
A CONTINUOUS PATH PLANNING AND UPDATING ALGORITHM BASED
ON VORONOI DIAGRAMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MELIH ÖZCAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

AUGUST 2020

Approval of the thesis:

A CONTINUOUS PATH PLANNING AND UPDATING ALGORITHM
BASED ON VORONOI DIAGRAMS

submitted by MELIH ÖZCAN in partial fulfillment of the requirements for the de-
gree of Master of Science in Mechanical Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. M. A. Sahir Arıkan
Head of Department, Mechanical Engineering

Assoc. Prof. Dr. Ulaş Yaman
Supervisor, Mechanical Engineering, METU

Examining Committee Members:

Prof. Dr. Bahattin Koç
Industrial Engineering, Sabancı University

Assoc. Prof. Dr. Ulaş Yaman
Mechanical Engineering, METU

Assoc. Prof. Dr. Yusuf Sahillioğlu
Computer Engineering, METU

Assoc. Prof. Dr. Ender Yıldırım
Mechanical Engineering, METU

Assist. Prof. Dr. Ali Emre Turgut
Mechanical Engineering, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Melih Özcan

Signature :

iv

ABSTRACT

A CONTINUOUS PATH PLANNING AND UPDATING ALGORITHM
BASED ON VORONOI DIAGRAMS

Özcan, Melih
M.S., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Ulaş Yaman

August 2020, 97 pages

Coverage of an area is required for a large variety of robotics and manufacturing

applications, such as environment monitoring, home cleaning, search and rescue op-

erations, machining, delivery, additive manufacturing and even for 3D terrain recon-

struction. In this work, we present a highly flexible algorithm that can be used for

coverage and graph traversal. In addition to being applicable to diverse types of engi-

neering problems, proposed method is advantageous to other algorithms, as it never

turns around and traverses the edge it recently traversed. Although the method takes

advantage of variable-sized Voronoi cells, by which regular, irregular and complex

geometries can be easily composed, it is not limited to Voronoi diagrams and can be

applied for any connected graph. Furthermore, path planning algorithm can update

the path to deal with changes in the graph. In some applications, like 3D printing,

path planning must be done for many instances. However, our algorithm calculates

the path at the first layer, and performs only necessary changes at the subsequent

layers, instead of calculating the whole path from scratch. This update mechanism

makes the method very efficient as it is demonstrated with several test cases. In ad-

dition to the path planning algorithm, a G-code file encryption method is introduced,

v

size of G-code files can be greatly reduced. As automation and robotics integrate into

numerous areas everyday, proposed methods can be useful for many applications.

Keywords: robotics, automation, additive manufacturing, 3D printing, Voronoi, Euler

path, G-code

vi

ÖZ

VORONOİ DİYAGRAMINA DAYALI BİR YÖRÜNGE PLANLAMA VE
GÜNCELLEME ALGORİTMASI

Özcan, Melih
Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ulaş Yaman

Ağustos 2020 , 97 sayfa

Alan tarama işlemi robotik ve üretim alanlarında birçok uygulama için gereklidir.

Çevreyi gözetlemek, ev temizliği, arama ve kurtarma operasyonları, parça işleme,

teslim ve 3B arazi rekonstrüksiyonu buna örnek olarak verilebilir. Bu çalışmada, alan

ve grafik tarama uygulamarında kullanılabilecek ve son derece esnek bir algoritma

sunulmuştur. Farklı alanlarda birçok probleme uygulanabilir olmanın yanı sıra, al-

goritmanın diğer yaklaşımlardan üstün özellikleri bulunmaktadır. Örneğin, taramakta

olduğu kenarı tekrar taramak yerine başka bir kenara devam etmektedir. Geliştirilen

yöntem, düzenli ve düzensiz kafes yapılarını modellemek için rahatlıkla kullanılabi-

lecek Voronoi hücrelerinden faydalanmaktadır. Öte yandan, yöntem yalnızca Voronoi

grafikleriyle kısıtlı olmayıp herhangi bir bağlı grafiğe de uygulanabilir. Algoritma,

yörünge planlama dışında, yörünge güncelleme özelliğine de sahiptir. 3B üretim gibi,

