented the

cells and combine them. The boundary between the two different cell structures in-

troduced hardening, for which they made a set of experiments. From those studies, it

can be inferred that Voronoi diagrams have a great potential for AM applications.

Besides from AM, Voronoi diagrams employed in the robotics field for area decom-

position and path planning applications. Generalized Voronoi Diagrams (GVD) and

Generalized Voronoi Graphs (GVG) can be utilized for different cases [15]. GVD can

be useful for high level planning, as they consider the two closest objects and have

m-1 dimensions for a configuration space with m dimensions. However, if a more

detailed planning is required, GVG can be utilized, which has a single dimension and

considers the closest m objects for the same configuration space. After the necessary

Voronoi diagram is constructed, different roadmap algorithms can be used to find a

path. As the dimensions of the configuration space increase, it becomes harder to

construct the exact Voronoi diagram, but using sampling strategies one can still take

12

the advantage of Voronoi diagrams without computing them explicitly. Candeloro et

al. [44] use Voronoi diagrams for path planning of 3 DoF marine vehicles. After

the generation of the diagram, they compute some way points from the vertices and

refine them. If the vehicle is not on the right track, Fermat spirals are used to guide it

back to the path, by which a curvature-continuous path is achieved. If another ship is

observed, a new and smooth path can be computed on the fly. Shkolnik and Tedrake

[45] developed a method for path planning of the robotic manipulators. They started

with a well-studied path planning algorithm, RRT [46]. However, instead of using

the configuration space, they used the task space. As they exemplified, planning

in a lower dimensional projection can be quite efficient for some problems. While

sampling, they took random point from the task space, and while growing the tree,

instead of using the configuration space like in RRT, they still used the task space by

introducing a Voronoi bias, which allows for a more direct exploration. They could

successfully plan a path for a robot with 1000 links. As they explain, though, they

lost completeness, since they switch to the task space. Arslan and Koditschek [47]

applied an extension to GVD for path planning of multiple disk shaped robots with

different sizes without collision. As they also state, restricting the robot bodies to

their respective Voronoi cells is sufficient for collision avoidance [48], although it is

conservative for robots with different sizes.

13

14

CHAPTER 3

CONTINUOUS PATH PLANNING ALGORITHM

In this chapter, the path planning algorithm is explained, which is divided into two

parts: on a layer, and between the layers. Additionally, a G-code encryption algo-

rithm is presented after the path planning method.

3.1 Algorithm On a Layer

Proposed method is a variation of Hierholzer’s algorithm. Therefore, first it is ex-

plained, then the method is introduced.

3.1.1 Hierholzer’s Algorithm

Hierholzer’s algorithm is an algorithm to extract an Eulerian cycle from an Eulerian

graph [49]. Following the fact that every node has an even number of edges, starting

the traversal from any node, one needs to end up at the same node. Then, another node

among the path, that has connections can be chosen and a subpath can be constructed.

It would end at the same node on the path. The path can be extended by inserting the

subpath into it (Figure 3.1). Repeating this procedure until all the edges are traversed,

the Eulerian cycle is obtained. Therefore, fast travels are eliminated. However, u

turns are not considered.

15

1

0

2

3

4
5

6

7

8

9
a

b

c

(a) The path at the beginning of the traversal of

the subpath, which is 8-2-1-0-4-0-1-2-3-5-9-8-

9-5-3-2-8.

1

0

2

3

4
5

6

7

8

9
a

b

c

(b) The path after the subpath (3-4-7-4-3) is

inserted, which is 8-2-1-0-4-0-1-2-3-5-9-8-9-

5-3-4-7-4-3-2-8.

Figure 3.1: Hierholzer’s algorithm.

3.1.2 Modified Hierholzer’s Algorithm

Since Hierholzer’s algorithm doesn’t take u turns into account, new algorithm is de-

veloped, based on it. Before explaining the algorithm, why there always exists a path

without u turns for the aforementioned graphs must be explained (Figure 3.2). As

one can observe from the figure, when all of the cells, including boundary as a cell,

is traversed in the same direction (CW in the figure), those paths can be merged such

that no u turn will occur. Although a general Voronoi node has three neighbours, in

some special cases the number of neighbours can increase. Nevertheless, for any even

or odd number of neighbours, the given generalization is valid. The only inevitable

u turn happens when a node has only one neighbour, as the node f in Figure 2.2.

However, this case cannot be encountered in the presented graphs.

While the path is generated, a subpath is always inserted into the path in Hierholzer’s

algorithm. Therefore, if u turns are eliminated during the generation and insertion of

subpaths, a path without u turns can be obtained. Modified Hierholzer’s algorithm

does that by traversing the edge that won’t generate a u turn, and if there are more

than one edges to take, the algorithm chooses the edge that has not been traversed

before, if available. Note that, at the beginning all edges are duplicated and they are

16

Algorithm 1 Hierholzer’s Algorithm
Input: A list of Voronoi cells, Starting node

Output: A path that traverses all of the edges twice

1: Initialize Path as an empty list

2: Create the Edge List that includes all connections of the Voronoi List

3: Set the current node to the Starting node

4: while Edge List is not empty do

5: Initialize SubPath as an empty list

6: while there exists an edge in the Edge List that starts from the current node

do

7: Append the edge to the SubPath

8: Set the current node as the ending node of the last edge

9: Remove the edge from the Edge List

10: end while

11: Append the SubPath to the Path

12: for each node in Path do

13: if there exists an edge in the Edge List that starts from the node then

14: Set that node as the current node

15: break

16: end if

17: end for

18: end while

19: return Path

not directed, therefore an edge can be traversed in the same direction twice. Finally,

the algorithm tries to insert the subpath into the path such that no u turns will occur.

However, if it fails to do so, it reverses the subpath and then inserts into the path, by

which it would find a path without u turns. Using this algorithm, both fast travels and

u turns are eliminated.

17

1

0

2

3

4
5

6

7

8

9
a

b

c

Figure 3.2: In presented graphs, it is always possible to have a u turn free path.

3.2 Converting a U Turn Heavy Path into a U Turn Free Path

Before the proposed algorithm for sequential layers is explained, let us discuss an-

other algorithm, the one that makes a path with u turns into a u turn free path. This

algorithm will be utilized in the next section with slight modifications. Note that, as

proven in the previous section, it is always possible to construct a u turn free path

in presented graphs. As it would be easier to follow, an example is provided for the

explanation.

Suppose that the considered path is:

8−9−8−2−1−2−3−4−3−9−5−4−5−6−7−0−4−0−1−0−7−6−5−9−3−2−8,

which is u turn heavy. Since u turns are to be eliminated, the first step must be dividing

the path into subpaths, wherever a u turn happens. After this divisions, the subpaths

become:

8− 9

9− 8− 2− 1

1− 2− 3− 4

18

Algorithm 2 Modified Hierholzer’s Algorithm
Input: A list of Voronoi cells, Starting node

Output: A path that traverses all of the edges twice

1: Initialize Path as an empty list

2: Create the Edge List that includes all connections of the Voronoi List

3: Set the current node to the Starting node

4: while Edge List is not empty do

5: Initialize SubPath as an empty list

6: while there exists an edge in the Edge List that starts from the current vertex

do

7: List available edges that won’t result in u turn

8: if there exists an edge that never been traversed then

9: Append the edge to the SubPath

10: else

11: Append any of the edges to the SubPath

12: end if

13: Set the current node as the ending node of the last edge

14: Remove the edge from the Edge List

15: end while

16: Append the SubPath to the Path such that no u turns will occur

17: if failed to do so then

18: Reverse the SubPath

19: Append the SubPath to the Path such that no u turns will occur

20: end if

21: for each node in Path do

22: if there exists an edge in the Edge List that starts from the vertex then

23: Set that node as the current node

24: break

25: end if

26: end for

27: end while

28: return Path

19

4− 3− 9− 5− 4

4− 5− 6− 7− 0− 4

4− 0− 1

1− 0− 7− 6− 5− 9− 3− 2− 8

At this point, the subpaths can be examined. As observed, some of them start at a

node, and end at another node. Let’s call them chains. On the other hand, some of the

subpaths start & end at the same node. Let’s call them loops. Therefore, the subpaths

are as follows according to the classification.

Chains:

8− 9

9− 8− 2− 1

1− 2− 3− 4

4− 0− 1

1− 0− 7− 6− 5− 9− 3− 2− 8

Loops:

4− 3− 9− 5− 4

4− 5− 6− 7− 0− 4

Chains might be added into a subpath, either from the beginning or from the end.

Also, they can be reversed. For instance, the first chain, 8 − 9, can be reversed and

becomes 9−8. Then, it can be added to the last chain, 1−0−7−6−5−9−3−2−8.

The resulting subpath will be 1− 0− 7− 6− 5− 9− 3− 2− 8− 9.

Loops, on the other hand, offer more flexibility, because one can change the starting

and eventually ending point of them, which will be called loop change. For instance,

the first loop, 4−3−9−5−4 is equivalent to the following loops: 3−9−5−4−3 ,

9−5−4−3−9 , 5−4−3−9−5. Additionally, they can be reversed. Similar to the

20

chains, they can be added to a subpath from the beginning or from the end. However,

unlike the chains, they can be inserted into the subpaths. For instance, consider the

chain 4−0−1 and the loop 4−5−6−7−0−4. The loop may be added to the chain

from the beginning, which will result in the subpath 4− 5− 6− 7− 0− 4− 0− 1.

Additionally, instead of doing that, one can make a loop change in the loop, and let it

become 0−4−5−6−7−0. Then, this loop can be inserted into the chain 4−0−1,

which will result in the subpath 4−0−4−5−6−7−0−1. Note that, both subpaths

created using the chain and the loop include 1 u turn, at 0− 4− 0 and 4− 0− 4 parts.

In order not to have any u turn, the loop can simply be reversed before adding to or

inserting into the chain. For the first case, the loop will become 4− 0− 7− 6− 5− 4

and the subpath will become 4− 0− 7− 6− 5− 4− 0− 1. For the second case, the

loop and the subpath will become 0−7−6−5−4−0 and 4−0−7−6−5−4−0−1.

Note that, if there is a loop inside a subpath, that loop can always be reversed, no

matter where it is positioned. For example, the subpath 1−2−3−4−5−6−7−4−9

includes a loop, which is 4 − 5 − 6 − 7 − 4. The loop can be reversed, and then the

subpath becomes 1−2−3−4−7−6−5−4−9. This strategy will be called partial

reversal, to differentiate it from regular reversing operation, in which the subpath is

fully reversed.

As the methods are described, which are, full reversal, loop change, and partial rever-

sal; a general explanation of the algorithm can be given. After the path is divided into

subpaths, they will be added one after the other using those three methods whenever

necessary. Since there are no u turns in the subpaths, the constructed path will have

no u turns either. That will be the methodology.

Going back to the example, after creating chains and the loops, the longest chain will

be chosen as the main path, which is

1− 0− 7− 6− 5− 9− 3− 2− 8.

The longest chain will be deleted from the list of the chains. Now, one should enlarge

the main path using chains or loops. Since loops are easier to integrate, the chains

will be tried first. Looking at them, the first chain, 8 − 9, can be added to the main

path from the end, by which the main path becomes

21

1− 0− 7− 6− 5− 9− 3− 2− 8− 9.

Continuing by removing 8− 9 from the chain list. Once again, looking at the remain-

ing chains, 9− 8− 2− 1 cannot be added to the main path from the end as it would

result in a u turn. However, this chain can be added from the beginning, then the main

path becomes

9− 8− 2− 1− 0− 7− 6− 5− 9− 3− 2− 8− 9.

At this point, the main path becomes a loop. However, no loop change can be made

for it, because it starts (9−8) and ends (9−8) with the same connection, and therefore

any loop changes would cause a u turn (e.g. 2−1−0−7−6−5−9−3−2−8−9−8−2).

Nevertheless, if that were not the case, the loop changes could be freely made in the

main path.

