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ABSTRACT

A CONTINUOUS PATH PLANNING AND UPDATING ALGORITHM
BASED ON VORONOI DIAGRAMS

Özcan, Melih
M.S., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Ulaş Yaman

August 2020, 97 pages

Coverage of an area is required for a large variety of robotics and manufacturing

applications, such as environment monitoring, home cleaning, search and rescue op-

erations, machining, delivery, additive manufacturing and even for 3D terrain recon-

struction. In this work, we present a highly flexible algorithm that can be used for

coverage and graph traversal. In addition to being applicable to diverse types of engi-

neering problems, proposed method is advantageous to other algorithms, as it never

turns around and traverses the edge it recently traversed. Although the method takes

advantage of variable-sized Voronoi cells, by which regular, irregular and complex

geometries can be easily composed, it is not limited to Voronoi diagrams and can be

applied for any connected graph. Furthermore, path planning algorithm can update

the path to deal with changes in the graph. In some applications, like 3D printing,

path planning must be done for many instances. However, our algorithm calculates

the path at the first layer, and performs only necessary changes at the subsequent

layers, instead of calculating the whole path from scratch. This update mechanism

makes the method very efficient as it is demonstrated with several test cases. In ad-

dition to the path planning algorithm, a G-code file encryption method is introduced,
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size of G-code files can be greatly reduced. As automation and robotics integrate into

numerous areas everyday, proposed methods can be useful for many applications.

Keywords: robotics, automation, additive manufacturing, 3D printing, Voronoi, Euler

path, G-code
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ÖZ

VORONOİ DİYAGRAMINA DAYALI BİR YÖRÜNGE PLANLAMA VE
GÜNCELLEME ALGORİTMASI

Özcan, Melih
Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ulaş Yaman

Ağustos 2020 , 97 sayfa

Alan tarama işlemi robotik ve üretim alanlarında birçok uygulama için gereklidir.

Çevreyi gözetlemek, ev temizliği, arama ve kurtarma operasyonları, parça işleme,

teslim ve 3B arazi rekonstrüksiyonu buna örnek olarak verilebilir. Bu çalışmada, alan

ve grafik tarama uygulamarında kullanılabilecek ve son derece esnek bir algoritma

sunulmuştur. Farklı alanlarda birçok probleme uygulanabilir olmanın yanı sıra, al-

goritmanın diğer yaklaşımlardan üstün özellikleri bulunmaktadır. Örneğin, taramakta

olduğu kenarı tekrar taramak yerine başka bir kenara devam etmektedir. Geliştirilen

yöntem, düzenli ve düzensiz kafes yapılarını modellemek için rahatlıkla kullanılabi-

lecek Voronoi hücrelerinden faydalanmaktadır. Öte yandan, yöntem yalnızca Voronoi

grafikleriyle kısıtlı olmayıp herhangi bir bağlı grafiğe de uygulanabilir. Algoritma,

yörünge planlama dışında, yörünge güncelleme özelliğine de sahiptir. 3B üretim gibi,

onlarca katman boyunca yörünge planlamanın gerekli olacağı bir senaryoda, algo-

ritma ilk katman için bir yörünge planı oluşturup devam eden katmanlar için bu yö-

rüngeyi güncellemektedir, her katmanda yörüngeyi baştan planlamamaktadır. Test-

lerle de gösterildiği üzere, bu planlama mekanizması algoritmayı son derece verimli
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yapmaktadır. Yörünge planlama dışında, G-kodu dosyalarıyla aynı veriyi çok daha az

bir depolama alanıyla saklayan bir yöntem sunulmuştur. Otomasyon ve robotik tekno-

lojilerinin sayısız alanda kullanılmasıyla birlikte sunulan yöntemler birçok uygulama

için kullanışlı olacaktır.

Anahtar Kelimeler: robotik, otomasyon, eklemeli imalat, 3B üretim, Voronoi, Euler

yörüngesi, G-kodu
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem De�nition

Robotics with automation is the next big thing for the civilization. Transferring the

mundane, dangerous and repetitive jobs to the robots will give humans more prosper-

ous lives. Additionally, the jobs will be performed by a higher quality. In order to

contribute to this milestone as a species, methods are developed that can be utilized

in two separate, but related domains as area coverage and additive manufacturing.

There are numerous coverage applications. These are listed as below.