onlarca katman boyunca yörünge planlamanın gerekli olacağı bir senaryoda, algo-

ritma ilk katman için bir yörünge planı oluşturup devam eden katmanlar için bu yö-

rüngeyi güncellemektedir, her katmanda yörüngeyi baştan planlamamaktadır. Test-

lerle de gösterildiği üzere, bu planlama mekanizması algoritmayı son derece verimli

vii

yapmaktadır. Yörünge planlama dışında, G-kodu dosyalarıyla aynı veriyi çok daha az

bir depolama alanıyla saklayan bir yöntem sunulmuştur. Otomasyon ve robotik tekno-

lojilerinin sayısız alanda kullanılmasıyla birlikte sunulan yöntemler birçok uygulama

için kullanışlı olacaktır.

Anahtar Kelimeler: robotik, otomasyon, eklemeli imalat, 3B üretim, Voronoi, Euler

yörüngesi, G-kodu

viii

To anybody who will benefit from the information presented here

ix

ACKNOWLEDGMENTS

No single person can change the world. Science progresses by accumulation of peo-

ple's contributions, and this study is no exception.

Emerging after the invention of computers, Computational Geometry has been rapidly

developed. Similarly, although it is getting more traction, Additive Manufacturing has

a long way to reach its true potential. We would like to thank every person who has

worked and been working to make our lives better.

Hope is the key ingredient for not giving up, during the dif�cult times without any

visible light at the end of the tunnel, and hope comes from inspiration. I would like to

acknowledge Carl Hierholzer and Mark de Berg for their great works. Finally, I hope

this study brings inspiration to people, as they and many more have given me.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem De�nition 1