Looking at the remaining chains (1− 2− 3− 4 , 4− 0− 1), none of them seems to be

useful. Then, the loops must be tried. The first one, 4− 3− 9− 5− 4, can be taken,

and the main path can be inserted into it, by which the main path becomes

4− 3− 9− 8− 2− 1− 0− 7− 6− 5− 9− 3− 2− 8− 9− 5− 4.

The main path is still a loop, but this time as it starts (4 − 3) and ends (5 − 4) with

different connections, one can free to make loop changes. Continuing with the chains,

the chain 1− 2− 3− 4 can be reversed and added to the main path from the end, and

the result is

4− 3− 9− 8− 2− 1− 0− 7− 6− 5− 9− 3− 2− 8− 9− 5− 4− 3− 2− 1.

Similarly, the last chain, 4−0−1, might be reversed and added to the main path from

the beginning, then the main path is

1− 0− 4− 3− 9− 8− 2− 1− 0− 7− 6− 5− 9− 3− 2− 8− 9− 5− 4− 3− 2− 1.

As observed, all chains are already added to the main path, and the main path is a

loop by itself. This is expected, because the (full) path must start and end at the same

position, and the loops have no effect on the starting and ending positions unless they

are inserted the main path into the loop. In the case of the main path is inserted into

a loop, the starting and ending positions of the loop will become those of the main

22

path. Note that, if main path can be inserted into a loop, it means that the loop can be

inserted into the main path as well, it’s just a matter of choice.

Finally, the only remaining loop will be inserted, 4− 5− 6− 7− 0− 4, into the main

path. Therefore, the path is found as

1−0−4−5−6−7−0−4−3−9−8−2−1−0−7−6−5−9−3−2−8−9−5−4−3−2−1.

Applying this procedure, a path with many u turns is converted into a path with no u

turns.

Algorithm 3 Path Converter - 1: Path Breaker
Input: A path with u turns

Output: A path without u turns

1: Initialize SubPaths as an empty list

2: for each Adjacent Connection in the Path do

3: if a u turn exists then

4: Divide the Path from that node

5: Add the first part of the divided path to SubPaths

6: end if

7: end for

3.3 Algorithm Between the Layers

Instead of planning the path for all of the layers, it is desired to plan it once (at the first

layer), and then update it for the subsequent layers. Similar to the previous section,

the algorithm will be explained using an example, and later the pseudocode will be

given.

Consider a cylinder, populated by 3D Voronoi cells. Using a horizontal plane, this

cylinder is sliced, and two adjacent layers are obtained (Figure 3.3). Intersection of

the horizontal plane with a group of 3D Voronoi cells gives us a group of 2D Voronoi

cells. Looking at the layers, it can be seen that, there are three Voronoi cells on Layer

0 (Figure 3.3a), namely, cells a, b, and c; and four nodes, 0, 1, 2, and 3. On the other

hand, on Layer 1 (Figure 3.3b), there are four Voronoi cells, which are a, b, c, and d;

23

Algorithm 4 Path Converter - 2: Path Generator
8: Initialize Chains and Loops as empty lists

9: for each SubPath in the SubPaths do

10: if SubPath starts and ends at the same node then

11: Add SubPath to Loops

12: else

13: Add SubPath to Chains

14: end if

15: end for

16: Initialize Main Path as an empty list

17: if Chains is not empty then

18: Set the longest SubPath in Chains as Main Path

19: else

20: Set the longest SubPath in Loops as Main Path

21: end if

22: while Chains is not empty and Loops is not empty do

23: Initialize the boolean APPENDED as False

24: for each SubPath in the Chains list do

25: if SubPath or the reversed SubPath can be added to the Main Path then

26: if Reversing is necessary then

27: Reverse the SubPath

28: end if

29: if Adding would not cause a u turn then

30: Add the SubPath to the Main Path

31: Set APPENDED as True

32: Remove SubPath from the Chains list

33: break

24

Path Converter - 2: Path Generator Part 2
34: else

35: if Eliminating u turn by Partial loop change is possible then

36: Make Partial loop change in Main Path

37: Add the SubPath to the Main Path

38: Set APPENDED as True

39: Remove SubPath from the Chains list

40: break

41: end if

42: end if

43: end if

44: end for

45: if APPENDED is False then

46: for each SubPath in the Loops list do

47: if SubPath can be inserted into Main Path then

48: if Loop change is necessary then

49: Make Loop change

50: end if

51: Insert the SubPath to the Main Path

52: Remove SubPath from the Loops list

53: break

54: end if

55: end for

56: end if

57: end while

58: return Main Path

25

a

b

c

1

2

3

0

(a) Layer 0

a

b

c

1

2

3
4

0

d

5

(b) Layer 1

Figure 3.3: Two subsequent layers, taken from a cylinder, which is populated by 3D

Voronoi cells.

and five nodes, 0, 1, 2, 3, and 4.

The aim is to update the path of Layer 0 for Layer 1. The path for Layer 0 is obtained

as

1− 0− 2− 3− 0− 2− 1− 3− 0− 1− 2− 3− 1.

First of all, there are no u turns in this path, because it is obtained using the Modified

Hierholzer’s algorithm. A path that won’t include any u turns for Layer 1 is to be

obtained as well. Obviously, some connections of the previous path can be used in

the current path, but not all of them. Also, the new connections have to be considered.

In order to meet the requirements, one must first proceed with detecting which parts

of the previous path can be used. Then, those parts, i.e., subpaths, will be taken from

the previous path, and the rest will be left. Afterwards, new connections will be con-

sidered. The subpaths from the previous path will be enlarged by new connections,

such that no u turn takes place. Also, after the enlargement of the subpaths, if there

are connections left, additional subpaths will be made from them. In the end, all sub-

paths will be connected to form a path. While connecting them, it must be ensured

26

that no u turns will form, like in the previous section (Algorithm 4).

In order to understand which Voronoi cells changed, the number of nodes in each of

them must be examined, which is shown in Table 3.1. The only cell, whose structure

is not changed, is cell a.

Table 3.1: The nodes and the number of them in each Voronoi cell in Figure 3.3.

Nodes # of Nodes

Layer 0 Layer 1 Layer 0 Layer 1

a 0, 1, 2 0, 1, 2 3 3

b 0, 1, 3 0, 1, 4, 5 3 4

c 1, 2, 3 1, 2, 3, 4 3 4

d 3, 4, 5 0 3

As the unchanged cells are detected, one should check the nodes they include. In

cell a, the nodes 0, 1, and 2 exist; which will be called unchanged nodes. The only

changed node in Layer 0 is node 3. Now, the previous path must be taken, which is

1− 0− 2− 3− 0− 2− 1− 3− 0− 1− 2− 3− 1, and be divided into the subpaths by

removing the changed nodes. By doing that, i.e., by removing node 3 from the path,

the following subpaths are obtained:

1− 0− 2

0− 2− 1

0− 1− 2

−1

Note that, the last part, which is −1, is not a subpath, because it doesn’t specify a

connection. In order to make a connection, two nodes are required. Now, the subpaths

from the previous path are ready, but the new connections are also needed, in order to

enlarge the subpaths. To explain the subject better, the previous subpaths and the new

connections are given in Figure 3.4.

27

a

b

c

1

2

3
4

0

d

5

Figure 3.4: Layer 1 with duplicated connections. The subpaths from Layer 0 are

shown in color, new connections are shown in black.

Using the new connections, the subpaths should be enlarged, such that no u turn

occurs. Note that, subpaths must be enlarged in an expansive manner; if there are

two connections with a node, but one connection with another, the one with two

connections must be chosen. In other words, the bridges must not be burned. Starting

with the blue subpath, 1− 0− 2:

1− 0− 2

1− 0− 2− 3

1− 0− 2− 3− 4

1− 0− 2− 3− 4− 5

1− 0− 2− 3− 4− 5− 0

The only way to keep enlarging this subpath is to go back to node 5, but that would

cause a u turn, therefore, the enlargement must be stopped. Switching to the yellow

subpath, 0− 2− 1:

28

0− 2− 1

0− 2− 1− 4

0− 2− 1− 4− 5

0− 2− 1− 4− 5− 3

0− 2− 1− 4− 5− 3− 2

Proceeding with the green subpath, 0 − 1 − 2: It is not possible to enlarge it from

node 2, but it can be reversed and enlarged from node 0:

2− 1− 0

2− 1− 0− 5

2− 1− 0− 5− 3

2− 1− 0− 5− 3− 4

2− 1− 0− 5− 3− 4− 1

During the enlargements, all connections are used and none is left, therefore, there is

no need to create new subpaths. The enlarged subpaths are given in Figure 3.5.

The subpaths without u turns are made, and by adding them one by one, one should

be able to construct the path. Checking the subpaths again, it is observed that starting

with 1− 0− 2− 3− 4− 5− 0, then adding 0− 2− 1− 4− 5− 3− 2, and finally

adding 2−1−0−5−3−4−1, the path can be constructed, in a very straightforward

fashion. Therefore, the path is obtained as

1− 0− 2− 3− 4− 5− 0− 2− 1− 4− 5− 3− 2− 1− 0− 5− 3− 4− 1.

In the example given, there was no need to use any operations from the previous

section, namely partial reversal, full reversal, and loop change. Nevertheless, in the

formal procedure the steps from the Algorithm 4 must be followed, during the path

creation process from the subpaths. Utilizing the explained algorithm, the path can

be updated for each layer.

29

Algorithm 5 Path Updater - 1: Path Breaker
Input: A path without u turns for layer n, lists of Voronoi cells for layers n & n+1

Output: A path without u turns for layer n+1

1: Initialize Changed Voronois as an empty list

2: Initialize Unchanged Nodes as an empty list

3: Initialize Changed Nodes as an empty list

4: for each cell in Voronoi cells list do

5: if # of nodes of the cell is the same between layers n & n+1 then

6: for each node in the cell do

7: Add node to Unchanged Nodes list

8: end for

9: else

10: Add cell to Changed Voronois list

11: end if

12: end for

13: for each cell in Changed Voronois list do

14: for each node in cell do

15: if node is not in Unchanged Nodes list then

16: Add node to Changed Nodes list

17: end if

18: end for

19: end for

20: Initialize SubPaths as an empty list

21: for each Adjacent Connection in the previous Path do

22: if a node from Changed Nodes list exists then

23: Divide the Path from that node

24: Add the first part of the divided path to SubPaths

25: end if

26: end for

30

Algorithm 6 Path Updater - 2: SubPath Enlarger
27: Initialize New Connections as an empty list

28: for each cell in Changed Voronois list do

29: if There are connections that are not already included in SubPaths then

30: Add those connections to New Connections list

31: end if

32: end for

33: while New Connections is not empty do

34: Initialize the boolean APPENDED as False

35: for each SubPath in SubPaths list do

36: for each Connection in New Connections list do

37: Try to enlarge SubPath, or the reversed SubPath, by adding Connec-

tion

38: if Enlarging is successfull then

39: Set APPENDED as True

40: Remove Connection from New Connections list

41: break

42: end if

43: end for

44: if APPENDED is True then break

45: end if

46: end for

47: if APPENDED is False then

48: Set the first Connection in New Connections list as a SubPath

49: Add SubPath to SubPaths list

50: Remove Connection from New Connections list

51: end if

52: end while

31

Algorithm 7 Path Updater - 3: Path Generator
53: Initialize Chains and Loops as empty lists

54: for each SubPath in the SubPaths do

55: if SubPath starts and ends at the same node then

56: Add SubPath to Loops

57: else

58: Add SubPath to Chains

59: end if

60: end for

61: Initialize Main Path as an empty list

62: if Chains is not empty then

63: Set the longest SubPath in Chains as Main Path

64: else

65: Set the longest SubPath in Loops as Main Path

66: end if

67: while Chains is not empty and Loops is not empty do

68: Initialize the boolean APPENDED as False

69: for each SubPath in the Chains list do

70: if SubPath or the reversed SubPath can be added to the Main Path then

71: if Reversing is necessary then

72: Reverse the SubPath

73: end if

74: if Adding would not cause a u turn then

75: Add the SubPath to the Main Path

76: Set APPENDED as True

77: Remove SubPath from the Chains list

78: break

32

Path Updater - 3: Path Generator Part 2
79: else

80: if Eliminating u turn by Partial loop change is possible then

81: Make Partial loop change in Main Path

82: Add the SubPath to the Main Path

83: Set APPENDED as True

84: Remove SubPath from the Chains list

85: break

86: end if

87: end if

88: end if

89: end for

90: if APPENDED is False then

91: for each SubPath in the Loops list do

92: if SubPath can be inserted into Main Path then

93: if Loop change is necessary then

94: Make Loop change

95: end if

96: Insert the SubPath to the Main Path

97: Remove SubPath from the Loops list

98: break

99: end if

100: end for

101: end if

102: end while

103: return Main Path

33

a

b

c

1

2

3
4

0

d

5

Figure 3.5: Subpaths are enlarged using available connections. Note that the green

subpath is reversed during the enlargement.