� Surveying drones watch their respective territories.

� Vacuum cleaners clean the rooms of an apartment.

� Lawn mowers mow the grass inside the garden.

� Autonomous farming robots seed plants, water the trees, and harvest the crops.

� CNC machines remove a layer of material, by covering the speci�ed area.

Similarly, 3D printers print a material, again, by covering the speci�ed area. A cover-

age algorithm for such applications is proposed. In some cases, coverage of a recently

covered segment might not be possible, or desirable. For instance, if a farming robot

is to be used, driving it forward all the time may be required. Similarly, if a drone is

used for monitoring, instead of directing it to a recently monitored segment, it would

be a better choice to direct it to another segment. This problem is addressed by the

proposed algorithm.

1



Additive Manufacturing (AM) is being widely adopted by the industry and the con-

sumers. Many people and facilities have 3D printers, which are especially useful

for rapid prototyping purposes. One drawback of the AM processes is the surface

quality of the �nished product. Usually, a �nishing operation is applied to obtain a

smoother surface. However, it is believed that this issue can be mitigated bycontin-

uous printing. In continuous printing, the printer covers all the layer while extruding

the �lament. Since there are no breaks between the extrusions, the surface quality

gets better and the thermal stress effects become less problematic. By the proposed

algorithm, this problem is addressed, and all layer is printed continuously.

While printing an artifact, path planning must be done for all the layers. However,

this is a costly operation. If a path is already available, updating it for the next lay-

ers would be a better approach. That's another problem addressed by the proposed

algorithm.

Lastly, an improvement about the structure of theG-code, which is an industry stan-

dard, is desired to be made. The same information can be stored in a much smaller

space, by which a signi�cant storage capacity can be freed.

1.2 Proposed Methods and Models

Before the coverage to begin, the area must be discritized, for which Voronoi graphs

are used. Numereous 2D and 3D cell structures can easily be constructed using them.

Due to their �exibility, Voronoi graphs are utilized in various studies.

To achieve continuous printing, Eulerian graphs and cycles are constructed. An Eule-

rian cycle starts a path, covers all edges, and then ends at the starting position. Graphs,

which have Eulerian cycles are called Eulerian graphs. Therefore, it is needed to con-

vert a Voronoi graph to an Eulerian graph, by duplicating its edges. Actually, any

connected graph can be converted into an Eulerian graph, by this approach.
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1.3 Contributions and Novelties

The contributions are as follows:

� A method to convert any connected graph into an Eulerian graph is proposed.

� Given an Eulerian graph, a continuous path planning method that eliminates

covering a recently traversed edge again is introduced.

� A path updating method is offered, for many instances of path planning cases,

like 3D printing.

� An encryption method for G-code �les is developed, resulting in a signi�cant

decrease in the storage.

1.4 The Outline of the Thesis

In Chapter 2, background information is given and relative subjects for the study are

explained, and the studies that are comparable to presented work are reviewed. In

Chapter 3, proposed algorithms are explained, where examples are given to make

the understanding easier, and pseudocodes are also provided. In Chapter 4, imple-

mentation details are given, then the algorithms used for comparison are introduced.

Afterwards, test cases and their results are covered. In Chapter 5, the conclusion for

the study is drawn.
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CHAPTER 2

BACKGROUND INFORMATION & LITERATURE REVIEW

In this chapter, the necessary background information is given, and critical concepts

are explained. Furthermore, related work to the presented study is discussed.

2.1 Coverage Algorithms

Given an area, coverage is the application of spanning the full domain. In many

real life applications, coverage is used. For instance, environment monitoring by

drones, house cleaning by robotic vacuum cleaners, machining by CNC machines,

farming by autonomous vehicles, etc. are all done with the help of coverage algo-

rithms. Similarly, while 3D printing an artifact, depending on the intensity setting, a

grid structure is constructed. Then, the printer headcoversthe whole layer by follow-

ing the lines of the corresponding grid. Various algorithms are developed according

to the application-speci�c requirements. The number of agents and their movement

constraints (e.g. whether they're holonomic or not) are also considered.

2.2 Eulerian Cycles and Eulerian Graphs

Eulerian cycle is a path for a connected graph that starts and ends at the same vertex.