1.2 Proposed Methods and Models . 2

1.3 Contributions and Novelties . 3

1.4 The Outline of the Thesis . 3

2 BACKGROUND INFORMATION & LITERATURE REVIEW 5

2.1 Coverage Algorithms . 5

2.2 Eulerian Cycles and Eulerian Graphs 5

2.3 Fast Travels and U Turns . 6

2.4 Voronoi Graphs . 7

xi

2.5 Literature Review . 7

3 CONTINUOUS PATH PLANNING ALGORITHM 15

3.1 Algorithm On a Layer . 15

3.1.1 Hierholzer's Algorithm . 15

3.1.2 Modi�ed Hierholzer's Algorithm 16

3.2 Converting a U Turn Heavy Path into a U Turn Free Path 18

3.3 Algorithm Between the Layers . 23

3.4 G-code Encryption . 34

3.4.1 Case of 2.5D Parts . 37

3.5 Complexity Analysis of the Algorithms 39

3.5.1 Hierholzer's Algorithm . 39

3.5.2 Modi�ed Hierholzer's Algorithm 39

3.5.3 Path Converter Algorithm . 40

3.5.4 Path Updater Algorithm . 41

3.5.5 G-code Encryption Algorithm 42

4 IMPLEMENTATION & TEST CASES . 43

4.1 Algorithms Utilized in Test Cases for Comparison 43

4.1.1 Naive Algorithm . 43

4.1.2 Improved Naive Algorithm 43

4.1.3 Algorithm of Yaman et al. 45

4.1.4 Hierholzer's Algorithm . 48

4.1.5 Ultimaker Cura . 48

4.2 Complexity Analysis of the Algorithms 48

xii

4.2.1 Naive Algorithm . 49

4.2.2 Improved Naive Algorithm 50

4.2.3 Algorithm of Yaman et al. 50

4.3 Implementation . 51

4.4 Simulation . 51

4.5 Test Cases . 54

4.5.1 Cube . 54

4.5.1.1 Cube with 100 Random 3D Voronoi Cells 54

4.5.1.2 Cube with 400 Random 3D Voronoi Cells 55

4.5.1.3 Cube with 64 Square Voronoi Cells on XY-Plane 57

4.5.1.4 Cube with 441 Square Voronoi Cells on XY-Plane . . . 57

4.5.2 Sphere . 60

4.5.2.1 Sphere with Randomly Placed 100 3D Voronoi Cells . . 60

4.5.2.2 Sphere with Randomly Placed 400 3D Voronoi Cells . . 61

4.5.2.3 Sphere with 81 Square Voronoi Cells on XY-Plane . . . 61

4.5.2.4 Sphere with 441 Square Voronoi Cells on XY-Plane . . 64

4.5.3 Custom Shape . 64

4.5.3.1 Custom Shape with Randomly Placed 100 3D Voronoi
Cells . 65

4.5.3.2 Custom Shape with Randomly Placed 400 3D Voronoi
Cells . 65

4.5.3.3 Custom Shape with 104 Square Voronoi Cells on XY-
Plane . 67

4.5.3.4 Custom Shape with 416 Square Voronoi Cells on XY-
Plane . 69

xiii

4.5.4 Stanford Bunny . 69

4.5.4.1 Stanford Bunny with Randomly Placed 100 3D Voronoi
Cells . 71

4.5.4.2 Stanford Bunny with Randomly Placed 400 3D Voronoi
Cells . 71

4.5.4.3 Stanford Bunny with 80 Square Voronoi Cells on XY-
Plane . 73

4.5.4.4 Stanford Bunny with 414 Square Voronoi Cells on XY-
Plane . 75

4.6 Results . 75

4.7 Adaptations for the 3D Printed Parts 78

4.7.1 Path Optimization . 78

4.7.1.1 On a Layer . 78

4.7.1.2 Between the Layers 78

4.7.2 Solid Base Creation . 79

4.7.3 Shell Generation . 79

4.8 3D Printed Parts . 80

4.9 Surface Roughness Tests . 80

4.10 Intersection Problems due to Grasshopper 84

5 DISCUSSIONS & CONCLUSION . 91

REFERENCES . 93

xiv

LIST OF TABLES

TABLES

Table 3.1 The nodes and the number of them in each Voronoi cell in Figure 3.3. 27

Table 3.2 The coordinates of all the nodes in the example path, 1-2-0-2-1->-

3-2-3. 35

Table 3.3 The coordinates of all the nodes in the path at next layer, 3-2-3. . . . 36

Table 3.4 Complexity of operations for the Hierholzer's Algorithm. 39

Table 3.5 Complexity of operations for the Modi�ed Hierholzer's Algorithm. . 40

Table 3.6 Complexity of operations for the Path Breaker Algorithm. 40

Table 3.7 Complexity of operations for the Path Generator Algorithm. 40

Table 3.8 Complexity of operations for the Path Breaker Algorithm. 41

Table 3.9 Complexity of operations for the Subpath Enlarger Algorithm. . . . 41

Table 3.10 Complexity of operations for the Path Generator Algorithm. 42

Table 3.11 Complexity of operations for the G-code Encryption Algorithm. . . 42

Table 4.1 Complexity of operations for the Naive Algorithm. 50

Table 4.2 Complexity of operations for the Improved Naive Algorithm. 50

Table 4.3 Complexity of operations for the Algorithm of Yaman et al. [1]. . . 51

Table 4.4 The results for the case of cube with 100 Voronoi cells. 56

Table 4.5 The results for the case of cube with 400 Voronoi cells. 57

xv

Table 4.6 The results for the case of cube with 64 Voronoi cells. 58

Table 4.7 The results for the case of cube with 441 Voronoi cells. 59

Table 4.8 The results for the case of sphere with 100 Voronoi cells. 60

Table 4.9 The results for the case of sphere with 400 Voronoi cells. 62

Table 4.10 The results for the case of sphere with 81 Voronoi cells. 63

Table 4.11 The results for the case of sphere with 441 Voronoi cells. 65

Table 4.12 The results for the case of custom shape with 100 Voronoi cells. . . 66

Table 4.13 The results for the case of custom shape with 400 Voronoi cells. . . 67

Table 4.14 The results for the case of custom shape with 104 Voronoi cells. . . 69

Table 4.15 The results for the case of custom shape with 416 Voronoi cells. . . 70

Table 4.16 The results for the case of Stanford Bunny with 100 Voronoi cells. . 72

Table 4.17 The results for the case of Stanford Bunny with 400 Voronoi cells. . 72

Table 4.18 The results for the case of Stanford Bunny with 80 Voronoi cells. . . 75

Table 4.19 The results for the case of Stanford Bunny with 414 Voronoi cells. . 77