3.4 G-code Encryption

Aside from the path planning algorithms, an encryption method for G-codes is de-

veloped. In a G-code file, the explicit coordinates of the visited nodes must always

be written; at least the coordinates that are changing, which are usually the x and y

coordinates of the nodes as the z coordinate is the same for the whole layer during 3D

printing.

It is proposed to store the G-code information by using two text files: paths.txt &

corners.txt.

In paths.txt, the path information by node numbers will be stored, which are integers.

For instance, for a path of 1− 2− 0− 2− 1 ,

1 2 0 2 1 will be written to paths.txt,

because the path nodes are separated using a blank space. Furthermore, let’s say that

34

there is a fast travel and afterwards another path traversal, and the path is 1− 2− 0−
2− 1− > −3− 2− 3, where − > − denotes the fast travel. In that case,

1 2 0 2 1 G3 2 3 must be written,

where G denotes going to another segment, or fast travel.

In the second text file, corners.txt, the coordinate information of the nodes will be

stored. The x and y coordinates of the nodes will be written together, by separating a

comma. After all nodes’ x and y coordinates are written, the z coordinate of them will

be added, which is the same for all the nodes, at a layer. Continuing with the example

path, 1− 2− 0− 2− 1− > −3− 2− 3. Node coordinates for this example are given

in Table 3.2.

Table 3.2: The coordinates of all the nodes in the example path, 1-2-0-2-1->-3-2-3.

Coordinates

x y z (Layer Height)

0 1.25 2.75 5.00

1 2.25 3.50 5.00

2 1.75 2.00 5.00

3 3.00 1.50 5.00

Given those coordinate values, one should write

1.25,2.75 2.25,3.50 1.75,2.00 3.00,1.50 5.00

to corners.txt. The node numbers, which are integers, are used as index values for

node coordinates list. Therefore, if the largest node number in the path is n, the

length of the node coordinates list for that path will be n+2: As the index starts from

0, there are n+1 coordinate values, and at the end there is a height value. Note that,

whether or not there exists a fast travel does not affect node coordinates. Another

difference with the paths.txt is that floats are used, instead of integers. However,

there is an exception: Assuming that the largest node number in a given path is n, one

might encounter that some nodes that are smaller than n are absent in the path. Since

35

node numbers are used as index values, values for missing nodes must be set as well.

For those missing nodes, x will be written to corners.txt.

In both paths.txt and corners.txt, a layer is denoted by a full line. In other words,

going to the next layer means switching to the next line, and then start writing to that

line, for the new layer. To demonstrate all of the rules, a complete example shall be

given.

Assume that, in the first layer, the generated path is 1−2−0−2−1− > −3−2−3,

for which the coordinate values were given in Table 3.2. Then, at the next layer, the

first part of the path is disappeared, and the path became 3−2−3, and the coordinate

values of this path are provided at Table 3.3.

Table 3.3: The coordinates of all the nodes in the path at next layer, 3-2-3.

Coordinates

x y z (Layer Height)

0 - - -

1 - - -

2 1.85 2.20 5.10

3 2.95 1.60 5.10

In that case, paths.txt and corners.txt will become:

paths.txt
1: 1 2 0 2 1 G3 2 3

2: 3 2 3

corners.txt
1: 1.25,2.75 2.25,3.50 1.75,2.00 3.00,1.50 5.00

2: x x 1.85,2.20 2.95,1.60 5.10

As it is shown, all the required information is stored in those files. If required, one

can easily use a script to generate the G-code file from them.

36

3.4.1 Case of 2.5D Parts

If the grid structure and the boundary conditions are not changing for a material, in

other words, if the x and y coordinates of the nodes are the same for subsequent layers,

that advantage is taken in the encryption method. In such a case, the path will be the

same, and only z coordinates of the nodes will be different.

If 2.5D printing case occurs, nothing will be written to paths.txt, i.e., but one must

go to line afterwards. On the other hand, only the height value will be written to the

corners.txt, before going to the next line.

Consider the example previously given. Let’s say, the path 1 − 2 − 0 − 2 − 1− >

−3−2−3 is valid for three layers, with same coordinate values, except for the height.

Then, assume, the second part vanishes and the path becomes 3− 2− 3, and stays the

same for the following two layers. In such a case, the two text files must be as such:

paths.txt
1: 1 2 0 2 1 G3 2 3

2:

3:

4: 3 2 3

5:

corners.txt
1: 1.25,2.75 2.25,3.50 1.75,2.00 3.00,1.50 5.00

2: 5.10

3: 5.20

4: x x 1.85,2.20 2.95,1.60 5.30

5: 5.40

Using this encryption method, compared to the G-code file, the size for the storage

can be greatly reduced, which will be shown in the following chapter.

37

Algorithm 8 G-code Encryption
Input: Paths List & Coordinates List for all layers

Output: paths.txt, corners.txt

1: Initialize paths.txt and corners.txt as empty files

2: Write the first layer’s path to paths.txt

3: Write the first layer’s coordinates to corners.txt

4: for each remaining layer in the Path List do

5: Go to the next line in paths.txt

6: Go to the next line in corners.txt

7: if 2.5D printing occurs (coordinates except for the height are the same) then

8: Write the heigth to corners.txt

9: else

10: Write path to paths.txt

11: if There are missing nodes then

12: write x for them to corners.txt

13: end if

14: Write path node coordinates to corners.txt

15: Write the heigth to corners.txt

16: end if

17: end for

18: return paths.txt, corners.txt

38

3.5 Complexity Analysis of the Algorithms

Considering the pseudocodes provided, complexities of the algorithms are calculated.

Although the implementation can greatly change how fast an algorithm runs, com-

plexity analysis might still be used as a tool for comparison.

In this section, the main operations in each algorithm are taken into account. The

complexities of these operations are determined, and finally they are summed to find

the complexity of the overall algorithm.

3.5.1 Hierholzer’s Algorithm

Assuming there are n edges in the graph, operations and their complexities for the

Hierholzer’s Algorithm is given in Table 3.4.

Table 3.4: Complexity of operations for the Hierholzer’s Algorithm.

Operation Complexity

Appending the edges O(n)

Checking if the last node has an edge O(n)

If the last node has no edge, checking the path O(k)

Since k < n, complexity of the Hierholzer’s Algorithm is found as O(n).

3.5.2 Modified Hierholzer’s Algorithm

Assuming there are n edges in the graph, operations and their complexities for the

Modified Hierholzer’s Algorithm is given in Table 3.5.

Since k < n, complexity of the Modified Hierholzer’s Algorithm is found as O(n).

39

Table 3.5: Complexity of operations for the Modified Hierholzer’s Algorithm.

Operation Complexity

Appending the edges O(n)

Checking if the last node has an edge O(n)

Checking if that edge causes a u turn O(n)

If the last node has no edge or u turn occurs, checking the path O(k)

3.5.3 Path Converter Algorithm

This algorithm has two parts: Path Breaker and Path Generator. Assuming there are

n edges in the graph, operations and complexities for the first part is given in Table

3.6.

Table 3.6: Complexity of operations for the Path Breaker Algorithm.

Operation Complexity

Checking if a u turn exists O(n)

Dividing the path at u turn locations O(k)

Complexity of the Path Breaker Algorithm is found as O(n), since k < n. For the

second part, assuming there are m subpaths, operations and complexities are given in

Table 3.7.

Table 3.7: Complexity of operations for the Path Generator Algorithm.

Operation Complexity

Distributing subpaths to chains and loops O(m)

Setting the longest subpath as the path O(m)

Enlarging the path by adding subpaths O(m2)

40

Complexity of the Path Generator Algorithm is found as O(m2). By considering the

two parts, complexity of the Path Converter Algorithm is found as O(m2 + n).

3.5.4 Path Updater Algorithm

This algorithm has three parts: Path Breaker, Subpath Enlarger, and Path Generator.

Assuming there are n edges in the graph, operations and complexities for the first part

is given in Table 3.8.

Table 3.8: Complexity of operations for the Path Breaker Algorithm.

Operation Complexity

Checking if number of nodes in each cell are changed O(n)

Checking if Changed nodes exist in Unchanged Nodes list O(n2)

Checking if previous path has any Changed nodes O(n)

Dividing the path at Changed nodes locations O(k)

Complexity of the Path Breaker Algorithm is found as O(n2). For the second part,

assuming there are n edges, operations and complexities are given in Table 3.9.

Table 3.9: Complexity of operations for the Subpath Enlarger Algorithm.

Operation Complexity

Finding new connections from Changed Voronois O(n)

Appending new connections to subpaths O(n)

Checking if that edge causes a u turn O(n)

Complexity of the Subpath Enlarger Algorithm is found as O(n). For the third part,

assuming there are m subpaths, operations and complexities are given in Table 3.10.

Complexity of the Path Generator Algorithm is found as O(m2). By considering the

three parts, complexity of the Path Updater Algorithm is found as O(m2 + n2).

41

Table 3.10: Complexity of operations for the Path Generator Algorithm.

Operation Complexity

Distributing subpaths to chains and loops O(m)

Setting the longest subpath as the path O(m)

Enlarging the path by adding subpaths O(m2)

3.5.5 G-code Encryption Algorithm

Assuming there are n lines in the G-code file, operations and their complexities for

the G-code Encryption Algorithm is given in Table 3.11.

Table 3.11: Complexity of operations for the G-code Encryption Algorithm.

Operation Complexity

Writing necessary data to paths.txt O(n)

Writing necessary data to corners.txt O(n)

Checking if 2.5D printing occurs at each layer O(n)

Complexity of the G-code Encryption Algorithm is found as O(n).

42

CHAPTER 4

IMPLEMENTATION & TEST CASES

In this chapter, implementation details of the developed algorithms are discussed.

Afterwards, conducted tests with various shapes are given, and their results are elab-

orated.

4.1 Algorithms Utilized in Test Cases for Comparison

4.1.1 Naive Algorithm

As observed from the graphs (Figure 3.1), if one traverses all of the cells once, all the

edges are traversed. Naive algorithm uses this observation to operate and executes a

lot of fast travel motions. After completing all edges of a cell, it goes to the starting

node of the next cell and traverses all of its edges. Unless the starting nodes of the

adjacent cells are the same, which is decided by the list of vertices and nodes con-

structed by Grasshopper, the algorithm employs fast travels (Figure 4.1). Although

this algorithm is inefficient, it can be easily implemented and can be used to study the

effect of fast travels.

4.1.2 Improved Naive Algorithm

At a first glance at the naive algorithm, its main inefficiency can be conceived as the

unnecessary numbers of fast travels. For instance, instead of travelling from point i

to point a after the first traversal (Figure 4.1a), the algorithm could start traversing

the boundary, which would eliminate the fast travel. Later, it may go to the closest

43

1

0

2

3

4
5

6

7

8

9
a

b

c

d

(a) The path at the beginning of the traversal

of cell a.