It traverses every edges of the graph exactly once [2]. A graph that has an Eulerian

cycle is called as an Eulerian graph. In order for an undirected graph to have an

Eulerian cycle, two conditions must be satis�ed:

� The graph must be connected.
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(a) Original graph (b) With duplicated edges

Figure 2.1: Obtaining an Eulerian cycle from a general graph.

� Every vertex must have an even number of edges.

Additionally, if the graph is directed, the number of incoming and outgoing connec-

tions must be equal for each vertex. A general graph example is given in Figure

2.1a. As seen from the �gure, not all the vertices have an even number of edges.

Consequently, an Eulerian cycle cannot be generated for this graph. Following the

methodology of Yaman et al. [1], each edge is duplicated (Figure 2.1b). Therefore,

the graph becomes Eulerian. Taking advantage of the Eulerian graph, one can start

extruding the material at a vertex and end at the same place in Fused Filament Fabri-

cation (FFF) process, eliminating fast travels.

2.3 Fast Travels and U Turns

While covering the edges of a graph, if there is no connection left at the current

node although the graph is not fully covered, one needs to move into another node

to continue with the coverage (Figure 2.2). That movement is called as afast travel,

originating from rapid positioning motion (G00) of CNC machines. On the other

hand, if there are two connections between two nodes and if both of those covered

one after the other, that motion is called as au turn (Figure 2.2). Note that,u turns

require a full stop. Thus, if possible, they must be eliminated for a more ef�cient
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operation.

Figure 2.2: The concepts offast travel(Step 5) andu turn (Steps 7 & 8).

2.4 Voronoi Graphs

Given a list of sites, Voronoi diagrams decompose an area or a volume into smaller

pieces such that each resulting Voronoi cell consists of the points that are closest to

the given Voronoi site [3]. By choosing uniformly or non-uniformly generated sets

of sites, diagrams with distinct patterns can be created, which makes Voronoi dia-

grams a useful tool for coverage. For example, rectangular, triangular, and hexagonal

grid structures can be easily obtained. Using Voronoi diagrams, not only fully uni-

form or random structures, but also a combination of them can be produced. This is

demonstrated by forming different Voronoi patterns into a square (Figure 2.3).

2.5 Literature Review

Coverage algorithms are used in many applications, such as vacuum cleaning [4],

painting [5], mapping [6], demining [7], lawn mowing [8], harvesting [9], window

cleaning [10] and structure inspecting [11]. They can be classi�ed according to var-

ious criteria. The ones that guarantee the complete coverage are calledcomplete,

whereas the others are called asheuristic [12]. If the area to be covered is required

to be known in advance, they are calledof�ine; and if that is not the case, they are

called textit online, orsensor based coverage algorithms [13]. Most algorithms are

developed for the planar space, whereas some of them consider the 3D space since
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(a) A Voronoi diagram with different Voronoi in-

�ll patterns

(b) 3D printed version

Figure 2.3: A heterogeneous Voronoi diagram, consisting of 5 Voronoi diagrams.

the applications dictate that. The majority of the algorithms divide the space into

subregions, such as the trapezoidal decomposition [14, 15] or morse-based cell de-

composition method [16]. On the other hand, grid-based algorithms represent the

area as a collection of uniform grid cells, whose values can be a binary or a proba-

bility [17, 18]. Some algorithms consider multiple agents, where some of the agents

are assigned toexplorationand the remaining ones are responsible forexploitation,

i.e., coverage [19]. Overall, many algorithms are developed and used for numerous

applications.

One of the most functional and popular technologies of the present age is unmanned

aerial vehicles. There are interesting coverage algorithms developed by considering

their needs [20]. For instance, while covering an area, it would be advantageous to

have a short path. On the other hand, the energy requirement of UAVs is much crit-

ical. Changing the direction frequently is seemed to be energy wasting. For that

reason, energy-aware algorithms are developed [21, 22]. In those methods, instead

of lots of sharp turns, like seen in Hilbert curves, more straight paths are preferred.

Another class of algorithms aim multi-robot coverage. For instance, in decentral-

ized algorithms, drones exchange information only with the other drones that are
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close to them, and every drone covers their respected area [23, 24]. Also, there are

methods inspired by the nature. For instance, mimicking the ants' communication,

pheromone-based algorithms are introduced, in which the area is divided into grids,

and the number of visits for each grids are stored [25, 26]. As one can see, different

requirements lead to various methods.