Table 4.20 Average Ra and Peak-to-Valley values of the square objects printed

by different algorithms. 85

Table 4.21 Average Ra and Peak-to-Valley values of the boxes printed by dif-

ferent algorithms. 90

xvi

LIST OF FIGURES

FIGURES

Figure 2.1 Obtaining an Eulerian cycle from a general graph. 6

Figure 2.2 The concepts offast travel(Step 5) andu turn (Steps 7 & 8). . . 7

Figure 2.3 A heterogeneous Voronoi diagram, consisting of 5 Voronoi dia-

grams. 8

Figure 3.1 Hierholzer's algorithm. 16

Figure 3.2 In presented graphs, it is always possible to have au turn freepath. 18

Figure 3.3 Two subsequent layers, taken from a cylinder, which is popu-

lated by 3D Voronoi cells. 26

Figure 3.4 Layer 1 with duplicated connections. The subpaths from Layer

0 are shown in color, new connections are shown in black. 28

Figure 3.5 Subpaths are enlarged using available connections. Note that the

green subpath is reversed during the enlargement. 34

Figure 4.1 Naive algorithm, which traverses every cell one by one, without

optimization. 44

Figure 4.2 Improved naive algorithm, which traverses a cell completely,

then considers the closest cell. 45

Figure 4.3 The �rst rule of the algorithm by Yaman et al. [1]. 47

Figure 4.4 The second rule of the algorithm by Yaman et al. [1]. 47

xvii

Figure 4.5 The third rule of the algorithm by Yaman et al. [1]. 48

Figure 4.6 Simulation for a graph with 80 cells. 52

Figure 4.7 Simulation for two sequential layers of a cube �lled with 100

Voronoi cells. 53

Figure 4.8 The cube with 100 randomly placed 3D Voronoi cells. 55

Figure 4.9 The cube with 400 randomly placed 3D Voronoi cells. 56

Figure 4.10 The cube with 64 Voronoi cells at each layer. 58

Figure 4.11 The cube with 441 Voronoi cells at each layer. 59

Figure 4.12 The sphere with 100 randomly placed 3D Voronoi cells. 61

Figure 4.13 The sphere with 400 randomly placed 3D Voronoi cells. 62

Figure 4.14 The sphere with 81 Voronoi cells at each layer. 63

Figure 4.15 The sphere with 441 Voronoi cells at each layer. 64

Figure 4.16 Custom shape with 100 randomly placed 3D Voronoi cells. . . . 66

Figure 4.17 Custom shape with 400 randomly placed 3D Voronoi cells. . . . 67

Figure 4.18 Custom shape with 104 Voronoi cells at each layer. 68

Figure 4.19 Custom shape with 416 Voronoi cells at each layer. 70

Figure 4.20 Stanford Bunny with 100 randomly placed 3D Voronoi cells. . . 71

Figure 4.21 Stanford Bunny with 400 randomly placed 3D Voronoi cells. . . 73

Figure 4.22 Stanford Bunny with 80 Voronoi cells at each layer. 74

Figure 4.23 Section view of the Stanford Bunny with 80 Voronoi cells at

each layer. 74

Figure 4.24 Stanford Bunny with 414 Voronoi cells at each layer. 76

xviii

Figure 4.25 Section view of the Stanford Bunny with 414 Voronoi cells at

each layer. 76

Figure 4.26 If the path is not optimized, many fast travels occur. 79

Figure 4.27 When feedrate of the printer head is not high enough inG0mo-

tion, fast travels do result in solid lines. 81

Figure 4.28 Bunny after the excessive material caused by insuf�cient fast

travel feedrate is removed. 82

Figure 4.29 Bunny with 100 Voronois and 2 layers of shell, 3D printed with

transparent �lament. 83

Figure 4.30 Bunny with 100 Voronois and 1 layer of shell, 3D printed with

transparent �lament. 84

Figure 4.31 Bunny models with 1 layer (left) and 2 layers (right) of shells. . . 85

Figure 4.32 The cube with 36 Voronoi cells, 3D printed with two �laments. . 86

Figure 4.33 Model �le and printed parts for a square with 5383 Voronoi cells.