1

0

2

3

4
5

6

7

8

9
a

b

c

d

(b) The path at the beginning of the traversal

of cell b.

Figure 4.1: Naive algorithm, which traverses every cell one by one, without optimiza-

tion.

Algorithm 9 Naive Algorithm
Input: A list of Voronoi cells, Starting node

Output: A path that traverses all of the edges twice

1: Initialize Path as an empty list

2: for each Voronoi cell in the Voronoi List do

3: for each edge in the Voronoi cell do

4: Append the edge to the Path

5: end for

6: end for

7: return Path

44

1

0

2

3

4
5

6

7

8

9
a

b

c

d

(a) The path at the beginning of the traversal

of the boundary cell (d).

1

0

2

3

4
5

6

7

8

9
a

b

c

d

(b) The path at the beginning of the traversal

of cell a.

Figure 4.2: Improved naive algorithm, which traverses a cell completely, then con-

siders the closest cell.

node of an uncompleted cell and traverse that edge. The improved naive algorithm

works in that fashion by optimizing the path considering one step ahead (Figure 4.2).

Even though this algorithm doesn’t eliminate the fast travels in general, it’s still a

significant improvement over the naive algorithm.

4.1.3 Algorithm of Yaman et al.

The algorithm proposed by Yaman et al. [1] provides an Eulerian cycle for an Eulerian

graph, following three simple rules. Starting from node 8 in cell c, path is computed

by explaining the rules of the algorithm.

First of all, the algorithm keeps track of whether a cell is marked, i.e., any of its edges

is traversed or not. At the beginning, none of the cells are marked. After the first

traversal (8-9), cell c is marked. Beside, it keeps track of the node that has the same

edge that is currently traversed, which is called as the neighbour cell. For instance,

after the first traversal, neighbour cell is d, since it has the edge 9-8. The first rule of

the algorithm is that if the neighbour cell is not marked yet, the edge of the neighbour

cell is added to the path. Therefore, neighbour cell becomes the current cell and it is

marked. At this stage, a u turn is observed (Figure 4.3).

45

Algorithm 10 Improved Naive Algorithm
Input: A list of Voronoi cells, Starting node

Output: A path that traverses all of the edges twice

1: Initialize Path as an empty list

2: Set current node as the starting node

3: Find a cell that includes the current node and set it to the current cell

4: while Voronoi List is not empty do

5: for each edge in the current cell do

6: Append the edge to the Path

7: end for

8: Remove the current cell from the Voronoi List

9: if the current node is in the Voronoi List then

10: Find a cell that includes the current node and set it to the current cell

11: else

12: Find the closest node, set it to the current node

13: Find a cell that includes the current node and set it to the current cell

14: end if

15: end while

16: return Path

If both current cell and neighbour cell are marked, and if there are connections for the

current node, the algorithm chooses to stay in the current cell, which is the second

rule (Figure 4.4).

The final rule of the algorithm considers the case in which all edges of the current

cell are traversed & the neighbour cell is marked. In that case, if current node has

connections in two cells, the algorithm chooses to go to the cell that is not a neighbour

cell (Figure 4.5). Using those three rules, Euler cycle of the graph is obtained. Hence,

fast travels are eliminated.

46

1

0

2

3

4
5

6

7

8

9
a

b

c

d

(a) After the first traversal (8-9), cell c is

marked.

1

0

2

3

4
5

6

7

8

9
a

b

c

d

(b) Since neighbour cell (d) is not marked, al-

gorithm moves into it.

Figure 4.3: The first rule of the algorithm by Yaman et al. [1].

1

0

2

3

4
5

6

7

8

9
a

b

c

d

(a) After the traversal of 9-8 (Figure 4.3b), 8-2

is traversed in cell d.

1

0

2

3

4
5

6

7

8

9
a

b

c

d

(b) After the traversal of 8-2, 2-1 is traversed

in cell d.

Figure 4.4: The second rule of the algorithm by Yaman et al. [1].

47

1

0

2

3

4
5

6

7

8

9
a

b

c

d

(a) After the traversal of 7-4, no edge is left in

b. The path so far is 8-9-8-2-1-2-3-4-3-5-6-7-4.

1

0

2

3

4
5

6

7

8

9
a

b

c

d

(b) Instead of the neighbour cell d, cell a is

chosen and the edge 4-0 is traversed.

Figure 4.5: The third rule of the algorithm by Yaman et al. [1].

4.1.4 Hierholzer’s Algorithm

Hierholzer’s algorithm is another algorithm that is used for comparison, which was

already explained in Section 3.1.1.

4.1.5 Ultimaker Cura

In order to have a comparison with the native software of the 3D printer used, Ulti-

maker 3 Extended, the algorithm of the printer is also utilized.

4.2 Complexity Analysis of the Algorithms

Considering the pseudocodes provided, complexities of the algorithms are calculated,

as done in Section 3.5.

Firstly, the main operations in each algorithm are elaborated. Then, the complexities

of these operations are determined, and finally they are summed to find the complexity

of the overall algorithm.

48

Algorithm 11 Algorithm of Yaman et al.
Input: A list of Voronoi cells, Starting node

Output: A path that traverses all of the edges twice

1: Initialize Path as an empty list

2: Create the Edge List that includes all connections of the Voronoi List

3: Create the Marked List as an empty list

4: Find an edge that starts with the Starting node

5: Set the current edge to the edge

6: Append the current edge to the Path

7: Set the current cell to the corresponding cell

8: Append the current cell to Marked List

9: Remove the current edge from the Edge List

10: while Edge List is not empty do

11: Find the Neighbour cell

12: if Neighbour cell is not marked then

13: Set the current cell to the Neighbour cell

14: else if there exists an edge into another cell then

15: Set the current cell to the another cell

16: else

17: Current cell is unchanged

18: end if

19: Set the current edge to the edge that belongs to the current cell and starting

with the current node

20: Append the current edge to the Path

21: Remove the current edge from the Edge List

22: Append the current cell to the Marked List

23: end while

24: return Path

4.2.1 Naive Algorithm

Assuming there are n edges in the graph, operations and their complexities for the

Naive Algorithm is given in Table 4.1.

49

Table 4.1: Complexity of operations for the Naive Algorithm.

Operation Complexity

Appending the edges O(n)

Complexity of the Naive Algorithm is found as O(n).

4.2.2 Improved Naive Algorithm

Assuming there are n edges in the graph, operations and their complexities for the

Improved Naive Algorithm is given in Table 4.2.

Table 4.2: Complexity of operations for the Improved Naive Algorithm.

Operation Complexity

Appending the edges O(n)

Checking if the current node is in Voronoi list O(n)

Finding the closest node O(n)

Finding a cell that includes the closest node O(n)

Complexity of the Improved Naive Algorithm is found as O(n).

4.2.3 Algorithm of Yaman et al.

Assuming there are n edges in the graph, operations and their complexities for the

Algorithm of Yaman et al. [1] is given in Table 4.3.

Complexity of the Algorithm of Yaman et al. [1] is found as O(n).

50

Table 4.3: Complexity of operations for the Algorithm of Yaman et al. [1].

Operation Complexity

Appending the edges O(n)

Setting the current cell O(n)

Finding the neighbour cell O(2n)

Appending cell to the marked list O(n)

Decicing on the next node O(n)

4.3 Implementation

Rhino3D and Grasshopper3D are used for the generation of 3D Voronoi cells after

object files are imported into them. Slicing operations and algorithm implementations

are done using the GhPython module of Grasshopper3D. Furthermore, G-code files,

and the text files that include the nodes to traverse and the coordinates of the nodes

are generated within GhPython modules.

First, the object file is imported. Then, they are sliced by specified vertical distances

from the bottom to the top. At each layer, the intersection of the 3D Voronoi cells and

the horizontal plane is obtained, which is a 2D Voronoi graph. Afterwards, using the

discussed algorithms, paths are generated. Finally, G-code and text files are updated

for that layer. This operation is done for all of the layers.

4.4 Simulation

For a better understanding of the algorithms, simulations are performed using Tkinter

module of Python. Snapshots of the simulation for a scene with 80 Voronoi cells are

provided in Figure 4.6. Note that the algorithm used in this simulation is the one

proposed by Yaman et al. [1]. Therefore, the cells are sequentially marked by the

algorithm during the traversal and a large number of u turns are present. Note that,

marked cells are shown by red dots, whereas the first traversal is shown by a thin red,

51

(a) At the beginning, no cells are marked. (b) As the cells are traversed, they are being

marked.

(c) The algorithm spreads throughout all the

cells.

(d) Traversal is ended at the starting node.

Figure 4.6: Simulation for a graph with 80 cells.

and second traversal is shown by either a thick red (if there is no u turn) or purple (if

a u turn exists) line.

Another simulation is performed for the proposed algorithm. A cube is first filled with

100 random Voronoi cells (Section 4.5.1.1), then two layers that are 0.5 mm apart are

considered. Since the Modified Hierholzer algorithm makes no u turns, no purple line

is seen on the first layer. For the second layer, due to the proposed algorithm, the path

is not calculated from the beginning, but by updating the path of the previous layer.

In the simulation, the edges that are taken from the previous path are shown in blue,

whereas new connections, i.e., the edges belonging to the modified Voronoi cells are

shown in red.

The simulation includes all off the algorithms except the Hierholzer’s algorithm, since

the modified version is already provided. Additionally, sample environments with

different complexities are given. Three supplementary videos are also available. The

first one explains all of the algorithms in a relatively simple environment, which can

52

(a) Traversal of the first layer. (b) The end of the traversal for the first layer.

(c) Traversal of the second layer. (d) The end of the traversal for the second layer.

Figure 4.7: Simulation for two sequential layers of a cube filled with 100 Voronoi

cells.

53

be found at https://youtu.be/C4R8sq5XM1k. The second one compares the

algorithm proposed by Yaman et al. [1] and the Modified Hierholzer’s algorithm in

an environment with 80 Voronoi cells, which is available at https://youtu.be/

zPRsC1rkaNw. The last one exemplifies the proposed algorithm, whose screenshots

are given in Figure 4.7. It can be seen at https://youtu.be/YChOYG3NCjA.

4.5 Test Cases

In all of the test prints, the objects are first filled with randomly placed 3D Voronoi

cells, and then with cube-shaped Voronoi cells. The latter results in a square type of

grid structure on each layer. This structure is useful for comparison with the native

Ultimaker software (Cura). Furthermore, in a grid structure some part of the path from

the previous layer might be used in the next layer, which would be advantageous for

the proposed method. Algorithms are compared by their execution times and the size

of the G-code files. Additionally, the sizes of the G-code files are compared with

those of the files generated by the algorithm, namely corners.txt and paths.txt.

For both randomly-shaped and cube-shaped Voronoi cells, two models (sparse and

dense Voronoi distribution) are generated. Results of these cases are tabulated and

elaborated in the below subsections of the chapter.

4.5.1 Cube

In this case, a cube is studied. Size of the cube is 30 mm. The layer thickness is set

to be 0.1 mm, which results in 300 layers. Since it is an 2.5D object, encryption can

effectively be made, especially for grid-type structures.

4.5.1.1 Cube with 100 Random 3D Voronoi Cells

In this case, 100 randomly distributed 3D Voronoi cells are generated inside the cube

(Figure 4.8). The results are given in Table 4.4. Without 2.5D encryption, the sum

of corners.txt and paths.txt becomes 407 KB, which enables 73.8% reduction com-

54

https://youtu.be/C4R8sq5XM1k
https://youtu.be/zPRsC1rkaNw
https://youtu.be/zPRsC1rkaNw
https://youtu.be/YChOYG3NCjA

pared to the G-code with a size of 1556 KB. With 2.5D encryption, the reduction

becomes 84.2%. Proposed algorithm takes 9.1% less time compared to the Modified

Hierholzer’s algorithm.

Figure 4.8: The cube with 100 randomly placed 3D Voronoi cells.