In Fused Deposition Modeling (FDM) processes, the quality of the part is determined

by two critical factors that control the �nal shape of the product, namelyslicing and

path planning[27]. Some slicing approaches require a device with higher capabili-

ties. For instance, instead of a conventional cartesian 3D printer, a robotic arm with 3

DoF or another one with 5 DoF might be necessary. After slicing is done, path plan-

ning takes place, which determines the precision of the product. Therefore, in order

to have a more precise part, the boundary of the part is printed following contour-

parallel lines with a relatively slower feedrate. On the other hand, the inside of the

part is �lled following a zigzag pattern, which allows faster printing [28]. Although

this is the most common practice for the available 3D printers, it does not consider

the continuous deposition issue, which is a widely studied concept in AM. To obtain a

uniform material density and mechanical properties, researchers developed methods

that utilize various in�ll patterns and path planning algorithms. Jin et al. [29] �rst

decomposed the area into what they call simple areas that can be traversed without

retraction, using direction-parallel and contour-parallel polygon decomposition meth-

ods. Then they calculated a continuous subpath for each segment, which starts and

ends at the same point. In the end, they connected all the subpaths to form a single and

continuous path for the whole area. Zhao et al. [30] utilized Fermat spirals. Unlike

the space �lling curves, such as Hilbert curves which have lots of corners and sharp

turns, Fermat spirals are constructed by low curvature paths. They �rst decomposed

the given area into subregions that can be continuously �lled with a Fermat spiral. By

doing so, they ensured that the start and end points of the spirals are very close to each

other. After forming the paths for all subregions, they connected the paths and ob-

tained a single continuous path. Nevertheless, as they mentioned, their method is not

guaranteed to cover any arbitrary region. Shaikh at al. [31] used Hilbert curves for 3D

printing. They took an area and then �lled it with a Hilbert curve. Then, if there are

any contours in the area, they removed the corresponding regions from the curve and
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printed the �nal shape. Nevertheless, their �nal product is not homogeneous in terms

of in�ll material. Gupta et. al. [32] utilized Euler transformation to obtain a graph

that is continuously printable, i.e., a graph in which every vertex has an even num-

ber of edges. As they pointed o, while traversing such a graph, one might encounter

traversing a vertex many times, which they callcrossover. They avoided crossovers

by offsetting the path around the necessary vertices. Lin et. al. [33] applied a continu-

ous path planning method for �nishing processes of compound surfaces, during which

many retractions are made. First, they created a curvature map. Then, they generated

the cutter contact points. They used those points as cities of a TSP problem, and used

LKH algorithm to traverse all of them. They argue that cutter contact point genera-

tion is a highly time consuming process since all triangles inside the object must be

searched in order to �nd one point. Feng et. al. [34] used triply periodic minimal

surfaces (TPMS) for designing porous structures. Normally, TPMS structures cannot

be printed as they de�ne open surfaces. Therefore, they provided a method to make

a printable object from a TPMS structure, in which Marching Squares algorithm is

utilized during slicing. Ding et al. [35] stated that although widely used for AM, the

contour paths, which start from the boundary of the geometry and proceed inwards,

do not guarantee �lling the geometry completely. To deal with this problem, they

applied the methodology developed by Kao [36], in which the medial axis transfor-

mation (MAT) is used. Given a geometry, �rst the skeleton is generated by medial

axis transformation. Based on the skeleton, they created branches to �ll the geometry,

and then trimmed them. For the boundary, though, they made extra deposition, which

makes the path discontinuous. Their method is developed mainly for Wire and Arc

Additive Manufacturing (WAAM). Hergel at al. [37] argue that there is a fundamental

difference between printing thermoplastic materials and clay. Deposited thermoplas-

tic material solidi�es rapidly after extrusion whereas the �lament inside the extruder

is still liquid. Therefore, moving without extrusion enables the printed part to detach

from the extruder immediately and results in only minor artifacts. However, when

clay is printed, it requires much longer time for solidi�cation. Thus, if a movement

without extrusion is made, the extruder will pull the printed part, causing the shape to

deform. As those deformations are repeated, the failure of the shape becomes more

probable. In order to cope with this, they introduced a continuous extrusion method.

Firstly, they took the geometry to be printed and add support structures. Then, they
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