Surface roughness values are obtained along the black lines (Figure

4.34). 87

Figure 4.34 Surface Roughness Pro�les for the Square Object. 88

Figure 4.35 3D printed boxes for all algorithms: From left to right; Naive,

Improved Naive, Yaman et al. [1], Hierholzer's, and Modi�ed Hier-

holzer's. Due to the fast travels, geometric structure can only be pre-

served using continuous planning algorithms. 88

Figure 4.36 Roughness pro�les of the box are measured among the surfaces

in the height direction, twice at each surface, in the area denoted by

yellow. 89

Figure 4.37 3D printed boxes, and a sample surface roughness pro�le mea-

sured on an edge in the height direction. Both axes are in mm. 89

xix

Figure 4.38 Some grid-type Voronoi cells are missing, which is an intersec-

tion problem. 90

xx

LIST OF ABBREVIATIONS

ABBREVIATIONS

2D 2 Dimensional

2.5D 2.5 Dimensional

3D 3 Dimensional

CW Clockwise

CCW Counterclockwise

DOF Degree of Freedom

FDM Fused Deposition Modeling

FFF Fused Filament Fabrication

STL Standard Triangle Language

BRep Boundary Representation

xxi

xxii

CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem De�nition

Robotics with automation is the next big thing for the civilization. Transferring the

mundane, dangerous and repetitive jobs to the robots will give humans more prosper-

ous lives. Additionally, the jobs will be performed by a higher quality. In order to

contribute to this milestone as a species, methods are developed that can be utilized

in two separate, but related domains as area coverage and additive manufacturing.

There are numerous coverage applications. These are listed as below.

� Surveying drones watch their respective territories.

� Vacuum cleaners clean the rooms of an apartment.

� Lawn mowers mow the grass inside the garden.

� Autonomous farming robots seed plants, water the trees, and harvest the crops.

� CNC machines remove a layer of material, by covering the speci�ed area.

Similarly, 3D printers print a material, again, by covering the speci�ed area. A cover-

age algorithm for such applications is proposed. In some cases, coverage of a recently

covered segment might not be possible, or desirable. For instance, if a farming robot

is to be used, driving it forward all the time may be required. Similarly, if a drone is

used for monitoring, instead of directing it to a recently monitored segment, it would

be a better choice to direct it to another segment. This problem is addressed by the

proposed algorithm.

1

Additive Manufacturing (AM) is being widely adopted by the industry and the con-

sumers. Many people and facilities have 3D printers, which are especially useful

for rapid prototyping purposes. One drawback of the AM processes is the surface

quality of the �nished product. Usually, a �nishing operation is applied to obtain a

smoother surface. However, it is believed that this issue can be mitigated bycontin-

uous printing. In continuous printing, the printer covers all the layer while extruding

the �lament. Since there are no breaks between the extrusions, the surface quality

gets better and the thermal stress effects become less problematic. By the proposed

algorithm, this problem is addressed, and all layer is printed continuously.

While printing an artifact, path planning must be done for all the layers. However,

this is a costly operation. If a path is already available, updating it for the next lay-

ers would be a better approach. That's another problem addressed by the proposed

algorithm.

Lastly, an improvement about the structure of theG-code, which is an industry stan-

dard, is desired to be made. The same information can be stored in a much smaller

space, by which a signi�cant storage capacity can be freed.

1.2 Proposed Methods and Models

Before the coverage to begin, the area must be discritized, for which Voronoi graphs

are used. Numereous 2D and 3D cell structures can easily be constructed using them.

Due to their �exibility, Voronoi graphs are utilized in various studies.

To achieve continuous printing, Eulerian graphs and cycles are constructed. An Eule-

rian cycle starts a path, covers all edges, and then ends at the starting position. Graphs,

which have Eulerian cycles are called Eulerian graphs. Therefore, it is needed to con-

vert a Voronoi graph to an Eulerian graph, by duplicating its edges. Actually, any

connected graph can be converted into an Eulerian graph, by this approach.

2

1.3 Contributions and Novelties

The contributions are as follows:

� A method to convert any connected graph into an Eulerian graph is proposed.

� Given an Eulerian graph, a continuous path planning method that eliminates

covering a recently traversed edge again is introduced.

� A path updating method is offered, for many instances of path planning cases,

like 3D printing.

� An encryption method for G-code �les is developed, resulting in a signi�cant

decrease in the storage.