4.5.1.2 Cube with 400 Random 3D Voronoi Cells

In this case, 400 randomly placed 3D Voronoi cells are generated inside the cube

(Figure 4.9). The results are given in Table 4.5. Without 2.5D encryption, the sum

of corners.txt and paths.txt becomes 1047 KB, which enables 72.7% reduction com-

pared to the G-code file with a size of 3840 KB. With 2.5D encryption, the reduction

becomes 73.6%. Proposed algorithm takes 10.3% less time compared to the Modified

Hierholzer’s algorithm.

55

Table 4.4: The results for the case of cube with 100 Voronoi cells.

Algorithm Time [s] Size [KB] Fast Travels U Turns

G-code corners paths

Naive 17.347 1797 8465 7

Improved Naive 23.323 1776 8178 133

Hierholzer’s 20.982 1556 300 375

Modified Hierholzer’s 21.651 1556 300 0

Yaman et. al. 29.643 1556 300 5036

Proposed (w/o 2.5D Enc.) 19.688 247 160 300 0

Proposed (w/ 2.5D Enc.) 19.688 149 97 300 0

Ultimaker Cura NA

Figure 4.9: The cube with 400 randomly placed 3D Voronoi cells.

56

Table 4.5: The results for the case of cube with 400 Voronoi cells.

Algorithm Time [s] Size [KB] Fast Travels U Turns

G-code corners paths

Naive 44.361 4519 21237 27

Improved Naive 75.205 4495 20642 191

Hierholzer’s 60.664 3840 300 1204

Modified Hierholzer’s 63.777 3840 300 0

Yaman et. al. 118.103 3840 300 12933

Proposed (w/o 2.5D Enc.) 57.238 616 431 300 0

Proposed (w/ 2.5D Enc.) 57.238 598 417 300 0

Ultimaker Cura NA

4.5.1.3 Cube with 64 Square Voronoi Cells on XY-Plane

In this case, a square grid structure is obtained, which is equivalent to 64 vertical

Voronoi cells (Figure 4.10). The results are given in Table 4.6. Without 2.5D en-

cryption, the sum of corners.txt and paths.txt becomes 486 KB, which enables 79.5%

reduction compared to the G-code file with a size of 2374 KB. With 2.5D encryp-

tion, the reduction becomes 99.6%. This result is expected, since the object is a 2.5D

shape. Proposed algorithm takes 23.6% less time compared to the Modified Hier-

holzer’s algorithm.

4.5.1.4 Cube with 441 Square Voronoi Cells on XY-Plane

In this case, a square grid structure is obtained, which is equivalent to 441 verti-

cal Voronoi cells (Figure 4.11). The results are given in Table 4.7. Without 2.5D

encryption, the sum of corners.txt and paths.txt becomes 3750 KB, which enables

77.0% reduction compared to the G-code file with a size of 16238 KB. With 2.5D

encryption, the reduction becomes 99.7%. Proposed algorithm takes 58.6% less time

compared to the Modified Hierholzer’s algorithm.

57

Figure 4.10: The cube with 64 Voronoi cells at each layer.

Table 4.6: The results for the case of cube with 64 Voronoi cells.

Algorithm Time [s] Size [KB] Fast Travels U Turns

G-code corners paths

Naive 25.218 2936 17361 12

Improved Naive 40.118 2780 14111 1248

Hierholzer’s 32.388 2374 300 218

Modified Hierholzer’s 32.826 2374 300 0

Yaman et. al. 58.369 2374 300 11685

Proposed (w/o 2.5D Enc.) 25.091 240 246 300 0

Proposed (w/ 2.5D Enc.) 25.091 5 4 300 0

Ultimaker Cura 2.430 1062 5107 0

58

Figure 4.11: The cube with 441 Voronoi cells at each layer.

Table 4.7: The results for the case of cube with 441 Voronoi cells.

Algorithm Time [s] Size [KB] Fast Travels U Turns

G-code corners paths

Naive 168.247 21188 117113 38

Improved Naive 661.472 21025 113396 5097

Hierholzer’s 431.660 16238 300 996

Modified Hierholzer’s 452.468 16238 300 0

Yaman et. al. 1639.285 16238 300 83154

Proposed (w/o 2.5D Enc.) 187.233 1684 2056 300 0

Proposed (w/ 2.5D Enc.) 187.233 19 22 300 0

Ultimaker Cura 2.560 1771 5107 0

59

4.5.2 Sphere

In this case, another solid object, a sphere is utilized. Radius of the sphere is 20 mm.

398 layers are obtained after slicing with a layer thickness of 0.1 mm. For the naive

algorithm, a different intersection method is applied, thus it takes longer than usual.

The boundary of the sphere is changing continuously throughout the layers. There-

fore, little 2.5D encryption can be made.

4.5.2.1 Sphere with Randomly Placed 100 3D Voronoi Cells

In this case, 100 randomly placed 3D Voronoi cells are generated inside the sphere

(Figure 4.12). The results are given in Table 4.8. Without 2.5D encryption, the sum

of corners.txt and paths.txt becomes 1401 KB, which enables 70.3% reduction com-

pared to the G-code file with a size of 4719 KB. With 2.5D encryption, the reduction

becomes 70.4%. Proposed algorithm takes 1.9% less time compared to the Modified

Hierholzer’s algorithm.

Table 4.8: The results for the case of sphere with 100 Voronoi cells.

Algorithm Time [s] Size [KB] Fast Travels U Turns

G-code corners paths

Naive 141.550 5319 14409 24

Improved Naive 143.156 5379 13698 274

Hierholzer’s 103.460 4719 398 617

Modified Hierholzer’s 104.161 4719 398 0

Yaman et. al. 154.178 4719 398 9166

Proposed (w/o 2.5D Enc.) 102.194 889 512 301 0

Proposed (w/ 2.5D Enc.) 102.194 886 510 301 0

Ultimaker Cura NA

60

Figure 4.12: The sphere with 100 randomly placed 3D Voronoi cells.

4.5.2.2 Sphere with Randomly Placed 400 3D Voronoi Cells

In this case, 400 randomly placed 3D Voronoi cells are generated inside the sphere

(Figure 4.13). The results are given in Table 4.9. Without 2.5D encryption, the sum

of corners.txt and paths.txt becomes 3090 KB, which enables 71.1% reduction com-

pared to the G-code file with a size of 10700 KB. For this case, no 2.5D encryption

can be applied. Proposed algorithm takes 25.1% less time compared to the Modified

Hierholzer’s algorithm.

4.5.2.3 Sphere with 81 Square Voronoi Cells on XY-Plane

In this case, a square grid structure is created, which is equivalent to 81 Voronoi cells

at each layer (Figure 4.14). Note that, not all of the grid cells intersect the object

at each layer. The results are given in Table 4.10. Without 2.5D encryption, the

61

Figure 4.13: The sphere with 400 randomly placed 3D Voronoi cells.

Table 4.9: The results for the case of sphere with 400 Voronoi cells.

Algorithm Time [s] Size [KB] Fast Travels U Turns

G-code corners paths

Naive 249.917 12847 47827 4

Improved Naive 545.098 12981 46471 431

Hierholzer’s 278.849 10700 398 3204

Modified Hierholzer’s 282.767 10700 398 0

Yaman et. al. 645.060 10700 398 28494

Proposed (w/o 2.5D Enc.) 211.797 1833 1257 301 0

Proposed (w/ 2.5D Enc.) 211.797 1833 1257 301 0

Ultimaker Cura NA

sum of corners.txt and paths.txt becomes 1302 KB, which enables 71.2% reduction

compared to the G-code file with a size of 4524 KB. For this case, no 2.5D encryption

62

can be applied. Proposed algorithm takes 7.7% less time compared to the Modified

Hierholzer’s algorithm.

Figure 4.14: The sphere with 81 Voronoi cells at each layer.

Table 4.10: The results for the case of sphere with 81 Voronoi cells.

Algorithm Time [s] Size [KB] Fast Travels U Turns

G-code corners paths

Naive 135.905 5175 18369 16

Improved Naive 167.718 5094 12728 1861

Hierholzer’s 97.862 4524 398 221

Modified Hierholzer’s 100.098 4524 398 0

Yaman et. al. 143.734 4524 398 12555

Proposed (w/o 2.5D Enc.) 92.377 786 516 398 0

Proposed (w/ 2.5D Enc.) 92.377 786 516 398 0

Ultimaker Cura 4.360 7748 13317 0

63

4.5.2.4 Sphere with 441 Square Voronoi Cells on XY-Plane

In this case, a square grid structure is created, which is equivalent to 441 Voronoi

cells at each layer (Figure 4.15). Note that, not all of the grid cells intersect the object

at each layer. The results are given in Table 4.11. Without 2.5D encryption, the sum

of corners.txt and paths.txt becomes 3379 KB, which enables 74.3% reduction com-

pared to the G-code file with a size of 13157 KB. For this case, no 2.5D encryption

can be applied. Proposed algorithm takes 35.6% less time compared to the Modified

Hierholzer’s algorithm.

Figure 4.15: The sphere with 441 Voronoi cells at each layer.

4.5.3 Custom Shape

In this case, a 2.5D shape with a hole at the center is designed. There are 350 layers

when the layer thickness is set to 0.1 mm. Effective 2.5D encryption is expected for

grid-type structures.

64

Table 4.11: The results for the case of sphere with 441 Voronoi cells.

Algorithm Time [s] Size [KB] Fast Travels U Turns

G-code corners paths

Naive 245.852 16737 88536 34

Improved Naive 1010.237 16043 62768 9021

Hierholzer’s 383.372 13157 398 439

Modified Hierholzer’s 392.131 13157 398 0

Yaman et. al. 1063.742 13157 398 60067

Proposed (w/o 2.5D Enc.) 252.690 1620 1759 398 0

Proposed (w/ 2.5D Enc.) 252.690 1620 1759 398 0

Ultimaker Cura 5.260 8573 13514 0

4.5.3.1 Custom Shape with Randomly Placed 100 3D Voronoi Cells

In this case, 100 randomly placed 3D Voronoi cells are generated inside the custom

shape (Figure 4.16). The results are given in Table 4.12. Without 2.5D encryption,

the sum of corners.txt and paths.txt becomes 790 KB, which enables 71.9% reduc-

tion compared to the G-code file with a size of 2810 KB. With 2.5D encryption, the

reduction becomes 76.2%. Proposed algorithm takes 2.4% less time compared to the

Modified Hierholzer’s algorithm.

4.5.3.2 Custom Shape with Randomly Placed 400 3D Voronoi Cells

In this case, 400 randomly placed 3D Voronoi cells are generated inside the custom

shape (Figure 4.17). The results are given in Table 4.13. Without 2.5D encryption,

the sum of corners.txt and paths.txt becomes 1478 KB, which enables 71.4% reduc-

tion compared to the G-code file with a size of 5161 KB. With 2.5D encryption, the

reduction becomes 71.8%. Proposed algorithm takes 5.7% more time compared to

the Modified Hierholzer’s algorithm.

65

Figure 4.16: Custom shape with 100 randomly placed 3D Voronoi cells.

Table 4.12: The results for the case of custom shape with 100 Voronoi cells.

Algorithm Time [s] Size [KB] Fast Travels U Turns

G-code corners paths

Naive 49.489 3066 10019 1

Improved Naive 64.718 3052 9643 138

Hierholzer’s 43.820 2810 350 397

Modified Hierholzer’s 44.338 2810 350 0

Yaman et. al. 61.602 2810 350 6715

Proposed (w/o 2.5D Enc.) 45.385 507 283 350 0

Proposed (w/ 2.5D Enc.) 45.385 430 240 350 0

Ultimaker Cura NA

66

Figure 4.17: Custom shape with 400 randomly placed 3D Voronoi cells.

Table 4.13: The results for the case of custom shape with 400 Voronoi cells.

Algorithm Time [s] Size [KB] Fast Travels U Turns

G-code corners paths

Naive 81.175 5835 23281 0

Improved Naive 132.205 5835 22890 144

Hierholzer’s 94.478 5161 350 1155

Modified Hierholzer’s 97.060 5161 350 0

Yaman et. al. 164.759 5161 350 14227

Proposed (w/o 2.5D Enc.) 102.572 898 580 350 0

Proposed (w/ 2.5D Enc.) 102.572 884 572 350 0

Ultimaker Cura NA

4.5.3.3 Custom Shape with 104 Square Voronoi Cells on XY-Plane

In this case, a square grid structure is created, which is equivalent to 104 Voronoi

cells at each layer (Figure 4.18). Note that, not all of the grid cells intersect the object
67

at each layer. The results are given in Table 4.14. Without 2.5D encryption, the sum

of corners.txt and paths.txt becomes 1136 KB, which enables 75.3% reduction com-

pared to the G-code file with a size of 4602 KB. With 2.5D encryption, the reduction

becomes 77.4%. This result is surprising because the shape can be divided into two

2.5D shapes. Thus, a reduction ratio around 99% would be expected, similar to the

cube. The problem is due to the intersection algorithm. The edges of the circle are ob-

tained at different coordinates throughout the shape for most of the time. Therefore,

since the corners defining the circle are not at the same coordinates, the algorithm

does not regard this shape as a 2.5D object, and consequently 2.5D encryption can-

not be applied. Proposed algorithm takes 27.3% less time compared to the Modified

Hierholzer’s algorithm.

Figure 4.18: Custom shape with 104 Voronoi cells at each layer.

68

Table 4.14: The results for the case of custom shape with 104 Voronoi cells.

Algorithm Time [s] Size [KB] Fast Travels U Turns

G-code corners paths

Naive 68.431 5450 27009 4

Improved Naive 108.465 5068 18915 2661

Hierholzer’s 73.430 4602 350 324

Modified Hierholzer’s 77.450 4602 350 0

Yaman et. al. 148.361 4602 350 18342

Proposed (w/o 2.5D Enc.) 56.299 595 544 350 0

Proposed (w/ 2.5D Enc.) 56.299 542 498 350 0

Ultimaker Cura 3.210 4974 13839 0

4.5.3.4 Custom Shape with 416 Square Voronoi Cells on XY-Plane

In this case, a square grid structure is created, which is equivalent to 416 Voronoi

cells at each layer (Figure 4.19). Note that, not all of the grid cells intersect the ob-

ject at each layer. The results are given in Table 4.15. Without 2.5D encryption, the

sum of corners.txt and paths.txt becomes 3395 KB, which enables 75.8% reduction

compared to the G-code with 14033 KB. With 2.5D encryption, the reduction be-

comes 76.4%. Proposed algorithm takes 50.9% less time compared to the Modified

Hierholzer’s algorithm.

4.5.4 Stanford Bunny

In this case, a well known mesh structure, Stanford Bunny is utilized. There are 836

layers when the layer thickness is set to 0.1 mm. The boundary of the Bunny changes

continuously over the layers. Therefore, it is not suitable for 2.5D encryption.

69

Figure 4.19: Custom shape with 416 Voronoi cells at each layer.

Table 4.15: The results for the case of custom shape with 416 Voronoi cells.

Algorithm Time [s] Size [KB] Fast Travels U Turns

G-code corners paths

Naive 176.017 17719 98799 11

Improved Naive 556.065 16812 79443 8592

Hierholzer’s 391.304 14033 350 1418

Modified Hierholzer’s 396.337 14033 350 0

Yaman et. al. 1266.429 14033 350 67484

Proposed (w/o 2.5D Enc.) 194.781 1499 1896 350 0

Proposed (w/ 2.5D Enc.) 194.781 1462 1851 350 0

Ultimaker Cura 3.680 6568 13009 0

70

4.5.4.1 Stanford Bunny with Randomly Placed 100 3D Voronoi Cells

In this case, 100 randomly placed 3D Voronoi cells are generated inside the bounding

box of the Stanford Bunny, then their intersection is taken (Figure 4.20). The results

are given in Table 4.16. Without 2.5D encryption, the sum of corners.txt and paths.txt

becomes 11021 KB, which enables 66.7% reduction compared to the G-code file with

a size of 33027 KB. For this case, no 2.5D encryption can be applied. Proposed

algorithm takes 25.4% less time compared to the Modified Hierholzer’s algorithm.

Figure 4.20: Stanford Bunny with 100 randomly placed 3D Voronoi cells.

4.5.4.2 Stanford Bunny with Randomly Placed 400 3D Voronoi Cells

In this case, 400 randomly placed 3D Voronoi cells are generated inside the bounding

box of the Stanford Bunny, then their intersection is taken (Figure 4.21). The results

are given in Table 4.17. Without 2.5D encryption, the sum of corners.txt and paths.txt

71

Table 4.16: The results for the case of Stanford Bunny with 100 Voronoi cells.

Algorithm Time [s] Size [KB] Fast Travels U Turns

G-code corners paths

Naive 202.507 33987 16334 17

Improved Naive 990.055 33933 15314 864

Hierholzer’s 571.896 33027 1372 265

Modified Hierholzer’s 577.707 33027 1372 0

Yaman et. al. 1235.800 33027 1372 12766

Proposed (w/o 2.5D Enc.) 724.346 7157 3864 1372 0

Proposed (w/ 2.5D Enc.) 724.346 7157 3864 1372 0

Ultimaker Cura NA

becomes 12323 KB, which enables 67.8% reduction compared to the G-code with

38275 KB. For this case, no 2.5D encryption can be applied. Proposed algorithm

takes 33.3% less time compared to the Modified Hierholzer’s algorithm.

Table 4.17: The results for the case of Stanford Bunny with 400 Voronoi cells.

Algorithm Time [s] Size [KB] Fast Travels U Turns

G-code corners paths

Naive 588.145 40025 41253 53

Improved Naive 1570.140 39931 39517 1227

Hierholzer’s 1060.214 38275 1372 1184

Modified Hierholzer’s 1062.393 38275 1372 0

Yaman et. al. 1235.800 38275 1372 29275

Proposed (w/o 2.5D Enc.) 1415.850 7869 4454 1372 0

Proposed (w/ 2.5D Enc.) 1415.850 7869 4454 1372 0

Ultimaker Cura NA

72

Figure 4.21: Stanford Bunny with 400 randomly placed 3D Voronoi cells.

4.5.4.3 Stanford Bunny with 80 Square Voronoi Cells on XY-Plane

In this case, a square grid structure is created, which is equivalent to 80 Voronoi cells

at each layer (Figure 4.22). For a better understanding, section view of the object

is also given (Figure 4.23). Note that, not all of the grid cells intersect the object at

each layer. The results are given in Table 4.18. Without 2.5D encryption, the sum of

corners.txt and paths.txt becomes 11111 KB, which enables 67.1% reduction com-

pared to the G-code file with a size of 33785 KB. For this case, no 2.5D encryption

can be applied. Proposed algorithm takes 37.0% more time compared to the Modified

Hierholzer’s algorithm.

73

Figure 4.22: Stanford Bunny with 80 Voronoi cells at each layer.

Figure 4.23: Section view of the Stanford Bunny with 80 Voronoi cells at each layer.

74

Table 4.18: The results for the case of Stanford Bunny with 80 Voronoi cells.

Algorithm Time [s] Size [KB] Fast Travels U Turns

G-code corners paths

Naive 86.745 34684 19331 22

Improved Naive 901.550 34592 17608 2754

Hierholzer’s 471.555 33785 1372 487

Modified Hierholzer’s 489.035 33785 1372 0

Yaman et. al. 1243.321 33785 1372 28500

Proposed (w/o 2.5D Enc.) 670.110 7174 3937 1372 0

Proposed (w/ 2.5D Enc.) 670.110 7174 3937 1372 0

Ultimaker Cura 9.200 27879 47404 0

4.5.4.4 Stanford Bunny with 414 Square Voronoi Cells on XY-Plane

In this case, a square grid structure is created, which is equivalent to 411 Voronoi cells

at each layer (Figure 4.24). For a better understanding, section view of the object is

also given (Figure 4.25). Note that, not all of the grid cells intersect the object at each

layer. The results are given in Table 4.19. Without 2.5D encryption, the sum of cor-

ners.txt and paths.txt becomes 13784 KB, which enables 69.7% reduction compared

to the G-code file with a size of 45468 KB. For this case, no 2.5D encryption can

be applied. Proposed algorithm takes 19.4% more time compared to the Modified

Hierholzer’s algorithm.

4.6 Results

Among all algorithms, the naive algorithm has the highest number of fast travels as it

covers all Voronoi cells one by one. The algorithm of Yaman et al. [1] has the highest

number of u turns, because it goes to the neighbor of a Voronoi cell after traversing

an edge of it. The improved naive algorithm has slightly better performance than the

naive algorithm since it has fewer fast travels.

Proposed algorithm, Hierholzer’s and Modified Hierholzer’s algorithms, and algo-

75

Figure 4.24: Stanford Bunny with 414 Voronoi cells at each layer.

Figure 4.25: Section view of the Stanford Bunny with 414 Voronoi cells at each layer.

rithm of Yaman et al. [1] make no fast travels, and the Hierholzer’s algoritm can

make u turns occasionally. Modified Hierholzer’s algorithm and the proposed algo-

76

Table 4.19: The results for the case of Stanford Bunny with 414 Voronoi cells.

Algorithm Time [s] Size [KB] Fast Travels U Turns

G-code corners paths

Naive 305.427 48954 91728 48

Improved Naive 1733.129 48078 74502 14528

Hierholzer’s 1045.800 45468 1372 1076

Modified Hierholzer’s 1128.900 45468 1372 0

Yaman et. al. 2590.571 45468 1372 116926

Proposed (w/o 2.5D Enc.) 1347.482 8485 5299 1372 0

Proposed (w/ 2.5D Enc.) 1347.482 8485 5299 1372 0

Ultimaker Cura 9.350 30196 49262 0

rithm tackles this problem and make no u turns. Whenever possible, the algorithm of

Ultimaker Cura is also utilized. As observed, it makes no u turns, but it does have

many fast travels.

The proposed algorithm updates the path at subsequent steps, and the Modified Hier-

holzer’s algorithm, which is also developed by us, computes the path at each layer. If

the structure has grids, i.e., if the path at subsequent layers are similar, the algorithm

usually has a time advantage compared to the Modified Hierholzer’s algorithm. Only

in STL files, like Stanford Bunny, the algorithm takes a longer time. Nonetheless, as

the density of the grid is increased, the performance of the algorithm becomes better.

Encryption and path update approaches are very advantageous when the part is a 2.5D

object. Reduction rate of 99.7% in size compared to the G-code file, and reduction

rate of 58.6% in time compared to the Modified Hierholzer’s algorithm is achieved.

Overall, it is believed that the proposed algorithm must be used when one wants no

fast travels and u turns, and if the object is mostly 2.5D. For 3D objects, the Modified

Hierholzer’s algorithm can be considered. Nonetheless, as seen in the test cases, pre-

sented encryption method can be utilized in any scenario, as it results in around 70%

reduction at least.

Although Ultimaker Cura’s algorithm does not eliminate fast travels, it works very

fast. Note that, objects with randomly placed Voronoi cells cannot be printed by that

77

algorithm.

4.7 Adaptations for the 3D Printed Parts

In this study, solid objects are filled with 3D Voronoi cells, which might be ordered

or randomly distributed. Then, the resulting model is sliced, and a 2D Voronoi graph

is obtained for each layer. Finally, different algorithms are utilized to traverse the

resulting graph. Although this approach is sufficient for comparing the algorithms,

some adaptations are needed while printing the parts in order to make it more intact

and durable. Those enhancements are discussed in this section.

4.7.1 Path Optimization

4.7.1.1 On a Layer

Since developed graphs are Eulerian, the path ends at the same corner it starts if the

graph is connected. However, sometimes several distinct graphs may be obtained as

in the case of the ears of the Stanford Bunny. In such a case, after a graph is fully

traversed, the closest corner among the remaining graphs is computed, and starting

from the closest corner, that graph is traversed. This process continues until all of the

graphs are traversed. By this method, it is aimed to minimize the fast travels on the

same layer.