1.4 The Outline of the Thesis

In Chapter 2, background information is given and relative subjects for the study are

explained, and the studies that are comparable to presented work are reviewed. In

Chapter 3, proposed algorithms are explained, where examples are given to make

the understanding easier, and pseudocodes are also provided. In Chapter 4, imple-

mentation details are given, then the algorithms used for comparison are introduced.

Afterwards, test cases and their results are covered. In Chapter 5, the conclusion for

the study is drawn.

3

4

CHAPTER 2

BACKGROUND INFORMATION & LITERATURE REVIEW

In this chapter, the necessary background information is given, and critical concepts

are explained. Furthermore, related work to the presented study is discussed.

2.1 Coverage Algorithms

Given an area, coverage is the application of spanning the full domain. In many

real life applications, coverage is used. For instance, environment monitoring by

drones, house cleaning by robotic vacuum cleaners, machining by CNC machines,

farming by autonomous vehicles, etc. are all done with the help of coverage algo-

rithms. Similarly, while 3D printing an artifact, depending on the intensity setting, a

grid structure is constructed. Then, the printer headcoversthe whole layer by follow-

ing the lines of the corresponding grid. Various algorithms are developed according

to the application-speci�c requirements. The number of agents and their movement

constraints (e.g. whether they're holonomic or not) are also considered.

2.2 Eulerian Cycles and Eulerian Graphs

Eulerian cycle is a path for a connected graph that starts and ends at the same vertex.

It traverses every edges of the graph exactly once [2]. A graph that has an Eulerian

cycle is called as an Eulerian graph. In order for an undirected graph to have an

Eulerian cycle, two conditions must be satis�ed:

� The graph must be connected.

5

(a) Original graph (b) With duplicated edges

Figure 2.1: Obtaining an Eulerian cycle from a general graph.

� Every vertex must have an even number of edges.

Additionally, if the graph is directed, the number of incoming and outgoing connec-

tions must be equal for each vertex. A general graph example is given in Figure

2.1a. As seen from the �gure, not all the vertices have an even number of edges.

Consequently, an Eulerian cycle cannot be generated for this graph. Following the

methodology of Yaman et al. [1], each edge is duplicated (Figure 2.1b). Therefore,

the graph becomes Eulerian. Taking advantage of the Eulerian graph, one can start

extruding the material at a vertex and end at the same place in Fused Filament Fabri-

cation (FFF) process, eliminating fast travels.

2.3 Fast Travels and U Turns

While covering the edges of a graph, if there is no connection left at the current

node although the graph is not fully covered, one needs to move into another node

to continue with the coverage (Figure 2.2). That movement is called as afast travel,

originating from rapid positioning motion (G00) of CNC machines. On the other

hand, if there are two connections between two nodes and if both of those covered

one after the other, that motion is called as au turn (Figure 2.2). Note that,u turns

require a full stop. Thus, if possible, they must be eliminated for a more ef�cient

6

operation.

Figure 2.2: The concepts offast travel(Step 5) andu turn (Steps 7 & 8).

2.4 Voronoi Graphs

Given a list of sites, Voronoi diagrams decompose an area or a volume into smaller

pieces such that each resulting Voronoi cell consists of the points that are closest to

the given Voronoi site [3]. By choosing uniformly or non-uniformly generated sets

of sites, diagrams with distinct patterns can be created, which makes Voronoi dia-

grams a useful tool for coverage. For example, rectangular, triangular, and hexagonal

grid structures can be easily obtained. Using Voronoi diagrams, not only fully uni-

form or random structures, but also a combination of them can be produced. This is

demonstrated by forming different Voronoi patterns into a square (Figure 2.3).

2.5 Literature Review

Coverage algorithms are used in many applications, such as vacuum cleaning [4],

painting [5], mapping [6], demining [7], lawn mowing [8], harvesting [9], window

cleaning [10] and structure inspecting [11]. They can be classi�ed according to var-

ious criteria. The ones that guarantee the complete coverage are calledcomplete,

whereas the others are called asheuristic [12]. If the area to be covered is required

to be known in advance, they are calledof�ine; and if that is not the case, they are

called textit online, orsensor based coverage algorithms [13]. Most algorithms are

developed for the planar space, whereas some of them consider the 3D space since

7

(a) A Voronoi diagram with different Voronoi in-

�ll patterns

(b) 3D printed version

Figure 2.3: A heterogeneous Voronoi diagram, consisting of 5 Voronoi diagrams.

the applications dictate that. The majority of the algorithms divide the space into

subregions, such as the trapezoidal decomposition [14, 15] or morse-based cell de-

composition method [16]. On the other hand, grid-based algorithms represent the

area as a collection of uniform grid cells, whose values can be a binary or a proba-

bility [17, 18]. Some algorithms consider multiple agents, where some of the agents

are assigned toexplorationand the remaining ones are responsible forexploitation,

i.e., coverage [19]. Overall, many algorithms are developed and used for numerous

applications.