4.7.1.2 Between the Layers

After a layer is completely covered, the printer head moves in vertical direction for

the layer thickness, which is typically 0.1mm. Then, the closest corner of the current

layer’s graph is determined and the current path is started from that corner. For grid-

type structures, corners from the previous and current layers’ Voronoi cells lie at the

same positions, excluding boundary cells. On the other hand, for randomly placed

Voronoi cells, positions of the corners change continuously. By computing the closest

corner and starting the traversal from that position, the fast travels between the layers

78

are minimized. If this optimization is skipped, traces caused by fast travels become

highly visible. For instance, instead of starting traversal from the closest corner, a

random corner might be chosen, which would result in many fast travel lines that

don’t fit with Voronoi structure (Figure 4.26).

Figure 4.26: If the path is not optimized, many fast travels occur.

4.7.2 Solid Base Creation

A geometry can be filled with any specified number of Voronoi cells. The greater

the number of the cells, the denser the structure becomes. Therefore, to create a

lighter part, one should choose a lower number of cells. Nonetheless, to make the

part stable, it should be completely covered for the first 4-5 layers, i.e., a very dense

Voronoi structure must be implemented. Then, the desired density can be applied.

4.7.3 Shell Generation

In order to make the boundary of the printed part stronger, some shells are generated,

for which 1 or 2 layers are found to be sufficient, which are 0.5 mm apart from each

other.

79

4.8 3D Printed Parts

Several parts are 3D printed for experimenting with the algorithms and tuning the

parameters. At first, the path optimization is observed to be necessary, which is ex-

plained in Section 4.7.1. Fast travel lines are seen to be excessive (Figure 4.26).

Therefore, path optimization is applied, and the regarding problem is eliminated.

Another problem encountered is the traces of the fast travels on a layer. While printing

the ears of the Stanford Bunny, printer head is guided from one ear to the other, during

which a fast travel is inevitable. Nonetheless, checking the finished part, it can be seen

that fast travel lines look like solid lines (Figure 4.27). Although it is not very difficult

to remove those portions (Figure 4.28), the aim is to avoid them as much as possible.

The reason behind the lines is the feedrate of the printer head for fast travels, i.e.,

G0 motion. By increasing the feedrate from 4257.3 mm/s to 10000 mm/s, most of

those undesired lines are avoided.

Using transparent type of filament, the Stanford Bunny is once more fabricated. This

time, the effect of the number of the shells is tested. The same model is first printed

with 2 shells (Figure 4.29), and then with a single shell (Figure 4.30). As one can

observe, Voronoi cells are much more visible when only one shell is generated. For a

better comparison, a figure with both models is also provided (Figure 4.31).

Another 3D printed part, for which two filaments are sequentially used, is the cube

that is filled by 36 Voronoi cells (Figure 4.32). Of those cells, 9 are desired to be

filled completely with black filament. On the other hand, only the boundaries of the

remaining 27 cells are filled. Note that, there exists a slight shift around the middle

of the cube. Since it takes a long time to print the part, printer is turned off at some

point, and then turned on again the following day, which caused aforementioned slight

offset.

4.9 Surface Roughness Tests

For a better comparison between the algorithms, surface roughness tests are con-

ducted. In the first test, a 100x100 mm area is divided into 5383 triangular Voronoi

80

Figure 4.27: When feedrate of the printer head is not high enough in G0 motion, fast

travels do result in solid lines.

cells, so that the area will be fully covered. Then, different algorithms are used for

coverage. Designed model and the resulting parts can be seen in Figure 4.33. Rough-

ness profiles for those geometries are measured using the profilometer MarSurf PS

10, which has a maximum measuring range from −0.2 to 0.15 mm, in four direc-

tions, perpendicular to each edge. Sample profiles obtained among the drawn lines

are given in Figure 4.34. Average Ra and Peak-to-Valley values are given in Table

4.20.

81

Figure 4.28: Bunny after the excessive material caused by insufficient fast travel fee-

drate is removed.

In another test, a box that has a 30x30 mm base and 20 mm height is filled with 36

Voronoi cells. Then, each algorithm is used to cover it. The resulting geometries can

be seen in Figure 4.35. Among the 4 surfaces of the box that are in the height direc-

tion, roughness profiles are measured, twice at each surface (Figure 4.36). Sample

profiles are given in Figure 4.37. Average Ra and Peak-to-Valley values are given in

Table 4.21.

Checking the results, it is seen that the best performances are those obtained by Hi-

82

Figure 4.29: Bunny with 100 Voronois and 2 layers of shell, 3D printed with trans-

parent filament.

erholzer’s and Modified Hierholzer’s algorithms. They are better than the algorithms

Naive, Improved Naive and Yaman et al. [1] in the second case. In the first case,

Hierholzer’s, Modified Hierholzer’s and Yaman et al. [1] show similar performances,

which are better than those of the Naive and Improved Naive algorithms. Further-

more, only continuous coverage algorithms are able to print the part correctly, thanks

to the elimination of fast travels (Figure 4.35).

83

Figure 4.30: Bunny with 100 Voronois and 1 layer of shell, 3D printed with transpar-

ent filament.

4.10 Intersection Problems due to Grasshopper

For the implementation of the algorithms, Rhino3D and Grasshopper3D are used.

Utilizing the GhPython component of Grasshopper3D, algorithms are implemented

and G-code files are generated. It works fine for solid shapes, for which the native

components and functions are mostly utilized. However, for the STL files and addi-

tional capabilities, such as 3D printing with dual extruders, new functionalities are

84

Figure 4.31: Bunny models with 1 layer (left) and 2 layers (right) of shells.

Table 4.20: Average Ra and Peak-to-Valley values of the square objects printed by

different algorithms.

Algorithm Ra [µm] Peak-to-Valley [µm]

Naive 50.921 263.325

Improved Naive 56.460 283.803

Yaman et. al. 44.061 264.544

Hierholzer’s 46.932 229.919

Modified Hierholzer’s 45.520 263.021

developed. Intersection problems sometimes occur in those cases.

While 3D printing with dual extruders, some of the Voronoi cells are set to be filled

with a grid structure. In order to do this, those Voronoi cells, which are randomly

85

Figure 4.32: The cube with 36 Voronoi cells, 3D printed with two filaments.

distributed, are intersected with grid-type Voronoi cells. As the problem occurs, parts

of those grid cells might become missing (Figure 4.38). The reason behind the er-

rors might be the improper implementations of the functions. Another possibility

is that the intersection algorithms in Grasshopper3D might be optimized for BRep

geometries. It is not possible to take intersection of two Brep sets in Grasshopper3D

without scripting, no native module exists. Therefore, a solution in GhPython module

is needed to be implemented, and some errors couldn’t be avoided.

86

(a) CAD model taken from Rhino (b) Naive Algorithm

(c) Improved Naive Algorithm (d) Algorithm of Yaman et al.

(e) Hierholzer’s Algorithm (f) Modified Hierholzer’s Algorithm

Figure 4.33: Model file and printed parts for a square with 5383 Voronoi cells. Sur-

face roughness values are obtained along the black lines (Figure 4.34).

87

0 2 4 6 8 10 12
-0.3
-0.2
-0.1

0
Naive

0 2 4 6 8 10 12
-0.3
-0.2
-0.1

0
Improved Naive

0 2 4 6 8 10 12
-0.3
-0.2
-0.1

0
Yaman et al.

0 2 4 6 8 10 12
-0.3
-0.2
-0.1

0
Hierholzer's

0 2 4 6 8 10 12
-0.3
-0.2
-0.1

0
Modified Hierholzer's

Profile Distance [mm]

R
ou

gh
ne

ss
 [m

m
]

Figure 4.34: Surface Roughness Profiles for the Square Object.

Figure 4.35: 3D printed boxes for all algorithms: From left to right; Naive, Improved

Naive, Yaman et al. [1], Hierholzer’s, and Modified Hierholzer’s. Due to the fast trav-

els, geometric structure can only be preserved using continuous planning algorithms.

88

Figure 4.36: Roughness profiles of the box are measured among the surfaces in the

height direction, twice at each surface, in the area denoted by yellow.

0 2 4 6 8 10 12
-0.3

-0.2

-0.1

0
Naive

0 2 4 6 8 10 12
-0.3

-0.2

-0.1

0
Improved Naive

0 2 4 6 8 10 12
-0.3

-0.2

-0.1

0
Yaman et al.

0 2 4 6 8 10 12
-0.3

-0.2

-0.1

0
Hierholzer's

0 2 4 6 8 10 12
-0.3

-0.2

-0.1

0
Modified Hierholzer's

Figure 4.37: 3D printed boxes, and a sample surface roughness profile measured on

an edge in the height direction. Both axes are in mm.

89

Table 4.21: Average Ra and Peak-to-Valley values of the boxes printed by different

algorithms.

Algorithm Ra [µm] Peak-to-Valley [µm]

Naive 24.575 189.561

Improved Naive 40.270 278.668

Yaman et. al. 29.904 191.150

Hierholzer’s 15.378 106.102

Modified Hierholzer’s 14.562 103.356

Figure 4.38: Some grid-type Voronoi cells are missing, which is an intersection prob-

lem.

90

CHAPTER 5

DISCUSSIONS & CONCLUSION

In this thesis, a path planning algorithm taking advantage of Voronoi diagrams is stud-

ied. Coverage algorithms are and will be used extensively in various applications, like

cleaning, farming and monitoring. By designing the Voronoi cell structure, regions

with different densities and grid types can be obtained. Depending on the application,

a suitable cell structure can be applied and utilized for various applications.

Some applications may require visiting the recently covered areas, whereas some may

require the opposite. If u turns are required to be eliminated, Modified Hierholzer’s

algorithm will be a good option. If updating the path is preferred, like in 3D printing,

proposed algorithm would be a better option. However, if u turns are encouraged,

the algorithm by Yaman et al. must be used. All of those algorithms successfully

eliminate fast travels as they enable continuous traversal by taking advantage of the

Eulerian graphs. Additionally, an encryption method for manufacturing applications

is presented to replace G-code files resulting in considerable decrease in file size.

Considering AM, various tests made for the study show that the proposed algorithm

is advantageous for parts with grid structures, and especially preferable if the part

is 2.5D. Additionally, the algorithm also offers great flexibility. Shapes with dif-

ferent densities, and with random or ordered cell structures may be generated and

fabricated. Since AM is getting more popularity in household usage and industry,

presented methods can be quite useful for such applications.

Voronoi diagrams are utilized in many applications, both for 2D and 3D. Although

the presented methods are using them, they are applicable to any connected graphs.

As robotics and automation advance, so does the need for versatile coverage and path

91

planning algorithms, and the given algorithms are believed to answer some of those

needs.

92

REFERENCES

[1] U. Yaman, N. Butt, E. Sacks, and C. Hoffmann, “Slice coherence in a query-

based architecture for 3d heterogeneous printing,” Computer-Aided Design,

vol. 75-76, pp. 27 – 38, 2016.

[2] K. Erciyes, Distributed Graph Algorithms for Computer Networks. Springer

Publishing Company, Incorporated, 2013.

[3] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars, Computational Ge-

ometry: Algorithms and Applications. Santa Clara, CA, USA: Springer-Verlag

TELOS, 3rd ed. ed., 2008.

[4] F. Yasutomi, M. Yamada, and K. Tsukamoto, “Cleaning robot control,” in Pro-

ceedings. 1988 IEEE International Conference on Robotics and Automation,

pp. 1839–1841 vol.3, 1988.

[5] P. N. Atkar, A. Greenfield, D. C. Conner, H. Choset, and A. A. Rizzi, “Uniform

coverage of automotive surface patches,” The International Journal of Robotics

Research, vol. 24, no. 11, pp. 883–898, 2005.