One of the most functional and popular technologies of the present age is unmanned

aerial vehicles. There are interesting coverage algorithms developed by considering

their needs [20]. For instance, while covering an area, it would be advantageous to

have a short path. On the other hand, the energy requirement of UAVs is much crit-

ical. Changing the direction frequently is seemed to be energy wasting. For that

reason, energy-aware algorithms are developed [21, 22]. In those methods, instead

of lots of sharp turns, like seen in Hilbert curves, more straight paths are preferred.

Another class of algorithms aim multi-robot coverage. For instance, in decentral-

ized algorithms, drones exchange information only with the other drones that are

8

close to them, and every drone covers their respected area [23, 24]. Also, there are

methods inspired by the nature. For instance, mimicking the ants' communication,

pheromone-based algorithms are introduced, in which the area is divided into grids,

and the number of visits for each grids are stored [25, 26]. As one can see, different

requirements lead to various methods.

In Fused Deposition Modeling (FDM) processes, the quality of the part is determined

by two critical factors that control the �nal shape of the product, namelyslicing and

path planning[27]. Some slicing approaches require a device with higher capabili-

ties. For instance, instead of a conventional cartesian 3D printer, a robotic arm with 3

DoF or another one with 5 DoF might be necessary. After slicing is done, path plan-

ning takes place, which determines the precision of the product. Therefore, in order

to have a more precise part, the boundary of the part is printed following contour-

parallel lines with a relatively slower feedrate. On the other hand, the inside of the

part is �lled following a zigzag pattern, which allows faster printing [28]. Although

this is the most common practice for the available 3D printers, it does not consider

the continuous deposition issue, which is a widely studied concept in AM. To obtain a

uniform material density and mechanical properties, researchers developed methods

that utilize various in�ll patterns and path planning algorithms. Jin et al. [29] �rst

decomposed the area into what they call simple areas that can be traversed without

retraction, using direction-parallel and contour-parallel polygon decomposition meth-

ods. Then they calculated a continuous subpath for each segment, which starts and

ends at the same point. In the end, they connected all the subpaths to form a single and

continuous path for the whole area. Zhao et al. [30] utilized Fermat spirals. Unlike

the space �lling curves, such as Hilbert curves which have lots of corners and sharp

turns, Fermat spirals are constructed by low curvature paths. They �rst decomposed

the given area into subregions that can be continuously �lled with a Fermat spiral. By

doing so, they ensured that the start and end points of the spirals are very close to each

other. After forming the paths for all subregions, they connected the paths and ob-

tained a single continuous path. Nevertheless, as they mentioned, their method is not

guaranteed to cover any arbitrary region. Shaikh at al. [31] used Hilbert curves for 3D

printing. They took an area and then �lled it with a Hilbert curve. Then, if there are

any contours in the area, they removed the corresponding regions from the curve and

9

printed the �nal shape. Nevertheless, their �nal product is not homogeneous in terms

of in�ll material. Gupta et. al. [32] utilized Euler transformation to obtain a graph

that is continuously printable, i.e., a graph in which every vertex has an even num-

ber of edges. As they pointed o, while traversing such a graph, one might encounter

traversing a vertex many times, which they callcrossover. They avoided crossovers

by offsetting the path around the necessary vertices. Lin et. al. [33] applied a continu-

ous path planning method for �nishing processes of compound surfaces, during which

many retractions are made. First, they created a curvature map. Then, they generated

the cutter contact points. They used those points as cities of a TSP problem, and used