[6] S. Hert, S. Tiwari, and V. J. Lumelsky, “A terrain-covering algorithm for an auv,”

Autonomous Robots, vol. 3, pp. 91–119, 1996.

[7] E. Acar, H. Choset, Y. Zhang, and M. Schervish, “Path planning for robotic dem-

ining: Robust sensor-based coverage of unstructured environments and proba-

bilistic methods,” I. J. Robotic Res., vol. 22, pp. 441–466, 07 2003.

[8] M. Bosse, N. Nourani-Vatani, and J. Roberts, “Coverage algorithms for an

under-actuated car-like vehicle in an uncertain environment,” in Proceedings

2007 IEEE International Conference on Robotics and Automation, pp. 698–703,

2007.

[9] M. Ollis and A. Stentz, “Vision-based perception for an automated harvester,”

in Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent

93

Robot and Systems. Innovative Robotics for Real-World Applications. IROS ’97,

vol. 3, pp. 1838–1844 vol.3, 1997.

[10] M. Farsi, K. Ratcliff, J. P. Johnson, C. R. Allen, K. Z. Karam, and R. Pawson,

“Robot control system for window cleaning,” in Proceedings of 1994 American

Control Conference - ACC ’94, vol. 1, pp. 994–995 vol.1, 1994.

[11] B. Englot and F. Hover, “Sampling-based coverage path planning for inspection

of complex structures,” ICAPS 2012 - Proceedings of the 22nd International

Conference on Automated Planning and Scheduling, 06 2014.

[12] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,”

Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1258 – 1276, 2013.

[13] H. Choset, “Coverage for robotics - a survey of recent results,” Ann. Math. Artif.

Intell., vol. 31, pp. 113–126, 10 2001.

[14] J.-C. Latombe, Robot Motion Planning. USA: Kluwer Academic Publishers,

1991.

[15] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and

S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementa-

tions. May 2005.

[16] E. U. Acar, H. Choset, A. A. Rizzi, P. N. Atkar, and D. Hull, “Morse decom-

positions for coverage tasks,” The International Journal of Robotics Research,

vol. 21, pp. 331 – 344, 2002.

[17] A. Elfes, “Sonar-based real-world mapping and navigation,” IEEE Journal on

Robotics and Automation, vol. 3, no. 3, pp. 249–265, 1987.

[18] S. Thrun, “Learning metric-topological maps for indoor mobile robot naviga-

tion,” Artificial Intelligence, vol. 99, no. 1, pp. 21 – 71, 1998.

[19] I. Rekleitis, A. New, E. Rankin, and H. Choset, “Efficient boustrophedon multi-

robot coverage: an algorithmic approach,” Ann. Math. Artif. Intell., vol. 52,

pp. 109–142, 04 2008.

[20] T. Cabreira, L. Brisolara, and P. R. Ferreira Jr., “Survey on coverage path plan-

ning with unmanned aerial vehicles,” Drones, vol. 3, p. 4, Jan 2019.

94

[21] C. Di Franco and G. Buttazzo, “Coverage path planning for uavs photogram-

metry with energy and resolution constraints,” Journal of Intelligent Robotic

Systems, vol. 83, 02 2016.

[22] T. M. Cabreira, C. D. Franco, P. R. Ferreira, and G. C. Buttazzo, “Energy-

aware spiral coverage path planning for uav photogrammetric applications,”

IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3662–3668, 2018.

[23] J. Acevedo, B. Arrue, I. Maza, and A. Ollero, “Cooperative large area surveil-

lance with a team of aerial mobile robots for long endurance missions,” Journal

of Intelligent Robotic Systems, vol. 70, 04 2013.

[24] J. J. Acevedo, B. C. Arrue, I. Maza, and A. Ollero, “Distributed approach for

coverage and patrolling missions with a team of heterogeneous aerial robots

under communication constraints,” International Journal of Advanced Robotic

Systems, vol. 10, no. 1, p. 28, 2013.

[25] S. Koenig and Y. Liu, “Terrain coverage with ant robots: A simulation study,”

pp. 600–607, 01 2001.

[26] J. Sauter, R. Matthews, V. Parunak, and S. Brueckner, “Performance of digital

pheromones for swarming vehicle control,” pp. 903–910, 01 2005.

[27] D. Zhao and W. Guo, “Shape and performance controlled advanced design for

additive manufacturing: A review of slicing and path planning,” Journal of Man-

ufacturing Science and Engineering, vol. 142, pp. 1–87, 01 2020.

[28] I. Gibson, D. Rosen, and B. Stucker, Additive manufacturing technologies: 3D

printing, rapid prototyping, and direct digital manufacturing, second edition.

01 2015.

[29] Y. Jin, Y. He, G. Fu, A. Zhang, and J. Du, “A non-retraction path planning

approach for extrusion-based additive manufacturing,” Robotics and Computer-

Integrated Manufacturing, vol. 48, pp. 132 – 144, 2017.

[30] H. Zhao, F. Gu, Q.-X. Huang, J. Garcia, Y. Chen, C. Tu, B. Benes, H. Zhang,

D. Cohen-Or, and B. Chen, “Connected fermat spirals for layered fabrication,”

ACM Trans. Graph., vol. 35, no. 4, 2016.

95

[31] S. Shaikh, N. Kumar, P. K. Jain, and P. Tandon, “Hilbert curve based toolpath

for fdm process,” in CAD/CAM, Robotics and Factories of the Future (D. K.

Mandal and C. S. Syan, eds.), (New Delhi), pp. 751–759, Springer India, 2016.

[32] P. Gupta, B. Krishnamoorthy, and G. Dreifus, “Continuous toolpath planning

in a graphical framework for sparse infill additive manufacturing,” Computer-

Aided Design, vol. 127, p. 102880, 2020.

[33] Z. Lin, F. Jianzhong, Y. Sun, Q. Gao, G. xu, and Z. Wang, “Non-retraction

toolpath generation for irregular compound freeform surfaces with the lkh tsp

solver,” The International Journal of Advanced Manufacturing Technology,

vol. 92, pp. 1–15, 09 2017.

[34] J. Feng, F. Jianzhong, Z. Lin, C. Shang, and X. Niu, “Layered infill area

generation from triply periodic minimal surfaces for additive manufacturing,”

Computer-Aided Design, vol. 107, 10 2018.

[35] D. Ding, Z. Pan, D. Cuiuri, and H. Li, “A practical path planning methodology

for wire and arc additive manufacturing of thin-walled structures,” Robotics and

Computer-Integrated Manufacturing, vol. 34, pp. 8 – 19, 2015.

[36] J.-h. Kao and F. Prinz, “Optimal motion planning for deposition in layered man-

ufacturing,” 02 2001.

[37] J. Hergel, K. Hinz, S. Lefebvre, and B. Thomaszewski, “Extrusion-based ceram-

ics printing with strictly-continuous deposition,” ACM Trans. Graph., vol. 38,

Nov. 2019.

[38] S. Kapil, P. Joshi, H. Vithasth, D. Rana, P. Kulkarni, R. Bhagchandani, and

K. K.P., “Optimal space filling for additive manufacturing,” Rapid Prototyping

Journal, vol. 22, pp. 660–675, 06 2016.

[39] J. Martínez, S. Hornus, H. Song, and S. Lefebvre, “Polyhedral voronoi diagrams

for additive manufacturing,” ACM Trans. Graph., vol. 37, July 2018.

[40] J. Martínez, J. Dumas, and S. Lefebvre, “Procedural voronoi foams for additive

manufacturing,” ACM Trans. Graph., vol. 35, July 2016.

96

[41] P. Tran, T. D. Ngo, A. Ghazlan, and D. Hui, “Bimaterial 3d printing and numer-

ical analysis of bio-inspired composite structures under in-plane and transverse

loadings,” Composites Part B: Engineering, vol. 108, pp. 210 – 223, 2017.

[42] X. Zhai and F. Chen, “Path planning of a type of porous structures for additive

manufacturing,” Computer-Aided Design, vol. 115, pp. 218 – 230, 2019.

[43] M.-S. Pham, C. Liu, I. Todd, and J. Lertthanasarn, “Damage-tolerant architected

materials inspired by crystal microstructure,” Nature, vol. 565, 01 2019.

[44] M. Candeloro, A. M. Lekkas, and A. J. Sørensen, “A voronoi-diagram-based

dynamic path-planning system for underactuated marine vessels,” Control En-

gineering Practice, vol. 61, pp. 41 – 54, 2017.

[45] A. Shkolnik and R. Tedrake, “Path planning in 1000+ dimensions using a task-

space voronoi bias,” in 2009 IEEE International Conference on Robotics and

Automation, pp. 2061–2067, 2009.

[46] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path planning,”

tech. rep., 1998.

[47] O. Arslan and D. E. Koditschek, “Voronoi-based coverage control of heteroge-

neous disk-shaped robots,” in 2016 IEEE International Conference on Robotics

and Automation (ICRA), pp. 4259–4266, 2016.

[48] L. C. A. Pimenta, V. Kumar, R. C. Mesquita, and G. A. S. Pereira, “Sensing and

coverage for a network of heterogeneous robots,” in 2008 47th IEEE Conference

on Decision and Control, pp. 3947–3952, 2008.

[49] D. Jungnickel, Graphs, Networks and Algorithms. Springer Publishing Com-

pany, Incorporated, 3rd ed., 2007.

97

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Proposed Methods and Models
	Contributions and Novelties
	The Outline of the Thesis

	Background Information & Literature Review
	Coverage Algorithms
	Eulerian Cycles and Eulerian Graphs
	Fast Travels and U Turns
	Voronoi Graphs
	Literature Review

	Continuous Path Planning Algorithm
	Algorithm On a Layer
	Hierholzer's Algorithm
	Modified Hierholzer's Algorithm

	Converting a U Turn Heavy Path into a U Turn Free Path
	Algorithm Between the Layers
	G-code Encryption
	Case of 2.5D Parts

	Complexity Analysis of the Algorithms
	Hierholzer's Algorithm
	Modified Hierholzer's Algorithm
	Path Converter Algorithm
	Path Updater Algorithm
	G-code Encryption Algorithm

	Implementation & Test Cases
	Algorithms Utilized in Test Cases for Comparison
	Naive Algorithm
	Improved Naive Algorithm
	Algorithm of Yaman et al.
	Hierholzer's Algorithm
	Ultimaker Cura

	Complexity Analysis of the Algorithms
	Naive Algorithm
	Improved Naive Algorithm
	Algorithm of Yaman et al.

	Implementation
	Simulation
	Test Cases
	Cube
	Cube with 100 Random 3D Voronoi Cells
	Cube with 400 Random 3D Voronoi Cells
	Cube with 64 Square Voronoi Cells on XY-Plane
	Cube with 441 Square Voronoi Cells on XY-Plane

	Sphere
	Sphere with Randomly Placed 100 3D Voronoi Cells
	Sphere with Randomly Placed 400 3D Voronoi Cells
	Sphere with 81 Square Voronoi Cells on XY-Plane
	Sphere with 441 Square Voronoi Cells on XY-Plane

	Custom Shape
	Custom Shape with Randomly Placed 100 3D Voronoi Cells
	Custom Shape with Randomly Placed 400 3D Voronoi Cells
	Custom Shape with 104 Square Voronoi Cells on XY-Plane
	Custom Shape with 416 Square Voronoi Cells on XY-Plane

	Stanford Bunny
	Stanford Bunny with Randomly Placed 100 3D Voronoi Cells
	Stanford Bunny with Randomly Placed 400 3D Voronoi Cells
	Stanford Bunny with 80 Square Voronoi Cells on XY-Plane
	Stanford Bunny with 414 Square Voronoi Cells on XY-Plane

	Results
	Adaptations for the 3D Printed Parts
	Path Optimization
	On a Layer
	Between the Layers

	Solid Base Creation
	Shell Generation

	3D Printed Parts
	Surface Roughness Tests
	Intersection Problems due to Grasshopper

	Discussions & Conclusion
	REFERENCES