LKH algorithm to traverse all of them. They argue that cutter contact point genera-

tion is a highly time consuming process since all triangles inside the object must be

searched in order to �nd one point. Feng et. al. [34] used triply periodic minimal

surfaces (TPMS) for designing porous structures. Normally, TPMS structures cannot

be printed as they de�ne open surfaces. Therefore, they provided a method to make

a printable object from a TPMS structure, in which Marching Squares algorithm is

utilized during slicing. Ding et al. [35] stated that although widely used for AM, the

contour paths, which start from the boundary of the geometry and proceed inwards,

do not guarantee �lling the geometry completely. To deal with this problem, they

applied the methodology developed by Kao [36], in which the medial axis transfor-

mation (MAT) is used. Given a geometry, �rst the skeleton is generated by medial

axis transformation. Based on the skeleton, they created branches to �ll the geometry,

and then trimmed them. For the boundary, though, they made extra deposition, which

makes the path discontinuous. Their method is developed mainly for Wire and Arc

Additive Manufacturing (WAAM). Hergel at al. [37] argue that there is a fundamental

difference between printing thermoplastic materials and clay. Deposited thermoplas-

tic material solidi�es rapidly after extrusion whereas the �lament inside the extruder

is still liquid. Therefore, moving without extrusion enables the printed part to detach

from the extruder immediately and results in only minor artifacts. However, when

clay is printed, it requires much longer time for solidi�cation. Thus, if a movement

without extrusion is made, the extruder will pull the printed part, causing the shape to

deform. As those deformations are repeated, the failure of the shape becomes more

probable. In order to cope with this, they introduced a continuous extrusion method.

Firstly, they took the geometry to be printed and add support structures. Then, they

10

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Proposed Methods and Models
	Contributions and Novelties
	The Outline of the Thesis

	Background Information & Literature Review
	Coverage Algorithms
	Eulerian Cycles and Eulerian Graphs
	Fast Travels and U Turns
	Voronoi Graphs
	Literature Review

	Continuous Path Planning Algorithm
	Algorithm On a Layer
	Hierholzer's Algorithm
	Modified Hierholzer's Algorithm

	Converting a U Turn Heavy Path into a U Turn Free Path
	Algorithm Between the Layers
	G-code Encryption
	Case of 2.5D Parts

	Complexity Analysis of the Algorithms
	Hierholzer's Algorithm
	Modified Hierholzer's Algorithm
	Path Converter Algorithm
	Path Updater Algorithm
	G-code Encryption Algorithm

	Implementation & Test Cases
	Algorithms Utilized in Test Cases for Comparison
	Naive Algorithm
	Improved Naive Algorithm
	Algorithm of Yaman et al.
	Hierholzer's Algorithm
	Ultimaker Cura

	Complexity Analysis of the Algorithms
	Naive Algorithm
	Improved Naive Algorithm
	Algorithm of Yaman et al.

	Implementation
	Simulation
	Test Cases
	Cube
	Cube with 100 Random 3D Voronoi Cells
	Cube with 400 Random 3D Voronoi Cells
	Cube with 64 Square Voronoi Cells on XY-Plane
	Cube with 441 Square Voronoi Cells on XY-Plane

	Sphere
	Sphere with Randomly Placed 100 3D Voronoi Cells
	Sphere with Randomly Placed 400 3D Voronoi Cells
	Sphere with 81 Square Voronoi Cells on XY-Plane
	Sphere with 441 Square Voronoi Cells on XY-Plane

	Custom Shape
	Custom Shape with Randomly Placed 100 3D Voronoi Cells
	Custom Shape with Randomly Placed 400 3D Voronoi Cells
	Custom Shape with 104 Square Voronoi Cells on XY-Plane
	Custom Shape with 416 Square Voronoi Cells on XY-Plane

	Stanford Bunny
	Stanford Bunny with Randomly Placed 100 3D Voronoi Cells
	Stanford Bunny with Randomly Placed 400 3D Voronoi Cells
	Stanford Bunny with 80 Square Voronoi Cells on XY-Plane
	Stanford Bunny with 414 Square Voronoi Cells on XY-Plane

	Results
	Adaptations for the 3D Printed Parts
	Path Optimization
	On a Layer
	Between the Layers

	Solid Base Creation
	Shell Generation

	3D Printed Parts
	Surface Roughness Tests
	Intersection Problems due to Grasshopper

	Discussions & Conclusion
	REFERENCES

